Statistics
| Branch: | Revision:

root / qemu-doc.texi @ 60e1b2a6

History | View | Annotate | Download (81.1 kB)

1 386405f7 bellard
\input texinfo @c -*- texinfo -*-
2 debc7065 bellard
@c %**start of header
3 debc7065 bellard
@setfilename qemu-doc.info
4 e080e785 Stefan Weil
5 e080e785 Stefan Weil
@documentlanguage en
6 e080e785 Stefan Weil
@documentencoding UTF-8
7 e080e785 Stefan Weil
8 8f40c388 bellard
@settitle QEMU Emulator User Documentation
9 debc7065 bellard
@exampleindent 0
10 debc7065 bellard
@paragraphindent 0
11 debc7065 bellard
@c %**end of header
12 386405f7 bellard
13 a1a32b05 Stefan Weil
@ifinfo
14 a1a32b05 Stefan Weil
@direntry
15 a1a32b05 Stefan Weil
* QEMU: (qemu-doc).    The QEMU Emulator User Documentation.
16 a1a32b05 Stefan Weil
@end direntry
17 a1a32b05 Stefan Weil
@end ifinfo
18 a1a32b05 Stefan Weil
19 0806e3f6 bellard
@iftex
20 386405f7 bellard
@titlepage
21 386405f7 bellard
@sp 7
22 8f40c388 bellard
@center @titlefont{QEMU Emulator}
23 debc7065 bellard
@sp 1
24 debc7065 bellard
@center @titlefont{User Documentation}
25 386405f7 bellard
@sp 3
26 386405f7 bellard
@end titlepage
27 0806e3f6 bellard
@end iftex
28 386405f7 bellard
29 debc7065 bellard
@ifnottex
30 debc7065 bellard
@node Top
31 debc7065 bellard
@top
32 debc7065 bellard
33 debc7065 bellard
@menu
34 debc7065 bellard
* Introduction::
35 debc7065 bellard
* Installation::
36 debc7065 bellard
* QEMU PC System emulator::
37 debc7065 bellard
* QEMU System emulator for non PC targets::
38 83195237 bellard
* QEMU User space emulator::
39 debc7065 bellard
* compilation:: Compilation from the sources
40 7544a042 Stefan Weil
* License::
41 debc7065 bellard
* Index::
42 debc7065 bellard
@end menu
43 debc7065 bellard
@end ifnottex
44 debc7065 bellard
45 debc7065 bellard
@contents
46 debc7065 bellard
47 debc7065 bellard
@node Introduction
48 386405f7 bellard
@chapter Introduction
49 386405f7 bellard
50 debc7065 bellard
@menu
51 debc7065 bellard
* intro_features:: Features
52 debc7065 bellard
@end menu
53 debc7065 bellard
54 debc7065 bellard
@node intro_features
55 322d0c66 bellard
@section Features
56 386405f7 bellard
57 1f673135 bellard
QEMU is a FAST! processor emulator using dynamic translation to
58 1f673135 bellard
achieve good emulation speed.
59 1eb20527 bellard
60 1eb20527 bellard
QEMU has two operating modes:
61 0806e3f6 bellard
62 d7e5edca Stefan Weil
@itemize
63 7544a042 Stefan Weil
@cindex operating modes
64 0806e3f6 bellard
65 5fafdf24 ths
@item
66 7544a042 Stefan Weil
@cindex system emulation
67 1f673135 bellard
Full system emulation. In this mode, QEMU emulates a full system (for
68 3f9f3aa1 bellard
example a PC), including one or several processors and various
69 3f9f3aa1 bellard
peripherals. It can be used to launch different Operating Systems
70 3f9f3aa1 bellard
without rebooting the PC or to debug system code.
71 1eb20527 bellard
72 5fafdf24 ths
@item
73 7544a042 Stefan Weil
@cindex user mode emulation
74 83195237 bellard
User mode emulation. In this mode, QEMU can launch
75 83195237 bellard
processes compiled for one CPU on another CPU. It can be used to
76 1f673135 bellard
launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
77 1f673135 bellard
to ease cross-compilation and cross-debugging.
78 1eb20527 bellard
79 1eb20527 bellard
@end itemize
80 1eb20527 bellard
81 7c3fc84d bellard
QEMU can run without an host kernel driver and yet gives acceptable
82 5fafdf24 ths
performance.
83 322d0c66 bellard
84 52c00a5f bellard
For system emulation, the following hardware targets are supported:
85 52c00a5f bellard
@itemize
86 7544a042 Stefan Weil
@cindex emulated target systems
87 7544a042 Stefan Weil
@cindex supported target systems
88 9d0a8e6f bellard
@item PC (x86 or x86_64 processor)
89 3f9f3aa1 bellard
@item ISA PC (old style PC without PCI bus)
90 52c00a5f bellard
@item PREP (PowerPC processor)
91 d45952a0 aurel32
@item G3 Beige PowerMac (PowerPC processor)
92 9d0a8e6f bellard
@item Mac99 PowerMac (PowerPC processor, in progress)
93 ee76f82e blueswir1
@item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
94 c7ba218d blueswir1
@item Sun4u/Sun4v (64-bit Sparc processor, in progress)
95 d9aedc32 ths
@item Malta board (32-bit and 64-bit MIPS processors)
96 88cb0a02 aurel32
@item MIPS Magnum (64-bit MIPS processor)
97 9ee6e8bb pbrook
@item ARM Integrator/CP (ARM)
98 9ee6e8bb pbrook
@item ARM Versatile baseboard (ARM)
99 0ef849d7 Paul Brook
@item ARM RealView Emulation/Platform baseboard (ARM)
100 ef4c3856 balrog
@item Spitz, Akita, Borzoi, Terrier and Tosa PDAs (PXA270 processor)
101 9ee6e8bb pbrook
@item Luminary Micro LM3S811EVB (ARM Cortex-M3)
102 9ee6e8bb pbrook
@item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
103 707e011b pbrook
@item Freescale MCF5208EVB (ColdFire V2).
104 209a4e69 pbrook
@item Arnewsh MCF5206 evaluation board (ColdFire V2).
105 02645926 balrog
@item Palm Tungsten|E PDA (OMAP310 processor)
106 c30bb264 balrog
@item N800 and N810 tablets (OMAP2420 processor)
107 57cd6e97 balrog
@item MusicPal (MV88W8618 ARM processor)
108 ef4c3856 balrog
@item Gumstix "Connex" and "Verdex" motherboards (PXA255/270).
109 ef4c3856 balrog
@item Siemens SX1 smartphone (OMAP310 processor)
110 48c50a62 Edgar E. Iglesias
@item AXIS-Devboard88 (CRISv32 ETRAX-FS).
111 48c50a62 Edgar E. Iglesias
@item Petalogix Spartan 3aDSP1800 MMU ref design (MicroBlaze).
112 3aeaea65 Max Filippov
@item Avnet LX60/LX110/LX200 boards (Xtensa)
113 52c00a5f bellard
@end itemize
114 386405f7 bellard
115 7544a042 Stefan Weil
@cindex supported user mode targets
116 7544a042 Stefan Weil
For user emulation, x86 (32 and 64 bit), PowerPC (32 and 64 bit),
117 7544a042 Stefan Weil
ARM, MIPS (32 bit only), Sparc (32 and 64 bit),
118 7544a042 Stefan Weil
Alpha, ColdFire(m68k), CRISv32 and MicroBlaze CPUs are supported.
119 0806e3f6 bellard
120 debc7065 bellard
@node Installation
121 5b9f457a bellard
@chapter Installation
122 5b9f457a bellard
123 15a34c63 bellard
If you want to compile QEMU yourself, see @ref{compilation}.
124 15a34c63 bellard
125 debc7065 bellard
@menu
126 debc7065 bellard
* install_linux::   Linux
127 debc7065 bellard
* install_windows:: Windows
128 debc7065 bellard
* install_mac::     Macintosh
129 debc7065 bellard
@end menu
130 debc7065 bellard
131 debc7065 bellard
@node install_linux
132 1f673135 bellard
@section Linux
133 7544a042 Stefan Weil
@cindex installation (Linux)
134 1f673135 bellard
135 7c3fc84d bellard
If a precompiled package is available for your distribution - you just
136 7c3fc84d bellard
have to install it. Otherwise, see @ref{compilation}.
137 5b9f457a bellard
138 debc7065 bellard
@node install_windows
139 1f673135 bellard
@section Windows
140 7544a042 Stefan Weil
@cindex installation (Windows)
141 8cd0ac2f bellard
142 15a34c63 bellard
Download the experimental binary installer at
143 debc7065 bellard
@url{http://www.free.oszoo.org/@/download.html}.
144 7544a042 Stefan Weil
TODO (no longer available)
145 d691f669 bellard
146 debc7065 bellard
@node install_mac
147 1f673135 bellard
@section Mac OS X
148 d691f669 bellard
149 15a34c63 bellard
Download the experimental binary installer at
150 debc7065 bellard
@url{http://www.free.oszoo.org/@/download.html}.
151 7544a042 Stefan Weil
TODO (no longer available)
152 df0f11a0 bellard
153 debc7065 bellard
@node QEMU PC System emulator
154 3f9f3aa1 bellard
@chapter QEMU PC System emulator
155 7544a042 Stefan Weil
@cindex system emulation (PC)
156 1eb20527 bellard
157 debc7065 bellard
@menu
158 debc7065 bellard
* pcsys_introduction:: Introduction
159 debc7065 bellard
* pcsys_quickstart::   Quick Start
160 debc7065 bellard
* sec_invocation::     Invocation
161 debc7065 bellard
* pcsys_keys::         Keys
162 debc7065 bellard
* pcsys_monitor::      QEMU Monitor
163 debc7065 bellard
* disk_images::        Disk Images
164 debc7065 bellard
* pcsys_network::      Network emulation
165 576fd0a1 Stefan Weil
* pcsys_other_devs::   Other Devices
166 debc7065 bellard
* direct_linux_boot::  Direct Linux Boot
167 debc7065 bellard
* pcsys_usb::          USB emulation
168 f858dcae ths
* vnc_security::       VNC security
169 debc7065 bellard
* gdb_usage::          GDB usage
170 debc7065 bellard
* pcsys_os_specific::  Target OS specific information
171 debc7065 bellard
@end menu
172 debc7065 bellard
173 debc7065 bellard
@node pcsys_introduction
174 0806e3f6 bellard
@section Introduction
175 0806e3f6 bellard
176 0806e3f6 bellard
@c man begin DESCRIPTION
177 0806e3f6 bellard
178 3f9f3aa1 bellard
The QEMU PC System emulator simulates the
179 3f9f3aa1 bellard
following peripherals:
180 0806e3f6 bellard
181 0806e3f6 bellard
@itemize @minus
182 5fafdf24 ths
@item
183 15a34c63 bellard
i440FX host PCI bridge and PIIX3 PCI to ISA bridge
184 0806e3f6 bellard
@item
185 15a34c63 bellard
Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
186 15a34c63 bellard
extensions (hardware level, including all non standard modes).
187 0806e3f6 bellard
@item
188 0806e3f6 bellard
PS/2 mouse and keyboard
189 5fafdf24 ths
@item
190 15a34c63 bellard
2 PCI IDE interfaces with hard disk and CD-ROM support
191 1f673135 bellard
@item
192 1f673135 bellard
Floppy disk
193 5fafdf24 ths
@item
194 3a2eeac0 Stefan Weil
PCI and ISA network adapters
195 0806e3f6 bellard
@item
196 05d5818c bellard
Serial ports
197 05d5818c bellard
@item
198 c0fe3827 bellard
Creative SoundBlaster 16 sound card
199 c0fe3827 bellard
@item
200 c0fe3827 bellard
ENSONIQ AudioPCI ES1370 sound card
201 c0fe3827 bellard
@item
202 e5c9a13e balrog
Intel 82801AA AC97 Audio compatible sound card
203 e5c9a13e balrog
@item
204 7d72e762 Gerd Hoffmann
Intel HD Audio Controller and HDA codec
205 7d72e762 Gerd Hoffmann
@item
206 2d983446 Stefan Weil
Adlib (OPL2) - Yamaha YM3812 compatible chip
207 b389dbfb bellard
@item
208 26463dbc balrog
Gravis Ultrasound GF1 sound card
209 26463dbc balrog
@item
210 cc53d26d malc
CS4231A compatible sound card
211 cc53d26d malc
@item
212 b389dbfb bellard
PCI UHCI USB controller and a virtual USB hub.
213 0806e3f6 bellard
@end itemize
214 0806e3f6 bellard
215 3f9f3aa1 bellard
SMP is supported with up to 255 CPUs.
216 3f9f3aa1 bellard
217 1d1f8c33 malc
Note that adlib, gus and cs4231a are only available when QEMU was
218 1d1f8c33 malc
configured with --audio-card-list option containing the name(s) of
219 e5178e8d malc
required card(s).
220 c0fe3827 bellard
221 15a34c63 bellard
QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
222 15a34c63 bellard
VGA BIOS.
223 15a34c63 bellard
224 c0fe3827 bellard
QEMU uses YM3812 emulation by Tatsuyuki Satoh.
225 c0fe3827 bellard
226 2d983446 Stefan Weil
QEMU uses GUS emulation (GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
227 26463dbc balrog
by Tibor "TS" Schรผtz.
228 423d65f4 balrog
229 1a1a0e20 Bernhard Reutner-Fischer
Note that, by default, GUS shares IRQ(7) with parallel ports and so
230 720036a5 malc
qemu must be told to not have parallel ports to have working GUS
231 720036a5 malc
232 720036a5 malc
@example
233 720036a5 malc
qemu dos.img -soundhw gus -parallel none
234 720036a5 malc
@end example
235 720036a5 malc
236 720036a5 malc
Alternatively:
237 720036a5 malc
@example
238 720036a5 malc
qemu dos.img -device gus,irq=5
239 720036a5 malc
@end example
240 720036a5 malc
241 720036a5 malc
Or some other unclaimed IRQ.
242 720036a5 malc
243 cc53d26d malc
CS4231A is the chip used in Windows Sound System and GUSMAX products
244 cc53d26d malc
245 0806e3f6 bellard
@c man end
246 0806e3f6 bellard
247 debc7065 bellard
@node pcsys_quickstart
248 1eb20527 bellard
@section Quick Start
249 7544a042 Stefan Weil
@cindex quick start
250 1eb20527 bellard
251 285dc330 bellard
Download and uncompress the linux image (@file{linux.img}) and type:
252 0806e3f6 bellard
253 0806e3f6 bellard
@example
254 285dc330 bellard
qemu linux.img
255 0806e3f6 bellard
@end example
256 0806e3f6 bellard
257 0806e3f6 bellard
Linux should boot and give you a prompt.
258 0806e3f6 bellard
259 6cc721cf bellard
@node sec_invocation
260 ec410fc9 bellard
@section Invocation
261 ec410fc9 bellard
262 ec410fc9 bellard
@example
263 0806e3f6 bellard
@c man begin SYNOPSIS
264 89dfe898 ths
usage: qemu [options] [@var{disk_image}]
265 0806e3f6 bellard
@c man end
266 ec410fc9 bellard
@end example
267 ec410fc9 bellard
268 0806e3f6 bellard
@c man begin OPTIONS
269 d2c639d6 blueswir1
@var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
270 d2c639d6 blueswir1
targets do not need a disk image.
271 ec410fc9 bellard
272 5824d651 blueswir1
@include qemu-options.texi
273 ec410fc9 bellard
274 3e11db9a bellard
@c man end
275 3e11db9a bellard
276 debc7065 bellard
@node pcsys_keys
277 3e11db9a bellard
@section Keys
278 3e11db9a bellard
279 3e11db9a bellard
@c man begin OPTIONS
280 3e11db9a bellard
281 de1db2a1 Brad Hards
During the graphical emulation, you can use special key combinations to change
282 de1db2a1 Brad Hards
modes. The default key mappings are shown below, but if you use @code{-alt-grab}
283 de1db2a1 Brad Hards
then the modifier is Ctrl-Alt-Shift (instead of Ctrl-Alt) and if you use
284 de1db2a1 Brad Hards
@code{-ctrl-grab} then the modifier is the right Ctrl key (instead of Ctrl-Alt):
285 de1db2a1 Brad Hards
286 a1b74fe8 bellard
@table @key
287 f9859310 bellard
@item Ctrl-Alt-f
288 7544a042 Stefan Weil
@kindex Ctrl-Alt-f
289 a1b74fe8 bellard
Toggle full screen
290 a0a821a4 bellard
291 d6a65ba3 Jan Kiszka
@item Ctrl-Alt-+
292 d6a65ba3 Jan Kiszka
@kindex Ctrl-Alt-+
293 d6a65ba3 Jan Kiszka
Enlarge the screen
294 d6a65ba3 Jan Kiszka
295 d6a65ba3 Jan Kiszka
@item Ctrl-Alt--
296 d6a65ba3 Jan Kiszka
@kindex Ctrl-Alt--
297 d6a65ba3 Jan Kiszka
Shrink the screen
298 d6a65ba3 Jan Kiszka
299 c4a735f9 malc
@item Ctrl-Alt-u
300 7544a042 Stefan Weil
@kindex Ctrl-Alt-u
301 c4a735f9 malc
Restore the screen's un-scaled dimensions
302 c4a735f9 malc
303 f9859310 bellard
@item Ctrl-Alt-n
304 7544a042 Stefan Weil
@kindex Ctrl-Alt-n
305 a0a821a4 bellard
Switch to virtual console 'n'. Standard console mappings are:
306 a0a821a4 bellard
@table @emph
307 a0a821a4 bellard
@item 1
308 a0a821a4 bellard
Target system display
309 a0a821a4 bellard
@item 2
310 a0a821a4 bellard
Monitor
311 a0a821a4 bellard
@item 3
312 a0a821a4 bellard
Serial port
313 a1b74fe8 bellard
@end table
314 a1b74fe8 bellard
315 f9859310 bellard
@item Ctrl-Alt
316 7544a042 Stefan Weil
@kindex Ctrl-Alt
317 a0a821a4 bellard
Toggle mouse and keyboard grab.
318 a0a821a4 bellard
@end table
319 a0a821a4 bellard
320 7544a042 Stefan Weil
@kindex Ctrl-Up
321 7544a042 Stefan Weil
@kindex Ctrl-Down
322 7544a042 Stefan Weil
@kindex Ctrl-PageUp
323 7544a042 Stefan Weil
@kindex Ctrl-PageDown
324 3e11db9a bellard
In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
325 3e11db9a bellard
@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
326 3e11db9a bellard
327 7544a042 Stefan Weil
@kindex Ctrl-a h
328 a0a821a4 bellard
During emulation, if you are using the @option{-nographic} option, use
329 a0a821a4 bellard
@key{Ctrl-a h} to get terminal commands:
330 ec410fc9 bellard
331 ec410fc9 bellard
@table @key
332 a1b74fe8 bellard
@item Ctrl-a h
333 7544a042 Stefan Weil
@kindex Ctrl-a h
334 d2c639d6 blueswir1
@item Ctrl-a ?
335 7544a042 Stefan Weil
@kindex Ctrl-a ?
336 ec410fc9 bellard
Print this help
337 3b46e624 ths
@item Ctrl-a x
338 7544a042 Stefan Weil
@kindex Ctrl-a x
339 366dfc52 ths
Exit emulator
340 3b46e624 ths
@item Ctrl-a s
341 7544a042 Stefan Weil
@kindex Ctrl-a s
342 1f47a922 bellard
Save disk data back to file (if -snapshot)
343 20d8a3ed ths
@item Ctrl-a t
344 7544a042 Stefan Weil
@kindex Ctrl-a t
345 d2c639d6 blueswir1
Toggle console timestamps
346 a1b74fe8 bellard
@item Ctrl-a b
347 7544a042 Stefan Weil
@kindex Ctrl-a b
348 1f673135 bellard
Send break (magic sysrq in Linux)
349 a1b74fe8 bellard
@item Ctrl-a c
350 7544a042 Stefan Weil
@kindex Ctrl-a c
351 1f673135 bellard
Switch between console and monitor
352 a1b74fe8 bellard
@item Ctrl-a Ctrl-a
353 7544a042 Stefan Weil
@kindex Ctrl-a a
354 a1b74fe8 bellard
Send Ctrl-a
355 ec410fc9 bellard
@end table
356 0806e3f6 bellard
@c man end
357 0806e3f6 bellard
358 0806e3f6 bellard
@ignore
359 0806e3f6 bellard
360 1f673135 bellard
@c man begin SEEALSO
361 1f673135 bellard
The HTML documentation of QEMU for more precise information and Linux
362 1f673135 bellard
user mode emulator invocation.
363 1f673135 bellard
@c man end
364 1f673135 bellard
365 1f673135 bellard
@c man begin AUTHOR
366 1f673135 bellard
Fabrice Bellard
367 1f673135 bellard
@c man end
368 1f673135 bellard
369 1f673135 bellard
@end ignore
370 1f673135 bellard
371 debc7065 bellard
@node pcsys_monitor
372 1f673135 bellard
@section QEMU Monitor
373 7544a042 Stefan Weil
@cindex QEMU monitor
374 1f673135 bellard
375 1f673135 bellard
The QEMU monitor is used to give complex commands to the QEMU
376 1f673135 bellard
emulator. You can use it to:
377 1f673135 bellard
378 1f673135 bellard
@itemize @minus
379 1f673135 bellard
380 1f673135 bellard
@item
381 e598752a ths
Remove or insert removable media images
382 89dfe898 ths
(such as CD-ROM or floppies).
383 1f673135 bellard
384 5fafdf24 ths
@item
385 1f673135 bellard
Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
386 1f673135 bellard
from a disk file.
387 1f673135 bellard
388 1f673135 bellard
@item Inspect the VM state without an external debugger.
389 1f673135 bellard
390 1f673135 bellard
@end itemize
391 1f673135 bellard
392 1f673135 bellard
@subsection Commands
393 1f673135 bellard
394 1f673135 bellard
The following commands are available:
395 1f673135 bellard
396 2313086a Blue Swirl
@include qemu-monitor.texi
397 0806e3f6 bellard
398 1f673135 bellard
@subsection Integer expressions
399 1f673135 bellard
400 1f673135 bellard
The monitor understands integers expressions for every integer
401 1f673135 bellard
argument. You can use register names to get the value of specifics
402 1f673135 bellard
CPU registers by prefixing them with @emph{$}.
403 ec410fc9 bellard
404 1f47a922 bellard
@node disk_images
405 1f47a922 bellard
@section Disk Images
406 1f47a922 bellard
407 acd935ef bellard
Since version 0.6.1, QEMU supports many disk image formats, including
408 acd935ef bellard
growable disk images (their size increase as non empty sectors are
409 13a2e80f bellard
written), compressed and encrypted disk images. Version 0.8.3 added
410 13a2e80f bellard
the new qcow2 disk image format which is essential to support VM
411 13a2e80f bellard
snapshots.
412 1f47a922 bellard
413 debc7065 bellard
@menu
414 debc7065 bellard
* disk_images_quickstart::    Quick start for disk image creation
415 debc7065 bellard
* disk_images_snapshot_mode:: Snapshot mode
416 13a2e80f bellard
* vm_snapshots::              VM snapshots
417 debc7065 bellard
* qemu_img_invocation::       qemu-img Invocation
418 975b092b ths
* qemu_nbd_invocation::       qemu-nbd Invocation
419 19cb3738 bellard
* host_drives::               Using host drives
420 debc7065 bellard
* disk_images_fat_images::    Virtual FAT disk images
421 75818250 ths
* disk_images_nbd::           NBD access
422 42af9c30 MORITA Kazutaka
* disk_images_sheepdog::      Sheepdog disk images
423 00984e39 Ronnie Sahlberg
* disk_images_iscsi::         iSCSI LUNs
424 debc7065 bellard
@end menu
425 debc7065 bellard
426 debc7065 bellard
@node disk_images_quickstart
427 acd935ef bellard
@subsection Quick start for disk image creation
428 acd935ef bellard
429 acd935ef bellard
You can create a disk image with the command:
430 1f47a922 bellard
@example
431 acd935ef bellard
qemu-img create myimage.img mysize
432 1f47a922 bellard
@end example
433 acd935ef bellard
where @var{myimage.img} is the disk image filename and @var{mysize} is its
434 acd935ef bellard
size in kilobytes. You can add an @code{M} suffix to give the size in
435 acd935ef bellard
megabytes and a @code{G} suffix for gigabytes.
436 acd935ef bellard
437 debc7065 bellard
See @ref{qemu_img_invocation} for more information.
438 1f47a922 bellard
439 debc7065 bellard
@node disk_images_snapshot_mode
440 1f47a922 bellard
@subsection Snapshot mode
441 1f47a922 bellard
442 1f47a922 bellard
If you use the option @option{-snapshot}, all disk images are
443 1f47a922 bellard
considered as read only. When sectors in written, they are written in
444 1f47a922 bellard
a temporary file created in @file{/tmp}. You can however force the
445 acd935ef bellard
write back to the raw disk images by using the @code{commit} monitor
446 acd935ef bellard
command (or @key{C-a s} in the serial console).
447 1f47a922 bellard
448 13a2e80f bellard
@node vm_snapshots
449 13a2e80f bellard
@subsection VM snapshots
450 13a2e80f bellard
451 13a2e80f bellard
VM snapshots are snapshots of the complete virtual machine including
452 13a2e80f bellard
CPU state, RAM, device state and the content of all the writable
453 13a2e80f bellard
disks. In order to use VM snapshots, you must have at least one non
454 13a2e80f bellard
removable and writable block device using the @code{qcow2} disk image
455 13a2e80f bellard
format. Normally this device is the first virtual hard drive.
456 13a2e80f bellard
457 13a2e80f bellard
Use the monitor command @code{savevm} to create a new VM snapshot or
458 13a2e80f bellard
replace an existing one. A human readable name can be assigned to each
459 19d36792 bellard
snapshot in addition to its numerical ID.
460 13a2e80f bellard
461 13a2e80f bellard
Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
462 13a2e80f bellard
a VM snapshot. @code{info snapshots} lists the available snapshots
463 13a2e80f bellard
with their associated information:
464 13a2e80f bellard
465 13a2e80f bellard
@example
466 13a2e80f bellard
(qemu) info snapshots
467 13a2e80f bellard
Snapshot devices: hda
468 13a2e80f bellard
Snapshot list (from hda):
469 13a2e80f bellard
ID        TAG                 VM SIZE                DATE       VM CLOCK
470 13a2e80f bellard
1         start                   41M 2006-08-06 12:38:02   00:00:14.954
471 13a2e80f bellard
2                                 40M 2006-08-06 12:43:29   00:00:18.633
472 13a2e80f bellard
3         msys                    40M 2006-08-06 12:44:04   00:00:23.514
473 13a2e80f bellard
@end example
474 13a2e80f bellard
475 13a2e80f bellard
A VM snapshot is made of a VM state info (its size is shown in
476 13a2e80f bellard
@code{info snapshots}) and a snapshot of every writable disk image.
477 13a2e80f bellard
The VM state info is stored in the first @code{qcow2} non removable
478 13a2e80f bellard
and writable block device. The disk image snapshots are stored in
479 13a2e80f bellard
every disk image. The size of a snapshot in a disk image is difficult
480 13a2e80f bellard
to evaluate and is not shown by @code{info snapshots} because the
481 13a2e80f bellard
associated disk sectors are shared among all the snapshots to save
482 19d36792 bellard
disk space (otherwise each snapshot would need a full copy of all the
483 19d36792 bellard
disk images).
484 13a2e80f bellard
485 13a2e80f bellard
When using the (unrelated) @code{-snapshot} option
486 13a2e80f bellard
(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
487 13a2e80f bellard
but they are deleted as soon as you exit QEMU.
488 13a2e80f bellard
489 13a2e80f bellard
VM snapshots currently have the following known limitations:
490 13a2e80f bellard
@itemize
491 5fafdf24 ths
@item
492 13a2e80f bellard
They cannot cope with removable devices if they are removed or
493 13a2e80f bellard
inserted after a snapshot is done.
494 5fafdf24 ths
@item
495 13a2e80f bellard
A few device drivers still have incomplete snapshot support so their
496 13a2e80f bellard
state is not saved or restored properly (in particular USB).
497 13a2e80f bellard
@end itemize
498 13a2e80f bellard
499 acd935ef bellard
@node qemu_img_invocation
500 acd935ef bellard
@subsection @code{qemu-img} Invocation
501 1f47a922 bellard
502 acd935ef bellard
@include qemu-img.texi
503 05efe46e bellard
504 975b092b ths
@node qemu_nbd_invocation
505 975b092b ths
@subsection @code{qemu-nbd} Invocation
506 975b092b ths
507 975b092b ths
@include qemu-nbd.texi
508 975b092b ths
509 19cb3738 bellard
@node host_drives
510 19cb3738 bellard
@subsection Using host drives
511 19cb3738 bellard
512 19cb3738 bellard
In addition to disk image files, QEMU can directly access host
513 19cb3738 bellard
devices. We describe here the usage for QEMU version >= 0.8.3.
514 19cb3738 bellard
515 19cb3738 bellard
@subsubsection Linux
516 19cb3738 bellard
517 19cb3738 bellard
On Linux, you can directly use the host device filename instead of a
518 4be456f1 ths
disk image filename provided you have enough privileges to access
519 19cb3738 bellard
it. For example, use @file{/dev/cdrom} to access to the CDROM or
520 19cb3738 bellard
@file{/dev/fd0} for the floppy.
521 19cb3738 bellard
522 f542086d bellard
@table @code
523 19cb3738 bellard
@item CD
524 19cb3738 bellard
You can specify a CDROM device even if no CDROM is loaded. QEMU has
525 19cb3738 bellard
specific code to detect CDROM insertion or removal. CDROM ejection by
526 19cb3738 bellard
the guest OS is supported. Currently only data CDs are supported.
527 19cb3738 bellard
@item Floppy
528 19cb3738 bellard
You can specify a floppy device even if no floppy is loaded. Floppy
529 19cb3738 bellard
removal is currently not detected accurately (if you change floppy
530 19cb3738 bellard
without doing floppy access while the floppy is not loaded, the guest
531 19cb3738 bellard
OS will think that the same floppy is loaded).
532 19cb3738 bellard
@item Hard disks
533 19cb3738 bellard
Hard disks can be used. Normally you must specify the whole disk
534 19cb3738 bellard
(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
535 19cb3738 bellard
see it as a partitioned disk. WARNING: unless you know what you do, it
536 19cb3738 bellard
is better to only make READ-ONLY accesses to the hard disk otherwise
537 19cb3738 bellard
you may corrupt your host data (use the @option{-snapshot} command
538 19cb3738 bellard
line option or modify the device permissions accordingly).
539 19cb3738 bellard
@end table
540 19cb3738 bellard
541 19cb3738 bellard
@subsubsection Windows
542 19cb3738 bellard
543 01781963 bellard
@table @code
544 01781963 bellard
@item CD
545 4be456f1 ths
The preferred syntax is the drive letter (e.g. @file{d:}). The
546 01781963 bellard
alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
547 01781963 bellard
supported as an alias to the first CDROM drive.
548 19cb3738 bellard
549 e598752a ths
Currently there is no specific code to handle removable media, so it
550 19cb3738 bellard
is better to use the @code{change} or @code{eject} monitor commands to
551 19cb3738 bellard
change or eject media.
552 01781963 bellard
@item Hard disks
553 89dfe898 ths
Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
554 01781963 bellard
where @var{N} is the drive number (0 is the first hard disk).
555 01781963 bellard
556 01781963 bellard
WARNING: unless you know what you do, it is better to only make
557 01781963 bellard
READ-ONLY accesses to the hard disk otherwise you may corrupt your
558 01781963 bellard
host data (use the @option{-snapshot} command line so that the
559 01781963 bellard
modifications are written in a temporary file).
560 01781963 bellard
@end table
561 01781963 bellard
562 19cb3738 bellard
563 19cb3738 bellard
@subsubsection Mac OS X
564 19cb3738 bellard
565 5fafdf24 ths
@file{/dev/cdrom} is an alias to the first CDROM.
566 19cb3738 bellard
567 e598752a ths
Currently there is no specific code to handle removable media, so it
568 19cb3738 bellard
is better to use the @code{change} or @code{eject} monitor commands to
569 19cb3738 bellard
change or eject media.
570 19cb3738 bellard
571 debc7065 bellard
@node disk_images_fat_images
572 2c6cadd4 bellard
@subsection Virtual FAT disk images
573 2c6cadd4 bellard
574 2c6cadd4 bellard
QEMU can automatically create a virtual FAT disk image from a
575 2c6cadd4 bellard
directory tree. In order to use it, just type:
576 2c6cadd4 bellard
577 5fafdf24 ths
@example
578 2c6cadd4 bellard
qemu linux.img -hdb fat:/my_directory
579 2c6cadd4 bellard
@end example
580 2c6cadd4 bellard
581 2c6cadd4 bellard
Then you access access to all the files in the @file{/my_directory}
582 2c6cadd4 bellard
directory without having to copy them in a disk image or to export
583 2c6cadd4 bellard
them via SAMBA or NFS. The default access is @emph{read-only}.
584 2c6cadd4 bellard
585 2c6cadd4 bellard
Floppies can be emulated with the @code{:floppy:} option:
586 2c6cadd4 bellard
587 5fafdf24 ths
@example
588 2c6cadd4 bellard
qemu linux.img -fda fat:floppy:/my_directory
589 2c6cadd4 bellard
@end example
590 2c6cadd4 bellard
591 2c6cadd4 bellard
A read/write support is available for testing (beta stage) with the
592 2c6cadd4 bellard
@code{:rw:} option:
593 2c6cadd4 bellard
594 5fafdf24 ths
@example
595 2c6cadd4 bellard
qemu linux.img -fda fat:floppy:rw:/my_directory
596 2c6cadd4 bellard
@end example
597 2c6cadd4 bellard
598 2c6cadd4 bellard
What you should @emph{never} do:
599 2c6cadd4 bellard
@itemize
600 2c6cadd4 bellard
@item use non-ASCII filenames ;
601 2c6cadd4 bellard
@item use "-snapshot" together with ":rw:" ;
602 85b2c688 bellard
@item expect it to work when loadvm'ing ;
603 85b2c688 bellard
@item write to the FAT directory on the host system while accessing it with the guest system.
604 2c6cadd4 bellard
@end itemize
605 2c6cadd4 bellard
606 75818250 ths
@node disk_images_nbd
607 75818250 ths
@subsection NBD access
608 75818250 ths
609 75818250 ths
QEMU can access directly to block device exported using the Network Block Device
610 75818250 ths
protocol.
611 75818250 ths
612 75818250 ths
@example
613 75818250 ths
qemu linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
614 75818250 ths
@end example
615 75818250 ths
616 75818250 ths
If the NBD server is located on the same host, you can use an unix socket instead
617 75818250 ths
of an inet socket:
618 75818250 ths
619 75818250 ths
@example
620 75818250 ths
qemu linux.img -hdb nbd:unix:/tmp/my_socket
621 75818250 ths
@end example
622 75818250 ths
623 75818250 ths
In this case, the block device must be exported using qemu-nbd:
624 75818250 ths
625 75818250 ths
@example
626 75818250 ths
qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
627 75818250 ths
@end example
628 75818250 ths
629 75818250 ths
The use of qemu-nbd allows to share a disk between several guests:
630 75818250 ths
@example
631 75818250 ths
qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
632 75818250 ths
@end example
633 75818250 ths
634 75818250 ths
and then you can use it with two guests:
635 75818250 ths
@example
636 75818250 ths
qemu linux1.img -hdb nbd:unix:/tmp/my_socket
637 75818250 ths
qemu linux2.img -hdb nbd:unix:/tmp/my_socket
638 75818250 ths
@end example
639 75818250 ths
640 1d45f8b5 Laurent Vivier
If the nbd-server uses named exports (since NBD 2.9.18), you must use the
641 1d45f8b5 Laurent Vivier
"exportname" option:
642 1d45f8b5 Laurent Vivier
@example
643 1d45f8b5 Laurent Vivier
qemu -cdrom nbd:localhost:exportname=debian-500-ppc-netinst
644 1d45f8b5 Laurent Vivier
qemu -cdrom nbd:localhost:exportname=openSUSE-11.1-ppc-netinst
645 1d45f8b5 Laurent Vivier
@end example
646 1d45f8b5 Laurent Vivier
647 42af9c30 MORITA Kazutaka
@node disk_images_sheepdog
648 42af9c30 MORITA Kazutaka
@subsection Sheepdog disk images
649 42af9c30 MORITA Kazutaka
650 42af9c30 MORITA Kazutaka
Sheepdog is a distributed storage system for QEMU.  It provides highly
651 42af9c30 MORITA Kazutaka
available block level storage volumes that can be attached to
652 42af9c30 MORITA Kazutaka
QEMU-based virtual machines.
653 42af9c30 MORITA Kazutaka
654 42af9c30 MORITA Kazutaka
You can create a Sheepdog disk image with the command:
655 42af9c30 MORITA Kazutaka
@example
656 42af9c30 MORITA Kazutaka
qemu-img create sheepdog:@var{image} @var{size}
657 42af9c30 MORITA Kazutaka
@end example
658 42af9c30 MORITA Kazutaka
where @var{image} is the Sheepdog image name and @var{size} is its
659 42af9c30 MORITA Kazutaka
size.
660 42af9c30 MORITA Kazutaka
661 42af9c30 MORITA Kazutaka
To import the existing @var{filename} to Sheepdog, you can use a
662 42af9c30 MORITA Kazutaka
convert command.
663 42af9c30 MORITA Kazutaka
@example
664 42af9c30 MORITA Kazutaka
qemu-img convert @var{filename} sheepdog:@var{image}
665 42af9c30 MORITA Kazutaka
@end example
666 42af9c30 MORITA Kazutaka
667 42af9c30 MORITA Kazutaka
You can boot from the Sheepdog disk image with the command:
668 42af9c30 MORITA Kazutaka
@example
669 42af9c30 MORITA Kazutaka
qemu sheepdog:@var{image}
670 42af9c30 MORITA Kazutaka
@end example
671 42af9c30 MORITA Kazutaka
672 42af9c30 MORITA Kazutaka
You can also create a snapshot of the Sheepdog image like qcow2.
673 42af9c30 MORITA Kazutaka
@example
674 42af9c30 MORITA Kazutaka
qemu-img snapshot -c @var{tag} sheepdog:@var{image}
675 42af9c30 MORITA Kazutaka
@end example
676 42af9c30 MORITA Kazutaka
where @var{tag} is a tag name of the newly created snapshot.
677 42af9c30 MORITA Kazutaka
678 42af9c30 MORITA Kazutaka
To boot from the Sheepdog snapshot, specify the tag name of the
679 42af9c30 MORITA Kazutaka
snapshot.
680 42af9c30 MORITA Kazutaka
@example
681 42af9c30 MORITA Kazutaka
qemu sheepdog:@var{image}:@var{tag}
682 42af9c30 MORITA Kazutaka
@end example
683 42af9c30 MORITA Kazutaka
684 42af9c30 MORITA Kazutaka
You can create a cloned image from the existing snapshot.
685 42af9c30 MORITA Kazutaka
@example
686 42af9c30 MORITA Kazutaka
qemu-img create -b sheepdog:@var{base}:@var{tag} sheepdog:@var{image}
687 42af9c30 MORITA Kazutaka
@end example
688 42af9c30 MORITA Kazutaka
where @var{base} is a image name of the source snapshot and @var{tag}
689 42af9c30 MORITA Kazutaka
is its tag name.
690 42af9c30 MORITA Kazutaka
691 42af9c30 MORITA Kazutaka
If the Sheepdog daemon doesn't run on the local host, you need to
692 42af9c30 MORITA Kazutaka
specify one of the Sheepdog servers to connect to.
693 42af9c30 MORITA Kazutaka
@example
694 42af9c30 MORITA Kazutaka
qemu-img create sheepdog:@var{hostname}:@var{port}:@var{image} @var{size}
695 42af9c30 MORITA Kazutaka
qemu sheepdog:@var{hostname}:@var{port}:@var{image}
696 42af9c30 MORITA Kazutaka
@end example
697 42af9c30 MORITA Kazutaka
698 00984e39 Ronnie Sahlberg
@node disk_images_iscsi
699 00984e39 Ronnie Sahlberg
@subsection iSCSI LUNs
700 00984e39 Ronnie Sahlberg
701 00984e39 Ronnie Sahlberg
iSCSI is a popular protocol used to access SCSI devices across a computer
702 00984e39 Ronnie Sahlberg
network.
703 00984e39 Ronnie Sahlberg
704 00984e39 Ronnie Sahlberg
There are two different ways iSCSI devices can be used by QEMU.
705 00984e39 Ronnie Sahlberg
706 00984e39 Ronnie Sahlberg
The first method is to mount the iSCSI LUN on the host, and make it appear as
707 00984e39 Ronnie Sahlberg
any other ordinary SCSI device on the host and then to access this device as a
708 00984e39 Ronnie Sahlberg
/dev/sd device from QEMU. How to do this differs between host OSes.
709 00984e39 Ronnie Sahlberg
710 00984e39 Ronnie Sahlberg
The second method involves using the iSCSI initiator that is built into
711 00984e39 Ronnie Sahlberg
QEMU. This provides a mechanism that works the same way regardless of which
712 00984e39 Ronnie Sahlberg
host OS you are running QEMU on. This section will describe this second method
713 00984e39 Ronnie Sahlberg
of using iSCSI together with QEMU.
714 00984e39 Ronnie Sahlberg
715 00984e39 Ronnie Sahlberg
In QEMU, iSCSI devices are described using special iSCSI URLs
716 00984e39 Ronnie Sahlberg
717 00984e39 Ronnie Sahlberg
@example
718 00984e39 Ronnie Sahlberg
URL syntax:
719 00984e39 Ronnie Sahlberg
iscsi://[<username>[%<password>]@@]<host>[:<port>]/<target-iqn-name>/<lun>
720 00984e39 Ronnie Sahlberg
@end example
721 00984e39 Ronnie Sahlberg
722 00984e39 Ronnie Sahlberg
Username and password are optional and only used if your target is set up
723 00984e39 Ronnie Sahlberg
using CHAP authentication for access control.
724 00984e39 Ronnie Sahlberg
Alternatively the username and password can also be set via environment
725 00984e39 Ronnie Sahlberg
variables to have these not show up in the process list
726 00984e39 Ronnie Sahlberg
727 00984e39 Ronnie Sahlberg
@example
728 00984e39 Ronnie Sahlberg
export LIBISCSI_CHAP_USERNAME=<username>
729 00984e39 Ronnie Sahlberg
export LIBISCSI_CHAP_PASSWORD=<password>
730 00984e39 Ronnie Sahlberg
iscsi://<host>/<target-iqn-name>/<lun>
731 00984e39 Ronnie Sahlberg
@end example
732 00984e39 Ronnie Sahlberg
733 f9dadc98 Ronnie Sahlberg
Various session related parameters can be set via special options, either
734 f9dadc98 Ronnie Sahlberg
in a configuration file provided via '-readconfig' or directly on the
735 f9dadc98 Ronnie Sahlberg
command line.
736 f9dadc98 Ronnie Sahlberg
737 f9dadc98 Ronnie Sahlberg
@example
738 f9dadc98 Ronnie Sahlberg
Setting a specific initiator name to use when logging in to the target
739 f9dadc98 Ronnie Sahlberg
-iscsi initiator-name=iqn.qemu.test:my-initiator
740 f9dadc98 Ronnie Sahlberg
@end example
741 f9dadc98 Ronnie Sahlberg
742 f9dadc98 Ronnie Sahlberg
@example
743 f9dadc98 Ronnie Sahlberg
Controlling which type of header digest to negotiate with the target
744 f9dadc98 Ronnie Sahlberg
-iscsi header-digest=CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
745 f9dadc98 Ronnie Sahlberg
@end example
746 f9dadc98 Ronnie Sahlberg
747 f9dadc98 Ronnie Sahlberg
These can also be set via a configuration file
748 f9dadc98 Ronnie Sahlberg
@example
749 f9dadc98 Ronnie Sahlberg
[iscsi]
750 f9dadc98 Ronnie Sahlberg
  user = "CHAP username"
751 f9dadc98 Ronnie Sahlberg
  password = "CHAP password"
752 f9dadc98 Ronnie Sahlberg
  initiator-name = "iqn.qemu.test:my-initiator"
753 f9dadc98 Ronnie Sahlberg
  # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
754 f9dadc98 Ronnie Sahlberg
  header-digest = "CRC32C"
755 f9dadc98 Ronnie Sahlberg
@end example
756 f9dadc98 Ronnie Sahlberg
757 f9dadc98 Ronnie Sahlberg
758 f9dadc98 Ronnie Sahlberg
Setting the target name allows different options for different targets
759 f9dadc98 Ronnie Sahlberg
@example
760 f9dadc98 Ronnie Sahlberg
[iscsi "iqn.target.name"]
761 f9dadc98 Ronnie Sahlberg
  user = "CHAP username"
762 f9dadc98 Ronnie Sahlberg
  password = "CHAP password"
763 f9dadc98 Ronnie Sahlberg
  initiator-name = "iqn.qemu.test:my-initiator"
764 f9dadc98 Ronnie Sahlberg
  # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
765 f9dadc98 Ronnie Sahlberg
  header-digest = "CRC32C"
766 f9dadc98 Ronnie Sahlberg
@end example
767 f9dadc98 Ronnie Sahlberg
768 f9dadc98 Ronnie Sahlberg
769 f9dadc98 Ronnie Sahlberg
Howto use a configuration file to set iSCSI configuration options:
770 f9dadc98 Ronnie Sahlberg
@example
771 f9dadc98 Ronnie Sahlberg
cat >iscsi.conf <<EOF
772 f9dadc98 Ronnie Sahlberg
[iscsi]
773 f9dadc98 Ronnie Sahlberg
  user = "me"
774 f9dadc98 Ronnie Sahlberg
  password = "my password"
775 f9dadc98 Ronnie Sahlberg
  initiator-name = "iqn.qemu.test:my-initiator"
776 f9dadc98 Ronnie Sahlberg
  header-digest = "CRC32C"
777 f9dadc98 Ronnie Sahlberg
EOF
778 f9dadc98 Ronnie Sahlberg
779 f9dadc98 Ronnie Sahlberg
qemu-system-i386 -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
780 f9dadc98 Ronnie Sahlberg
    -readconfig iscsi.conf
781 f9dadc98 Ronnie Sahlberg
@end example
782 f9dadc98 Ronnie Sahlberg
783 f9dadc98 Ronnie Sahlberg
784 00984e39 Ronnie Sahlberg
Howto set up a simple iSCSI target on loopback and accessing it via QEMU:
785 00984e39 Ronnie Sahlberg
@example
786 00984e39 Ronnie Sahlberg
This example shows how to set up an iSCSI target with one CDROM and one DISK
787 00984e39 Ronnie Sahlberg
using the Linux STGT software target. This target is available on Red Hat based
788 00984e39 Ronnie Sahlberg
systems as the package 'scsi-target-utils'.
789 00984e39 Ronnie Sahlberg
790 00984e39 Ronnie Sahlberg
tgtd --iscsi portal=127.0.0.1:3260
791 00984e39 Ronnie Sahlberg
tgtadm --lld iscsi --op new --mode target --tid 1 -T iqn.qemu.test
792 00984e39 Ronnie Sahlberg
tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 1 \
793 00984e39 Ronnie Sahlberg
    -b /IMAGES/disk.img --device-type=disk
794 00984e39 Ronnie Sahlberg
tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 2 \
795 00984e39 Ronnie Sahlberg
    -b /IMAGES/cd.iso --device-type=cd
796 00984e39 Ronnie Sahlberg
tgtadm --lld iscsi --op bind --mode target --tid 1 -I ALL
797 00984e39 Ronnie Sahlberg
798 f9dadc98 Ronnie Sahlberg
qemu-system-i386 -iscsi initiator-name=iqn.qemu.test:my-initiator \
799 f9dadc98 Ronnie Sahlberg
    -boot d -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
800 00984e39 Ronnie Sahlberg
    -cdrom iscsi://127.0.0.1/iqn.qemu.test/2
801 00984e39 Ronnie Sahlberg
@end example
802 00984e39 Ronnie Sahlberg
803 00984e39 Ronnie Sahlberg
804 00984e39 Ronnie Sahlberg
805 debc7065 bellard
@node pcsys_network
806 9d4fb82e bellard
@section Network emulation
807 9d4fb82e bellard
808 4be456f1 ths
QEMU can simulate several network cards (PCI or ISA cards on the PC
809 41d03949 bellard
target) and can connect them to an arbitrary number of Virtual Local
810 41d03949 bellard
Area Networks (VLANs). Host TAP devices can be connected to any QEMU
811 41d03949 bellard
VLAN. VLAN can be connected between separate instances of QEMU to
812 4be456f1 ths
simulate large networks. For simpler usage, a non privileged user mode
813 41d03949 bellard
network stack can replace the TAP device to have a basic network
814 41d03949 bellard
connection.
815 41d03949 bellard
816 41d03949 bellard
@subsection VLANs
817 9d4fb82e bellard
818 41d03949 bellard
QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
819 41d03949 bellard
connection between several network devices. These devices can be for
820 41d03949 bellard
example QEMU virtual Ethernet cards or virtual Host ethernet devices
821 41d03949 bellard
(TAP devices).
822 9d4fb82e bellard
823 41d03949 bellard
@subsection Using TAP network interfaces
824 41d03949 bellard
825 41d03949 bellard
This is the standard way to connect QEMU to a real network. QEMU adds
826 41d03949 bellard
a virtual network device on your host (called @code{tapN}), and you
827 41d03949 bellard
can then configure it as if it was a real ethernet card.
828 9d4fb82e bellard
829 8f40c388 bellard
@subsubsection Linux host
830 8f40c388 bellard
831 9d4fb82e bellard
As an example, you can download the @file{linux-test-xxx.tar.gz}
832 9d4fb82e bellard
archive and copy the script @file{qemu-ifup} in @file{/etc} and
833 9d4fb82e bellard
configure properly @code{sudo} so that the command @code{ifconfig}
834 9d4fb82e bellard
contained in @file{qemu-ifup} can be executed as root. You must verify
835 41d03949 bellard
that your host kernel supports the TAP network interfaces: the
836 9d4fb82e bellard
device @file{/dev/net/tun} must be present.
837 9d4fb82e bellard
838 ee0f4751 bellard
See @ref{sec_invocation} to have examples of command lines using the
839 ee0f4751 bellard
TAP network interfaces.
840 9d4fb82e bellard
841 8f40c388 bellard
@subsubsection Windows host
842 8f40c388 bellard
843 8f40c388 bellard
There is a virtual ethernet driver for Windows 2000/XP systems, called
844 8f40c388 bellard
TAP-Win32. But it is not included in standard QEMU for Windows,
845 8f40c388 bellard
so you will need to get it separately. It is part of OpenVPN package,
846 8f40c388 bellard
so download OpenVPN from : @url{http://openvpn.net/}.
847 8f40c388 bellard
848 9d4fb82e bellard
@subsection Using the user mode network stack
849 9d4fb82e bellard
850 41d03949 bellard
By using the option @option{-net user} (default configuration if no
851 41d03949 bellard
@option{-net} option is specified), QEMU uses a completely user mode
852 4be456f1 ths
network stack (you don't need root privilege to use the virtual
853 41d03949 bellard
network). The virtual network configuration is the following:
854 9d4fb82e bellard
855 9d4fb82e bellard
@example
856 9d4fb82e bellard
857 41d03949 bellard
         QEMU VLAN      <------>  Firewall/DHCP server <-----> Internet
858 41d03949 bellard
                           |          (10.0.2.2)
859 9d4fb82e bellard
                           |
860 2518bd0d bellard
                           ---->  DNS server (10.0.2.3)
861 3b46e624 ths
                           |
862 2518bd0d bellard
                           ---->  SMB server (10.0.2.4)
863 9d4fb82e bellard
@end example
864 9d4fb82e bellard
865 9d4fb82e bellard
The QEMU VM behaves as if it was behind a firewall which blocks all
866 9d4fb82e bellard
incoming connections. You can use a DHCP client to automatically
867 41d03949 bellard
configure the network in the QEMU VM. The DHCP server assign addresses
868 41d03949 bellard
to the hosts starting from 10.0.2.15.
869 9d4fb82e bellard
870 9d4fb82e bellard
In order to check that the user mode network is working, you can ping
871 9d4fb82e bellard
the address 10.0.2.2 and verify that you got an address in the range
872 9d4fb82e bellard
10.0.2.x from the QEMU virtual DHCP server.
873 9d4fb82e bellard
874 b415a407 bellard
Note that @code{ping} is not supported reliably to the internet as it
875 4be456f1 ths
would require root privileges. It means you can only ping the local
876 b415a407 bellard
router (10.0.2.2).
877 b415a407 bellard
878 9bf05444 bellard
When using the built-in TFTP server, the router is also the TFTP
879 9bf05444 bellard
server.
880 9bf05444 bellard
881 9bf05444 bellard
When using the @option{-redir} option, TCP or UDP connections can be
882 9bf05444 bellard
redirected from the host to the guest. It allows for example to
883 9bf05444 bellard
redirect X11, telnet or SSH connections.
884 443f1376 bellard
885 41d03949 bellard
@subsection Connecting VLANs between QEMU instances
886 41d03949 bellard
887 41d03949 bellard
Using the @option{-net socket} option, it is possible to make VLANs
888 41d03949 bellard
that span several QEMU instances. See @ref{sec_invocation} to have a
889 41d03949 bellard
basic example.
890 41d03949 bellard
891 576fd0a1 Stefan Weil
@node pcsys_other_devs
892 6cbf4c8c Cam Macdonell
@section Other Devices
893 6cbf4c8c Cam Macdonell
894 6cbf4c8c Cam Macdonell
@subsection Inter-VM Shared Memory device
895 6cbf4c8c Cam Macdonell
896 6cbf4c8c Cam Macdonell
With KVM enabled on a Linux host, a shared memory device is available.  Guests
897 6cbf4c8c Cam Macdonell
map a POSIX shared memory region into the guest as a PCI device that enables
898 6cbf4c8c Cam Macdonell
zero-copy communication to the application level of the guests.  The basic
899 6cbf4c8c Cam Macdonell
syntax is:
900 6cbf4c8c Cam Macdonell
901 6cbf4c8c Cam Macdonell
@example
902 6cbf4c8c Cam Macdonell
qemu -device ivshmem,size=<size in format accepted by -m>[,shm=<shm name>]
903 6cbf4c8c Cam Macdonell
@end example
904 6cbf4c8c Cam Macdonell
905 6cbf4c8c Cam Macdonell
If desired, interrupts can be sent between guest VMs accessing the same shared
906 6cbf4c8c Cam Macdonell
memory region.  Interrupt support requires using a shared memory server and
907 6cbf4c8c Cam Macdonell
using a chardev socket to connect to it.  The code for the shared memory server
908 6cbf4c8c Cam Macdonell
is qemu.git/contrib/ivshmem-server.  An example syntax when using the shared
909 6cbf4c8c Cam Macdonell
memory server is:
910 6cbf4c8c Cam Macdonell
911 6cbf4c8c Cam Macdonell
@example
912 6cbf4c8c Cam Macdonell
qemu -device ivshmem,size=<size in format accepted by -m>[,chardev=<id>]
913 6cbf4c8c Cam Macdonell
                        [,msi=on][,ioeventfd=on][,vectors=n][,role=peer|master]
914 6cbf4c8c Cam Macdonell
qemu -chardev socket,path=<path>,id=<id>
915 6cbf4c8c Cam Macdonell
@end example
916 6cbf4c8c Cam Macdonell
917 6cbf4c8c Cam Macdonell
When using the server, the guest will be assigned a VM ID (>=0) that allows guests
918 6cbf4c8c Cam Macdonell
using the same server to communicate via interrupts.  Guests can read their
919 6cbf4c8c Cam Macdonell
VM ID from a device register (see example code).  Since receiving the shared
920 6cbf4c8c Cam Macdonell
memory region from the server is asynchronous, there is a (small) chance the
921 6cbf4c8c Cam Macdonell
guest may boot before the shared memory is attached.  To allow an application
922 6cbf4c8c Cam Macdonell
to ensure shared memory is attached, the VM ID register will return -1 (an
923 6cbf4c8c Cam Macdonell
invalid VM ID) until the memory is attached.  Once the shared memory is
924 6cbf4c8c Cam Macdonell
attached, the VM ID will return the guest's valid VM ID.  With these semantics,
925 6cbf4c8c Cam Macdonell
the guest application can check to ensure the shared memory is attached to the
926 6cbf4c8c Cam Macdonell
guest before proceeding.
927 6cbf4c8c Cam Macdonell
928 6cbf4c8c Cam Macdonell
The @option{role} argument can be set to either master or peer and will affect
929 6cbf4c8c Cam Macdonell
how the shared memory is migrated.  With @option{role=master}, the guest will
930 6cbf4c8c Cam Macdonell
copy the shared memory on migration to the destination host.  With
931 6cbf4c8c Cam Macdonell
@option{role=peer}, the guest will not be able to migrate with the device attached.
932 6cbf4c8c Cam Macdonell
With the @option{peer} case, the device should be detached and then reattached
933 6cbf4c8c Cam Macdonell
after migration using the PCI hotplug support.
934 6cbf4c8c Cam Macdonell
935 9d4fb82e bellard
@node direct_linux_boot
936 9d4fb82e bellard
@section Direct Linux Boot
937 1f673135 bellard
938 1f673135 bellard
This section explains how to launch a Linux kernel inside QEMU without
939 1f673135 bellard
having to make a full bootable image. It is very useful for fast Linux
940 ee0f4751 bellard
kernel testing.
941 1f673135 bellard
942 ee0f4751 bellard
The syntax is:
943 1f673135 bellard
@example
944 ee0f4751 bellard
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
945 1f673135 bellard
@end example
946 1f673135 bellard
947 ee0f4751 bellard
Use @option{-kernel} to provide the Linux kernel image and
948 ee0f4751 bellard
@option{-append} to give the kernel command line arguments. The
949 ee0f4751 bellard
@option{-initrd} option can be used to provide an INITRD image.
950 1f673135 bellard
951 ee0f4751 bellard
When using the direct Linux boot, a disk image for the first hard disk
952 ee0f4751 bellard
@file{hda} is required because its boot sector is used to launch the
953 ee0f4751 bellard
Linux kernel.
954 1f673135 bellard
955 ee0f4751 bellard
If you do not need graphical output, you can disable it and redirect
956 ee0f4751 bellard
the virtual serial port and the QEMU monitor to the console with the
957 ee0f4751 bellard
@option{-nographic} option. The typical command line is:
958 1f673135 bellard
@example
959 ee0f4751 bellard
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
960 ee0f4751 bellard
     -append "root=/dev/hda console=ttyS0" -nographic
961 1f673135 bellard
@end example
962 1f673135 bellard
963 ee0f4751 bellard
Use @key{Ctrl-a c} to switch between the serial console and the
964 ee0f4751 bellard
monitor (@pxref{pcsys_keys}).
965 1f673135 bellard
966 debc7065 bellard
@node pcsys_usb
967 b389dbfb bellard
@section USB emulation
968 b389dbfb bellard
969 0aff66b5 pbrook
QEMU emulates a PCI UHCI USB controller. You can virtually plug
970 0aff66b5 pbrook
virtual USB devices or real host USB devices (experimental, works only
971 0aff66b5 pbrook
on Linux hosts).  Qemu will automatically create and connect virtual USB hubs
972 f542086d bellard
as necessary to connect multiple USB devices.
973 b389dbfb bellard
974 0aff66b5 pbrook
@menu
975 0aff66b5 pbrook
* usb_devices::
976 0aff66b5 pbrook
* host_usb_devices::
977 0aff66b5 pbrook
@end menu
978 0aff66b5 pbrook
@node usb_devices
979 0aff66b5 pbrook
@subsection Connecting USB devices
980 b389dbfb bellard
981 0aff66b5 pbrook
USB devices can be connected with the @option{-usbdevice} commandline option
982 0aff66b5 pbrook
or the @code{usb_add} monitor command.  Available devices are:
983 b389dbfb bellard
984 db380c06 balrog
@table @code
985 db380c06 balrog
@item mouse
986 0aff66b5 pbrook
Virtual Mouse.  This will override the PS/2 mouse emulation when activated.
987 db380c06 balrog
@item tablet
988 c6d46c20 bellard
Pointer device that uses absolute coordinates (like a touchscreen).
989 0aff66b5 pbrook
This means qemu is able to report the mouse position without having
990 0aff66b5 pbrook
to grab the mouse.  Also overrides the PS/2 mouse emulation when activated.
991 db380c06 balrog
@item disk:@var{file}
992 0aff66b5 pbrook
Mass storage device based on @var{file} (@pxref{disk_images})
993 db380c06 balrog
@item host:@var{bus.addr}
994 0aff66b5 pbrook
Pass through the host device identified by @var{bus.addr}
995 0aff66b5 pbrook
(Linux only)
996 db380c06 balrog
@item host:@var{vendor_id:product_id}
997 0aff66b5 pbrook
Pass through the host device identified by @var{vendor_id:product_id}
998 0aff66b5 pbrook
(Linux only)
999 db380c06 balrog
@item wacom-tablet
1000 f6d2a316 balrog
Virtual Wacom PenPartner tablet.  This device is similar to the @code{tablet}
1001 f6d2a316 balrog
above but it can be used with the tslib library because in addition to touch
1002 f6d2a316 balrog
coordinates it reports touch pressure.
1003 db380c06 balrog
@item keyboard
1004 47b2d338 balrog
Standard USB keyboard.  Will override the PS/2 keyboard (if present).
1005 db380c06 balrog
@item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
1006 db380c06 balrog
Serial converter. This emulates an FTDI FT232BM chip connected to host character
1007 db380c06 balrog
device @var{dev}. The available character devices are the same as for the
1008 db380c06 balrog
@code{-serial} option. The @code{vendorid} and @code{productid} options can be
1009 0d6753e5 Stefan Weil
used to override the default 0403:6001. For instance,
1010 db380c06 balrog
@example
1011 db380c06 balrog
usb_add serial:productid=FA00:tcp:192.168.0.2:4444
1012 db380c06 balrog
@end example
1013 db380c06 balrog
will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
1014 db380c06 balrog
serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
1015 2e4d9fb1 aurel32
@item braille
1016 2e4d9fb1 aurel32
Braille device.  This will use BrlAPI to display the braille output on a real
1017 2e4d9fb1 aurel32
or fake device.
1018 9ad97e65 balrog
@item net:@var{options}
1019 9ad97e65 balrog
Network adapter that supports CDC ethernet and RNDIS protocols.  @var{options}
1020 9ad97e65 balrog
specifies NIC options as with @code{-net nic,}@var{options} (see description).
1021 9ad97e65 balrog
For instance, user-mode networking can be used with
1022 6c9f886c balrog
@example
1023 9ad97e65 balrog
qemu [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0
1024 6c9f886c balrog
@end example
1025 6c9f886c balrog
Currently this cannot be used in machines that support PCI NICs.
1026 2d564691 balrog
@item bt[:@var{hci-type}]
1027 2d564691 balrog
Bluetooth dongle whose type is specified in the same format as with
1028 2d564691 balrog
the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}.  If
1029 2d564691 balrog
no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
1030 2d564691 balrog
This USB device implements the USB Transport Layer of HCI.  Example
1031 2d564691 balrog
usage:
1032 2d564691 balrog
@example
1033 2d564691 balrog
qemu [...OPTIONS...] -usbdevice bt:hci,vlan=3 -bt device:keyboard,vlan=3
1034 2d564691 balrog
@end example
1035 0aff66b5 pbrook
@end table
1036 b389dbfb bellard
1037 0aff66b5 pbrook
@node host_usb_devices
1038 b389dbfb bellard
@subsection Using host USB devices on a Linux host
1039 b389dbfb bellard
1040 b389dbfb bellard
WARNING: this is an experimental feature. QEMU will slow down when
1041 b389dbfb bellard
using it. USB devices requiring real time streaming (i.e. USB Video
1042 b389dbfb bellard
Cameras) are not supported yet.
1043 b389dbfb bellard
1044 b389dbfb bellard
@enumerate
1045 5fafdf24 ths
@item If you use an early Linux 2.4 kernel, verify that no Linux driver
1046 b389dbfb bellard
is actually using the USB device. A simple way to do that is simply to
1047 b389dbfb bellard
disable the corresponding kernel module by renaming it from @file{mydriver.o}
1048 b389dbfb bellard
to @file{mydriver.o.disabled}.
1049 b389dbfb bellard
1050 b389dbfb bellard
@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1051 b389dbfb bellard
@example
1052 b389dbfb bellard
ls /proc/bus/usb
1053 b389dbfb bellard
001  devices  drivers
1054 b389dbfb bellard
@end example
1055 b389dbfb bellard
1056 b389dbfb bellard
@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1057 b389dbfb bellard
@example
1058 b389dbfb bellard
chown -R myuid /proc/bus/usb
1059 b389dbfb bellard
@end example
1060 b389dbfb bellard
1061 b389dbfb bellard
@item Launch QEMU and do in the monitor:
1062 5fafdf24 ths
@example
1063 b389dbfb bellard
info usbhost
1064 b389dbfb bellard
  Device 1.2, speed 480 Mb/s
1065 b389dbfb bellard
    Class 00: USB device 1234:5678, USB DISK
1066 b389dbfb bellard
@end example
1067 b389dbfb bellard
You should see the list of the devices you can use (Never try to use
1068 b389dbfb bellard
hubs, it won't work).
1069 b389dbfb bellard
1070 b389dbfb bellard
@item Add the device in QEMU by using:
1071 5fafdf24 ths
@example
1072 b389dbfb bellard
usb_add host:1234:5678
1073 b389dbfb bellard
@end example
1074 b389dbfb bellard
1075 b389dbfb bellard
Normally the guest OS should report that a new USB device is
1076 b389dbfb bellard
plugged. You can use the option @option{-usbdevice} to do the same.
1077 b389dbfb bellard
1078 b389dbfb bellard
@item Now you can try to use the host USB device in QEMU.
1079 b389dbfb bellard
1080 b389dbfb bellard
@end enumerate
1081 b389dbfb bellard
1082 b389dbfb bellard
When relaunching QEMU, you may have to unplug and plug again the USB
1083 b389dbfb bellard
device to make it work again (this is a bug).
1084 b389dbfb bellard
1085 f858dcae ths
@node vnc_security
1086 f858dcae ths
@section VNC security
1087 f858dcae ths
1088 f858dcae ths
The VNC server capability provides access to the graphical console
1089 f858dcae ths
of the guest VM across the network. This has a number of security
1090 f858dcae ths
considerations depending on the deployment scenarios.
1091 f858dcae ths
1092 f858dcae ths
@menu
1093 f858dcae ths
* vnc_sec_none::
1094 f858dcae ths
* vnc_sec_password::
1095 f858dcae ths
* vnc_sec_certificate::
1096 f858dcae ths
* vnc_sec_certificate_verify::
1097 f858dcae ths
* vnc_sec_certificate_pw::
1098 2f9606b3 aliguori
* vnc_sec_sasl::
1099 2f9606b3 aliguori
* vnc_sec_certificate_sasl::
1100 f858dcae ths
* vnc_generate_cert::
1101 2f9606b3 aliguori
* vnc_setup_sasl::
1102 f858dcae ths
@end menu
1103 f858dcae ths
@node vnc_sec_none
1104 f858dcae ths
@subsection Without passwords
1105 f858dcae ths
1106 f858dcae ths
The simplest VNC server setup does not include any form of authentication.
1107 f858dcae ths
For this setup it is recommended to restrict it to listen on a UNIX domain
1108 f858dcae ths
socket only. For example
1109 f858dcae ths
1110 f858dcae ths
@example
1111 f858dcae ths
qemu [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
1112 f858dcae ths
@end example
1113 f858dcae ths
1114 f858dcae ths
This ensures that only users on local box with read/write access to that
1115 f858dcae ths
path can access the VNC server. To securely access the VNC server from a
1116 f858dcae ths
remote machine, a combination of netcat+ssh can be used to provide a secure
1117 f858dcae ths
tunnel.
1118 f858dcae ths
1119 f858dcae ths
@node vnc_sec_password
1120 f858dcae ths
@subsection With passwords
1121 f858dcae ths
1122 f858dcae ths
The VNC protocol has limited support for password based authentication. Since
1123 f858dcae ths
the protocol limits passwords to 8 characters it should not be considered
1124 f858dcae ths
to provide high security. The password can be fairly easily brute-forced by
1125 f858dcae ths
a client making repeat connections. For this reason, a VNC server using password
1126 f858dcae ths
authentication should be restricted to only listen on the loopback interface
1127 34a3d239 blueswir1
or UNIX domain sockets. Password authentication is requested with the @code{password}
1128 f858dcae ths
option, and then once QEMU is running the password is set with the monitor. Until
1129 f858dcae ths
the monitor is used to set the password all clients will be rejected.
1130 f858dcae ths
1131 f858dcae ths
@example
1132 f858dcae ths
qemu [...OPTIONS...] -vnc :1,password -monitor stdio
1133 f858dcae ths
(qemu) change vnc password
1134 f858dcae ths
Password: ********
1135 f858dcae ths
(qemu)
1136 f858dcae ths
@end example
1137 f858dcae ths
1138 f858dcae ths
@node vnc_sec_certificate
1139 f858dcae ths
@subsection With x509 certificates
1140 f858dcae ths
1141 f858dcae ths
The QEMU VNC server also implements the VeNCrypt extension allowing use of
1142 f858dcae ths
TLS for encryption of the session, and x509 certificates for authentication.
1143 f858dcae ths
The use of x509 certificates is strongly recommended, because TLS on its
1144 f858dcae ths
own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1145 f858dcae ths
support provides a secure session, but no authentication. This allows any
1146 f858dcae ths
client to connect, and provides an encrypted session.
1147 f858dcae ths
1148 f858dcae ths
@example
1149 f858dcae ths
qemu [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
1150 f858dcae ths
@end example
1151 f858dcae ths
1152 f858dcae ths
In the above example @code{/etc/pki/qemu} should contain at least three files,
1153 f858dcae ths
@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1154 f858dcae ths
users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1155 f858dcae ths
NB the @code{server-key.pem} file should be protected with file mode 0600 to
1156 f858dcae ths
only be readable by the user owning it.
1157 f858dcae ths
1158 f858dcae ths
@node vnc_sec_certificate_verify
1159 f858dcae ths
@subsection With x509 certificates and client verification
1160 f858dcae ths
1161 f858dcae ths
Certificates can also provide a means to authenticate the client connecting.
1162 f858dcae ths
The server will request that the client provide a certificate, which it will
1163 f858dcae ths
then validate against the CA certificate. This is a good choice if deploying
1164 f858dcae ths
in an environment with a private internal certificate authority.
1165 f858dcae ths
1166 f858dcae ths
@example
1167 f858dcae ths
qemu [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
1168 f858dcae ths
@end example
1169 f858dcae ths
1170 f858dcae ths
1171 f858dcae ths
@node vnc_sec_certificate_pw
1172 f858dcae ths
@subsection With x509 certificates, client verification and passwords
1173 f858dcae ths
1174 f858dcae ths
Finally, the previous method can be combined with VNC password authentication
1175 f858dcae ths
to provide two layers of authentication for clients.
1176 f858dcae ths
1177 f858dcae ths
@example
1178 f858dcae ths
qemu [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
1179 f858dcae ths
(qemu) change vnc password
1180 f858dcae ths
Password: ********
1181 f858dcae ths
(qemu)
1182 f858dcae ths
@end example
1183 f858dcae ths
1184 2f9606b3 aliguori
1185 2f9606b3 aliguori
@node vnc_sec_sasl
1186 2f9606b3 aliguori
@subsection With SASL authentication
1187 2f9606b3 aliguori
1188 2f9606b3 aliguori
The SASL authentication method is a VNC extension, that provides an
1189 2f9606b3 aliguori
easily extendable, pluggable authentication method. This allows for
1190 2f9606b3 aliguori
integration with a wide range of authentication mechanisms, such as
1191 2f9606b3 aliguori
PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more.
1192 2f9606b3 aliguori
The strength of the authentication depends on the exact mechanism
1193 2f9606b3 aliguori
configured. If the chosen mechanism also provides a SSF layer, then
1194 2f9606b3 aliguori
it will encrypt the datastream as well.
1195 2f9606b3 aliguori
1196 2f9606b3 aliguori
Refer to the later docs on how to choose the exact SASL mechanism
1197 2f9606b3 aliguori
used for authentication, but assuming use of one supporting SSF,
1198 2f9606b3 aliguori
then QEMU can be launched with:
1199 2f9606b3 aliguori
1200 2f9606b3 aliguori
@example
1201 2f9606b3 aliguori
qemu [...OPTIONS...] -vnc :1,sasl -monitor stdio
1202 2f9606b3 aliguori
@end example
1203 2f9606b3 aliguori
1204 2f9606b3 aliguori
@node vnc_sec_certificate_sasl
1205 2f9606b3 aliguori
@subsection With x509 certificates and SASL authentication
1206 2f9606b3 aliguori
1207 2f9606b3 aliguori
If the desired SASL authentication mechanism does not supported
1208 2f9606b3 aliguori
SSF layers, then it is strongly advised to run it in combination
1209 2f9606b3 aliguori
with TLS and x509 certificates. This provides securely encrypted
1210 2f9606b3 aliguori
data stream, avoiding risk of compromising of the security
1211 2f9606b3 aliguori
credentials. This can be enabled, by combining the 'sasl' option
1212 2f9606b3 aliguori
with the aforementioned TLS + x509 options:
1213 2f9606b3 aliguori
1214 2f9606b3 aliguori
@example
1215 2f9606b3 aliguori
qemu [...OPTIONS...] -vnc :1,tls,x509,sasl -monitor stdio
1216 2f9606b3 aliguori
@end example
1217 2f9606b3 aliguori
1218 2f9606b3 aliguori
1219 f858dcae ths
@node vnc_generate_cert
1220 f858dcae ths
@subsection Generating certificates for VNC
1221 f858dcae ths
1222 f858dcae ths
The GNU TLS packages provides a command called @code{certtool} which can
1223 f858dcae ths
be used to generate certificates and keys in PEM format. At a minimum it
1224 40c5c6cd Stefan Weil
is necessary to setup a certificate authority, and issue certificates to
1225 f858dcae ths
each server. If using certificates for authentication, then each client
1226 f858dcae ths
will also need to be issued a certificate. The recommendation is for the
1227 f858dcae ths
server to keep its certificates in either @code{/etc/pki/qemu} or for
1228 f858dcae ths
unprivileged users in @code{$HOME/.pki/qemu}.
1229 f858dcae ths
1230 f858dcae ths
@menu
1231 f858dcae ths
* vnc_generate_ca::
1232 f858dcae ths
* vnc_generate_server::
1233 f858dcae ths
* vnc_generate_client::
1234 f858dcae ths
@end menu
1235 f858dcae ths
@node vnc_generate_ca
1236 f858dcae ths
@subsubsection Setup the Certificate Authority
1237 f858dcae ths
1238 f858dcae ths
This step only needs to be performed once per organization / organizational
1239 f858dcae ths
unit. First the CA needs a private key. This key must be kept VERY secret
1240 f858dcae ths
and secure. If this key is compromised the entire trust chain of the certificates
1241 f858dcae ths
issued with it is lost.
1242 f858dcae ths
1243 f858dcae ths
@example
1244 f858dcae ths
# certtool --generate-privkey > ca-key.pem
1245 f858dcae ths
@end example
1246 f858dcae ths
1247 f858dcae ths
A CA needs to have a public certificate. For simplicity it can be a self-signed
1248 f858dcae ths
certificate, or one issue by a commercial certificate issuing authority. To
1249 f858dcae ths
generate a self-signed certificate requires one core piece of information, the
1250 f858dcae ths
name of the organization.
1251 f858dcae ths
1252 f858dcae ths
@example
1253 f858dcae ths
# cat > ca.info <<EOF
1254 f858dcae ths
cn = Name of your organization
1255 f858dcae ths
ca
1256 f858dcae ths
cert_signing_key
1257 f858dcae ths
EOF
1258 f858dcae ths
# certtool --generate-self-signed \
1259 f858dcae ths
           --load-privkey ca-key.pem
1260 f858dcae ths
           --template ca.info \
1261 f858dcae ths
           --outfile ca-cert.pem
1262 f858dcae ths
@end example
1263 f858dcae ths
1264 f858dcae ths
The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1265 f858dcae ths
TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1266 f858dcae ths
1267 f858dcae ths
@node vnc_generate_server
1268 f858dcae ths
@subsubsection Issuing server certificates
1269 f858dcae ths
1270 f858dcae ths
Each server (or host) needs to be issued with a key and certificate. When connecting
1271 f858dcae ths
the certificate is sent to the client which validates it against the CA certificate.
1272 f858dcae ths
The core piece of information for a server certificate is the hostname. This should
1273 f858dcae ths
be the fully qualified hostname that the client will connect with, since the client
1274 f858dcae ths
will typically also verify the hostname in the certificate. On the host holding the
1275 f858dcae ths
secure CA private key:
1276 f858dcae ths
1277 f858dcae ths
@example
1278 f858dcae ths
# cat > server.info <<EOF
1279 f858dcae ths
organization = Name  of your organization
1280 f858dcae ths
cn = server.foo.example.com
1281 f858dcae ths
tls_www_server
1282 f858dcae ths
encryption_key
1283 f858dcae ths
signing_key
1284 f858dcae ths
EOF
1285 f858dcae ths
# certtool --generate-privkey > server-key.pem
1286 f858dcae ths
# certtool --generate-certificate \
1287 f858dcae ths
           --load-ca-certificate ca-cert.pem \
1288 f858dcae ths
           --load-ca-privkey ca-key.pem \
1289 f858dcae ths
           --load-privkey server server-key.pem \
1290 f858dcae ths
           --template server.info \
1291 f858dcae ths
           --outfile server-cert.pem
1292 f858dcae ths
@end example
1293 f858dcae ths
1294 f858dcae ths
The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1295 f858dcae ths
to the server for which they were generated. The @code{server-key.pem} is security
1296 f858dcae ths
sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1297 f858dcae ths
1298 f858dcae ths
@node vnc_generate_client
1299 f858dcae ths
@subsubsection Issuing client certificates
1300 f858dcae ths
1301 f858dcae ths
If the QEMU VNC server is to use the @code{x509verify} option to validate client
1302 f858dcae ths
certificates as its authentication mechanism, each client also needs to be issued
1303 f858dcae ths
a certificate. The client certificate contains enough metadata to uniquely identify
1304 f858dcae ths
the client, typically organization, state, city, building, etc. On the host holding
1305 f858dcae ths
the secure CA private key:
1306 f858dcae ths
1307 f858dcae ths
@example
1308 f858dcae ths
# cat > client.info <<EOF
1309 f858dcae ths
country = GB
1310 f858dcae ths
state = London
1311 f858dcae ths
locality = London
1312 f858dcae ths
organiazation = Name of your organization
1313 f858dcae ths
cn = client.foo.example.com
1314 f858dcae ths
tls_www_client
1315 f858dcae ths
encryption_key
1316 f858dcae ths
signing_key
1317 f858dcae ths
EOF
1318 f858dcae ths
# certtool --generate-privkey > client-key.pem
1319 f858dcae ths
# certtool --generate-certificate \
1320 f858dcae ths
           --load-ca-certificate ca-cert.pem \
1321 f858dcae ths
           --load-ca-privkey ca-key.pem \
1322 f858dcae ths
           --load-privkey client-key.pem \
1323 f858dcae ths
           --template client.info \
1324 f858dcae ths
           --outfile client-cert.pem
1325 f858dcae ths
@end example
1326 f858dcae ths
1327 f858dcae ths
The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1328 f858dcae ths
copied to the client for which they were generated.
1329 f858dcae ths
1330 2f9606b3 aliguori
1331 2f9606b3 aliguori
@node vnc_setup_sasl
1332 2f9606b3 aliguori
1333 2f9606b3 aliguori
@subsection Configuring SASL mechanisms
1334 2f9606b3 aliguori
1335 2f9606b3 aliguori
The following documentation assumes use of the Cyrus SASL implementation on a
1336 2f9606b3 aliguori
Linux host, but the principals should apply to any other SASL impl. When SASL
1337 2f9606b3 aliguori
is enabled, the mechanism configuration will be loaded from system default
1338 2f9606b3 aliguori
SASL service config /etc/sasl2/qemu.conf. If running QEMU as an
1339 2f9606b3 aliguori
unprivileged user, an environment variable SASL_CONF_PATH can be used
1340 2f9606b3 aliguori
to make it search alternate locations for the service config.
1341 2f9606b3 aliguori
1342 2f9606b3 aliguori
The default configuration might contain
1343 2f9606b3 aliguori
1344 2f9606b3 aliguori
@example
1345 2f9606b3 aliguori
mech_list: digest-md5
1346 2f9606b3 aliguori
sasldb_path: /etc/qemu/passwd.db
1347 2f9606b3 aliguori
@end example
1348 2f9606b3 aliguori
1349 2f9606b3 aliguori
This says to use the 'Digest MD5' mechanism, which is similar to the HTTP
1350 2f9606b3 aliguori
Digest-MD5 mechanism. The list of valid usernames & passwords is maintained
1351 2f9606b3 aliguori
in the /etc/qemu/passwd.db file, and can be updated using the saslpasswd2
1352 2f9606b3 aliguori
command. While this mechanism is easy to configure and use, it is not
1353 2f9606b3 aliguori
considered secure by modern standards, so only suitable for developers /
1354 2f9606b3 aliguori
ad-hoc testing.
1355 2f9606b3 aliguori
1356 2f9606b3 aliguori
A more serious deployment might use Kerberos, which is done with the 'gssapi'
1357 2f9606b3 aliguori
mechanism
1358 2f9606b3 aliguori
1359 2f9606b3 aliguori
@example
1360 2f9606b3 aliguori
mech_list: gssapi
1361 2f9606b3 aliguori
keytab: /etc/qemu/krb5.tab
1362 2f9606b3 aliguori
@end example
1363 2f9606b3 aliguori
1364 2f9606b3 aliguori
For this to work the administrator of your KDC must generate a Kerberos
1365 2f9606b3 aliguori
principal for the server, with a name of  'qemu/somehost.example.com@@EXAMPLE.COM'
1366 2f9606b3 aliguori
replacing 'somehost.example.com' with the fully qualified host name of the
1367 40c5c6cd Stefan Weil
machine running QEMU, and 'EXAMPLE.COM' with the Kerberos Realm.
1368 2f9606b3 aliguori
1369 2f9606b3 aliguori
Other configurations will be left as an exercise for the reader. It should
1370 2f9606b3 aliguori
be noted that only Digest-MD5 and GSSAPI provides a SSF layer for data
1371 2f9606b3 aliguori
encryption. For all other mechanisms, VNC should always be configured to
1372 2f9606b3 aliguori
use TLS and x509 certificates to protect security credentials from snooping.
1373 2f9606b3 aliguori
1374 0806e3f6 bellard
@node gdb_usage
1375 da415d54 bellard
@section GDB usage
1376 da415d54 bellard
1377 da415d54 bellard
QEMU has a primitive support to work with gdb, so that you can do
1378 0806e3f6 bellard
'Ctrl-C' while the virtual machine is running and inspect its state.
1379 da415d54 bellard
1380 9d4520d0 bellard
In order to use gdb, launch qemu with the '-s' option. It will wait for a
1381 da415d54 bellard
gdb connection:
1382 da415d54 bellard
@example
1383 debc7065 bellard
> qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1384 debc7065 bellard
       -append "root=/dev/hda"
1385 da415d54 bellard
Connected to host network interface: tun0
1386 da415d54 bellard
Waiting gdb connection on port 1234
1387 da415d54 bellard
@end example
1388 da415d54 bellard
1389 da415d54 bellard
Then launch gdb on the 'vmlinux' executable:
1390 da415d54 bellard
@example
1391 da415d54 bellard
> gdb vmlinux
1392 da415d54 bellard
@end example
1393 da415d54 bellard
1394 da415d54 bellard
In gdb, connect to QEMU:
1395 da415d54 bellard
@example
1396 6c9bf893 bellard
(gdb) target remote localhost:1234
1397 da415d54 bellard
@end example
1398 da415d54 bellard
1399 da415d54 bellard
Then you can use gdb normally. For example, type 'c' to launch the kernel:
1400 da415d54 bellard
@example
1401 da415d54 bellard
(gdb) c
1402 da415d54 bellard
@end example
1403 da415d54 bellard
1404 0806e3f6 bellard
Here are some useful tips in order to use gdb on system code:
1405 0806e3f6 bellard
1406 0806e3f6 bellard
@enumerate
1407 0806e3f6 bellard
@item
1408 0806e3f6 bellard
Use @code{info reg} to display all the CPU registers.
1409 0806e3f6 bellard
@item
1410 0806e3f6 bellard
Use @code{x/10i $eip} to display the code at the PC position.
1411 0806e3f6 bellard
@item
1412 0806e3f6 bellard
Use @code{set architecture i8086} to dump 16 bit code. Then use
1413 294e8637 bellard
@code{x/10i $cs*16+$eip} to dump the code at the PC position.
1414 0806e3f6 bellard
@end enumerate
1415 0806e3f6 bellard
1416 60897d36 edgar_igl
Advanced debugging options:
1417 60897d36 edgar_igl
1418 60897d36 edgar_igl
The default single stepping behavior is step with the IRQs and timer service routines off.  It is set this way because when gdb executes a single step it expects to advance beyond the current instruction.  With the IRQs and and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed.  Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB.  There are three commands you can query and set the single step behavior:
1419 94d45e44 edgar_igl
@table @code
1420 60897d36 edgar_igl
@item maintenance packet qqemu.sstepbits
1421 60897d36 edgar_igl
1422 60897d36 edgar_igl
This will display the MASK bits used to control the single stepping IE:
1423 60897d36 edgar_igl
@example
1424 60897d36 edgar_igl
(gdb) maintenance packet qqemu.sstepbits
1425 60897d36 edgar_igl
sending: "qqemu.sstepbits"
1426 60897d36 edgar_igl
received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
1427 60897d36 edgar_igl
@end example
1428 60897d36 edgar_igl
@item maintenance packet qqemu.sstep
1429 60897d36 edgar_igl
1430 60897d36 edgar_igl
This will display the current value of the mask used when single stepping IE:
1431 60897d36 edgar_igl
@example
1432 60897d36 edgar_igl
(gdb) maintenance packet qqemu.sstep
1433 60897d36 edgar_igl
sending: "qqemu.sstep"
1434 60897d36 edgar_igl
received: "0x7"
1435 60897d36 edgar_igl
@end example
1436 60897d36 edgar_igl
@item maintenance packet Qqemu.sstep=HEX_VALUE
1437 60897d36 edgar_igl
1438 60897d36 edgar_igl
This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
1439 60897d36 edgar_igl
@example
1440 60897d36 edgar_igl
(gdb) maintenance packet Qqemu.sstep=0x5
1441 60897d36 edgar_igl
sending: "qemu.sstep=0x5"
1442 60897d36 edgar_igl
received: "OK"
1443 60897d36 edgar_igl
@end example
1444 94d45e44 edgar_igl
@end table
1445 60897d36 edgar_igl
1446 debc7065 bellard
@node pcsys_os_specific
1447 1a084f3d bellard
@section Target OS specific information
1448 1a084f3d bellard
1449 1a084f3d bellard
@subsection Linux
1450 1a084f3d bellard
1451 15a34c63 bellard
To have access to SVGA graphic modes under X11, use the @code{vesa} or
1452 15a34c63 bellard
the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1453 15a34c63 bellard
color depth in the guest and the host OS.
1454 1a084f3d bellard
1455 e3371e62 bellard
When using a 2.6 guest Linux kernel, you should add the option
1456 e3371e62 bellard
@code{clock=pit} on the kernel command line because the 2.6 Linux
1457 e3371e62 bellard
kernels make very strict real time clock checks by default that QEMU
1458 e3371e62 bellard
cannot simulate exactly.
1459 e3371e62 bellard
1460 7c3fc84d bellard
When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1461 7c3fc84d bellard
not activated because QEMU is slower with this patch. The QEMU
1462 7c3fc84d bellard
Accelerator Module is also much slower in this case. Earlier Fedora
1463 4be456f1 ths
Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
1464 7c3fc84d bellard
patch by default. Newer kernels don't have it.
1465 7c3fc84d bellard
1466 1a084f3d bellard
@subsection Windows
1467 1a084f3d bellard
1468 1a084f3d bellard
If you have a slow host, using Windows 95 is better as it gives the
1469 1a084f3d bellard
best speed. Windows 2000 is also a good choice.
1470 1a084f3d bellard
1471 e3371e62 bellard
@subsubsection SVGA graphic modes support
1472 e3371e62 bellard
1473 e3371e62 bellard
QEMU emulates a Cirrus Logic GD5446 Video
1474 15a34c63 bellard
card. All Windows versions starting from Windows 95 should recognize
1475 15a34c63 bellard
and use this graphic card. For optimal performances, use 16 bit color
1476 15a34c63 bellard
depth in the guest and the host OS.
1477 1a084f3d bellard
1478 3cb0853a bellard
If you are using Windows XP as guest OS and if you want to use high
1479 3cb0853a bellard
resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
1480 3cb0853a bellard
1280x1024x16), then you should use the VESA VBE virtual graphic card
1481 3cb0853a bellard
(option @option{-std-vga}).
1482 3cb0853a bellard
1483 e3371e62 bellard
@subsubsection CPU usage reduction
1484 e3371e62 bellard
1485 e3371e62 bellard
Windows 9x does not correctly use the CPU HLT
1486 15a34c63 bellard
instruction. The result is that it takes host CPU cycles even when
1487 15a34c63 bellard
idle. You can install the utility from
1488 15a34c63 bellard
@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1489 15a34c63 bellard
problem. Note that no such tool is needed for NT, 2000 or XP.
1490 1a084f3d bellard
1491 9d0a8e6f bellard
@subsubsection Windows 2000 disk full problem
1492 e3371e62 bellard
1493 9d0a8e6f bellard
Windows 2000 has a bug which gives a disk full problem during its
1494 9d0a8e6f bellard
installation. When installing it, use the @option{-win2k-hack} QEMU
1495 9d0a8e6f bellard
option to enable a specific workaround. After Windows 2000 is
1496 9d0a8e6f bellard
installed, you no longer need this option (this option slows down the
1497 9d0a8e6f bellard
IDE transfers).
1498 e3371e62 bellard
1499 6cc721cf bellard
@subsubsection Windows 2000 shutdown
1500 6cc721cf bellard
1501 6cc721cf bellard
Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1502 6cc721cf bellard
can. It comes from the fact that Windows 2000 does not automatically
1503 6cc721cf bellard
use the APM driver provided by the BIOS.
1504 6cc721cf bellard
1505 6cc721cf bellard
In order to correct that, do the following (thanks to Struan
1506 6cc721cf bellard
Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1507 6cc721cf bellard
Add/Troubleshoot a device => Add a new device & Next => No, select the
1508 6cc721cf bellard
hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1509 6cc721cf bellard
(again) a few times. Now the driver is installed and Windows 2000 now
1510 5fafdf24 ths
correctly instructs QEMU to shutdown at the appropriate moment.
1511 6cc721cf bellard
1512 6cc721cf bellard
@subsubsection Share a directory between Unix and Windows
1513 6cc721cf bellard
1514 6cc721cf bellard
See @ref{sec_invocation} about the help of the option @option{-smb}.
1515 6cc721cf bellard
1516 2192c332 bellard
@subsubsection Windows XP security problem
1517 e3371e62 bellard
1518 e3371e62 bellard
Some releases of Windows XP install correctly but give a security
1519 e3371e62 bellard
error when booting:
1520 e3371e62 bellard
@example
1521 e3371e62 bellard
A problem is preventing Windows from accurately checking the
1522 e3371e62 bellard
license for this computer. Error code: 0x800703e6.
1523 e3371e62 bellard
@end example
1524 e3371e62 bellard
1525 2192c332 bellard
The workaround is to install a service pack for XP after a boot in safe
1526 2192c332 bellard
mode. Then reboot, and the problem should go away. Since there is no
1527 2192c332 bellard
network while in safe mode, its recommended to download the full
1528 2192c332 bellard
installation of SP1 or SP2 and transfer that via an ISO or using the
1529 2192c332 bellard
vvfat block device ("-hdb fat:directory_which_holds_the_SP").
1530 e3371e62 bellard
1531 a0a821a4 bellard
@subsection MS-DOS and FreeDOS
1532 a0a821a4 bellard
1533 a0a821a4 bellard
@subsubsection CPU usage reduction
1534 a0a821a4 bellard
1535 a0a821a4 bellard
DOS does not correctly use the CPU HLT instruction. The result is that
1536 a0a821a4 bellard
it takes host CPU cycles even when idle. You can install the utility
1537 a0a821a4 bellard
from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1538 a0a821a4 bellard
problem.
1539 a0a821a4 bellard
1540 debc7065 bellard
@node QEMU System emulator for non PC targets
1541 3f9f3aa1 bellard
@chapter QEMU System emulator for non PC targets
1542 3f9f3aa1 bellard
1543 3f9f3aa1 bellard
QEMU is a generic emulator and it emulates many non PC
1544 3f9f3aa1 bellard
machines. Most of the options are similar to the PC emulator. The
1545 4be456f1 ths
differences are mentioned in the following sections.
1546 3f9f3aa1 bellard
1547 debc7065 bellard
@menu
1548 7544a042 Stefan Weil
* PowerPC System emulator::
1549 24d4de45 ths
* Sparc32 System emulator::
1550 24d4de45 ths
* Sparc64 System emulator::
1551 24d4de45 ths
* MIPS System emulator::
1552 24d4de45 ths
* ARM System emulator::
1553 24d4de45 ths
* ColdFire System emulator::
1554 7544a042 Stefan Weil
* Cris System emulator::
1555 7544a042 Stefan Weil
* Microblaze System emulator::
1556 7544a042 Stefan Weil
* SH4 System emulator::
1557 3aeaea65 Max Filippov
* Xtensa System emulator::
1558 debc7065 bellard
@end menu
1559 debc7065 bellard
1560 7544a042 Stefan Weil
@node PowerPC System emulator
1561 7544a042 Stefan Weil
@section PowerPC System emulator
1562 7544a042 Stefan Weil
@cindex system emulation (PowerPC)
1563 1a084f3d bellard
1564 15a34c63 bellard
Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1565 15a34c63 bellard
or PowerMac PowerPC system.
1566 1a084f3d bellard
1567 b671f9ed bellard
QEMU emulates the following PowerMac peripherals:
1568 1a084f3d bellard
1569 15a34c63 bellard
@itemize @minus
1570 5fafdf24 ths
@item
1571 006f3a48 blueswir1
UniNorth or Grackle PCI Bridge
1572 15a34c63 bellard
@item
1573 15a34c63 bellard
PCI VGA compatible card with VESA Bochs Extensions
1574 5fafdf24 ths
@item
1575 15a34c63 bellard
2 PMAC IDE interfaces with hard disk and CD-ROM support
1576 5fafdf24 ths
@item
1577 15a34c63 bellard
NE2000 PCI adapters
1578 15a34c63 bellard
@item
1579 15a34c63 bellard
Non Volatile RAM
1580 15a34c63 bellard
@item
1581 15a34c63 bellard
VIA-CUDA with ADB keyboard and mouse.
1582 1a084f3d bellard
@end itemize
1583 1a084f3d bellard
1584 b671f9ed bellard
QEMU emulates the following PREP peripherals:
1585 52c00a5f bellard
1586 52c00a5f bellard
@itemize @minus
1587 5fafdf24 ths
@item
1588 15a34c63 bellard
PCI Bridge
1589 15a34c63 bellard
@item
1590 15a34c63 bellard
PCI VGA compatible card with VESA Bochs Extensions
1591 5fafdf24 ths
@item
1592 52c00a5f bellard
2 IDE interfaces with hard disk and CD-ROM support
1593 52c00a5f bellard
@item
1594 52c00a5f bellard
Floppy disk
1595 5fafdf24 ths
@item
1596 15a34c63 bellard
NE2000 network adapters
1597 52c00a5f bellard
@item
1598 52c00a5f bellard
Serial port
1599 52c00a5f bellard
@item
1600 52c00a5f bellard
PREP Non Volatile RAM
1601 15a34c63 bellard
@item
1602 15a34c63 bellard
PC compatible keyboard and mouse.
1603 52c00a5f bellard
@end itemize
1604 52c00a5f bellard
1605 15a34c63 bellard
QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
1606 3f9f3aa1 bellard
@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
1607 52c00a5f bellard
1608 992e5acd blueswir1
Since version 0.9.1, QEMU uses OpenBIOS @url{http://www.openbios.org/}
1609 006f3a48 blueswir1
for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
1610 006f3a48 blueswir1
v2) portable firmware implementation. The goal is to implement a 100%
1611 006f3a48 blueswir1
IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
1612 992e5acd blueswir1
1613 15a34c63 bellard
@c man begin OPTIONS
1614 15a34c63 bellard
1615 15a34c63 bellard
The following options are specific to the PowerPC emulation:
1616 15a34c63 bellard
1617 15a34c63 bellard
@table @option
1618 15a34c63 bellard
1619 4e257e5e Kevin Wolf
@item -g @var{W}x@var{H}[x@var{DEPTH}]
1620 15a34c63 bellard
1621 15a34c63 bellard
Set the initial VGA graphic mode. The default is 800x600x15.
1622 15a34c63 bellard
1623 4e257e5e Kevin Wolf
@item -prom-env @var{string}
1624 95efd11c blueswir1
1625 95efd11c blueswir1
Set OpenBIOS variables in NVRAM, for example:
1626 95efd11c blueswir1
1627 95efd11c blueswir1
@example
1628 95efd11c blueswir1
qemu-system-ppc -prom-env 'auto-boot?=false' \
1629 95efd11c blueswir1
 -prom-env 'boot-device=hd:2,\yaboot' \
1630 95efd11c blueswir1
 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
1631 95efd11c blueswir1
@end example
1632 95efd11c blueswir1
1633 95efd11c blueswir1
These variables are not used by Open Hack'Ware.
1634 95efd11c blueswir1
1635 15a34c63 bellard
@end table
1636 15a34c63 bellard
1637 5fafdf24 ths
@c man end
1638 15a34c63 bellard
1639 15a34c63 bellard
1640 52c00a5f bellard
More information is available at
1641 3f9f3aa1 bellard
@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
1642 52c00a5f bellard
1643 24d4de45 ths
@node Sparc32 System emulator
1644 24d4de45 ths
@section Sparc32 System emulator
1645 7544a042 Stefan Weil
@cindex system emulation (Sparc32)
1646 e80cfcfc bellard
1647 34a3d239 blueswir1
Use the executable @file{qemu-system-sparc} to simulate the following
1648 34a3d239 blueswir1
Sun4m architecture machines:
1649 34a3d239 blueswir1
@itemize @minus
1650 34a3d239 blueswir1
@item
1651 34a3d239 blueswir1
SPARCstation 4
1652 34a3d239 blueswir1
@item
1653 34a3d239 blueswir1
SPARCstation 5
1654 34a3d239 blueswir1
@item
1655 34a3d239 blueswir1
SPARCstation 10
1656 34a3d239 blueswir1
@item
1657 34a3d239 blueswir1
SPARCstation 20
1658 34a3d239 blueswir1
@item
1659 34a3d239 blueswir1
SPARCserver 600MP
1660 34a3d239 blueswir1
@item
1661 34a3d239 blueswir1
SPARCstation LX
1662 34a3d239 blueswir1
@item
1663 34a3d239 blueswir1
SPARCstation Voyager
1664 34a3d239 blueswir1
@item
1665 34a3d239 blueswir1
SPARCclassic
1666 34a3d239 blueswir1
@item
1667 34a3d239 blueswir1
SPARCbook
1668 34a3d239 blueswir1
@end itemize
1669 34a3d239 blueswir1
1670 34a3d239 blueswir1
The emulation is somewhat complete. SMP up to 16 CPUs is supported,
1671 34a3d239 blueswir1
but Linux limits the number of usable CPUs to 4.
1672 e80cfcfc bellard
1673 34a3d239 blueswir1
It's also possible to simulate a SPARCstation 2 (sun4c architecture),
1674 34a3d239 blueswir1
SPARCserver 1000, or SPARCcenter 2000 (sun4d architecture), but these
1675 34a3d239 blueswir1
emulators are not usable yet.
1676 34a3d239 blueswir1
1677 34a3d239 blueswir1
QEMU emulates the following sun4m/sun4c/sun4d peripherals:
1678 e80cfcfc bellard
1679 e80cfcfc bellard
@itemize @minus
1680 3475187d bellard
@item
1681 7d85892b blueswir1
IOMMU or IO-UNITs
1682 e80cfcfc bellard
@item
1683 e80cfcfc bellard
TCX Frame buffer
1684 5fafdf24 ths
@item
1685 e80cfcfc bellard
Lance (Am7990) Ethernet
1686 e80cfcfc bellard
@item
1687 34a3d239 blueswir1
Non Volatile RAM M48T02/M48T08
1688 e80cfcfc bellard
@item
1689 3475187d bellard
Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
1690 3475187d bellard
and power/reset logic
1691 3475187d bellard
@item
1692 3475187d bellard
ESP SCSI controller with hard disk and CD-ROM support
1693 3475187d bellard
@item
1694 6a3b9cc9 blueswir1
Floppy drive (not on SS-600MP)
1695 a2502b58 blueswir1
@item
1696 a2502b58 blueswir1
CS4231 sound device (only on SS-5, not working yet)
1697 e80cfcfc bellard
@end itemize
1698 e80cfcfc bellard
1699 6a3b9cc9 blueswir1
The number of peripherals is fixed in the architecture.  Maximum
1700 6a3b9cc9 blueswir1
memory size depends on the machine type, for SS-5 it is 256MB and for
1701 7d85892b blueswir1
others 2047MB.
1702 3475187d bellard
1703 30a604f3 bellard
Since version 0.8.2, QEMU uses OpenBIOS
1704 0986ac3b bellard
@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
1705 0986ac3b bellard
firmware implementation. The goal is to implement a 100% IEEE
1706 0986ac3b bellard
1275-1994 (referred to as Open Firmware) compliant firmware.
1707 3475187d bellard
1708 3475187d bellard
A sample Linux 2.6 series kernel and ram disk image are available on
1709 34a3d239 blueswir1
the QEMU web site. There are still issues with NetBSD and OpenBSD, but
1710 34a3d239 blueswir1
some kernel versions work. Please note that currently Solaris kernels
1711 34a3d239 blueswir1
don't work probably due to interface issues between OpenBIOS and
1712 34a3d239 blueswir1
Solaris.
1713 3475187d bellard
1714 3475187d bellard
@c man begin OPTIONS
1715 3475187d bellard
1716 a2502b58 blueswir1
The following options are specific to the Sparc32 emulation:
1717 3475187d bellard
1718 3475187d bellard
@table @option
1719 3475187d bellard
1720 4e257e5e Kevin Wolf
@item -g @var{W}x@var{H}x[x@var{DEPTH}]
1721 3475187d bellard
1722 a2502b58 blueswir1
Set the initial TCX graphic mode. The default is 1024x768x8, currently
1723 a2502b58 blueswir1
the only other possible mode is 1024x768x24.
1724 3475187d bellard
1725 4e257e5e Kevin Wolf
@item -prom-env @var{string}
1726 66508601 blueswir1
1727 66508601 blueswir1
Set OpenBIOS variables in NVRAM, for example:
1728 66508601 blueswir1
1729 66508601 blueswir1
@example
1730 66508601 blueswir1
qemu-system-sparc -prom-env 'auto-boot?=false' \
1731 66508601 blueswir1
 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
1732 66508601 blueswir1
@end example
1733 66508601 blueswir1
1734 609c1dac Blue Swirl
@item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic] [|SPARCbook|SS-2|SS-1000|SS-2000]
1735 a2502b58 blueswir1
1736 a2502b58 blueswir1
Set the emulated machine type. Default is SS-5.
1737 a2502b58 blueswir1
1738 3475187d bellard
@end table
1739 3475187d bellard
1740 5fafdf24 ths
@c man end
1741 3475187d bellard
1742 24d4de45 ths
@node Sparc64 System emulator
1743 24d4de45 ths
@section Sparc64 System emulator
1744 7544a042 Stefan Weil
@cindex system emulation (Sparc64)
1745 e80cfcfc bellard
1746 34a3d239 blueswir1
Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
1747 34a3d239 blueswir1
(UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
1748 34a3d239 blueswir1
Niagara (T1) machine. The emulator is not usable for anything yet, but
1749 34a3d239 blueswir1
it can launch some kernels.
1750 b756921a bellard
1751 c7ba218d blueswir1
QEMU emulates the following peripherals:
1752 83469015 bellard
1753 83469015 bellard
@itemize @minus
1754 83469015 bellard
@item
1755 5fafdf24 ths
UltraSparc IIi APB PCI Bridge
1756 83469015 bellard
@item
1757 83469015 bellard
PCI VGA compatible card with VESA Bochs Extensions
1758 83469015 bellard
@item
1759 34a3d239 blueswir1
PS/2 mouse and keyboard
1760 34a3d239 blueswir1
@item
1761 83469015 bellard
Non Volatile RAM M48T59
1762 83469015 bellard
@item
1763 83469015 bellard
PC-compatible serial ports
1764 c7ba218d blueswir1
@item
1765 c7ba218d blueswir1
2 PCI IDE interfaces with hard disk and CD-ROM support
1766 34a3d239 blueswir1
@item
1767 34a3d239 blueswir1
Floppy disk
1768 83469015 bellard
@end itemize
1769 83469015 bellard
1770 c7ba218d blueswir1
@c man begin OPTIONS
1771 c7ba218d blueswir1
1772 c7ba218d blueswir1
The following options are specific to the Sparc64 emulation:
1773 c7ba218d blueswir1
1774 c7ba218d blueswir1
@table @option
1775 c7ba218d blueswir1
1776 4e257e5e Kevin Wolf
@item -prom-env @var{string}
1777 34a3d239 blueswir1
1778 34a3d239 blueswir1
Set OpenBIOS variables in NVRAM, for example:
1779 34a3d239 blueswir1
1780 34a3d239 blueswir1
@example
1781 34a3d239 blueswir1
qemu-system-sparc64 -prom-env 'auto-boot?=false'
1782 34a3d239 blueswir1
@end example
1783 34a3d239 blueswir1
1784 34a3d239 blueswir1
@item -M [sun4u|sun4v|Niagara]
1785 c7ba218d blueswir1
1786 c7ba218d blueswir1
Set the emulated machine type. The default is sun4u.
1787 c7ba218d blueswir1
1788 c7ba218d blueswir1
@end table
1789 c7ba218d blueswir1
1790 c7ba218d blueswir1
@c man end
1791 c7ba218d blueswir1
1792 24d4de45 ths
@node MIPS System emulator
1793 24d4de45 ths
@section MIPS System emulator
1794 7544a042 Stefan Weil
@cindex system emulation (MIPS)
1795 9d0a8e6f bellard
1796 d9aedc32 ths
Four executables cover simulation of 32 and 64-bit MIPS systems in
1797 d9aedc32 ths
both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
1798 d9aedc32 ths
@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
1799 88cb0a02 aurel32
Five different machine types are emulated:
1800 24d4de45 ths
1801 24d4de45 ths
@itemize @minus
1802 24d4de45 ths
@item
1803 24d4de45 ths
A generic ISA PC-like machine "mips"
1804 24d4de45 ths
@item
1805 24d4de45 ths
The MIPS Malta prototype board "malta"
1806 24d4de45 ths
@item
1807 d9aedc32 ths
An ACER Pica "pica61". This machine needs the 64-bit emulator.
1808 6bf5b4e8 ths
@item
1809 f0fc6f8f ths
MIPS emulator pseudo board "mipssim"
1810 88cb0a02 aurel32
@item
1811 88cb0a02 aurel32
A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
1812 24d4de45 ths
@end itemize
1813 24d4de45 ths
1814 24d4de45 ths
The generic emulation is supported by Debian 'Etch' and is able to
1815 24d4de45 ths
install Debian into a virtual disk image. The following devices are
1816 24d4de45 ths
emulated:
1817 3f9f3aa1 bellard
1818 3f9f3aa1 bellard
@itemize @minus
1819 5fafdf24 ths
@item
1820 6bf5b4e8 ths
A range of MIPS CPUs, default is the 24Kf
1821 3f9f3aa1 bellard
@item
1822 3f9f3aa1 bellard
PC style serial port
1823 3f9f3aa1 bellard
@item
1824 24d4de45 ths
PC style IDE disk
1825 24d4de45 ths
@item
1826 3f9f3aa1 bellard
NE2000 network card
1827 3f9f3aa1 bellard
@end itemize
1828 3f9f3aa1 bellard
1829 24d4de45 ths
The Malta emulation supports the following devices:
1830 24d4de45 ths
1831 24d4de45 ths
@itemize @minus
1832 24d4de45 ths
@item
1833 0b64d008 ths
Core board with MIPS 24Kf CPU and Galileo system controller
1834 24d4de45 ths
@item
1835 24d4de45 ths
PIIX4 PCI/USB/SMbus controller
1836 24d4de45 ths
@item
1837 24d4de45 ths
The Multi-I/O chip's serial device
1838 24d4de45 ths
@item
1839 3a2eeac0 Stefan Weil
PCI network cards (PCnet32 and others)
1840 24d4de45 ths
@item
1841 24d4de45 ths
Malta FPGA serial device
1842 24d4de45 ths
@item
1843 1f605a76 aurel32
Cirrus (default) or any other PCI VGA graphics card
1844 24d4de45 ths
@end itemize
1845 24d4de45 ths
1846 24d4de45 ths
The ACER Pica emulation supports:
1847 24d4de45 ths
1848 24d4de45 ths
@itemize @minus
1849 24d4de45 ths
@item
1850 24d4de45 ths
MIPS R4000 CPU
1851 24d4de45 ths
@item
1852 24d4de45 ths
PC-style IRQ and DMA controllers
1853 24d4de45 ths
@item
1854 24d4de45 ths
PC Keyboard
1855 24d4de45 ths
@item
1856 24d4de45 ths
IDE controller
1857 24d4de45 ths
@end itemize
1858 3f9f3aa1 bellard
1859 b5e4946f Stefan Weil
The mipssim pseudo board emulation provides an environment similar
1860 f0fc6f8f ths
to what the proprietary MIPS emulator uses for running Linux.
1861 f0fc6f8f ths
It supports:
1862 6bf5b4e8 ths
1863 6bf5b4e8 ths
@itemize @minus
1864 6bf5b4e8 ths
@item
1865 6bf5b4e8 ths
A range of MIPS CPUs, default is the 24Kf
1866 6bf5b4e8 ths
@item
1867 6bf5b4e8 ths
PC style serial port
1868 6bf5b4e8 ths
@item
1869 6bf5b4e8 ths
MIPSnet network emulation
1870 6bf5b4e8 ths
@end itemize
1871 6bf5b4e8 ths
1872 88cb0a02 aurel32
The MIPS Magnum R4000 emulation supports:
1873 88cb0a02 aurel32
1874 88cb0a02 aurel32
@itemize @minus
1875 88cb0a02 aurel32
@item
1876 88cb0a02 aurel32
MIPS R4000 CPU
1877 88cb0a02 aurel32
@item
1878 88cb0a02 aurel32
PC-style IRQ controller
1879 88cb0a02 aurel32
@item
1880 88cb0a02 aurel32
PC Keyboard
1881 88cb0a02 aurel32
@item
1882 88cb0a02 aurel32
SCSI controller
1883 88cb0a02 aurel32
@item
1884 88cb0a02 aurel32
G364 framebuffer
1885 88cb0a02 aurel32
@end itemize
1886 88cb0a02 aurel32
1887 88cb0a02 aurel32
1888 24d4de45 ths
@node ARM System emulator
1889 24d4de45 ths
@section ARM System emulator
1890 7544a042 Stefan Weil
@cindex system emulation (ARM)
1891 3f9f3aa1 bellard
1892 3f9f3aa1 bellard
Use the executable @file{qemu-system-arm} to simulate a ARM
1893 3f9f3aa1 bellard
machine. The ARM Integrator/CP board is emulated with the following
1894 3f9f3aa1 bellard
devices:
1895 3f9f3aa1 bellard
1896 3f9f3aa1 bellard
@itemize @minus
1897 3f9f3aa1 bellard
@item
1898 9ee6e8bb pbrook
ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
1899 3f9f3aa1 bellard
@item
1900 3f9f3aa1 bellard
Two PL011 UARTs
1901 5fafdf24 ths
@item
1902 3f9f3aa1 bellard
SMC 91c111 Ethernet adapter
1903 00a9bf19 pbrook
@item
1904 00a9bf19 pbrook
PL110 LCD controller
1905 00a9bf19 pbrook
@item
1906 00a9bf19 pbrook
PL050 KMI with PS/2 keyboard and mouse.
1907 a1bb27b1 pbrook
@item
1908 a1bb27b1 pbrook
PL181 MultiMedia Card Interface with SD card.
1909 00a9bf19 pbrook
@end itemize
1910 00a9bf19 pbrook
1911 00a9bf19 pbrook
The ARM Versatile baseboard is emulated with the following devices:
1912 00a9bf19 pbrook
1913 00a9bf19 pbrook
@itemize @minus
1914 00a9bf19 pbrook
@item
1915 9ee6e8bb pbrook
ARM926E, ARM1136 or Cortex-A8 CPU
1916 00a9bf19 pbrook
@item
1917 00a9bf19 pbrook
PL190 Vectored Interrupt Controller
1918 00a9bf19 pbrook
@item
1919 00a9bf19 pbrook
Four PL011 UARTs
1920 5fafdf24 ths
@item
1921 00a9bf19 pbrook
SMC 91c111 Ethernet adapter
1922 00a9bf19 pbrook
@item
1923 00a9bf19 pbrook
PL110 LCD controller
1924 00a9bf19 pbrook
@item
1925 00a9bf19 pbrook
PL050 KMI with PS/2 keyboard and mouse.
1926 00a9bf19 pbrook
@item
1927 00a9bf19 pbrook
PCI host bridge.  Note the emulated PCI bridge only provides access to
1928 00a9bf19 pbrook
PCI memory space.  It does not provide access to PCI IO space.
1929 4be456f1 ths
This means some devices (eg. ne2k_pci NIC) are not usable, and others
1930 4be456f1 ths
(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
1931 00a9bf19 pbrook
mapped control registers.
1932 e6de1bad pbrook
@item
1933 e6de1bad pbrook
PCI OHCI USB controller.
1934 e6de1bad pbrook
@item
1935 e6de1bad pbrook
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
1936 a1bb27b1 pbrook
@item
1937 a1bb27b1 pbrook
PL181 MultiMedia Card Interface with SD card.
1938 3f9f3aa1 bellard
@end itemize
1939 3f9f3aa1 bellard
1940 21a88941 Paul Brook
Several variants of the ARM RealView baseboard are emulated,
1941 21a88941 Paul Brook
including the EB, PB-A8 and PBX-A9.  Due to interactions with the
1942 21a88941 Paul Brook
bootloader, only certain Linux kernel configurations work out
1943 21a88941 Paul Brook
of the box on these boards.
1944 21a88941 Paul Brook
1945 21a88941 Paul Brook
Kernels for the PB-A8 board should have CONFIG_REALVIEW_HIGH_PHYS_OFFSET
1946 21a88941 Paul Brook
enabled in the kernel, and expect 512M RAM.  Kernels for The PBX-A9 board
1947 21a88941 Paul Brook
should have CONFIG_SPARSEMEM enabled, CONFIG_REALVIEW_HIGH_PHYS_OFFSET
1948 21a88941 Paul Brook
disabled and expect 1024M RAM.
1949 21a88941 Paul Brook
1950 40c5c6cd Stefan Weil
The following devices are emulated:
1951 d7739d75 pbrook
1952 d7739d75 pbrook
@itemize @minus
1953 d7739d75 pbrook
@item
1954 f7c70325 Paul Brook
ARM926E, ARM1136, ARM11MPCore, Cortex-A8 or Cortex-A9 MPCore CPU
1955 d7739d75 pbrook
@item
1956 d7739d75 pbrook
ARM AMBA Generic/Distributed Interrupt Controller
1957 d7739d75 pbrook
@item
1958 d7739d75 pbrook
Four PL011 UARTs
1959 5fafdf24 ths
@item
1960 0ef849d7 Paul Brook
SMC 91c111 or SMSC LAN9118 Ethernet adapter
1961 d7739d75 pbrook
@item
1962 d7739d75 pbrook
PL110 LCD controller
1963 d7739d75 pbrook
@item
1964 d7739d75 pbrook
PL050 KMI with PS/2 keyboard and mouse
1965 d7739d75 pbrook
@item
1966 d7739d75 pbrook
PCI host bridge
1967 d7739d75 pbrook
@item
1968 d7739d75 pbrook
PCI OHCI USB controller
1969 d7739d75 pbrook
@item
1970 d7739d75 pbrook
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
1971 a1bb27b1 pbrook
@item
1972 a1bb27b1 pbrook
PL181 MultiMedia Card Interface with SD card.
1973 d7739d75 pbrook
@end itemize
1974 d7739d75 pbrook
1975 b00052e4 balrog
The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
1976 b00052e4 balrog
and "Terrier") emulation includes the following peripherals:
1977 b00052e4 balrog
1978 b00052e4 balrog
@itemize @minus
1979 b00052e4 balrog
@item
1980 b00052e4 balrog
Intel PXA270 System-on-chip (ARM V5TE core)
1981 b00052e4 balrog
@item
1982 b00052e4 balrog
NAND Flash memory
1983 b00052e4 balrog
@item
1984 b00052e4 balrog
IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
1985 b00052e4 balrog
@item
1986 b00052e4 balrog
On-chip OHCI USB controller
1987 b00052e4 balrog
@item
1988 b00052e4 balrog
On-chip LCD controller
1989 b00052e4 balrog
@item
1990 b00052e4 balrog
On-chip Real Time Clock
1991 b00052e4 balrog
@item
1992 b00052e4 balrog
TI ADS7846 touchscreen controller on SSP bus
1993 b00052e4 balrog
@item
1994 b00052e4 balrog
Maxim MAX1111 analog-digital converter on I@math{^2}C bus
1995 b00052e4 balrog
@item
1996 b00052e4 balrog
GPIO-connected keyboard controller and LEDs
1997 b00052e4 balrog
@item
1998 549444e1 balrog
Secure Digital card connected to PXA MMC/SD host
1999 b00052e4 balrog
@item
2000 b00052e4 balrog
Three on-chip UARTs
2001 b00052e4 balrog
@item
2002 b00052e4 balrog
WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2003 b00052e4 balrog
@end itemize
2004 b00052e4 balrog
2005 02645926 balrog
The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2006 02645926 balrog
following elements:
2007 02645926 balrog
2008 02645926 balrog
@itemize @minus
2009 02645926 balrog
@item
2010 02645926 balrog
Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2011 02645926 balrog
@item
2012 02645926 balrog
ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2013 02645926 balrog
@item
2014 02645926 balrog
On-chip LCD controller
2015 02645926 balrog
@item
2016 02645926 balrog
On-chip Real Time Clock
2017 02645926 balrog
@item
2018 02645926 balrog
TI TSC2102i touchscreen controller / analog-digital converter / Audio
2019 02645926 balrog
CODEC, connected through MicroWire and I@math{^2}S busses
2020 02645926 balrog
@item
2021 02645926 balrog
GPIO-connected matrix keypad
2022 02645926 balrog
@item
2023 02645926 balrog
Secure Digital card connected to OMAP MMC/SD host
2024 02645926 balrog
@item
2025 02645926 balrog
Three on-chip UARTs
2026 02645926 balrog
@end itemize
2027 02645926 balrog
2028 c30bb264 balrog
Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
2029 c30bb264 balrog
emulation supports the following elements:
2030 c30bb264 balrog
2031 c30bb264 balrog
@itemize @minus
2032 c30bb264 balrog
@item
2033 c30bb264 balrog
Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
2034 c30bb264 balrog
@item
2035 c30bb264 balrog
RAM and non-volatile OneNAND Flash memories
2036 c30bb264 balrog
@item
2037 c30bb264 balrog
Display connected to EPSON remote framebuffer chip and OMAP on-chip
2038 c30bb264 balrog
display controller and a LS041y3 MIPI DBI-C controller
2039 c30bb264 balrog
@item
2040 c30bb264 balrog
TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
2041 c30bb264 balrog
driven through SPI bus
2042 c30bb264 balrog
@item
2043 c30bb264 balrog
National Semiconductor LM8323-controlled qwerty keyboard driven
2044 c30bb264 balrog
through I@math{^2}C bus
2045 c30bb264 balrog
@item
2046 c30bb264 balrog
Secure Digital card connected to OMAP MMC/SD host
2047 c30bb264 balrog
@item
2048 c30bb264 balrog
Three OMAP on-chip UARTs and on-chip STI debugging console
2049 c30bb264 balrog
@item
2050 40c5c6cd Stefan Weil
A Bluetooth(R) transceiver and HCI connected to an UART
2051 2d564691 balrog
@item
2052 c30bb264 balrog
Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
2053 c30bb264 balrog
TUSB6010 chip - only USB host mode is supported
2054 c30bb264 balrog
@item
2055 c30bb264 balrog
TI TMP105 temperature sensor driven through I@math{^2}C bus
2056 c30bb264 balrog
@item
2057 c30bb264 balrog
TI TWL92230C power management companion with an RTC on I@math{^2}C bus
2058 c30bb264 balrog
@item
2059 c30bb264 balrog
Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
2060 c30bb264 balrog
through CBUS
2061 c30bb264 balrog
@end itemize
2062 c30bb264 balrog
2063 9ee6e8bb pbrook
The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2064 9ee6e8bb pbrook
devices:
2065 9ee6e8bb pbrook
2066 9ee6e8bb pbrook
@itemize @minus
2067 9ee6e8bb pbrook
@item
2068 9ee6e8bb pbrook
Cortex-M3 CPU core.
2069 9ee6e8bb pbrook
@item
2070 9ee6e8bb pbrook
64k Flash and 8k SRAM.
2071 9ee6e8bb pbrook
@item
2072 9ee6e8bb pbrook
Timers, UARTs, ADC and I@math{^2}C interface.
2073 9ee6e8bb pbrook
@item
2074 9ee6e8bb pbrook
OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2075 9ee6e8bb pbrook
@end itemize
2076 9ee6e8bb pbrook
2077 9ee6e8bb pbrook
The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2078 9ee6e8bb pbrook
devices:
2079 9ee6e8bb pbrook
2080 9ee6e8bb pbrook
@itemize @minus
2081 9ee6e8bb pbrook
@item
2082 9ee6e8bb pbrook
Cortex-M3 CPU core.
2083 9ee6e8bb pbrook
@item
2084 9ee6e8bb pbrook
256k Flash and 64k SRAM.
2085 9ee6e8bb pbrook
@item
2086 9ee6e8bb pbrook
Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2087 9ee6e8bb pbrook
@item
2088 9ee6e8bb pbrook
OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2089 9ee6e8bb pbrook
@end itemize
2090 9ee6e8bb pbrook
2091 57cd6e97 balrog
The Freecom MusicPal internet radio emulation includes the following
2092 57cd6e97 balrog
elements:
2093 57cd6e97 balrog
2094 57cd6e97 balrog
@itemize @minus
2095 57cd6e97 balrog
@item
2096 57cd6e97 balrog
Marvell MV88W8618 ARM core.
2097 57cd6e97 balrog
@item
2098 57cd6e97 balrog
32 MB RAM, 256 KB SRAM, 8 MB flash.
2099 57cd6e97 balrog
@item
2100 57cd6e97 balrog
Up to 2 16550 UARTs
2101 57cd6e97 balrog
@item
2102 57cd6e97 balrog
MV88W8xx8 Ethernet controller
2103 57cd6e97 balrog
@item
2104 57cd6e97 balrog
MV88W8618 audio controller, WM8750 CODEC and mixer
2105 57cd6e97 balrog
@item
2106 e080e785 Stefan Weil
128ร—64 display with brightness control
2107 57cd6e97 balrog
@item
2108 57cd6e97 balrog
2 buttons, 2 navigation wheels with button function
2109 57cd6e97 balrog
@end itemize
2110 57cd6e97 balrog
2111 997641a8 balrog
The Siemens SX1 models v1 and v2 (default) basic emulation.
2112 40c5c6cd Stefan Weil
The emulation includes the following elements:
2113 997641a8 balrog
2114 997641a8 balrog
@itemize @minus
2115 997641a8 balrog
@item
2116 997641a8 balrog
Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2117 997641a8 balrog
@item
2118 997641a8 balrog
ROM and RAM memories (ROM firmware image can be loaded with -pflash)
2119 997641a8 balrog
V1
2120 997641a8 balrog
1 Flash of 16MB and 1 Flash of 8MB
2121 997641a8 balrog
V2
2122 997641a8 balrog
1 Flash of 32MB
2123 997641a8 balrog
@item
2124 997641a8 balrog
On-chip LCD controller
2125 997641a8 balrog
@item
2126 997641a8 balrog
On-chip Real Time Clock
2127 997641a8 balrog
@item
2128 997641a8 balrog
Secure Digital card connected to OMAP MMC/SD host
2129 997641a8 balrog
@item
2130 997641a8 balrog
Three on-chip UARTs
2131 997641a8 balrog
@end itemize
2132 997641a8 balrog
2133 3f9f3aa1 bellard
A Linux 2.6 test image is available on the QEMU web site. More
2134 3f9f3aa1 bellard
information is available in the QEMU mailing-list archive.
2135 9d0a8e6f bellard
2136 d2c639d6 blueswir1
@c man begin OPTIONS
2137 d2c639d6 blueswir1
2138 d2c639d6 blueswir1
The following options are specific to the ARM emulation:
2139 d2c639d6 blueswir1
2140 d2c639d6 blueswir1
@table @option
2141 d2c639d6 blueswir1
2142 d2c639d6 blueswir1
@item -semihosting
2143 d2c639d6 blueswir1
Enable semihosting syscall emulation.
2144 d2c639d6 blueswir1
2145 d2c639d6 blueswir1
On ARM this implements the "Angel" interface.
2146 d2c639d6 blueswir1
2147 d2c639d6 blueswir1
Note that this allows guest direct access to the host filesystem,
2148 d2c639d6 blueswir1
so should only be used with trusted guest OS.
2149 d2c639d6 blueswir1
2150 d2c639d6 blueswir1
@end table
2151 d2c639d6 blueswir1
2152 24d4de45 ths
@node ColdFire System emulator
2153 24d4de45 ths
@section ColdFire System emulator
2154 7544a042 Stefan Weil
@cindex system emulation (ColdFire)
2155 7544a042 Stefan Weil
@cindex system emulation (M68K)
2156 209a4e69 pbrook
2157 209a4e69 pbrook
Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2158 209a4e69 pbrook
The emulator is able to boot a uClinux kernel.
2159 707e011b pbrook
2160 707e011b pbrook
The M5208EVB emulation includes the following devices:
2161 707e011b pbrook
2162 707e011b pbrook
@itemize @minus
2163 5fafdf24 ths
@item
2164 707e011b pbrook
MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2165 707e011b pbrook
@item
2166 707e011b pbrook
Three Two on-chip UARTs.
2167 707e011b pbrook
@item
2168 707e011b pbrook
Fast Ethernet Controller (FEC)
2169 707e011b pbrook
@end itemize
2170 707e011b pbrook
2171 707e011b pbrook
The AN5206 emulation includes the following devices:
2172 209a4e69 pbrook
2173 209a4e69 pbrook
@itemize @minus
2174 5fafdf24 ths
@item
2175 209a4e69 pbrook
MCF5206 ColdFire V2 Microprocessor.
2176 209a4e69 pbrook
@item
2177 209a4e69 pbrook
Two on-chip UARTs.
2178 209a4e69 pbrook
@end itemize
2179 209a4e69 pbrook
2180 d2c639d6 blueswir1
@c man begin OPTIONS
2181 d2c639d6 blueswir1
2182 7544a042 Stefan Weil
The following options are specific to the ColdFire emulation:
2183 d2c639d6 blueswir1
2184 d2c639d6 blueswir1
@table @option
2185 d2c639d6 blueswir1
2186 d2c639d6 blueswir1
@item -semihosting
2187 d2c639d6 blueswir1
Enable semihosting syscall emulation.
2188 d2c639d6 blueswir1
2189 d2c639d6 blueswir1
On M68K this implements the "ColdFire GDB" interface used by libgloss.
2190 d2c639d6 blueswir1
2191 d2c639d6 blueswir1
Note that this allows guest direct access to the host filesystem,
2192 d2c639d6 blueswir1
so should only be used with trusted guest OS.
2193 d2c639d6 blueswir1
2194 d2c639d6 blueswir1
@end table
2195 d2c639d6 blueswir1
2196 7544a042 Stefan Weil
@node Cris System emulator
2197 7544a042 Stefan Weil
@section Cris System emulator
2198 7544a042 Stefan Weil
@cindex system emulation (Cris)
2199 7544a042 Stefan Weil
2200 7544a042 Stefan Weil
TODO
2201 7544a042 Stefan Weil
2202 7544a042 Stefan Weil
@node Microblaze System emulator
2203 7544a042 Stefan Weil
@section Microblaze System emulator
2204 7544a042 Stefan Weil
@cindex system emulation (Microblaze)
2205 7544a042 Stefan Weil
2206 7544a042 Stefan Weil
TODO
2207 7544a042 Stefan Weil
2208 7544a042 Stefan Weil
@node SH4 System emulator
2209 7544a042 Stefan Weil
@section SH4 System emulator
2210 7544a042 Stefan Weil
@cindex system emulation (SH4)
2211 7544a042 Stefan Weil
2212 7544a042 Stefan Weil
TODO
2213 7544a042 Stefan Weil
2214 3aeaea65 Max Filippov
@node Xtensa System emulator
2215 3aeaea65 Max Filippov
@section Xtensa System emulator
2216 3aeaea65 Max Filippov
@cindex system emulation (Xtensa)
2217 3aeaea65 Max Filippov
2218 3aeaea65 Max Filippov
Two executables cover simulation of both Xtensa endian options,
2219 3aeaea65 Max Filippov
@file{qemu-system-xtensa} and @file{qemu-system-xtensaeb}.
2220 3aeaea65 Max Filippov
Two different machine types are emulated:
2221 3aeaea65 Max Filippov
2222 3aeaea65 Max Filippov
@itemize @minus
2223 3aeaea65 Max Filippov
@item
2224 3aeaea65 Max Filippov
Xtensa emulator pseudo board "sim"
2225 3aeaea65 Max Filippov
@item
2226 3aeaea65 Max Filippov
Avnet LX60/LX110/LX200 board
2227 3aeaea65 Max Filippov
@end itemize
2228 3aeaea65 Max Filippov
2229 b5e4946f Stefan Weil
The sim pseudo board emulation provides an environment similar
2230 3aeaea65 Max Filippov
to one provided by the proprietary Tensilica ISS.
2231 3aeaea65 Max Filippov
It supports:
2232 3aeaea65 Max Filippov
2233 3aeaea65 Max Filippov
@itemize @minus
2234 3aeaea65 Max Filippov
@item
2235 3aeaea65 Max Filippov
A range of Xtensa CPUs, default is the DC232B
2236 3aeaea65 Max Filippov
@item
2237 3aeaea65 Max Filippov
Console and filesystem access via semihosting calls
2238 3aeaea65 Max Filippov
@end itemize
2239 3aeaea65 Max Filippov
2240 3aeaea65 Max Filippov
The Avnet LX60/LX110/LX200 emulation supports:
2241 3aeaea65 Max Filippov
2242 3aeaea65 Max Filippov
@itemize @minus
2243 3aeaea65 Max Filippov
@item
2244 3aeaea65 Max Filippov
A range of Xtensa CPUs, default is the DC232B
2245 3aeaea65 Max Filippov
@item
2246 3aeaea65 Max Filippov
16550 UART
2247 3aeaea65 Max Filippov
@item
2248 3aeaea65 Max Filippov
OpenCores 10/100 Mbps Ethernet MAC
2249 3aeaea65 Max Filippov
@end itemize
2250 3aeaea65 Max Filippov
2251 3aeaea65 Max Filippov
@c man begin OPTIONS
2252 3aeaea65 Max Filippov
2253 3aeaea65 Max Filippov
The following options are specific to the Xtensa emulation:
2254 3aeaea65 Max Filippov
2255 3aeaea65 Max Filippov
@table @option
2256 3aeaea65 Max Filippov
2257 3aeaea65 Max Filippov
@item -semihosting
2258 3aeaea65 Max Filippov
Enable semihosting syscall emulation.
2259 3aeaea65 Max Filippov
2260 3aeaea65 Max Filippov
Xtensa semihosting provides basic file IO calls, such as open/read/write/seek/select.
2261 3aeaea65 Max Filippov
Tensilica baremetal libc for ISS and linux platform "sim" use this interface.
2262 3aeaea65 Max Filippov
2263 3aeaea65 Max Filippov
Note that this allows guest direct access to the host filesystem,
2264 3aeaea65 Max Filippov
so should only be used with trusted guest OS.
2265 3aeaea65 Max Filippov
2266 3aeaea65 Max Filippov
@end table
2267 5fafdf24 ths
@node QEMU User space emulator
2268 5fafdf24 ths
@chapter QEMU User space emulator
2269 83195237 bellard
2270 83195237 bellard
@menu
2271 83195237 bellard
* Supported Operating Systems ::
2272 83195237 bellard
* Linux User space emulator::
2273 83195237 bellard
* Mac OS X/Darwin User space emulator ::
2274 84778508 blueswir1
* BSD User space emulator ::
2275 83195237 bellard
@end menu
2276 83195237 bellard
2277 83195237 bellard
@node Supported Operating Systems
2278 83195237 bellard
@section Supported Operating Systems
2279 83195237 bellard
2280 83195237 bellard
The following OS are supported in user space emulation:
2281 83195237 bellard
2282 83195237 bellard
@itemize @minus
2283 83195237 bellard
@item
2284 4be456f1 ths
Linux (referred as qemu-linux-user)
2285 83195237 bellard
@item
2286 4be456f1 ths
Mac OS X/Darwin (referred as qemu-darwin-user)
2287 84778508 blueswir1
@item
2288 84778508 blueswir1
BSD (referred as qemu-bsd-user)
2289 83195237 bellard
@end itemize
2290 83195237 bellard
2291 83195237 bellard
@node Linux User space emulator
2292 83195237 bellard
@section Linux User space emulator
2293 386405f7 bellard
2294 debc7065 bellard
@menu
2295 debc7065 bellard
* Quick Start::
2296 debc7065 bellard
* Wine launch::
2297 debc7065 bellard
* Command line options::
2298 79737e4a pbrook
* Other binaries::
2299 debc7065 bellard
@end menu
2300 debc7065 bellard
2301 debc7065 bellard
@node Quick Start
2302 83195237 bellard
@subsection Quick Start
2303 df0f11a0 bellard
2304 1f673135 bellard
In order to launch a Linux process, QEMU needs the process executable
2305 5fafdf24 ths
itself and all the target (x86) dynamic libraries used by it.
2306 386405f7 bellard
2307 1f673135 bellard
@itemize
2308 386405f7 bellard
2309 1f673135 bellard
@item On x86, you can just try to launch any process by using the native
2310 1f673135 bellard
libraries:
2311 386405f7 bellard
2312 5fafdf24 ths
@example
2313 1f673135 bellard
qemu-i386 -L / /bin/ls
2314 1f673135 bellard
@end example
2315 386405f7 bellard
2316 1f673135 bellard
@code{-L /} tells that the x86 dynamic linker must be searched with a
2317 1f673135 bellard
@file{/} prefix.
2318 386405f7 bellard
2319 dbcf5e82 ths
@item Since QEMU is also a linux process, you can launch qemu with
2320 dbcf5e82 ths
qemu (NOTE: you can only do that if you compiled QEMU from the sources):
2321 386405f7 bellard
2322 5fafdf24 ths
@example
2323 1f673135 bellard
qemu-i386 -L / qemu-i386 -L / /bin/ls
2324 1f673135 bellard
@end example
2325 386405f7 bellard
2326 1f673135 bellard
@item On non x86 CPUs, you need first to download at least an x86 glibc
2327 1f673135 bellard
(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2328 1f673135 bellard
@code{LD_LIBRARY_PATH} is not set:
2329 df0f11a0 bellard
2330 1f673135 bellard
@example
2331 5fafdf24 ths
unset LD_LIBRARY_PATH
2332 1f673135 bellard
@end example
2333 1eb87257 bellard
2334 1f673135 bellard
Then you can launch the precompiled @file{ls} x86 executable:
2335 1eb87257 bellard
2336 1f673135 bellard
@example
2337 1f673135 bellard
qemu-i386 tests/i386/ls
2338 1f673135 bellard
@end example
2339 4c3b5a48 Blue Swirl
You can look at @file{scripts/qemu-binfmt-conf.sh} so that
2340 1f673135 bellard
QEMU is automatically launched by the Linux kernel when you try to
2341 1f673135 bellard
launch x86 executables. It requires the @code{binfmt_misc} module in the
2342 1f673135 bellard
Linux kernel.
2343 1eb87257 bellard
2344 1f673135 bellard
@item The x86 version of QEMU is also included. You can try weird things such as:
2345 1f673135 bellard
@example
2346 debc7065 bellard
qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2347 debc7065 bellard
          /usr/local/qemu-i386/bin/ls-i386
2348 1f673135 bellard
@end example
2349 1eb20527 bellard
2350 1f673135 bellard
@end itemize
2351 1eb20527 bellard
2352 debc7065 bellard
@node Wine launch
2353 83195237 bellard
@subsection Wine launch
2354 1eb20527 bellard
2355 1f673135 bellard
@itemize
2356 386405f7 bellard
2357 1f673135 bellard
@item Ensure that you have a working QEMU with the x86 glibc
2358 1f673135 bellard
distribution (see previous section). In order to verify it, you must be
2359 1f673135 bellard
able to do:
2360 386405f7 bellard
2361 1f673135 bellard
@example
2362 1f673135 bellard
qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2363 1f673135 bellard
@end example
2364 386405f7 bellard
2365 1f673135 bellard
@item Download the binary x86 Wine install
2366 5fafdf24 ths
(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
2367 386405f7 bellard
2368 1f673135 bellard
@item Configure Wine on your account. Look at the provided script
2369 debc7065 bellard
@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
2370 1f673135 bellard
@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
2371 386405f7 bellard
2372 1f673135 bellard
@item Then you can try the example @file{putty.exe}:
2373 386405f7 bellard
2374 1f673135 bellard
@example
2375 debc7065 bellard
qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2376 debc7065 bellard
          /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
2377 1f673135 bellard
@end example
2378 386405f7 bellard
2379 1f673135 bellard
@end itemize
2380 fd429f2f bellard
2381 debc7065 bellard
@node Command line options
2382 83195237 bellard
@subsection Command line options
2383 1eb20527 bellard
2384 1f673135 bellard
@example
2385 68a1c816 Paul Brook
usage: qemu-i386 [-h] [-d] [-L path] [-s size] [-cpu model] [-g port] [-B offset] [-R size] program [arguments...]
2386 1f673135 bellard
@end example
2387 1eb20527 bellard
2388 1f673135 bellard
@table @option
2389 1f673135 bellard
@item -h
2390 1f673135 bellard
Print the help
2391 3b46e624 ths
@item -L path
2392 1f673135 bellard
Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2393 1f673135 bellard
@item -s size
2394 1f673135 bellard
Set the x86 stack size in bytes (default=524288)
2395 34a3d239 blueswir1
@item -cpu model
2396 34a3d239 blueswir1
Select CPU model (-cpu ? for list and additional feature selection)
2397 f66724c9 Stefan Weil
@item -ignore-environment
2398 f66724c9 Stefan Weil
Start with an empty environment. Without this option,
2399 40c5c6cd Stefan Weil
the initial environment is a copy of the caller's environment.
2400 f66724c9 Stefan Weil
@item -E @var{var}=@var{value}
2401 f66724c9 Stefan Weil
Set environment @var{var} to @var{value}.
2402 f66724c9 Stefan Weil
@item -U @var{var}
2403 f66724c9 Stefan Weil
Remove @var{var} from the environment.
2404 379f6698 Paul Brook
@item -B offset
2405 379f6698 Paul Brook
Offset guest address by the specified number of bytes.  This is useful when
2406 1f5c3f8c Stefan Weil
the address region required by guest applications is reserved on the host.
2407 1f5c3f8c Stefan Weil
This option is currently only supported on some hosts.
2408 68a1c816 Paul Brook
@item -R size
2409 68a1c816 Paul Brook
Pre-allocate a guest virtual address space of the given size (in bytes).
2410 0d6753e5 Stefan Weil
"G", "M", and "k" suffixes may be used when specifying the size.
2411 386405f7 bellard
@end table
2412 386405f7 bellard
2413 1f673135 bellard
Debug options:
2414 386405f7 bellard
2415 1f673135 bellard
@table @option
2416 1f673135 bellard
@item -d
2417 1f673135 bellard
Activate log (logfile=/tmp/qemu.log)
2418 1f673135 bellard
@item -p pagesize
2419 1f673135 bellard
Act as if the host page size was 'pagesize' bytes
2420 34a3d239 blueswir1
@item -g port
2421 34a3d239 blueswir1
Wait gdb connection to port
2422 1b530a6d aurel32
@item -singlestep
2423 1b530a6d aurel32
Run the emulation in single step mode.
2424 1f673135 bellard
@end table
2425 386405f7 bellard
2426 b01bcae6 balrog
Environment variables:
2427 b01bcae6 balrog
2428 b01bcae6 balrog
@table @env
2429 b01bcae6 balrog
@item QEMU_STRACE
2430 b01bcae6 balrog
Print system calls and arguments similar to the 'strace' program
2431 b01bcae6 balrog
(NOTE: the actual 'strace' program will not work because the user
2432 b01bcae6 balrog
space emulator hasn't implemented ptrace).  At the moment this is
2433 b01bcae6 balrog
incomplete.  All system calls that don't have a specific argument
2434 b01bcae6 balrog
format are printed with information for six arguments.  Many
2435 b01bcae6 balrog
flag-style arguments don't have decoders and will show up as numbers.
2436 5cfdf930 ths
@end table
2437 b01bcae6 balrog
2438 79737e4a pbrook
@node Other binaries
2439 83195237 bellard
@subsection Other binaries
2440 79737e4a pbrook
2441 7544a042 Stefan Weil
@cindex user mode (Alpha)
2442 7544a042 Stefan Weil
@command{qemu-alpha} TODO.
2443 7544a042 Stefan Weil
2444 7544a042 Stefan Weil
@cindex user mode (ARM)
2445 7544a042 Stefan Weil
@command{qemu-armeb} TODO.
2446 7544a042 Stefan Weil
2447 7544a042 Stefan Weil
@cindex user mode (ARM)
2448 79737e4a pbrook
@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2449 79737e4a pbrook
binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2450 79737e4a pbrook
configurations), and arm-uclinux bFLT format binaries.
2451 79737e4a pbrook
2452 7544a042 Stefan Weil
@cindex user mode (ColdFire)
2453 7544a042 Stefan Weil
@cindex user mode (M68K)
2454 e6e5906b pbrook
@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2455 e6e5906b pbrook
(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2456 e6e5906b pbrook
coldfire uClinux bFLT format binaries.
2457 e6e5906b pbrook
2458 79737e4a pbrook
The binary format is detected automatically.
2459 79737e4a pbrook
2460 7544a042 Stefan Weil
@cindex user mode (Cris)
2461 7544a042 Stefan Weil
@command{qemu-cris} TODO.
2462 7544a042 Stefan Weil
2463 7544a042 Stefan Weil
@cindex user mode (i386)
2464 7544a042 Stefan Weil
@command{qemu-i386} TODO.
2465 7544a042 Stefan Weil
@command{qemu-x86_64} TODO.
2466 7544a042 Stefan Weil
2467 7544a042 Stefan Weil
@cindex user mode (Microblaze)
2468 7544a042 Stefan Weil
@command{qemu-microblaze} TODO.
2469 7544a042 Stefan Weil
2470 7544a042 Stefan Weil
@cindex user mode (MIPS)
2471 7544a042 Stefan Weil
@command{qemu-mips} TODO.
2472 7544a042 Stefan Weil
@command{qemu-mipsel} TODO.
2473 7544a042 Stefan Weil
2474 7544a042 Stefan Weil
@cindex user mode (PowerPC)
2475 7544a042 Stefan Weil
@command{qemu-ppc64abi32} TODO.
2476 7544a042 Stefan Weil
@command{qemu-ppc64} TODO.
2477 7544a042 Stefan Weil
@command{qemu-ppc} TODO.
2478 7544a042 Stefan Weil
2479 7544a042 Stefan Weil
@cindex user mode (SH4)
2480 7544a042 Stefan Weil
@command{qemu-sh4eb} TODO.
2481 7544a042 Stefan Weil
@command{qemu-sh4} TODO.
2482 7544a042 Stefan Weil
2483 7544a042 Stefan Weil
@cindex user mode (SPARC)
2484 34a3d239 blueswir1
@command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
2485 34a3d239 blueswir1
2486 a785e42e blueswir1
@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2487 a785e42e blueswir1
(Sparc64 CPU, 32 bit ABI).
2488 a785e42e blueswir1
2489 a785e42e blueswir1
@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2490 a785e42e blueswir1
SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2491 a785e42e blueswir1
2492 83195237 bellard
@node Mac OS X/Darwin User space emulator
2493 83195237 bellard
@section Mac OS X/Darwin User space emulator
2494 83195237 bellard
2495 83195237 bellard
@menu
2496 83195237 bellard
* Mac OS X/Darwin Status::
2497 83195237 bellard
* Mac OS X/Darwin Quick Start::
2498 83195237 bellard
* Mac OS X/Darwin Command line options::
2499 83195237 bellard
@end menu
2500 83195237 bellard
2501 83195237 bellard
@node Mac OS X/Darwin Status
2502 83195237 bellard
@subsection Mac OS X/Darwin Status
2503 83195237 bellard
2504 83195237 bellard
@itemize @minus
2505 83195237 bellard
@item
2506 83195237 bellard
target x86 on x86: Most apps (Cocoa and Carbon too) works. [1]
2507 83195237 bellard
@item
2508 83195237 bellard
target PowerPC on x86: Not working as the ppc commpage can't be mapped (yet!)
2509 83195237 bellard
@item
2510 dbcf5e82 ths
target PowerPC on PowerPC: Most apps (Cocoa and Carbon too) works. [1]
2511 83195237 bellard
@item
2512 83195237 bellard
target x86 on PowerPC: most utilities work. Cocoa and Carbon apps are not yet supported.
2513 83195237 bellard
@end itemize
2514 83195237 bellard
2515 83195237 bellard
[1] If you're host commpage can be executed by qemu.
2516 83195237 bellard
2517 83195237 bellard
@node Mac OS X/Darwin Quick Start
2518 83195237 bellard
@subsection Quick Start
2519 83195237 bellard
2520 83195237 bellard
In order to launch a Mac OS X/Darwin process, QEMU needs the process executable
2521 83195237 bellard
itself and all the target dynamic libraries used by it. If you don't have the FAT
2522 83195237 bellard
libraries (you're running Mac OS X/ppc) you'll need to obtain it from a Mac OS X
2523 83195237 bellard
CD or compile them by hand.
2524 83195237 bellard
2525 83195237 bellard
@itemize
2526 83195237 bellard
2527 83195237 bellard
@item On x86, you can just try to launch any process by using the native
2528 83195237 bellard
libraries:
2529 83195237 bellard
2530 5fafdf24 ths
@example
2531 dbcf5e82 ths
qemu-i386 /bin/ls
2532 83195237 bellard
@end example
2533 83195237 bellard
2534 83195237 bellard
or to run the ppc version of the executable:
2535 83195237 bellard
2536 5fafdf24 ths
@example
2537 dbcf5e82 ths
qemu-ppc /bin/ls
2538 83195237 bellard
@end example
2539 83195237 bellard
2540 83195237 bellard
@item On ppc, you'll have to tell qemu where your x86 libraries (and dynamic linker)
2541 83195237 bellard
are installed:
2542 83195237 bellard
2543 5fafdf24 ths
@example
2544 dbcf5e82 ths
qemu-i386 -L /opt/x86_root/ /bin/ls
2545 83195237 bellard
@end example
2546 83195237 bellard
2547 83195237 bellard
@code{-L /opt/x86_root/} tells that the dynamic linker (dyld) path is in
2548 83195237 bellard
@file{/opt/x86_root/usr/bin/dyld}.
2549 83195237 bellard
2550 83195237 bellard
@end itemize
2551 83195237 bellard
2552 83195237 bellard
@node Mac OS X/Darwin Command line options
2553 83195237 bellard
@subsection Command line options
2554 83195237 bellard
2555 83195237 bellard
@example
2556 dbcf5e82 ths
usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
2557 83195237 bellard
@end example
2558 83195237 bellard
2559 83195237 bellard
@table @option
2560 83195237 bellard
@item -h
2561 83195237 bellard
Print the help
2562 3b46e624 ths
@item -L path
2563 83195237 bellard
Set the library root path (default=/)
2564 83195237 bellard
@item -s size
2565 83195237 bellard
Set the stack size in bytes (default=524288)
2566 83195237 bellard
@end table
2567 83195237 bellard
2568 83195237 bellard
Debug options:
2569 83195237 bellard
2570 83195237 bellard
@table @option
2571 83195237 bellard
@item -d
2572 83195237 bellard
Activate log (logfile=/tmp/qemu.log)
2573 83195237 bellard
@item -p pagesize
2574 83195237 bellard
Act as if the host page size was 'pagesize' bytes
2575 1b530a6d aurel32
@item -singlestep
2576 1b530a6d aurel32
Run the emulation in single step mode.
2577 83195237 bellard
@end table
2578 83195237 bellard
2579 84778508 blueswir1
@node BSD User space emulator
2580 84778508 blueswir1
@section BSD User space emulator
2581 84778508 blueswir1
2582 84778508 blueswir1
@menu
2583 84778508 blueswir1
* BSD Status::
2584 84778508 blueswir1
* BSD Quick Start::
2585 84778508 blueswir1
* BSD Command line options::
2586 84778508 blueswir1
@end menu
2587 84778508 blueswir1
2588 84778508 blueswir1
@node BSD Status
2589 84778508 blueswir1
@subsection BSD Status
2590 84778508 blueswir1
2591 84778508 blueswir1
@itemize @minus
2592 84778508 blueswir1
@item
2593 84778508 blueswir1
target Sparc64 on Sparc64: Some trivial programs work.
2594 84778508 blueswir1
@end itemize
2595 84778508 blueswir1
2596 84778508 blueswir1
@node BSD Quick Start
2597 84778508 blueswir1
@subsection Quick Start
2598 84778508 blueswir1
2599 84778508 blueswir1
In order to launch a BSD process, QEMU needs the process executable
2600 84778508 blueswir1
itself and all the target dynamic libraries used by it.
2601 84778508 blueswir1
2602 84778508 blueswir1
@itemize
2603 84778508 blueswir1
2604 84778508 blueswir1
@item On Sparc64, you can just try to launch any process by using the native
2605 84778508 blueswir1
libraries:
2606 84778508 blueswir1
2607 84778508 blueswir1
@example
2608 84778508 blueswir1
qemu-sparc64 /bin/ls
2609 84778508 blueswir1
@end example
2610 84778508 blueswir1
2611 84778508 blueswir1
@end itemize
2612 84778508 blueswir1
2613 84778508 blueswir1
@node BSD Command line options
2614 84778508 blueswir1
@subsection Command line options
2615 84778508 blueswir1
2616 84778508 blueswir1
@example
2617 84778508 blueswir1
usage: qemu-sparc64 [-h] [-d] [-L path] [-s size] [-bsd type] program [arguments...]
2618 84778508 blueswir1
@end example
2619 84778508 blueswir1
2620 84778508 blueswir1
@table @option
2621 84778508 blueswir1
@item -h
2622 84778508 blueswir1
Print the help
2623 84778508 blueswir1
@item -L path
2624 84778508 blueswir1
Set the library root path (default=/)
2625 84778508 blueswir1
@item -s size
2626 84778508 blueswir1
Set the stack size in bytes (default=524288)
2627 f66724c9 Stefan Weil
@item -ignore-environment
2628 f66724c9 Stefan Weil
Start with an empty environment. Without this option,
2629 40c5c6cd Stefan Weil
the initial environment is a copy of the caller's environment.
2630 f66724c9 Stefan Weil
@item -E @var{var}=@var{value}
2631 f66724c9 Stefan Weil
Set environment @var{var} to @var{value}.
2632 f66724c9 Stefan Weil
@item -U @var{var}
2633 f66724c9 Stefan Weil
Remove @var{var} from the environment.
2634 84778508 blueswir1
@item -bsd type
2635 84778508 blueswir1
Set the type of the emulated BSD Operating system. Valid values are
2636 84778508 blueswir1
FreeBSD, NetBSD and OpenBSD (default).
2637 84778508 blueswir1
@end table
2638 84778508 blueswir1
2639 84778508 blueswir1
Debug options:
2640 84778508 blueswir1
2641 84778508 blueswir1
@table @option
2642 84778508 blueswir1
@item -d
2643 84778508 blueswir1
Activate log (logfile=/tmp/qemu.log)
2644 84778508 blueswir1
@item -p pagesize
2645 84778508 blueswir1
Act as if the host page size was 'pagesize' bytes
2646 1b530a6d aurel32
@item -singlestep
2647 1b530a6d aurel32
Run the emulation in single step mode.
2648 84778508 blueswir1
@end table
2649 84778508 blueswir1
2650 15a34c63 bellard
@node compilation
2651 15a34c63 bellard
@chapter Compilation from the sources
2652 15a34c63 bellard
2653 debc7065 bellard
@menu
2654 debc7065 bellard
* Linux/Unix::
2655 debc7065 bellard
* Windows::
2656 debc7065 bellard
* Cross compilation for Windows with Linux::
2657 debc7065 bellard
* Mac OS X::
2658 47eacb4f Stefan Weil
* Make targets::
2659 debc7065 bellard
@end menu
2660 debc7065 bellard
2661 debc7065 bellard
@node Linux/Unix
2662 7c3fc84d bellard
@section Linux/Unix
2663 7c3fc84d bellard
2664 7c3fc84d bellard
@subsection Compilation
2665 7c3fc84d bellard
2666 7c3fc84d bellard
First you must decompress the sources:
2667 7c3fc84d bellard
@example
2668 7c3fc84d bellard
cd /tmp
2669 7c3fc84d bellard
tar zxvf qemu-x.y.z.tar.gz
2670 7c3fc84d bellard
cd qemu-x.y.z
2671 7c3fc84d bellard
@end example
2672 7c3fc84d bellard
2673 7c3fc84d bellard
Then you configure QEMU and build it (usually no options are needed):
2674 7c3fc84d bellard
@example
2675 7c3fc84d bellard
./configure
2676 7c3fc84d bellard
make
2677 7c3fc84d bellard
@end example
2678 7c3fc84d bellard
2679 7c3fc84d bellard
Then type as root user:
2680 7c3fc84d bellard
@example
2681 7c3fc84d bellard
make install
2682 7c3fc84d bellard
@end example
2683 7c3fc84d bellard
to install QEMU in @file{/usr/local}.
2684 7c3fc84d bellard
2685 debc7065 bellard
@node Windows
2686 15a34c63 bellard
@section Windows
2687 15a34c63 bellard
2688 15a34c63 bellard
@itemize
2689 15a34c63 bellard
@item Install the current versions of MSYS and MinGW from
2690 15a34c63 bellard
@url{http://www.mingw.org/}. You can find detailed installation
2691 15a34c63 bellard
instructions in the download section and the FAQ.
2692 15a34c63 bellard
2693 5fafdf24 ths
@item Download
2694 15a34c63 bellard
the MinGW development library of SDL 1.2.x
2695 debc7065 bellard
(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2696 d0a96f3d Scott Tsai
@url{http://www.libsdl.org}. Unpack it in a temporary place and
2697 d0a96f3d Scott Tsai
edit the @file{sdl-config} script so that it gives the
2698 15a34c63 bellard
correct SDL directory when invoked.
2699 15a34c63 bellard
2700 d0a96f3d Scott Tsai
@item Install the MinGW version of zlib and make sure
2701 d0a96f3d Scott Tsai
@file{zlib.h} and @file{libz.dll.a} are in
2702 40c5c6cd Stefan Weil
MinGW's default header and linker search paths.
2703 d0a96f3d Scott Tsai
2704 15a34c63 bellard
@item Extract the current version of QEMU.
2705 5fafdf24 ths
2706 15a34c63 bellard
@item Start the MSYS shell (file @file{msys.bat}).
2707 15a34c63 bellard
2708 5fafdf24 ths
@item Change to the QEMU directory. Launch @file{./configure} and
2709 15a34c63 bellard
@file{make}.  If you have problems using SDL, verify that
2710 15a34c63 bellard
@file{sdl-config} can be launched from the MSYS command line.
2711 15a34c63 bellard
2712 5fafdf24 ths
@item You can install QEMU in @file{Program Files/Qemu} by typing
2713 15a34c63 bellard
@file{make install}. Don't forget to copy @file{SDL.dll} in
2714 15a34c63 bellard
@file{Program Files/Qemu}.
2715 15a34c63 bellard
2716 15a34c63 bellard
@end itemize
2717 15a34c63 bellard
2718 debc7065 bellard
@node Cross compilation for Windows with Linux
2719 15a34c63 bellard
@section Cross compilation for Windows with Linux
2720 15a34c63 bellard
2721 15a34c63 bellard
@itemize
2722 15a34c63 bellard
@item
2723 15a34c63 bellard
Install the MinGW cross compilation tools available at
2724 15a34c63 bellard
@url{http://www.mingw.org/}.
2725 15a34c63 bellard
2726 d0a96f3d Scott Tsai
@item Download
2727 d0a96f3d Scott Tsai
the MinGW development library of SDL 1.2.x
2728 d0a96f3d Scott Tsai
(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2729 d0a96f3d Scott Tsai
@url{http://www.libsdl.org}. Unpack it in a temporary place and
2730 d0a96f3d Scott Tsai
edit the @file{sdl-config} script so that it gives the
2731 d0a96f3d Scott Tsai
correct SDL directory when invoked.  Set up the @code{PATH} environment
2732 d0a96f3d Scott Tsai
variable so that @file{sdl-config} can be launched by
2733 15a34c63 bellard
the QEMU configuration script.
2734 15a34c63 bellard
2735 d0a96f3d Scott Tsai
@item Install the MinGW version of zlib and make sure
2736 d0a96f3d Scott Tsai
@file{zlib.h} and @file{libz.dll.a} are in
2737 40c5c6cd Stefan Weil
MinGW's default header and linker search paths.
2738 d0a96f3d Scott Tsai
2739 5fafdf24 ths
@item
2740 15a34c63 bellard
Configure QEMU for Windows cross compilation:
2741 15a34c63 bellard
@example
2742 d0a96f3d Scott Tsai
PATH=/usr/i686-pc-mingw32/sys-root/mingw/bin:$PATH ./configure --cross-prefix='i686-pc-mingw32-'
2743 d0a96f3d Scott Tsai
@end example
2744 d0a96f3d Scott Tsai
The example assumes @file{sdl-config} is installed under @file{/usr/i686-pc-mingw32/sys-root/mingw/bin} and
2745 d0a96f3d Scott Tsai
MinGW cross compilation tools have names like @file{i686-pc-mingw32-gcc} and @file{i686-pc-mingw32-strip}.
2746 40c5c6cd Stefan Weil
We set the @code{PATH} environment variable to ensure the MinGW version of @file{sdl-config} is used and
2747 d0a96f3d Scott Tsai
use --cross-prefix to specify the name of the cross compiler.
2748 d0a96f3d Scott Tsai
You can also use --prefix to set the Win32 install path which defaults to @file{c:/Program Files/Qemu}.
2749 d0a96f3d Scott Tsai
2750 d0a96f3d Scott Tsai
Under Fedora Linux, you can run:
2751 d0a96f3d Scott Tsai
@example
2752 d0a96f3d Scott Tsai
yum -y install mingw32-gcc mingw32-SDL mingw32-zlib
2753 15a34c63 bellard
@end example
2754 d0a96f3d Scott Tsai
to get a suitable cross compilation environment.
2755 15a34c63 bellard
2756 5fafdf24 ths
@item You can install QEMU in the installation directory by typing
2757 d0a96f3d Scott Tsai
@code{make install}. Don't forget to copy @file{SDL.dll} and @file{zlib1.dll} into the
2758 5fafdf24 ths
installation directory.
2759 15a34c63 bellard
2760 15a34c63 bellard
@end itemize
2761 15a34c63 bellard
2762 d0a96f3d Scott Tsai
Wine can be used to launch the resulting qemu.exe compiled for Win32.
2763 15a34c63 bellard
2764 debc7065 bellard
@node Mac OS X
2765 15a34c63 bellard
@section Mac OS X
2766 15a34c63 bellard
2767 15a34c63 bellard
The Mac OS X patches are not fully merged in QEMU, so you should look
2768 15a34c63 bellard
at the QEMU mailing list archive to have all the necessary
2769 15a34c63 bellard
information.
2770 15a34c63 bellard
2771 47eacb4f Stefan Weil
@node Make targets
2772 47eacb4f Stefan Weil
@section Make targets
2773 47eacb4f Stefan Weil
2774 47eacb4f Stefan Weil
@table @code
2775 47eacb4f Stefan Weil
2776 47eacb4f Stefan Weil
@item make
2777 47eacb4f Stefan Weil
@item make all
2778 47eacb4f Stefan Weil
Make everything which is typically needed.
2779 47eacb4f Stefan Weil
2780 47eacb4f Stefan Weil
@item install
2781 47eacb4f Stefan Weil
TODO
2782 47eacb4f Stefan Weil
2783 47eacb4f Stefan Weil
@item install-doc
2784 47eacb4f Stefan Weil
TODO
2785 47eacb4f Stefan Weil
2786 47eacb4f Stefan Weil
@item make clean
2787 47eacb4f Stefan Weil
Remove most files which were built during make.
2788 47eacb4f Stefan Weil
2789 47eacb4f Stefan Weil
@item make distclean
2790 47eacb4f Stefan Weil
Remove everything which was built during make.
2791 47eacb4f Stefan Weil
2792 47eacb4f Stefan Weil
@item make dvi
2793 47eacb4f Stefan Weil
@item make html
2794 47eacb4f Stefan Weil
@item make info
2795 47eacb4f Stefan Weil
@item make pdf
2796 47eacb4f Stefan Weil
Create documentation in dvi, html, info or pdf format.
2797 47eacb4f Stefan Weil
2798 47eacb4f Stefan Weil
@item make cscope
2799 47eacb4f Stefan Weil
TODO
2800 47eacb4f Stefan Weil
2801 47eacb4f Stefan Weil
@item make defconfig
2802 47eacb4f Stefan Weil
(Re-)create some build configuration files.
2803 47eacb4f Stefan Weil
User made changes will be overwritten.
2804 47eacb4f Stefan Weil
2805 47eacb4f Stefan Weil
@item tar
2806 47eacb4f Stefan Weil
@item tarbin
2807 47eacb4f Stefan Weil
TODO
2808 47eacb4f Stefan Weil
2809 47eacb4f Stefan Weil
@end table
2810 47eacb4f Stefan Weil
2811 7544a042 Stefan Weil
@node License
2812 7544a042 Stefan Weil
@appendix License
2813 7544a042 Stefan Weil
2814 7544a042 Stefan Weil
QEMU is a trademark of Fabrice Bellard.
2815 7544a042 Stefan Weil
2816 7544a042 Stefan Weil
QEMU is released under the GNU General Public License (TODO: add link).
2817 7544a042 Stefan Weil
Parts of QEMU have specific licenses, see file LICENSE.
2818 7544a042 Stefan Weil
2819 7544a042 Stefan Weil
TODO (refer to file LICENSE, include it, include the GPL?)
2820 7544a042 Stefan Weil
2821 debc7065 bellard
@node Index
2822 7544a042 Stefan Weil
@appendix Index
2823 7544a042 Stefan Weil
@menu
2824 7544a042 Stefan Weil
* Concept Index::
2825 7544a042 Stefan Weil
* Function Index::
2826 7544a042 Stefan Weil
* Keystroke Index::
2827 7544a042 Stefan Weil
* Program Index::
2828 7544a042 Stefan Weil
* Data Type Index::
2829 7544a042 Stefan Weil
* Variable Index::
2830 7544a042 Stefan Weil
@end menu
2831 7544a042 Stefan Weil
2832 7544a042 Stefan Weil
@node Concept Index
2833 7544a042 Stefan Weil
@section Concept Index
2834 7544a042 Stefan Weil
This is the main index. Should we combine all keywords in one index? TODO
2835 debc7065 bellard
@printindex cp
2836 debc7065 bellard
2837 7544a042 Stefan Weil
@node Function Index
2838 7544a042 Stefan Weil
@section Function Index
2839 7544a042 Stefan Weil
This index could be used for command line options and monitor functions.
2840 7544a042 Stefan Weil
@printindex fn
2841 7544a042 Stefan Weil
2842 7544a042 Stefan Weil
@node Keystroke Index
2843 7544a042 Stefan Weil
@section Keystroke Index
2844 7544a042 Stefan Weil
2845 7544a042 Stefan Weil
This is a list of all keystrokes which have a special function
2846 7544a042 Stefan Weil
in system emulation.
2847 7544a042 Stefan Weil
2848 7544a042 Stefan Weil
@printindex ky
2849 7544a042 Stefan Weil
2850 7544a042 Stefan Weil
@node Program Index
2851 7544a042 Stefan Weil
@section Program Index
2852 7544a042 Stefan Weil
@printindex pg
2853 7544a042 Stefan Weil
2854 7544a042 Stefan Weil
@node Data Type Index
2855 7544a042 Stefan Weil
@section Data Type Index
2856 7544a042 Stefan Weil
2857 7544a042 Stefan Weil
This index could be used for qdev device names and options.
2858 7544a042 Stefan Weil
2859 7544a042 Stefan Weil
@printindex tp
2860 7544a042 Stefan Weil
2861 7544a042 Stefan Weil
@node Variable Index
2862 7544a042 Stefan Weil
@section Variable Index
2863 7544a042 Stefan Weil
@printindex vr
2864 7544a042 Stefan Weil
2865 debc7065 bellard
@bye