Statistics
| Branch: | Revision:

root / vl.c @ 61a2ad53

History | View | Annotate | Download (93.2 kB)

1
/*
2
 * QEMU PC System Emulator
3
 * 
4
 * Copyright (c) 2003 Fabrice Bellard
5
 * 
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include <stdlib.h>
25
#include <stdio.h>
26
#include <stdarg.h>
27
#include <string.h>
28
#include <getopt.h>
29
#include <inttypes.h>
30
#include <unistd.h>
31
#include <sys/mman.h>
32
#include <fcntl.h>
33
#include <signal.h>
34
#include <time.h>
35
#include <sys/time.h>
36
#include <malloc.h>
37
#include <termios.h>
38
#include <sys/poll.h>
39
#include <errno.h>
40
#include <sys/wait.h>
41

    
42
#include <sys/ioctl.h>
43
#include <sys/socket.h>
44
#include <linux/if.h>
45
#include <linux/if_tun.h>
46

    
47
#include "cpu-i386.h"
48
#include "disas.h"
49
#include "thunk.h"
50

    
51
#include "vl.h"
52

    
53
#define DEBUG_LOGFILE "/tmp/vl.log"
54
#define DEFAULT_NETWORK_SCRIPT "/etc/vl-ifup"
55
#define BIOS_FILENAME "bios.bin"
56
#define VGABIOS_FILENAME "vgabios.bin"
57

    
58
//#define DEBUG_UNUSED_IOPORT
59

    
60
//#define DEBUG_IRQ_LATENCY
61

    
62
/* output Bochs bios info messages */
63
//#define DEBUG_BIOS
64

    
65
/* debug IDE devices */
66
//#define DEBUG_IDE
67

    
68
/* debug PIC */
69
//#define DEBUG_PIC
70

    
71
/* debug NE2000 card */
72
//#define DEBUG_NE2000
73

    
74
/* debug PC keyboard */
75
//#define DEBUG_KBD
76

    
77
#define PHYS_RAM_BASE     0xac000000
78
#define PHYS_RAM_MAX_SIZE (256 * 1024 * 1024)
79

    
80
#define KERNEL_LOAD_ADDR   0x00100000
81
#define INITRD_LOAD_ADDR   0x00400000
82
#define KERNEL_PARAMS_ADDR 0x00090000
83

    
84
#define MAX_DISKS 2
85

    
86
/* from plex86 (BSD license) */
87
struct  __attribute__ ((packed)) linux_params {
88
  // For 0x00..0x3f, see 'struct screen_info' in linux/include/linux/tty.h.
89
  // I just padded out the VESA parts, rather than define them.
90

    
91
  /* 0x000 */ uint8_t   orig_x;
92
  /* 0x001 */ uint8_t   orig_y;
93
  /* 0x002 */ uint16_t  ext_mem_k;
94
  /* 0x004 */ uint16_t  orig_video_page;
95
  /* 0x006 */ uint8_t   orig_video_mode;
96
  /* 0x007 */ uint8_t   orig_video_cols;
97
  /* 0x008 */ uint16_t  unused1;
98
  /* 0x00a */ uint16_t  orig_video_ega_bx;
99
  /* 0x00c */ uint16_t  unused2;
100
  /* 0x00e */ uint8_t   orig_video_lines;
101
  /* 0x00f */ uint8_t   orig_video_isVGA;
102
  /* 0x010 */ uint16_t  orig_video_points;
103
  /* 0x012 */ uint8_t   pad0[0x20 - 0x12]; // VESA info.
104
  /* 0x020 */ uint16_t  cl_magic;  // Commandline magic number (0xA33F)
105
  /* 0x022 */ uint16_t  cl_offset; // Commandline offset.  Address of commandline
106
                                 // is calculated as 0x90000 + cl_offset, bu
107
                                 // only if cl_magic == 0xA33F.
108
  /* 0x024 */ uint8_t   pad1[0x40 - 0x24]; // VESA info.
109

    
110
  /* 0x040 */ uint8_t   apm_bios_info[20]; // struct apm_bios_info
111
  /* 0x054 */ uint8_t   pad2[0x80 - 0x54];
112

    
113
  // Following 2 from 'struct drive_info_struct' in drivers/block/cciss.h.
114
  // Might be truncated?
115
  /* 0x080 */ uint8_t   hd0_info[16]; // hd0-disk-parameter from intvector 0x41
116
  /* 0x090 */ uint8_t   hd1_info[16]; // hd1-disk-parameter from intvector 0x46
117

    
118
  // System description table truncated to 16 bytes
119
  // From 'struct sys_desc_table_struct' in linux/arch/i386/kernel/setup.c.
120
  /* 0x0a0 */ uint16_t  sys_description_len;
121
  /* 0x0a2 */ uint8_t   sys_description_table[14];
122
                        // [0] machine id
123
                        // [1] machine submodel id
124
                        // [2] BIOS revision
125
                        // [3] bit1: MCA bus
126

    
127
  /* 0x0b0 */ uint8_t   pad3[0x1e0 - 0xb0];
128
  /* 0x1e0 */ uint32_t  alt_mem_k;
129
  /* 0x1e4 */ uint8_t   pad4[4];
130
  /* 0x1e8 */ uint8_t   e820map_entries;
131
  /* 0x1e9 */ uint8_t   eddbuf_entries; // EDD_NR
132
  /* 0x1ea */ uint8_t   pad5[0x1f1 - 0x1ea];
133
  /* 0x1f1 */ uint8_t   setup_sects; // size of setup.S, number of sectors
134
  /* 0x1f2 */ uint16_t  mount_root_rdonly; // MOUNT_ROOT_RDONLY (if !=0)
135
  /* 0x1f4 */ uint16_t  sys_size; // size of compressed kernel-part in the
136
                                // (b)zImage-file (in 16 byte units, rounded up)
137
  /* 0x1f6 */ uint16_t  swap_dev; // (unused AFAIK)
138
  /* 0x1f8 */ uint16_t  ramdisk_flags;
139
  /* 0x1fa */ uint16_t  vga_mode; // (old one)
140
  /* 0x1fc */ uint16_t  orig_root_dev; // (high=Major, low=minor)
141
  /* 0x1fe */ uint8_t   pad6[1];
142
  /* 0x1ff */ uint8_t   aux_device_info;
143
  /* 0x200 */ uint16_t  jump_setup; // Jump to start of setup code,
144
                                  // aka "reserved" field.
145
  /* 0x202 */ uint8_t   setup_signature[4]; // Signature for SETUP-header, ="HdrS"
146
  /* 0x206 */ uint16_t  header_format_version; // Version number of header format;
147
  /* 0x208 */ uint8_t   setup_S_temp0[8]; // Used by setup.S for communication with
148
                                        // boot loaders, look there.
149
  /* 0x210 */ uint8_t   loader_type;
150
                        // 0 for old one.
151
                        // else 0xTV:
152
                        //   T=0: LILO
153
                        //   T=1: Loadlin
154
                        //   T=2: bootsect-loader
155
                        //   T=3: SYSLINUX
156
                        //   T=4: ETHERBOOT
157
                        //   V=version
158
  /* 0x211 */ uint8_t   loadflags;
159
                        // bit0 = 1: kernel is loaded high (bzImage)
160
                        // bit7 = 1: Heap and pointer (see below) set by boot
161
                        //   loader.
162
  /* 0x212 */ uint16_t  setup_S_temp1;
163
  /* 0x214 */ uint32_t  kernel_start;
164
  /* 0x218 */ uint32_t  initrd_start;
165
  /* 0x21c */ uint32_t  initrd_size;
166
  /* 0x220 */ uint8_t   setup_S_temp2[4];
167
  /* 0x224 */ uint16_t  setup_S_heap_end_pointer;
168
  /* 0x226 */ uint8_t   pad7[0x2d0 - 0x226];
169

    
170
  /* 0x2d0 : Int 15, ax=e820 memory map. */
171
  // (linux/include/asm-i386/e820.h, 'struct e820entry')
172
#define E820MAX  32
173
#define E820_RAM  1
174
#define E820_RESERVED 2
175
#define E820_ACPI 3 /* usable as RAM once ACPI tables have been read */
176
#define E820_NVS  4
177
  struct {
178
    uint64_t addr;
179
    uint64_t size;
180
    uint32_t type;
181
    } e820map[E820MAX];
182

    
183
  /* 0x550 */ uint8_t   pad8[0x600 - 0x550];
184

    
185
  // BIOS Enhanced Disk Drive Services.
186
  // (From linux/include/asm-i386/edd.h, 'struct edd_info')
187
  // Each 'struct edd_info is 78 bytes, times a max of 6 structs in array.
188
  /* 0x600 */ uint8_t   eddbuf[0x7d4 - 0x600];
189

    
190
  /* 0x7d4 */ uint8_t   pad9[0x800 - 0x7d4];
191
  /* 0x800 */ uint8_t   commandline[0x800];
192

    
193
  /* 0x1000 */
194
  uint64_t gdt_table[256];
195
  uint64_t idt_table[48];
196
};
197

    
198
#define KERNEL_CS     0x10
199
#define KERNEL_DS     0x18
200

    
201
typedef void (IOPortWriteFunc)(CPUX86State *env, uint32_t address, uint32_t data);
202
typedef uint32_t (IOPortReadFunc)(CPUX86State *env, uint32_t address);
203

    
204
#define MAX_IOPORTS 4096
205

    
206
static const char *interp_prefix = CONFIG_QEMU_PREFIX;
207
char phys_ram_file[1024];
208
CPUX86State *global_env;
209
CPUX86State *cpu_single_env;
210
FILE *logfile = NULL;
211
int loglevel;
212
IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
213
IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
214
BlockDriverState *bs_table[MAX_DISKS];
215

    
216
/***********************************************************/
217
/* x86 io ports */
218

    
219
uint32_t default_ioport_readb(CPUX86State *env, uint32_t address)
220
{
221
#ifdef DEBUG_UNUSED_IOPORT
222
    fprintf(stderr, "inb: port=0x%04x\n", address);
223
#endif
224
    return 0xff;
225
}
226

    
227
void default_ioport_writeb(CPUX86State *env, uint32_t address, uint32_t data)
228
{
229
#ifdef DEBUG_UNUSED_IOPORT
230
    fprintf(stderr, "outb: port=0x%04x data=0x%02x\n", address, data);
231
#endif
232
}
233

    
234
/* default is to make two byte accesses */
235
uint32_t default_ioport_readw(CPUX86State *env, uint32_t address)
236
{
237
    uint32_t data;
238
    data = ioport_read_table[0][address & (MAX_IOPORTS - 1)](env, address);
239
    data |= ioport_read_table[0][(address + 1) & (MAX_IOPORTS - 1)](env, address + 1) << 8;
240
    return data;
241
}
242

    
243
void default_ioport_writew(CPUX86State *env, uint32_t address, uint32_t data)
244
{
245
    ioport_write_table[0][address & (MAX_IOPORTS - 1)](env, address, data & 0xff);
246
    ioport_write_table[0][(address + 1) & (MAX_IOPORTS - 1)](env, address + 1, (data >> 8) & 0xff);
247
}
248

    
249
uint32_t default_ioport_readl(CPUX86State *env, uint32_t address)
250
{
251
#ifdef DEBUG_UNUSED_IOPORT
252
    fprintf(stderr, "inl: port=0x%04x\n", address);
253
#endif
254
    return 0xffffffff;
255
}
256

    
257
void default_ioport_writel(CPUX86State *env, uint32_t address, uint32_t data)
258
{
259
#ifdef DEBUG_UNUSED_IOPORT
260
    fprintf(stderr, "outl: port=0x%04x data=0x%02x\n", address, data);
261
#endif
262
}
263

    
264
void init_ioports(void)
265
{
266
    int i;
267

    
268
    for(i = 0; i < MAX_IOPORTS; i++) {
269
        ioport_read_table[0][i] = default_ioport_readb;
270
        ioport_write_table[0][i] = default_ioport_writeb;
271
        ioport_read_table[1][i] = default_ioport_readw;
272
        ioport_write_table[1][i] = default_ioport_writew;
273
        ioport_read_table[2][i] = default_ioport_readl;
274
        ioport_write_table[2][i] = default_ioport_writel;
275
    }
276
}
277

    
278
/* size is the word size in byte */
279
int register_ioport_read(int start, int length, IOPortReadFunc *func, int size)
280
{
281
    int i, bsize;
282

    
283
    if (size == 1)
284
        bsize = 0;
285
    else if (size == 2)
286
        bsize = 1;
287
    else if (size == 4)
288
        bsize = 2;
289
    else
290
        return -1;
291
    for(i = start; i < start + length; i += size)
292
        ioport_read_table[bsize][i] = func;
293
    return 0;
294
}
295

    
296
/* size is the word size in byte */
297
int register_ioport_write(int start, int length, IOPortWriteFunc *func, int size)
298
{
299
    int i, bsize;
300

    
301
    if (size == 1)
302
        bsize = 0;
303
    else if (size == 2)
304
        bsize = 1;
305
    else if (size == 4)
306
        bsize = 2;
307
    else
308
        return -1;
309
    for(i = start; i < start + length; i += size)
310
        ioport_write_table[bsize][i] = func;
311
    return 0;
312
}
313

    
314
void pstrcpy(char *buf, int buf_size, const char *str)
315
{
316
    int c;
317
    char *q = buf;
318

    
319
    if (buf_size <= 0)
320
        return;
321

    
322
    for(;;) {
323
        c = *str++;
324
        if (c == 0 || q >= buf + buf_size - 1)
325
            break;
326
        *q++ = c;
327
    }
328
    *q = '\0';
329
}
330

    
331
/* strcat and truncate. */
332
char *pstrcat(char *buf, int buf_size, const char *s)
333
{
334
    int len;
335
    len = strlen(buf);
336
    if (len < buf_size) 
337
        pstrcpy(buf + len, buf_size - len, s);
338
    return buf;
339
}
340

    
341
int load_kernel(const char *filename, uint8_t *addr)
342
{
343
    int fd, size, setup_sects;
344
    uint8_t bootsect[512];
345

    
346
    fd = open(filename, O_RDONLY);
347
    if (fd < 0)
348
        return -1;
349
    if (read(fd, bootsect, 512) != 512)
350
        goto fail;
351
    setup_sects = bootsect[0x1F1];
352
    if (!setup_sects)
353
        setup_sects = 4;
354
    /* skip 16 bit setup code */
355
    lseek(fd, (setup_sects + 1) * 512, SEEK_SET);
356
    size = read(fd, addr, 16 * 1024 * 1024);
357
    if (size < 0)
358
        goto fail;
359
    close(fd);
360
    return size;
361
 fail:
362
    close(fd);
363
    return -1;
364
}
365

    
366
/* return the size or -1 if error */
367
int load_image(const char *filename, uint8_t *addr)
368
{
369
    int fd, size;
370
    fd = open(filename, O_RDONLY);
371
    if (fd < 0)
372
        return -1;
373
    size = lseek(fd, 0, SEEK_END);
374
    lseek(fd, 0, SEEK_SET);
375
    if (read(fd, addr, size) != size) {
376
        close(fd);
377
        return -1;
378
    }
379
    close(fd);
380
    return size;
381
}
382

    
383
void cpu_x86_outb(CPUX86State *env, int addr, int val)
384
{
385
    ioport_write_table[0][addr & (MAX_IOPORTS - 1)](env, addr, val);
386
}
387

    
388
void cpu_x86_outw(CPUX86State *env, int addr, int val)
389
{
390
    ioport_write_table[1][addr & (MAX_IOPORTS - 1)](env, addr, val);
391
}
392

    
393
void cpu_x86_outl(CPUX86State *env, int addr, int val)
394
{
395
    ioport_write_table[2][addr & (MAX_IOPORTS - 1)](env, addr, val);
396
}
397

    
398
int cpu_x86_inb(CPUX86State *env, int addr)
399
{
400
    return ioport_read_table[0][addr & (MAX_IOPORTS - 1)](env, addr);
401
}
402

    
403
int cpu_x86_inw(CPUX86State *env, int addr)
404
{
405
    return ioport_read_table[1][addr & (MAX_IOPORTS - 1)](env, addr);
406
}
407

    
408
int cpu_x86_inl(CPUX86State *env, int addr)
409
{
410
    return ioport_read_table[2][addr & (MAX_IOPORTS - 1)](env, addr);
411
}
412

    
413
/***********************************************************/
414
void ioport80_write(CPUX86State *env, uint32_t addr, uint32_t data)
415
{
416
}
417

    
418
void hw_error(const char *fmt, ...)
419
{
420
    va_list ap;
421

    
422
    va_start(ap, fmt);
423
    fprintf(stderr, "qemu: hardware error: ");
424
    vfprintf(stderr, fmt, ap);
425
    fprintf(stderr, "\n");
426
#ifdef TARGET_I386
427
    cpu_x86_dump_state(global_env, stderr, X86_DUMP_FPU | X86_DUMP_CCOP);
428
#endif
429
    va_end(ap);
430
    abort();
431
}
432

    
433
/***********************************************************/
434
/* vga emulation */
435
static uint8_t vga_index;
436
static uint8_t vga_regs[256];
437
static int last_cursor_pos;
438

    
439
void update_console_messages(void)
440
{
441
    int c, i, cursor_pos, eol;
442

    
443
    cursor_pos = vga_regs[0x0f] | (vga_regs[0x0e] << 8);
444
    eol = 0;
445
    for(i = last_cursor_pos; i < cursor_pos; i++) {
446
        c = phys_ram_base[0xb8000 + (i) * 2];
447
        if (c >= ' ') {
448
            putchar(c);
449
            eol = 0;
450
        } else {
451
            if (!eol)
452
                putchar('\n');
453
            eol = 1;
454
        }
455
    }
456
    fflush(stdout);
457
    last_cursor_pos = cursor_pos;
458
}
459

    
460
/* just to see first Linux console messages, we intercept cursor position */
461
void vga_ioport_write(CPUX86State *env, uint32_t addr, uint32_t data)
462
{
463
    switch(addr) {
464
    case 0x3d4:
465
        vga_index = data;
466
        break;
467
    case 0x3d5:
468
        vga_regs[vga_index] = data;
469
        if (vga_index == 0x0f)
470
            update_console_messages();
471
        break;
472
    }
473
            
474
}
475

    
476
/***********************************************************/
477
/* cmos emulation */
478

    
479
#define RTC_SECONDS             0
480
#define RTC_SECONDS_ALARM       1
481
#define RTC_MINUTES             2
482
#define RTC_MINUTES_ALARM       3
483
#define RTC_HOURS               4
484
#define RTC_HOURS_ALARM         5
485
#define RTC_ALARM_DONT_CARE    0xC0
486

    
487
#define RTC_DAY_OF_WEEK         6
488
#define RTC_DAY_OF_MONTH        7
489
#define RTC_MONTH               8
490
#define RTC_YEAR                9
491

    
492
#define RTC_REG_A               10
493
#define RTC_REG_B               11
494
#define RTC_REG_C               12
495
#define RTC_REG_D               13
496

    
497
/* PC cmos mappings */
498
#define REG_EQUIPMENT_BYTE          0x14
499

    
500
uint8_t cmos_data[128];
501
uint8_t cmos_index;
502

    
503
void cmos_ioport_write(CPUX86State *env, uint32_t addr, uint32_t data)
504
{
505
    if (addr == 0x70) {
506
        cmos_index = data & 0x7f;
507
    }
508
}
509

    
510
uint32_t cmos_ioport_read(CPUX86State *env, uint32_t addr)
511
{
512
    int ret;
513

    
514
    if (addr == 0x70) {
515
        return 0xff;
516
    } else {
517
        /* toggle update-in-progress bit for Linux (same hack as
518
           plex86) */
519
        ret = cmos_data[cmos_index];
520
        if (cmos_index == RTC_REG_A)
521
            cmos_data[RTC_REG_A] ^= 0x80; 
522
        else if (cmos_index == RTC_REG_C)
523
            cmos_data[RTC_REG_C] = 0x00; 
524
        return ret;
525
    }
526
}
527

    
528

    
529
static inline int to_bcd(int a)
530
{
531
    return ((a / 10) << 4) | (a % 10);
532
}
533

    
534
void cmos_init(void)
535
{
536
    struct tm *tm;
537
    time_t ti;
538
    int val;
539

    
540
    ti = time(NULL);
541
    tm = gmtime(&ti);
542
    cmos_data[RTC_SECONDS] = to_bcd(tm->tm_sec);
543
    cmos_data[RTC_MINUTES] = to_bcd(tm->tm_min);
544
    cmos_data[RTC_HOURS] = to_bcd(tm->tm_hour);
545
    cmos_data[RTC_DAY_OF_WEEK] = to_bcd(tm->tm_wday);
546
    cmos_data[RTC_DAY_OF_MONTH] = to_bcd(tm->tm_mday);
547
    cmos_data[RTC_MONTH] = to_bcd(tm->tm_mon + 1);
548
    cmos_data[RTC_YEAR] = to_bcd(tm->tm_year % 100);
549

    
550
    cmos_data[RTC_REG_A] = 0x26;
551
    cmos_data[RTC_REG_B] = 0x02;
552
    cmos_data[RTC_REG_C] = 0x00;
553
    cmos_data[RTC_REG_D] = 0x80;
554

    
555
    /* various important CMOS locations needed by PC/Bochs bios */
556

    
557
    cmos_data[REG_EQUIPMENT_BYTE] = 0x02; /* FPU is there */
558

    
559
    /* memory size */
560
    val = (phys_ram_size / 1024) - 1024;
561
    if (val > 65535)
562
        val = 65535;
563
    cmos_data[0x17] = val;
564
    cmos_data[0x18] = val >> 8;
565
    cmos_data[0x30] = val;
566
    cmos_data[0x31] = val >> 8;
567

    
568
    val = (phys_ram_size / 65536) - ((16 * 1024 * 1024) / 65536);
569
    if (val > 65535)
570
        val = 65535;
571
    cmos_data[0x34] = val;
572
    cmos_data[0x35] = val >> 8;
573
    
574
    cmos_data[0x3d] = 0x02; /* hard drive boot */
575
    
576
    register_ioport_write(0x70, 2, cmos_ioport_write, 1);
577
    register_ioport_read(0x70, 2, cmos_ioport_read, 1);
578
}
579

    
580
/***********************************************************/
581
/* 8259 pic emulation */
582

    
583
typedef struct PicState {
584
    uint8_t last_irr; /* edge detection */
585
    uint8_t irr; /* interrupt request register */
586
    uint8_t imr; /* interrupt mask register */
587
    uint8_t isr; /* interrupt service register */
588
    uint8_t priority_add; /* used to compute irq priority */
589
    uint8_t irq_base;
590
    uint8_t read_reg_select;
591
    uint8_t special_mask;
592
    uint8_t init_state;
593
    uint8_t auto_eoi;
594
    uint8_t rotate_on_autoeoi;
595
    uint8_t init4; /* true if 4 byte init */
596
} PicState;
597

    
598
/* 0 is master pic, 1 is slave pic */
599
PicState pics[2];
600
int pic_irq_requested;
601

    
602
/* set irq level. If an edge is detected, then the IRR is set to 1 */
603
static inline void pic_set_irq1(PicState *s, int irq, int level)
604
{
605
    int mask;
606
    mask = 1 << irq;
607
    if (level) {
608
        if ((s->last_irr & mask) == 0)
609
            s->irr |= mask;
610
        s->last_irr |= mask;
611
    } else {
612
        s->last_irr &= ~mask;
613
    }
614
}
615

    
616
static inline int get_priority(PicState *s, int mask)
617
{
618
    int priority;
619
    if (mask == 0)
620
        return -1;
621
    priority = 7;
622
    while ((mask & (1 << ((priority + s->priority_add) & 7))) == 0)
623
        priority--;
624
    return priority;
625
}
626

    
627
/* return the pic wanted interrupt. return -1 if none */
628
static int pic_get_irq(PicState *s)
629
{
630
    int mask, cur_priority, priority;
631

    
632
    mask = s->irr & ~s->imr;
633
    priority = get_priority(s, mask);
634
    if (priority < 0)
635
        return -1;
636
    /* compute current priority */
637
    cur_priority = get_priority(s, s->isr);
638
    if (priority > cur_priority) {
639
        /* higher priority found: an irq should be generated */
640
        return priority;
641
    } else {
642
        return -1;
643
    }
644
}
645

    
646
/* raise irq to CPU if necessary. must be called every time the active
647
   irq may change */
648
static void pic_update_irq(void)
649
{
650
    int irq2, irq;
651

    
652
    /* first look at slave pic */
653
    irq2 = pic_get_irq(&pics[1]);
654
    if (irq2 >= 0) {
655
        /* if irq request by slave pic, signal master PIC */
656
        pic_set_irq1(&pics[0], 2, 1);
657
        pic_set_irq1(&pics[0], 2, 0);
658
    }
659
    /* look at requested irq */
660
    irq = pic_get_irq(&pics[0]);
661
    if (irq >= 0) {
662
        if (irq == 2) {
663
            /* from slave pic */
664
            pic_irq_requested = 8 + irq2;
665
        } else {
666
            /* from master pic */
667
            pic_irq_requested = irq;
668
        }
669
        cpu_x86_interrupt(global_env, CPU_INTERRUPT_HARD);
670
    }
671
}
672

    
673
#ifdef DEBUG_IRQ_LATENCY
674
int64_t irq_time[16];
675
int64_t cpu_get_ticks(void);
676
#endif
677
#ifdef DEBUG_PIC
678
int irq_level[16];
679
#endif
680

    
681
void pic_set_irq(int irq, int level)
682
{
683
#ifdef DEBUG_PIC
684
    if (level != irq_level[irq]) {
685
        printf("pic_set_irq: irq=%d level=%d\n", irq, level);
686
        irq_level[irq] = level;
687
    }
688
#endif
689
#ifdef DEBUG_IRQ_LATENCY
690
    if (level) {
691
        irq_time[irq] = cpu_get_ticks();
692
    }
693
#endif
694
    pic_set_irq1(&pics[irq >> 3], irq & 7, level);
695
    pic_update_irq();
696
}
697

    
698
int cpu_x86_get_pic_interrupt(CPUX86State *env)
699
{
700
    int irq, irq2, intno;
701

    
702
    /* signal the pic that the irq was acked by the CPU */
703
    irq = pic_irq_requested;
704
#ifdef DEBUG_IRQ_LATENCY
705
    printf("IRQ%d latency=%Ld\n", irq, cpu_get_ticks() - irq_time[irq]);
706
#endif
707
#ifdef DEBUG_PIC
708
    printf("pic_interrupt: irq=%d\n", irq);
709
#endif
710

    
711
    if (irq >= 8) {
712
        irq2 = irq & 7;
713
        pics[1].isr |= (1 << irq2);
714
        pics[1].irr &= ~(1 << irq2);
715
        irq = 2;
716
        intno = pics[1].irq_base + irq2;
717
    } else {
718
        intno = pics[0].irq_base + irq;
719
    }
720
    pics[0].isr |= (1 << irq);
721
    pics[0].irr &= ~(1 << irq);
722
    return intno;
723
}
724

    
725
void pic_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
726
{
727
    PicState *s;
728
    int priority;
729

    
730
#ifdef DEBUG_PIC
731
    printf("pic_write: addr=0x%02x val=0x%02x\n", addr, val);
732
#endif
733
    s = &pics[addr >> 7];
734
    addr &= 1;
735
    if (addr == 0) {
736
        if (val & 0x10) {
737
            /* init */
738
            memset(s, 0, sizeof(PicState));
739
            s->init_state = 1;
740
            s->init4 = val & 1;
741
            if (val & 0x02)
742
                hw_error("single mode not supported");
743
            if (val & 0x08)
744
                hw_error("level sensitive irq not supported");
745
        } else if (val & 0x08) {
746
            if (val & 0x02)
747
                s->read_reg_select = val & 1;
748
            if (val & 0x40)
749
                s->special_mask = (val >> 5) & 1;
750
        } else {
751
            switch(val) {
752
            case 0x00:
753
            case 0x80:
754
                s->rotate_on_autoeoi = val >> 7;
755
                break;
756
            case 0x20: /* end of interrupt */
757
            case 0xa0:
758
                priority = get_priority(s, s->isr);
759
                if (priority >= 0) {
760
                    s->isr &= ~(1 << ((priority + s->priority_add) & 7));
761
                }
762
                if (val == 0xa0)
763
                    s->priority_add = (s->priority_add + 1) & 7;
764
                break;
765
            case 0x60 ... 0x67:
766
                priority = val & 7;
767
                s->isr &= ~(1 << priority);
768
                break;
769
            case 0xc0 ... 0xc7:
770
                s->priority_add = (val + 1) & 7;
771
                break;
772
            case 0xe0 ... 0xe7:
773
                priority = val & 7;
774
                s->isr &= ~(1 << priority);
775
                s->priority_add = (priority + 1) & 7;
776
                break;
777
            }
778
        }
779
    } else {
780
        switch(s->init_state) {
781
        case 0:
782
            /* normal mode */
783
            s->imr = val;
784
            pic_update_irq();
785
            break;
786
        case 1:
787
            s->irq_base = val & 0xf8;
788
            s->init_state = 2;
789
            break;
790
        case 2:
791
            if (s->init4) {
792
                s->init_state = 3;
793
            } else {
794
                s->init_state = 0;
795
            }
796
            break;
797
        case 3:
798
            s->auto_eoi = (val >> 1) & 1;
799
            s->init_state = 0;
800
            break;
801
        }
802
    }
803
}
804

    
805
uint32_t pic_ioport_read(CPUX86State *env, uint32_t addr1)
806
{
807
    PicState *s;
808
    unsigned int addr;
809
    int ret;
810

    
811
    addr = addr1;
812
    s = &pics[addr >> 7];
813
    addr &= 1;
814
    if (addr == 0) {
815
        if (s->read_reg_select)
816
            ret = s->isr;
817
        else
818
            ret = s->irr;
819
    } else {
820
        ret = s->imr;
821
    }
822
#ifdef DEBUG_PIC
823
    printf("pic_read: addr=0x%02x val=0x%02x\n", addr1, ret);
824
#endif
825
    return ret;
826
}
827

    
828
void pic_init(void)
829
{
830
    register_ioport_write(0x20, 2, pic_ioport_write, 1);
831
    register_ioport_read(0x20, 2, pic_ioport_read, 1);
832
    register_ioport_write(0xa0, 2, pic_ioport_write, 1);
833
    register_ioport_read(0xa0, 2, pic_ioport_read, 1);
834
}
835

    
836
/***********************************************************/
837
/* 8253 PIT emulation */
838

    
839
#define PIT_FREQ 1193182
840

    
841
#define RW_STATE_LSB 0
842
#define RW_STATE_MSB 1
843
#define RW_STATE_WORD0 2
844
#define RW_STATE_WORD1 3
845
#define RW_STATE_LATCHED_WORD0 4
846
#define RW_STATE_LATCHED_WORD1 5
847

    
848
typedef struct PITChannelState {
849
    int count; /* can be 65536 */
850
    uint16_t latched_count;
851
    uint8_t rw_state;
852
    uint8_t mode;
853
    uint8_t bcd; /* not supported */
854
    uint8_t gate; /* timer start */
855
    int64_t count_load_time;
856
    int64_t count_last_edge_check_time;
857
} PITChannelState;
858

    
859
PITChannelState pit_channels[3];
860
int speaker_data_on;
861
int dummy_refresh_clock;
862
int pit_min_timer_count = 0;
863

    
864
int64_t ticks_per_sec;
865

    
866
int64_t get_clock(void)
867
{
868
    struct timeval tv;
869
    gettimeofday(&tv, NULL);
870
    return tv.tv_sec * 1000000LL + tv.tv_usec;
871
}
872

    
873
int64_t cpu_get_ticks(void)
874
{
875
    int64_t val;
876
    asm("rdtsc" : "=A" (val));
877
    return val;
878
}
879

    
880
void cpu_calibrate_ticks(void)
881
{
882
    int64_t usec, ticks;
883

    
884
    usec = get_clock();
885
    ticks = cpu_get_ticks();
886
    usleep(50 * 1000);
887
    usec = get_clock() - usec;
888
    ticks = cpu_get_ticks() - ticks;
889
    ticks_per_sec = (ticks * 1000000LL + (usec >> 1)) / usec;
890
}
891

    
892
/* compute with 96 bit intermediate result: (a*b)/c */
893
static uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
894
{
895
    union {
896
        uint64_t ll;
897
        struct {
898
#ifdef WORDS_BIGENDIAN
899
            uint32_t high, low;
900
#else
901
            uint32_t low, high;
902
#endif            
903
        } l;
904
    } u, res;
905
    uint64_t rl, rh;
906

    
907
    u.ll = a;
908
    rl = (uint64_t)u.l.low * (uint64_t)b;
909
    rh = (uint64_t)u.l.high * (uint64_t)b;
910
    rh += (rl >> 32);
911
    res.l.high = rh / c;
912
    res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
913
    return res.ll;
914
}
915

    
916
static int pit_get_count(PITChannelState *s)
917
{
918
    uint64_t d;
919
    int counter;
920

    
921
    d = muldiv64(cpu_get_ticks() - s->count_load_time, PIT_FREQ, ticks_per_sec);
922
    switch(s->mode) {
923
    case 0:
924
    case 1:
925
    case 4:
926
    case 5:
927
        counter = (s->count - d) & 0xffff;
928
        break;
929
    default:
930
        counter = s->count - (d % s->count);
931
        break;
932
    }
933
    return counter;
934
}
935

    
936
/* get pit output bit */
937
static int pit_get_out(PITChannelState *s)
938
{
939
    uint64_t d;
940
    int out;
941

    
942
    d = muldiv64(cpu_get_ticks() - s->count_load_time, PIT_FREQ, ticks_per_sec);
943
    switch(s->mode) {
944
    default:
945
    case 0:
946
        out = (d >= s->count);
947
        break;
948
    case 1:
949
        out = (d < s->count);
950
        break;
951
    case 2:
952
        if ((d % s->count) == 0 && d != 0)
953
            out = 1;
954
        else
955
            out = 0;
956
        break;
957
    case 3:
958
        out = (d % s->count) < (s->count >> 1);
959
        break;
960
    case 4:
961
    case 5:
962
        out = (d == s->count);
963
        break;
964
    }
965
    return out;
966
}
967

    
968
/* get the number of 0 to 1 transitions we had since we call this
969
   function */
970
/* XXX: maybe better to use ticks precision to avoid getting edges
971
   twice if checks are done at very small intervals */
972
static int pit_get_out_edges(PITChannelState *s)
973
{
974
    uint64_t d1, d2;
975
    int64_t ticks;
976
    int ret, v;
977

    
978
    ticks = cpu_get_ticks();
979
    d1 = muldiv64(s->count_last_edge_check_time - s->count_load_time, 
980
                 PIT_FREQ, ticks_per_sec);
981
    d2 = muldiv64(ticks - s->count_load_time, 
982
                  PIT_FREQ, ticks_per_sec);
983
    s->count_last_edge_check_time = ticks;
984
    switch(s->mode) {
985
    default:
986
    case 0:
987
        if (d1 < s->count && d2 >= s->count)
988
            ret = 1;
989
        else
990
            ret = 0;
991
        break;
992
    case 1:
993
        ret = 0;
994
        break;
995
    case 2:
996
        d1 /= s->count;
997
        d2 /= s->count;
998
        ret = d2 - d1;
999
        break;
1000
    case 3:
1001
        v = s->count - (s->count >> 1);
1002
        d1 = (d1 + v) / s->count;
1003
        d2 = (d2 + v) / s->count;
1004
        ret = d2 - d1;
1005
        break;
1006
    case 4:
1007
    case 5:
1008
        if (d1 < s->count && d2 >= s->count)
1009
            ret = 1;
1010
        else
1011
            ret = 0;
1012
        break;
1013
    }
1014
    return ret;
1015
}
1016

    
1017
static inline void pit_load_count(PITChannelState *s, int val)
1018
{
1019
    if (val == 0)
1020
        val = 0x10000;
1021
    s->count_load_time = cpu_get_ticks();
1022
    s->count_last_edge_check_time = s->count_load_time;
1023
    s->count = val;
1024
    if (s == &pit_channels[0] && val <= pit_min_timer_count) {
1025
        fprintf(stderr, 
1026
                "\nWARNING: vl: on your system, accurate timer emulation is impossible if its frequency is more than %d Hz. If using a 2.5.xx Linux kernel, you must patch asm/param.h to change HZ from 1000 to 100.\n\n", 
1027
                PIT_FREQ / pit_min_timer_count);
1028
    }
1029
}
1030

    
1031
void pit_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
1032
{
1033
    int channel, access;
1034
    PITChannelState *s;
1035

    
1036
    addr &= 3;
1037
    if (addr == 3) {
1038
        channel = val >> 6;
1039
        if (channel == 3)
1040
            return;
1041
        s = &pit_channels[channel];
1042
        access = (val >> 4) & 3;
1043
        switch(access) {
1044
        case 0:
1045
            s->latched_count = pit_get_count(s);
1046
            s->rw_state = RW_STATE_LATCHED_WORD0;
1047
            break;
1048
        default:
1049
            s->mode = (val >> 1) & 7;
1050
            s->bcd = val & 1;
1051
            s->rw_state = access - 1 +  RW_STATE_LSB;
1052
            break;
1053
        }
1054
    } else {
1055
        s = &pit_channels[addr];
1056
        switch(s->rw_state) {
1057
        case RW_STATE_LSB:
1058
            pit_load_count(s, val);
1059
            break;
1060
        case RW_STATE_MSB:
1061
            pit_load_count(s, val << 8);
1062
            break;
1063
        case RW_STATE_WORD0:
1064
        case RW_STATE_WORD1:
1065
            if (s->rw_state & 1) {
1066
                pit_load_count(s, (s->latched_count & 0xff) | (val << 8));
1067
            } else {
1068
                s->latched_count = val;
1069
            }
1070
            s->rw_state ^= 1;
1071
            break;
1072
        }
1073
    }
1074
}
1075

    
1076
uint32_t pit_ioport_read(CPUX86State *env, uint32_t addr)
1077
{
1078
    int ret, count;
1079
    PITChannelState *s;
1080
    
1081
    addr &= 3;
1082
    s = &pit_channels[addr];
1083
    switch(s->rw_state) {
1084
    case RW_STATE_LSB:
1085
    case RW_STATE_MSB:
1086
    case RW_STATE_WORD0:
1087
    case RW_STATE_WORD1:
1088
        count = pit_get_count(s);
1089
        if (s->rw_state & 1)
1090
            ret = (count >> 8) & 0xff;
1091
        else
1092
            ret = count & 0xff;
1093
        if (s->rw_state & 2)
1094
            s->rw_state ^= 1;
1095
        break;
1096
    default:
1097
    case RW_STATE_LATCHED_WORD0:
1098
    case RW_STATE_LATCHED_WORD1:
1099
        if (s->rw_state & 1)
1100
            ret = s->latched_count >> 8;
1101
        else
1102
            ret = s->latched_count & 0xff;
1103
        s->rw_state ^= 1;
1104
        break;
1105
    }
1106
    return ret;
1107
}
1108

    
1109
void speaker_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
1110
{
1111
    speaker_data_on = (val >> 1) & 1;
1112
    pit_channels[2].gate = val & 1;
1113
}
1114

    
1115
uint32_t speaker_ioport_read(CPUX86State *env, uint32_t addr)
1116
{
1117
    int out;
1118
    out = pit_get_out(&pit_channels[2]);
1119
    dummy_refresh_clock ^= 1;
1120
    return (speaker_data_on << 1) | pit_channels[2].gate | (out << 5) |
1121
      (dummy_refresh_clock << 4);
1122
}
1123

    
1124
void pit_init(void)
1125
{
1126
    PITChannelState *s;
1127
    int i;
1128

    
1129
    cpu_calibrate_ticks();
1130

    
1131
    for(i = 0;i < 3; i++) {
1132
        s = &pit_channels[i];
1133
        s->mode = 3;
1134
        s->gate = (i != 2);
1135
        pit_load_count(s, 0);
1136
    }
1137

    
1138
    register_ioport_write(0x40, 4, pit_ioport_write, 1);
1139
    register_ioport_read(0x40, 3, pit_ioport_read, 1);
1140

    
1141
    register_ioport_read(0x61, 1, speaker_ioport_read, 1);
1142
    register_ioport_write(0x61, 1, speaker_ioport_write, 1);
1143
}
1144

    
1145
/***********************************************************/
1146
/* serial port emulation */
1147

    
1148
#define UART_IRQ        4
1149

    
1150
#define UART_LCR_DLAB        0x80        /* Divisor latch access bit */
1151

    
1152
#define UART_IER_MSI        0x08        /* Enable Modem status interrupt */
1153
#define UART_IER_RLSI        0x04        /* Enable receiver line status interrupt */
1154
#define UART_IER_THRI        0x02        /* Enable Transmitter holding register int. */
1155
#define UART_IER_RDI        0x01        /* Enable receiver data interrupt */
1156

    
1157
#define UART_IIR_NO_INT        0x01        /* No interrupts pending */
1158
#define UART_IIR_ID        0x06        /* Mask for the interrupt ID */
1159

    
1160
#define UART_IIR_MSI        0x00        /* Modem status interrupt */
1161
#define UART_IIR_THRI        0x02        /* Transmitter holding register empty */
1162
#define UART_IIR_RDI        0x04        /* Receiver data interrupt */
1163
#define UART_IIR_RLSI        0x06        /* Receiver line status interrupt */
1164

    
1165
#define UART_LSR_TEMT        0x40        /* Transmitter empty */
1166
#define UART_LSR_THRE        0x20        /* Transmit-hold-register empty */
1167
#define UART_LSR_BI        0x10        /* Break interrupt indicator */
1168
#define UART_LSR_FE        0x08        /* Frame error indicator */
1169
#define UART_LSR_PE        0x04        /* Parity error indicator */
1170
#define UART_LSR_OE        0x02        /* Overrun error indicator */
1171
#define UART_LSR_DR        0x01        /* Receiver data ready */
1172

    
1173
typedef struct SerialState {
1174
    uint8_t divider;
1175
    uint8_t rbr; /* receive register */
1176
    uint8_t ier;
1177
    uint8_t iir; /* read only */
1178
    uint8_t lcr;
1179
    uint8_t mcr;
1180
    uint8_t lsr; /* read only */
1181
    uint8_t msr;
1182
    uint8_t scr;
1183
} SerialState;
1184

    
1185
SerialState serial_ports[1];
1186

    
1187
void serial_update_irq(void)
1188
{
1189
    SerialState *s = &serial_ports[0];
1190

    
1191
    if ((s->lsr & UART_LSR_DR) && (s->ier & UART_IER_RDI)) {
1192
        s->iir = UART_IIR_RDI;
1193
    } else if ((s->lsr & UART_LSR_THRE) && (s->ier & UART_IER_THRI)) {
1194
        s->iir = UART_IIR_THRI;
1195
    } else {
1196
        s->iir = UART_IIR_NO_INT;
1197
    }
1198
    if (s->iir != UART_IIR_NO_INT) {
1199
        pic_set_irq(UART_IRQ, 1);
1200
    } else {
1201
        pic_set_irq(UART_IRQ, 0);
1202
    }
1203
}
1204

    
1205
void serial_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
1206
{
1207
    SerialState *s = &serial_ports[0];
1208
    unsigned char ch;
1209
    int ret;
1210
    
1211
    addr &= 7;
1212
    switch(addr) {
1213
    default:
1214
    case 0:
1215
        if (s->lcr & UART_LCR_DLAB) {
1216
            s->divider = (s->divider & 0xff00) | val;
1217
        } else {
1218
            s->lsr &= ~UART_LSR_THRE;
1219
            serial_update_irq();
1220

    
1221
            ch = val;
1222
            do {
1223
                ret = write(1, &ch, 1);
1224
            } while (ret != 1);
1225
            s->lsr |= UART_LSR_THRE;
1226
            s->lsr |= UART_LSR_TEMT;
1227
            serial_update_irq();
1228
        }
1229
        break;
1230
    case 1:
1231
        if (s->lcr & UART_LCR_DLAB) {
1232
            s->divider = (s->divider & 0x00ff) | (val << 8);
1233
        } else {
1234
            s->ier = val;
1235
            serial_update_irq();
1236
        }
1237
        break;
1238
    case 2:
1239
        break;
1240
    case 3:
1241
        s->lcr = val;
1242
        break;
1243
    case 4:
1244
        s->mcr = val;
1245
        break;
1246
    case 5:
1247
        break;
1248
    case 6:
1249
        s->msr = val;
1250
        break;
1251
    case 7:
1252
        s->scr = val;
1253
        break;
1254
    }
1255
}
1256

    
1257
uint32_t serial_ioport_read(CPUX86State *env, uint32_t addr)
1258
{
1259
    SerialState *s = &serial_ports[0];
1260
    uint32_t ret;
1261

    
1262
    addr &= 7;
1263
    switch(addr) {
1264
    default:
1265
    case 0:
1266
        if (s->lcr & UART_LCR_DLAB) {
1267
            ret = s->divider & 0xff; 
1268
        } else {
1269
            ret = s->rbr;
1270
            s->lsr &= ~(UART_LSR_DR | UART_LSR_BI);
1271
            serial_update_irq();
1272
        }
1273
        break;
1274
    case 1:
1275
        if (s->lcr & UART_LCR_DLAB) {
1276
            ret = (s->divider >> 8) & 0xff;
1277
        } else {
1278
            ret = s->ier;
1279
        }
1280
        break;
1281
    case 2:
1282
        ret = s->iir;
1283
        break;
1284
    case 3:
1285
        ret = s->lcr;
1286
        break;
1287
    case 4:
1288
        ret = s->mcr;
1289
        break;
1290
    case 5:
1291
        ret = s->lsr;
1292
        break;
1293
    case 6:
1294
        ret = s->msr;
1295
        break;
1296
    case 7:
1297
        ret = s->scr;
1298
        break;
1299
    }
1300
    return ret;
1301
}
1302

    
1303
#define TERM_ESCAPE 0x01 /* ctrl-a is used for escape */
1304
static int term_got_escape;
1305

    
1306
void term_print_help(void)
1307
{
1308
    printf("\n"
1309
           "C-a h    print this help\n"
1310
           "C-a x    exit emulatior\n"
1311
           "C-a s    save disk data back to file (if -snapshot)\n"
1312
           "C-a b    send break (magic sysrq)\n"
1313
           "C-a C-a  send C-a\n"
1314
           );
1315
}
1316

    
1317
/* called when a char is received */
1318
void serial_received_byte(SerialState *s, int ch)
1319
{
1320
    if (term_got_escape) {
1321
        term_got_escape = 0;
1322
        switch(ch) {
1323
        case 'h':
1324
            term_print_help();
1325
            break;
1326
        case 'x':
1327
            exit(0);
1328
            break;
1329
        case 's': 
1330
            {
1331
                int i;
1332
                for (i = 0; i < MAX_DISKS; i++) {
1333
                    if (bs_table[i])
1334
                        bdrv_commit(bs_table[i]);
1335
                }
1336
            }
1337
            break;
1338
        case 'b':
1339
            /* send break */
1340
            s->rbr = 0;
1341
            s->lsr |= UART_LSR_BI | UART_LSR_DR;
1342
            serial_update_irq();
1343
            break;
1344
        case TERM_ESCAPE:
1345
            goto send_char;
1346
        }
1347
    } else if (ch == TERM_ESCAPE) {
1348
        term_got_escape = 1;
1349
    } else {
1350
    send_char:
1351
        s->rbr = ch;
1352
        s->lsr |= UART_LSR_DR;
1353
        serial_update_irq();
1354
    }
1355
}
1356

    
1357
/* init terminal so that we can grab keys */
1358
static struct termios oldtty;
1359

    
1360
static void term_exit(void)
1361
{
1362
    tcsetattr (0, TCSANOW, &oldtty);
1363
}
1364

    
1365
static void term_init(void)
1366
{
1367
    struct termios tty;
1368

    
1369
    tcgetattr (0, &tty);
1370
    oldtty = tty;
1371

    
1372
    tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
1373
                          |INLCR|IGNCR|ICRNL|IXON);
1374
    tty.c_oflag |= OPOST;
1375
    tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN|ISIG);
1376
    tty.c_cflag &= ~(CSIZE|PARENB);
1377
    tty.c_cflag |= CS8;
1378
    tty.c_cc[VMIN] = 1;
1379
    tty.c_cc[VTIME] = 0;
1380
    
1381
    tcsetattr (0, TCSANOW, &tty);
1382

    
1383
    atexit(term_exit);
1384

    
1385
    fcntl(0, F_SETFL, O_NONBLOCK);
1386
}
1387

    
1388
void serial_init(void)
1389
{
1390
    SerialState *s = &serial_ports[0];
1391

    
1392
    s->lsr = UART_LSR_TEMT | UART_LSR_THRE;
1393

    
1394
    register_ioport_write(0x3f8, 8, serial_ioport_write, 1);
1395
    register_ioport_read(0x3f8, 8, serial_ioport_read, 1);
1396

    
1397
    term_init();
1398
}
1399

    
1400
/***********************************************************/
1401
/* ne2000 emulation */
1402

    
1403
#define NE2000_IOPORT   0x300
1404
#define NE2000_IRQ      9
1405

    
1406
#define MAX_ETH_FRAME_SIZE 1514
1407

    
1408
#define E8390_CMD        0x00  /* The command register (for all pages) */
1409
/* Page 0 register offsets. */
1410
#define EN0_CLDALO        0x01        /* Low byte of current local dma addr  RD */
1411
#define EN0_STARTPG        0x01        /* Starting page of ring bfr WR */
1412
#define EN0_CLDAHI        0x02        /* High byte of current local dma addr  RD */
1413
#define EN0_STOPPG        0x02        /* Ending page +1 of ring bfr WR */
1414
#define EN0_BOUNDARY        0x03        /* Boundary page of ring bfr RD WR */
1415
#define EN0_TSR                0x04        /* Transmit status reg RD */
1416
#define EN0_TPSR        0x04        /* Transmit starting page WR */
1417
#define EN0_NCR                0x05        /* Number of collision reg RD */
1418
#define EN0_TCNTLO        0x05        /* Low  byte of tx byte count WR */
1419
#define EN0_FIFO        0x06        /* FIFO RD */
1420
#define EN0_TCNTHI        0x06        /* High byte of tx byte count WR */
1421
#define EN0_ISR                0x07        /* Interrupt status reg RD WR */
1422
#define EN0_CRDALO        0x08        /* low byte of current remote dma address RD */
1423
#define EN0_RSARLO        0x08        /* Remote start address reg 0 */
1424
#define EN0_CRDAHI        0x09        /* high byte, current remote dma address RD */
1425
#define EN0_RSARHI        0x09        /* Remote start address reg 1 */
1426
#define EN0_RCNTLO        0x0a        /* Remote byte count reg WR */
1427
#define EN0_RCNTHI        0x0b        /* Remote byte count reg WR */
1428
#define EN0_RSR                0x0c        /* rx status reg RD */
1429
#define EN0_RXCR        0x0c        /* RX configuration reg WR */
1430
#define EN0_TXCR        0x0d        /* TX configuration reg WR */
1431
#define EN0_COUNTER0        0x0d        /* Rcv alignment error counter RD */
1432
#define EN0_DCFG        0x0e        /* Data configuration reg WR */
1433
#define EN0_COUNTER1        0x0e        /* Rcv CRC error counter RD */
1434
#define EN0_IMR                0x0f        /* Interrupt mask reg WR */
1435
#define EN0_COUNTER2        0x0f        /* Rcv missed frame error counter RD */
1436

    
1437
#define EN1_PHYS        0x11
1438
#define EN1_CURPAG      0x17
1439
#define EN1_MULT        0x18
1440

    
1441
/*  Register accessed at EN_CMD, the 8390 base addr.  */
1442
#define E8390_STOP        0x01        /* Stop and reset the chip */
1443
#define E8390_START        0x02        /* Start the chip, clear reset */
1444
#define E8390_TRANS        0x04        /* Transmit a frame */
1445
#define E8390_RREAD        0x08        /* Remote read */
1446
#define E8390_RWRITE        0x10        /* Remote write  */
1447
#define E8390_NODMA        0x20        /* Remote DMA */
1448
#define E8390_PAGE0        0x00        /* Select page chip registers */
1449
#define E8390_PAGE1        0x40        /* using the two high-order bits */
1450
#define E8390_PAGE2        0x80        /* Page 3 is invalid. */
1451

    
1452
/* Bits in EN0_ISR - Interrupt status register */
1453
#define ENISR_RX        0x01        /* Receiver, no error */
1454
#define ENISR_TX        0x02        /* Transmitter, no error */
1455
#define ENISR_RX_ERR        0x04        /* Receiver, with error */
1456
#define ENISR_TX_ERR        0x08        /* Transmitter, with error */
1457
#define ENISR_OVER        0x10        /* Receiver overwrote the ring */
1458
#define ENISR_COUNTERS        0x20        /* Counters need emptying */
1459
#define ENISR_RDC        0x40        /* remote dma complete */
1460
#define ENISR_RESET        0x80        /* Reset completed */
1461
#define ENISR_ALL        0x3f        /* Interrupts we will enable */
1462

    
1463
/* Bits in received packet status byte and EN0_RSR*/
1464
#define ENRSR_RXOK        0x01        /* Received a good packet */
1465
#define ENRSR_CRC        0x02        /* CRC error */
1466
#define ENRSR_FAE        0x04        /* frame alignment error */
1467
#define ENRSR_FO        0x08        /* FIFO overrun */
1468
#define ENRSR_MPA        0x10        /* missed pkt */
1469
#define ENRSR_PHY        0x20        /* physical/multicast address */
1470
#define ENRSR_DIS        0x40        /* receiver disable. set in monitor mode */
1471
#define ENRSR_DEF        0x80        /* deferring */
1472

    
1473
/* Transmitted packet status, EN0_TSR. */
1474
#define ENTSR_PTX 0x01        /* Packet transmitted without error */
1475
#define ENTSR_ND  0x02        /* The transmit wasn't deferred. */
1476
#define ENTSR_COL 0x04        /* The transmit collided at least once. */
1477
#define ENTSR_ABT 0x08  /* The transmit collided 16 times, and was deferred. */
1478
#define ENTSR_CRS 0x10        /* The carrier sense was lost. */
1479
#define ENTSR_FU  0x20  /* A "FIFO underrun" occurred during transmit. */
1480
#define ENTSR_CDH 0x40        /* The collision detect "heartbeat" signal was lost. */
1481
#define ENTSR_OWC 0x80  /* There was an out-of-window collision. */
1482

    
1483
#define NE2000_MEM_SIZE 32768
1484

    
1485
typedef struct NE2000State {
1486
    uint8_t cmd;
1487
    uint32_t start;
1488
    uint32_t stop;
1489
    uint8_t boundary;
1490
    uint8_t tsr;
1491
    uint8_t tpsr;
1492
    uint16_t tcnt;
1493
    uint16_t rcnt;
1494
    uint32_t rsar;
1495
    uint8_t isr;
1496
    uint8_t dcfg;
1497
    uint8_t imr;
1498
    uint8_t phys[6]; /* mac address */
1499
    uint8_t curpag;
1500
    uint8_t mult[8]; /* multicast mask array */
1501
    uint8_t mem[NE2000_MEM_SIZE];
1502
} NE2000State;
1503

    
1504
NE2000State ne2000_state;
1505
int net_fd = -1;
1506
char network_script[1024];
1507

    
1508
void ne2000_reset(void)
1509
{
1510
    NE2000State *s = &ne2000_state;
1511
    int i;
1512

    
1513
    s->isr = ENISR_RESET;
1514
    s->mem[0] = 0x52;
1515
    s->mem[1] = 0x54;
1516
    s->mem[2] = 0x00;
1517
    s->mem[3] = 0x12;
1518
    s->mem[4] = 0x34;
1519
    s->mem[5] = 0x56;
1520
    s->mem[14] = 0x57;
1521
    s->mem[15] = 0x57;
1522

    
1523
    /* duplicate prom data */
1524
    for(i = 15;i >= 0; i--) {
1525
        s->mem[2 * i] = s->mem[i];
1526
        s->mem[2 * i + 1] = s->mem[i];
1527
    }
1528
}
1529

    
1530
void ne2000_update_irq(NE2000State *s)
1531
{
1532
    int isr;
1533
    isr = s->isr & s->imr;
1534
    if (isr)
1535
        pic_set_irq(NE2000_IRQ, 1);
1536
    else
1537
        pic_set_irq(NE2000_IRQ, 0);
1538
}
1539

    
1540
int net_init(void)
1541
{
1542
    struct ifreq ifr;
1543
    int fd, ret, pid, status;
1544
    
1545
    fd = open("/dev/net/tun", O_RDWR);
1546
    if (fd < 0) {
1547
        fprintf(stderr, "warning: could not open /dev/net/tun: no virtual network emulation\n");
1548
        return -1;
1549
    }
1550
    memset(&ifr, 0, sizeof(ifr));
1551
    ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
1552
    pstrcpy(ifr.ifr_name, IFNAMSIZ, "tun%d");
1553
    ret = ioctl(fd, TUNSETIFF, (void *) &ifr);
1554
    if (ret != 0) {
1555
        fprintf(stderr, "warning: could not configure /dev/net/tun: no virtual network emulation\n");
1556
        close(fd);
1557
        return -1;
1558
    }
1559
    printf("Connected to host network interface: %s\n", ifr.ifr_name);
1560
    fcntl(fd, F_SETFL, O_NONBLOCK);
1561
    net_fd = fd;
1562

    
1563
    /* try to launch network init script */
1564
    pid = fork();
1565
    if (pid >= 0) {
1566
        if (pid == 0) {
1567
            execl(network_script, network_script, ifr.ifr_name, NULL);
1568
            exit(1);
1569
        }
1570
        while (waitpid(pid, &status, 0) != pid);
1571
        if (!WIFEXITED(status) ||
1572
            WEXITSTATUS(status) != 0) {
1573
            fprintf(stderr, "%s: could not launch network script for '%s'\n",
1574
                    network_script, ifr.ifr_name);
1575
        }
1576
    }
1577
    return 0;
1578
}
1579

    
1580
void net_send_packet(NE2000State *s, const uint8_t *buf, int size)
1581
{
1582
#ifdef DEBUG_NE2000
1583
    printf("NE2000: sending packet size=%d\n", size);
1584
#endif
1585
    write(net_fd, buf, size);
1586
}
1587

    
1588
/* return true if the NE2000 can receive more data */
1589
int ne2000_can_receive(NE2000State *s)
1590
{
1591
    int avail, index, boundary;
1592
    
1593
    if (s->cmd & E8390_STOP)
1594
        return 0;
1595
    index = s->curpag << 8;
1596
    boundary = s->boundary << 8;
1597
    if (index < boundary)
1598
        avail = boundary - index;
1599
    else
1600
        avail = (s->stop - s->start) - (index - boundary);
1601
    if (avail < (MAX_ETH_FRAME_SIZE + 4))
1602
        return 0;
1603
    return 1;
1604
}
1605

    
1606
void ne2000_receive(NE2000State *s, uint8_t *buf, int size)
1607
{
1608
    uint8_t *p;
1609
    int total_len, next, avail, len, index;
1610

    
1611
#if defined(DEBUG_NE2000)
1612
    printf("NE2000: received len=%d\n", size);
1613
#endif
1614

    
1615
    index = s->curpag << 8;
1616
    /* 4 bytes for header */
1617
    total_len = size + 4;
1618
    /* address for next packet (4 bytes for CRC) */
1619
    next = index + ((total_len + 4 + 255) & ~0xff);
1620
    if (next >= s->stop)
1621
        next -= (s->stop - s->start);
1622
    /* prepare packet header */
1623
    p = s->mem + index;
1624
    p[0] = ENRSR_RXOK; /* receive status */
1625
    p[1] = next >> 8;
1626
    p[2] = total_len;
1627
    p[3] = total_len >> 8;
1628
    index += 4;
1629

    
1630
    /* write packet data */
1631
    while (size > 0) {
1632
        avail = s->stop - index;
1633
        len = size;
1634
        if (len > avail)
1635
            len = avail;
1636
        memcpy(s->mem + index, buf, len);
1637
        buf += len;
1638
        index += len;
1639
        if (index == s->stop)
1640
            index = s->start;
1641
        size -= len;
1642
    }
1643
    s->curpag = next >> 8;
1644
    
1645
    /* now we can signal we have receive something */
1646
    s->isr |= ENISR_RX;
1647
    ne2000_update_irq(s);
1648
}
1649

    
1650
void ne2000_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
1651
{
1652
    NE2000State *s = &ne2000_state;
1653
    int offset, page;
1654

    
1655
    addr &= 0xf;
1656
#ifdef DEBUG_NE2000
1657
    printf("NE2000: write addr=0x%x val=0x%02x\n", addr, val);
1658
#endif
1659
    if (addr == E8390_CMD) {
1660
        /* control register */
1661
        s->cmd = val;
1662
        if (val & E8390_START) {
1663
            /* test specific case: zero length transfert */
1664
            if ((val & (E8390_RREAD | E8390_RWRITE)) &&
1665
                s->rcnt == 0) {
1666
                s->isr |= ENISR_RDC;
1667
                ne2000_update_irq(s);
1668
            }
1669
            if (val & E8390_TRANS) {
1670
                net_send_packet(s, s->mem + (s->tpsr << 8), s->tcnt);
1671
                /* signal end of transfert */
1672
                s->tsr = ENTSR_PTX;
1673
                s->isr |= ENISR_TX;
1674
                ne2000_update_irq(s);
1675
            }
1676
        }
1677
    } else {
1678
        page = s->cmd >> 6;
1679
        offset = addr | (page << 4);
1680
        switch(offset) {
1681
        case EN0_STARTPG:
1682
            s->start = val << 8;
1683
            break;
1684
        case EN0_STOPPG:
1685
            s->stop = val << 8;
1686
            break;
1687
        case EN0_BOUNDARY:
1688
            s->boundary = val;
1689
            break;
1690
        case EN0_IMR:
1691
            s->imr = val;
1692
            ne2000_update_irq(s);
1693
            break;
1694
        case EN0_TPSR:
1695
            s->tpsr = val;
1696
            break;
1697
        case EN0_TCNTLO:
1698
            s->tcnt = (s->tcnt & 0xff00) | val;
1699
            break;
1700
        case EN0_TCNTHI:
1701
            s->tcnt = (s->tcnt & 0x00ff) | (val << 8);
1702
            break;
1703
        case EN0_RSARLO:
1704
            s->rsar = (s->rsar & 0xff00) | val;
1705
            break;
1706
        case EN0_RSARHI:
1707
            s->rsar = (s->rsar & 0x00ff) | (val << 8);
1708
            break;
1709
        case EN0_RCNTLO:
1710
            s->rcnt = (s->rcnt & 0xff00) | val;
1711
            break;
1712
        case EN0_RCNTHI:
1713
            s->rcnt = (s->rcnt & 0x00ff) | (val << 8);
1714
            break;
1715
        case EN0_DCFG:
1716
            s->dcfg = val;
1717
            break;
1718
        case EN0_ISR:
1719
            s->isr &= ~val;
1720
            ne2000_update_irq(s);
1721
            break;
1722
        case EN1_PHYS ... EN1_PHYS + 5:
1723
            s->phys[offset - EN1_PHYS] = val;
1724
            break;
1725
        case EN1_CURPAG:
1726
            s->curpag = val;
1727
            break;
1728
        case EN1_MULT ... EN1_MULT + 7:
1729
            s->mult[offset - EN1_MULT] = val;
1730
            break;
1731
        }
1732
    }
1733
}
1734

    
1735
uint32_t ne2000_ioport_read(CPUX86State *env, uint32_t addr)
1736
{
1737
    NE2000State *s = &ne2000_state;
1738
    int offset, page, ret;
1739

    
1740
    addr &= 0xf;
1741
    if (addr == E8390_CMD) {
1742
        ret = s->cmd;
1743
    } else {
1744
        page = s->cmd >> 6;
1745
        offset = addr | (page << 4);
1746
        switch(offset) {
1747
        case EN0_TSR:
1748
            ret = s->tsr;
1749
            break;
1750
        case EN0_BOUNDARY:
1751
            ret = s->boundary;
1752
            break;
1753
        case EN0_ISR:
1754
            ret = s->isr;
1755
            break;
1756
        case EN1_PHYS ... EN1_PHYS + 5:
1757
            ret = s->phys[offset - EN1_PHYS];
1758
            break;
1759
        case EN1_CURPAG:
1760
            ret = s->curpag;
1761
            break;
1762
        case EN1_MULT ... EN1_MULT + 7:
1763
            ret = s->mult[offset - EN1_MULT];
1764
            break;
1765
        default:
1766
            ret = 0x00;
1767
            break;
1768
        }
1769
    }
1770
#ifdef DEBUG_NE2000
1771
    printf("NE2000: read addr=0x%x val=%02x\n", addr, ret);
1772
#endif
1773
    return ret;
1774
}
1775

    
1776
void ne2000_asic_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
1777
{
1778
    NE2000State *s = &ne2000_state;
1779
    uint8_t *p;
1780

    
1781
#ifdef DEBUG_NE2000
1782
    printf("NE2000: asic write val=0x%04x\n", val);
1783
#endif
1784
    p = s->mem + s->rsar;
1785
    if (s->dcfg & 0x01) {
1786
        /* 16 bit access */
1787
        p[0] = val;
1788
        p[1] = val >> 8;
1789
        s->rsar += 2;
1790
        s->rcnt -= 2;
1791
    } else {
1792
        /* 8 bit access */
1793
        p[0] = val;
1794
        s->rsar++;
1795
        s->rcnt--;
1796
    }
1797
    /* wrap */
1798
    if (s->rsar == s->stop)
1799
        s->rsar = s->start;
1800
    if (s->rcnt == 0) {
1801
        /* signal end of transfert */
1802
        s->isr |= ENISR_RDC;
1803
        ne2000_update_irq(s);
1804
    }
1805
}
1806

    
1807
uint32_t ne2000_asic_ioport_read(CPUX86State *env, uint32_t addr)
1808
{
1809
    NE2000State *s = &ne2000_state;
1810
    uint8_t *p;
1811
    int ret;
1812

    
1813
    p = s->mem + s->rsar;
1814
    if (s->dcfg & 0x01) {
1815
        /* 16 bit access */
1816
        ret = p[0] | (p[1] << 8);
1817
        s->rsar += 2;
1818
        s->rcnt -= 2;
1819
    } else {
1820
        /* 8 bit access */
1821
        ret = p[0];
1822
        s->rsar++;
1823
        s->rcnt--;
1824
    }
1825
    /* wrap */
1826
    if (s->rsar == s->stop)
1827
        s->rsar = s->start;
1828
    if (s->rcnt == 0) {
1829
        /* signal end of transfert */
1830
        s->isr |= ENISR_RDC;
1831
        ne2000_update_irq(s);
1832
    }
1833
#ifdef DEBUG_NE2000
1834
    printf("NE2000: asic read val=0x%04x\n", ret);
1835
#endif
1836
    return ret;
1837
}
1838

    
1839
void ne2000_reset_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
1840
{
1841
    /* nothing to do (end of reset pulse) */
1842
}
1843

    
1844
uint32_t ne2000_reset_ioport_read(CPUX86State *env, uint32_t addr)
1845
{
1846
    ne2000_reset();
1847
    return 0;
1848
}
1849

    
1850
void ne2000_init(void)
1851
{
1852
    register_ioport_write(NE2000_IOPORT, 16, ne2000_ioport_write, 1);
1853
    register_ioport_read(NE2000_IOPORT, 16, ne2000_ioport_read, 1);
1854

    
1855
    register_ioport_write(NE2000_IOPORT + 0x10, 1, ne2000_asic_ioport_write, 1);
1856
    register_ioport_read(NE2000_IOPORT + 0x10, 1, ne2000_asic_ioport_read, 1);
1857
    register_ioport_write(NE2000_IOPORT + 0x10, 2, ne2000_asic_ioport_write, 2);
1858
    register_ioport_read(NE2000_IOPORT + 0x10, 2, ne2000_asic_ioport_read, 2);
1859

    
1860
    register_ioport_write(NE2000_IOPORT + 0x1f, 1, ne2000_reset_ioport_write, 1);
1861
    register_ioport_read(NE2000_IOPORT + 0x1f, 1, ne2000_reset_ioport_read, 1);
1862
    ne2000_reset();
1863
}
1864

    
1865
/***********************************************************/
1866
/* ide emulation */
1867

    
1868
/* Bits of HD_STATUS */
1869
#define ERR_STAT                0x01
1870
#define INDEX_STAT                0x02
1871
#define ECC_STAT                0x04        /* Corrected error */
1872
#define DRQ_STAT                0x08
1873
#define SEEK_STAT                0x10
1874
#define SRV_STAT                0x10
1875
#define WRERR_STAT                0x20
1876
#define READY_STAT                0x40
1877
#define BUSY_STAT                0x80
1878

    
1879
/* Bits for HD_ERROR */
1880
#define MARK_ERR                0x01        /* Bad address mark */
1881
#define TRK0_ERR                0x02        /* couldn't find track 0 */
1882
#define ABRT_ERR                0x04        /* Command aborted */
1883
#define MCR_ERR                        0x08        /* media change request */
1884
#define ID_ERR                        0x10        /* ID field not found */
1885
#define MC_ERR                        0x20        /* media changed */
1886
#define ECC_ERR                        0x40        /* Uncorrectable ECC error */
1887
#define BBD_ERR                        0x80        /* pre-EIDE meaning:  block marked bad */
1888
#define ICRC_ERR                0x80        /* new meaning:  CRC error during transfer */
1889

    
1890
/* Bits of HD_NSECTOR */
1891
#define CD                        0x01
1892
#define IO                        0x02
1893
#define REL                        0x04
1894
#define TAG_MASK                0xf8
1895

    
1896
#define IDE_CMD_RESET           0x04
1897
#define IDE_CMD_DISABLE_IRQ     0x02
1898

    
1899
/* ATA/ATAPI Commands pre T13 Spec */
1900
#define WIN_NOP                                0x00
1901
/*
1902
 *        0x01->0x02 Reserved
1903
 */
1904
#define CFA_REQ_EXT_ERROR_CODE                0x03 /* CFA Request Extended Error Code */
1905
/*
1906
 *        0x04->0x07 Reserved
1907
 */
1908
#define WIN_SRST                        0x08 /* ATAPI soft reset command */
1909
#define WIN_DEVICE_RESET                0x08
1910
/*
1911
 *        0x09->0x0F Reserved
1912
 */
1913
#define WIN_RECAL                        0x10
1914
#define WIN_RESTORE                        WIN_RECAL
1915
/*
1916
 *        0x10->0x1F Reserved
1917
 */
1918
#define WIN_READ                        0x20 /* 28-Bit */
1919
#define WIN_READ_ONCE                        0x21 /* 28-Bit without retries */
1920
#define WIN_READ_LONG                        0x22 /* 28-Bit */
1921
#define WIN_READ_LONG_ONCE                0x23 /* 28-Bit without retries */
1922
#define WIN_READ_EXT                        0x24 /* 48-Bit */
1923
#define WIN_READDMA_EXT                        0x25 /* 48-Bit */
1924
#define WIN_READDMA_QUEUED_EXT                0x26 /* 48-Bit */
1925
#define WIN_READ_NATIVE_MAX_EXT                0x27 /* 48-Bit */
1926
/*
1927
 *        0x28
1928
 */
1929
#define WIN_MULTREAD_EXT                0x29 /* 48-Bit */
1930
/*
1931
 *        0x2A->0x2F Reserved
1932
 */
1933
#define WIN_WRITE                        0x30 /* 28-Bit */
1934
#define WIN_WRITE_ONCE                        0x31 /* 28-Bit without retries */
1935
#define WIN_WRITE_LONG                        0x32 /* 28-Bit */
1936
#define WIN_WRITE_LONG_ONCE                0x33 /* 28-Bit without retries */
1937
#define WIN_WRITE_EXT                        0x34 /* 48-Bit */
1938
#define WIN_WRITEDMA_EXT                0x35 /* 48-Bit */
1939
#define WIN_WRITEDMA_QUEUED_EXT                0x36 /* 48-Bit */
1940
#define WIN_SET_MAX_EXT                        0x37 /* 48-Bit */
1941
#define CFA_WRITE_SECT_WO_ERASE                0x38 /* CFA Write Sectors without erase */
1942
#define WIN_MULTWRITE_EXT                0x39 /* 48-Bit */
1943
/*
1944
 *        0x3A->0x3B Reserved
1945
 */
1946
#define WIN_WRITE_VERIFY                0x3C /* 28-Bit */
1947
/*
1948
 *        0x3D->0x3F Reserved
1949
 */
1950
#define WIN_VERIFY                        0x40 /* 28-Bit - Read Verify Sectors */
1951
#define WIN_VERIFY_ONCE                        0x41 /* 28-Bit - without retries */
1952
#define WIN_VERIFY_EXT                        0x42 /* 48-Bit */
1953
/*
1954
 *        0x43->0x4F Reserved
1955
 */
1956
#define WIN_FORMAT                        0x50
1957
/*
1958
 *        0x51->0x5F Reserved
1959
 */
1960
#define WIN_INIT                        0x60
1961
/*
1962
 *        0x61->0x5F Reserved
1963
 */
1964
#define WIN_SEEK                        0x70 /* 0x70-0x7F Reserved */
1965
#define CFA_TRANSLATE_SECTOR                0x87 /* CFA Translate Sector */
1966
#define WIN_DIAGNOSE                        0x90
1967
#define WIN_SPECIFY                        0x91 /* set drive geometry translation */
1968
#define WIN_DOWNLOAD_MICROCODE                0x92
1969
#define WIN_STANDBYNOW2                        0x94
1970
#define WIN_STANDBY2                        0x96
1971
#define WIN_SETIDLE2                        0x97
1972
#define WIN_CHECKPOWERMODE2                0x98
1973
#define WIN_SLEEPNOW2                        0x99
1974
/*
1975
 *        0x9A VENDOR
1976
 */
1977
#define WIN_PACKETCMD                        0xA0 /* Send a packet command. */
1978
#define WIN_PIDENTIFY                        0xA1 /* identify ATAPI device        */
1979
#define WIN_QUEUED_SERVICE                0xA2
1980
#define WIN_SMART                        0xB0 /* self-monitoring and reporting */
1981
#define CFA_ERASE_SECTORS               0xC0
1982
#define WIN_MULTREAD                        0xC4 /* read sectors using multiple mode*/
1983
#define WIN_MULTWRITE                        0xC5 /* write sectors using multiple mode */
1984
#define WIN_SETMULT                        0xC6 /* enable/disable multiple mode */
1985
#define WIN_READDMA_QUEUED                0xC7 /* read sectors using Queued DMA transfers */
1986
#define WIN_READDMA                        0xC8 /* read sectors using DMA transfers */
1987
#define WIN_READDMA_ONCE                0xC9 /* 28-Bit - without retries */
1988
#define WIN_WRITEDMA                        0xCA /* write sectors using DMA transfers */
1989
#define WIN_WRITEDMA_ONCE                0xCB /* 28-Bit - without retries */
1990
#define WIN_WRITEDMA_QUEUED                0xCC /* write sectors using Queued DMA transfers */
1991
#define CFA_WRITE_MULTI_WO_ERASE        0xCD /* CFA Write multiple without erase */
1992
#define WIN_GETMEDIASTATUS                0xDA        
1993
#define WIN_ACKMEDIACHANGE                0xDB /* ATA-1, ATA-2 vendor */
1994
#define WIN_POSTBOOT                        0xDC
1995
#define WIN_PREBOOT                        0xDD
1996
#define WIN_DOORLOCK                        0xDE /* lock door on removable drives */
1997
#define WIN_DOORUNLOCK                        0xDF /* unlock door on removable drives */
1998
#define WIN_STANDBYNOW1                        0xE0
1999
#define WIN_IDLEIMMEDIATE                0xE1 /* force drive to become "ready" */
2000
#define WIN_STANDBY                     0xE2 /* Set device in Standby Mode */
2001
#define WIN_SETIDLE1                        0xE3
2002
#define WIN_READ_BUFFER                        0xE4 /* force read only 1 sector */
2003
#define WIN_CHECKPOWERMODE1                0xE5
2004
#define WIN_SLEEPNOW1                        0xE6
2005
#define WIN_FLUSH_CACHE                        0xE7
2006
#define WIN_WRITE_BUFFER                0xE8 /* force write only 1 sector */
2007
#define WIN_WRITE_SAME                        0xE9 /* read ata-2 to use */
2008
        /* SET_FEATURES 0x22 or 0xDD */
2009
#define WIN_FLUSH_CACHE_EXT                0xEA /* 48-Bit */
2010
#define WIN_IDENTIFY                        0xEC /* ask drive to identify itself        */
2011
#define WIN_MEDIAEJECT                        0xED
2012
#define WIN_IDENTIFY_DMA                0xEE /* same as WIN_IDENTIFY, but DMA */
2013
#define WIN_SETFEATURES                        0xEF /* set special drive features */
2014
#define EXABYTE_ENABLE_NEST                0xF0
2015
#define WIN_SECURITY_SET_PASS                0xF1
2016
#define WIN_SECURITY_UNLOCK                0xF2
2017
#define WIN_SECURITY_ERASE_PREPARE        0xF3
2018
#define WIN_SECURITY_ERASE_UNIT                0xF4
2019
#define WIN_SECURITY_FREEZE_LOCK        0xF5
2020
#define WIN_SECURITY_DISABLE                0xF6
2021
#define WIN_READ_NATIVE_MAX                0xF8 /* return the native maximum address */
2022
#define WIN_SET_MAX                        0xF9
2023
#define DISABLE_SEAGATE                        0xFB
2024

    
2025
/* set to 1 set disable mult support */
2026
#define MAX_MULT_SECTORS 8
2027

    
2028
struct IDEState;
2029

    
2030
typedef void EndTransferFunc(struct IDEState *);
2031

    
2032
typedef struct IDEState {
2033
    /* ide config */
2034
    int cylinders, heads, sectors;
2035
    int64_t nb_sectors;
2036
    int mult_sectors;
2037
    int irq;
2038
    /* ide regs */
2039
    uint8_t feature;
2040
    uint8_t error;
2041
    uint16_t nsector; /* 0 is 256 to ease computations */
2042
    uint8_t sector;
2043
    uint8_t lcyl;
2044
    uint8_t hcyl;
2045
    uint8_t select;
2046
    uint8_t status;
2047
    /* 0x3f6 command, only meaningful for drive 0 */
2048
    uint8_t cmd;
2049
    /* depends on bit 4 in select, only meaningful for drive 0 */
2050
    struct IDEState *cur_drive; 
2051
    BlockDriverState *bs;
2052
    int req_nb_sectors; /* number of sectors per interrupt */
2053
    EndTransferFunc *end_transfer_func;
2054
    uint8_t *data_ptr;
2055
    uint8_t *data_end;
2056
    uint8_t io_buffer[MAX_MULT_SECTORS*512 + 4];
2057
} IDEState;
2058

    
2059
IDEState ide_state[MAX_DISKS];
2060

    
2061
static void padstr(char *str, const char *src, int len)
2062
{
2063
    int i, v;
2064
    for(i = 0; i < len; i++) {
2065
        if (*src)
2066
            v = *src++;
2067
        else
2068
            v = ' ';
2069
        *(char *)((long)str ^ 1) = v;
2070
        str++;
2071
    }
2072
}
2073

    
2074
static void ide_identify(IDEState *s)
2075
{
2076
    uint16_t *p;
2077
    unsigned int oldsize;
2078

    
2079
    memset(s->io_buffer, 0, 512);
2080
    p = (uint16_t *)s->io_buffer;
2081
    stw(p + 0, 0x0040);
2082
    stw(p + 1, s->cylinders); 
2083
    stw(p + 3, s->heads);
2084
    stw(p + 4, 512 * s->sectors); /* sectors */
2085
    stw(p + 5, 512); /* sector size */
2086
    stw(p + 6, s->sectors); 
2087
    stw(p + 20, 3); /* buffer type */
2088
    stw(p + 21, 512); /* cache size in sectors */
2089
    stw(p + 22, 4); /* ecc bytes */
2090
    padstr((uint8_t *)(p + 27), "QEMU HARDDISK", 40);
2091
#if MAX_MULT_SECTORS > 1    
2092
    stw(p + 47, MAX_MULT_SECTORS);
2093
#endif
2094
    stw(p + 48, 1); /* dword I/O */
2095
    stw(p + 49, 1 << 9); /* LBA supported, no DMA */
2096
    stw(p + 51, 0x200); /* PIO transfer cycle */
2097
    stw(p + 52, 0x200); /* DMA transfer cycle */
2098
    stw(p + 54, s->cylinders);
2099
    stw(p + 55, s->heads);
2100
    stw(p + 56, s->sectors);
2101
    oldsize = s->cylinders * s->heads * s->sectors;
2102
    stw(p + 57, oldsize);
2103
    stw(p + 58, oldsize >> 16);
2104
    if (s->mult_sectors)
2105
        stw(p + 59, 0x100 | s->mult_sectors);
2106
    stw(p + 60, s->nb_sectors);
2107
    stw(p + 61, s->nb_sectors >> 16);
2108
    stw(p + 80, (1 << 1) | (1 << 2));
2109
    stw(p + 82, (1 << 14));
2110
    stw(p + 83, (1 << 14));
2111
    stw(p + 84, (1 << 14));
2112
    stw(p + 85, (1 << 14));
2113
    stw(p + 86, 0);
2114
    stw(p + 87, (1 << 14));
2115
}
2116

    
2117
static inline void ide_abort_command(IDEState *s)
2118
{
2119
    s->status = READY_STAT | ERR_STAT;
2120
    s->error = ABRT_ERR;
2121
}
2122

    
2123
static inline void ide_set_irq(IDEState *s)
2124
{
2125
    if (!(ide_state[0].cmd & IDE_CMD_DISABLE_IRQ)) {
2126
        pic_set_irq(s->irq, 1);
2127
    }
2128
}
2129

    
2130
/* prepare data transfer and tell what to do after */
2131
static void ide_transfer_start(IDEState *s, int size, 
2132
                               EndTransferFunc *end_transfer_func)
2133
{
2134
    s->end_transfer_func = end_transfer_func;
2135
    s->data_ptr = s->io_buffer;
2136
    s->data_end = s->io_buffer + size;
2137
    s->status |= DRQ_STAT;
2138
}
2139

    
2140
static void ide_transfer_stop(IDEState *s)
2141
{
2142
    s->end_transfer_func = ide_transfer_stop;
2143
    s->data_ptr = s->io_buffer;
2144
    s->data_end = s->io_buffer;
2145
    s->status &= ~DRQ_STAT;
2146
}
2147

    
2148
static int64_t ide_get_sector(IDEState *s)
2149
{
2150
    int64_t sector_num;
2151
    if (s->select & 0x40) {
2152
        /* lba */
2153
        sector_num = ((s->select & 0x0f) << 24) | (s->hcyl << 16) | 
2154
            (s->lcyl << 8) | s->sector;
2155
    } else {
2156
        sector_num = ((s->hcyl << 8) | s->lcyl) * s->heads * s->sectors +
2157
            (s->select & 0x0f) * s->sectors + 
2158
            (s->sector - 1);
2159
    }
2160
    return sector_num;
2161
}
2162

    
2163
static void ide_set_sector(IDEState *s, int64_t sector_num)
2164
{
2165
    unsigned int cyl, r;
2166
    if (s->select & 0x40) {
2167
        s->select = (s->select & 0xf0) | (sector_num >> 24);
2168
        s->hcyl = (sector_num >> 16);
2169
        s->lcyl = (sector_num >> 8);
2170
        s->sector = (sector_num);
2171
    } else {
2172
        cyl = sector_num / (s->heads * s->sectors);
2173
        r = sector_num % (s->heads * s->sectors);
2174
        s->hcyl = cyl >> 8;
2175
        s->lcyl = cyl;
2176
        s->select = (s->select & 0xf0) | (r / s->sectors);
2177
        s->sector = (r % s->sectors) + 1;
2178
    }
2179
}
2180

    
2181
static void ide_sector_read(IDEState *s)
2182
{
2183
    int64_t sector_num;
2184
    int ret, n;
2185

    
2186
    s->status = READY_STAT | SEEK_STAT;
2187
    sector_num = ide_get_sector(s);
2188
    n = s->nsector;
2189
    if (n == 0) {
2190
        /* no more sector to read from disk */
2191
        ide_transfer_stop(s);
2192
    } else {
2193
#if defined(DEBUG_IDE)
2194
        printf("read sector=%Ld\n", sector_num);
2195
#endif
2196
        if (n > s->req_nb_sectors)
2197
            n = s->req_nb_sectors;
2198
        ret = bdrv_read(s->bs, sector_num, s->io_buffer, n);
2199
        ide_transfer_start(s, 512 * n, ide_sector_read);
2200
        ide_set_irq(s);
2201
        ide_set_sector(s, sector_num + n);
2202
        s->nsector -= n;
2203
    }
2204
}
2205

    
2206
static void ide_sector_write(IDEState *s)
2207
{
2208
    int64_t sector_num;
2209
    int ret, n, n1;
2210

    
2211
    s->status = READY_STAT | SEEK_STAT;
2212
    sector_num = ide_get_sector(s);
2213
#if defined(DEBUG_IDE)
2214
    printf("write sector=%Ld\n", sector_num);
2215
#endif
2216
    n = s->nsector;
2217
    if (n > s->req_nb_sectors)
2218
        n = s->req_nb_sectors;
2219
    ret = bdrv_write(s->bs, sector_num, s->io_buffer, n);
2220
    s->nsector -= n;
2221
    if (s->nsector == 0) {
2222
        /* no more sector to write */
2223
        ide_transfer_stop(s);
2224
    } else {
2225
        n1 = s->nsector;
2226
        if (n1 > s->req_nb_sectors)
2227
            n1 = s->req_nb_sectors;
2228
        ide_transfer_start(s, 512 * n1, ide_sector_write);
2229
    }
2230
    ide_set_sector(s, sector_num + n);
2231
    ide_set_irq(s);
2232
}
2233

    
2234
void ide_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
2235
{
2236
    IDEState *s = ide_state[0].cur_drive;
2237
    int unit, n;
2238

    
2239
    addr &= 7;
2240
#ifdef DEBUG_IDE
2241
    printf("IDE: write addr=0x%x val=0x%02x\n", addr, val);
2242
#endif
2243
    switch(addr) {
2244
    case 0:
2245
        break;
2246
    case 1:
2247
        s->feature = val;
2248
        break;
2249
    case 2:
2250
        if (val == 0)
2251
            val = 256;
2252
        s->nsector = val;
2253
        break;
2254
    case 3:
2255
        s->sector = val;
2256
        break;
2257
    case 4:
2258
        s->lcyl = val;
2259
        break;
2260
    case 5:
2261
        s->hcyl = val;
2262
        break;
2263
    case 6:
2264
        /* select drive */
2265
        unit = (val >> 4) & 1;
2266
        s = &ide_state[unit];
2267
        ide_state[0].cur_drive = s;
2268
        s->select = val;
2269
        break;
2270
    default:
2271
    case 7:
2272
        /* command */
2273
#if defined(DEBUG_IDE)
2274
        printf("ide: CMD=%02x\n", val);
2275
#endif
2276
        switch(val) {
2277
        case WIN_PIDENTIFY:
2278
        case WIN_IDENTIFY:
2279
            if (s->bs) {
2280
                ide_identify(s);
2281
                s->status = READY_STAT;
2282
                ide_transfer_start(s, 512, ide_transfer_stop);
2283
            } else {
2284
                ide_abort_command(s);
2285
            }
2286
            ide_set_irq(s);
2287
            break;
2288
        case WIN_SPECIFY:
2289
        case WIN_RECAL:
2290
            s->status = READY_STAT;
2291
            ide_set_irq(s);
2292
            break;
2293
        case WIN_SETMULT:
2294
            if (s->nsector > MAX_MULT_SECTORS || 
2295
                s->nsector == 0 ||
2296
                (s->nsector & (s->nsector - 1)) != 0) {
2297
                ide_abort_command(s);
2298
            } else {
2299
                s->mult_sectors = s->nsector;
2300
                s->status = READY_STAT;
2301
            }
2302
            ide_set_irq(s);
2303
            break;
2304
        case WIN_READ:
2305
        case WIN_READ_ONCE:
2306
            s->req_nb_sectors = 1;
2307
            ide_sector_read(s);
2308
            break;
2309
        case WIN_WRITE:
2310
        case WIN_WRITE_ONCE:
2311
            s->status = SEEK_STAT;
2312
            s->req_nb_sectors = 1;
2313
            ide_transfer_start(s, 512, ide_sector_write);
2314
            break;
2315
        case WIN_MULTREAD:
2316
            if (!s->mult_sectors)
2317
                goto abort_cmd;
2318
            s->req_nb_sectors = s->mult_sectors;
2319
            ide_sector_read(s);
2320
            break;
2321
        case WIN_MULTWRITE:
2322
            if (!s->mult_sectors)
2323
                goto abort_cmd;
2324
            s->status = SEEK_STAT;
2325
            s->req_nb_sectors = s->mult_sectors;
2326
            n = s->nsector;
2327
            if (n > s->req_nb_sectors)
2328
                n = s->req_nb_sectors;
2329
            ide_transfer_start(s, 512 * n, ide_sector_write);
2330
            break;
2331
        case WIN_READ_NATIVE_MAX:
2332
            ide_set_sector(s, s->nb_sectors - 1);
2333
            s->status = READY_STAT;
2334
            ide_set_irq(s);
2335
            break;
2336
        default:
2337
        abort_cmd:
2338
            ide_abort_command(s);
2339
            ide_set_irq(s);
2340
            break;
2341
        }
2342
    }
2343
}
2344

    
2345
uint32_t ide_ioport_read(CPUX86State *env, uint32_t addr)
2346
{
2347
    IDEState *s = ide_state[0].cur_drive;
2348
    int ret;
2349

    
2350
    addr &= 7;
2351
    switch(addr) {
2352
    case 0:
2353
        ret = 0xff;
2354
        break;
2355
    case 1:
2356
        ret = s->error;
2357
        break;
2358
    case 2:
2359
        ret = s->nsector & 0xff;
2360
        break;
2361
    case 3:
2362
        ret = s->sector;
2363
        break;
2364
    case 4:
2365
        ret = s->lcyl;
2366
        break;
2367
    case 5:
2368
        ret = s->hcyl;
2369
        break;
2370
    case 6:
2371
        ret = s->select;
2372
        break;
2373
    default:
2374
    case 7:
2375
        ret = s->status;
2376
        pic_set_irq(s->irq, 0);
2377
        break;
2378
    }
2379
#ifdef DEBUG_IDE
2380
    printf("ide: read addr=0x%x val=%02x\n", addr, ret);
2381
#endif
2382
    return ret;
2383
}
2384

    
2385
uint32_t ide_status_read(CPUX86State *env, uint32_t addr)
2386
{
2387
    IDEState *s = ide_state[0].cur_drive;
2388
    int ret;
2389
    ret = s->status;
2390
#ifdef DEBUG_IDE
2391
    printf("ide: read status val=%02x\n", ret);
2392
#endif
2393
    return ret;
2394
}
2395

    
2396
void ide_cmd_write(CPUX86State *env, uint32_t addr, uint32_t val)
2397
{
2398
    IDEState *s;
2399
    int i;
2400

    
2401
#ifdef DEBUG_IDE
2402
    printf("ide: write control val=%02x\n", val);
2403
#endif
2404
    /* common for both drives */
2405
    if (!(ide_state[0].cmd & IDE_CMD_RESET) &&
2406
        (val & IDE_CMD_RESET)) {
2407
        /* reset low to high */
2408
        for(i = 0;i < 2; i++) {
2409
            s = &ide_state[i];
2410
            s->status = BUSY_STAT | SEEK_STAT;
2411
            s->error = 0x01;
2412
        }
2413
    } else if ((ide_state[0].cmd & IDE_CMD_RESET) &&
2414
               !(val & IDE_CMD_RESET)) {
2415
        /* high to low */
2416
        for(i = 0;i < 2; i++) {
2417
            s = &ide_state[i];
2418
            s->status = READY_STAT;
2419
            /* set hard disk drive ID */
2420
            s->select &= 0xf0; /* clear head */
2421
            s->nsector = 1;
2422
            s->sector = 1;
2423
            if (s->nb_sectors == 0) {
2424
                /* no disk present */
2425
                s->lcyl = 0x12;
2426
                s->hcyl = 0x34;
2427
            } else {
2428
                s->lcyl = 0;
2429
                s->hcyl = 0;
2430
            }
2431
        }
2432
    }
2433

    
2434
    ide_state[0].cmd = val;
2435
}
2436

    
2437
void ide_data_writew(CPUX86State *env, uint32_t addr, uint32_t val)
2438
{
2439
    IDEState *s = ide_state[0].cur_drive;
2440
    uint8_t *p;
2441

    
2442
    p = s->data_ptr;
2443
    *(uint16_t *)p = tswap16(val);
2444
    p += 2;
2445
    s->data_ptr = p;
2446
    if (p >= s->data_end)
2447
        s->end_transfer_func(s);
2448
}
2449

    
2450
uint32_t ide_data_readw(CPUX86State *env, uint32_t addr)
2451
{
2452
    IDEState *s = ide_state[0].cur_drive;
2453
    uint8_t *p;
2454
    int ret;
2455
    
2456
    p = s->data_ptr;
2457
    ret = tswap16(*(uint16_t *)p);
2458
    p += 2;
2459
    s->data_ptr = p;
2460
    if (p >= s->data_end)
2461
        s->end_transfer_func(s);
2462
    return ret;
2463
}
2464

    
2465
void ide_data_writel(CPUX86State *env, uint32_t addr, uint32_t val)
2466
{
2467
    IDEState *s = ide_state[0].cur_drive;
2468
    uint8_t *p;
2469

    
2470
    p = s->data_ptr;
2471
    *(uint32_t *)p = tswap32(val);
2472
    p += 4;
2473
    s->data_ptr = p;
2474
    if (p >= s->data_end)
2475
        s->end_transfer_func(s);
2476
}
2477

    
2478
uint32_t ide_data_readl(CPUX86State *env, uint32_t addr)
2479
{
2480
    IDEState *s = ide_state[0].cur_drive;
2481
    uint8_t *p;
2482
    int ret;
2483
    
2484
    p = s->data_ptr;
2485
    ret = tswap32(*(uint32_t *)p);
2486
    p += 4;
2487
    s->data_ptr = p;
2488
    if (p >= s->data_end)
2489
        s->end_transfer_func(s);
2490
    return ret;
2491
}
2492

    
2493
void ide_reset(IDEState *s)
2494
{
2495
    s->mult_sectors = MAX_MULT_SECTORS;
2496
    s->status = READY_STAT;
2497
    s->cur_drive = s;
2498
    s->select = 0xa0;
2499
}
2500

    
2501
void ide_init(void)
2502
{
2503
    IDEState *s;
2504
    int i, cylinders;
2505
    int64_t nb_sectors;
2506

    
2507
    for(i = 0; i < MAX_DISKS; i++) {
2508
        s = &ide_state[i];
2509
        s->bs = bs_table[i];
2510
        if (s->bs) {
2511
            bdrv_get_geometry(s->bs, &nb_sectors);
2512
            if (s->cylinders == 0) {
2513
                /* if no geometry, use a LBA compatible one */
2514
                cylinders = nb_sectors / (16 * 63);
2515
                if (cylinders > 16383)
2516
                    cylinders = 16383;
2517
                else if (cylinders < 2)
2518
                    cylinders = 2;
2519
                s->cylinders = cylinders;
2520
                s->heads = 16;
2521
                s->sectors = 63;
2522
            }
2523
            s->nb_sectors = nb_sectors;
2524
        }
2525
        s->irq = 14;
2526
        ide_reset(s);
2527
    }
2528
    register_ioport_write(0x1f0, 8, ide_ioport_write, 1);
2529
    register_ioport_read(0x1f0, 8, ide_ioport_read, 1);
2530
    register_ioport_read(0x3f6, 1, ide_status_read, 1);
2531
    register_ioport_write(0x3f6, 1, ide_cmd_write, 1);
2532

    
2533
    /* data ports */
2534
    register_ioport_write(0x1f0, 2, ide_data_writew, 2);
2535
    register_ioport_read(0x1f0, 2, ide_data_readw, 2);
2536
    register_ioport_write(0x1f0, 4, ide_data_writel, 4);
2537
    register_ioport_read(0x1f0, 4, ide_data_readl, 4);
2538
}
2539

    
2540
/***********************************************************/
2541
/* keyboard emulation */
2542

    
2543
/*        Keyboard Controller Commands */
2544
#define KBD_CCMD_READ_MODE        0x20        /* Read mode bits */
2545
#define KBD_CCMD_WRITE_MODE        0x60        /* Write mode bits */
2546
#define KBD_CCMD_GET_VERSION        0xA1        /* Get controller version */
2547
#define KBD_CCMD_MOUSE_DISABLE        0xA7        /* Disable mouse interface */
2548
#define KBD_CCMD_MOUSE_ENABLE        0xA8        /* Enable mouse interface */
2549
#define KBD_CCMD_TEST_MOUSE        0xA9        /* Mouse interface test */
2550
#define KBD_CCMD_SELF_TEST        0xAA        /* Controller self test */
2551
#define KBD_CCMD_KBD_TEST        0xAB        /* Keyboard interface test */
2552
#define KBD_CCMD_KBD_DISABLE        0xAD        /* Keyboard interface disable */
2553
#define KBD_CCMD_KBD_ENABLE        0xAE        /* Keyboard interface enable */
2554
#define KBD_CCMD_READ_INPORT    0xC0    /* read input port */
2555
#define KBD_CCMD_READ_OUTPORT        0xD0    /* read output port */
2556
#define KBD_CCMD_WRITE_OUTPORT        0xD1    /* write output port */
2557
#define KBD_CCMD_WRITE_OBUF        0xD2
2558
#define KBD_CCMD_WRITE_AUX_OBUF        0xD3    /* Write to output buffer as if
2559
                                           initiated by the auxiliary device */
2560
#define KBD_CCMD_WRITE_MOUSE        0xD4        /* Write the following byte to the mouse */
2561
#define KBD_CCMD_ENABLE_A20     0xDD
2562
#define KBD_CCMD_DISABLE_A20    0xDF
2563
#define KBD_CCMD_RESET                0xFE
2564

    
2565
/* Keyboard Commands */
2566
#define KBD_CMD_SET_LEDS        0xED        /* Set keyboard leds */
2567
#define KBD_CMD_ECHO             0xEE
2568
#define KBD_CMD_SET_RATE        0xF3        /* Set typematic rate */
2569
#define KBD_CMD_ENABLE                0xF4        /* Enable scanning */
2570
#define KBD_CMD_RESET_DISABLE        0xF5        /* reset and disable scanning */
2571
#define KBD_CMD_RESET_ENABLE           0xF6    /* reset and enable scanning */
2572
#define KBD_CMD_RESET                0xFF        /* Reset */
2573

    
2574
/* Keyboard Replies */
2575
#define KBD_REPLY_POR                0xAA        /* Power on reset */
2576
#define KBD_REPLY_ACK                0xFA        /* Command ACK */
2577
#define KBD_REPLY_RESEND        0xFE        /* Command NACK, send the cmd again */
2578

    
2579
/* Status Register Bits */
2580
#define KBD_STAT_OBF                 0x01        /* Keyboard output buffer full */
2581
#define KBD_STAT_IBF                 0x02        /* Keyboard input buffer full */
2582
#define KBD_STAT_SELFTEST        0x04        /* Self test successful */
2583
#define KBD_STAT_CMD                0x08        /* Last write was a command write (0=data) */
2584
#define KBD_STAT_UNLOCKED        0x10        /* Zero if keyboard locked */
2585
#define KBD_STAT_MOUSE_OBF        0x20        /* Mouse output buffer full */
2586
#define KBD_STAT_GTO                 0x40        /* General receive/xmit timeout */
2587
#define KBD_STAT_PERR                 0x80        /* Parity error */
2588

    
2589
/* Controller Mode Register Bits */
2590
#define KBD_MODE_KBD_INT        0x01        /* Keyboard data generate IRQ1 */
2591
#define KBD_MODE_MOUSE_INT        0x02        /* Mouse data generate IRQ12 */
2592
#define KBD_MODE_SYS                 0x04        /* The system flag (?) */
2593
#define KBD_MODE_NO_KEYLOCK        0x08        /* The keylock doesn't affect the keyboard if set */
2594
#define KBD_MODE_DISABLE_KBD        0x10        /* Disable keyboard interface */
2595
#define KBD_MODE_DISABLE_MOUSE        0x20        /* Disable mouse interface */
2596
#define KBD_MODE_KCC                 0x40        /* Scan code conversion to PC format */
2597
#define KBD_MODE_RFU                0x80
2598

    
2599
/* Mouse Commands */
2600
#define AUX_SET_RES                0xE8        /* Set resolution */
2601
#define AUX_SET_SCALE11                0xE6        /* Set 1:1 scaling */
2602
#define AUX_SET_SCALE21                0xE7        /* Set 2:1 scaling */
2603
#define AUX_GET_SCALE                0xE9        /* Get scaling factor */
2604
#define AUX_SET_STREAM                0xEA        /* Set stream mode */
2605
#define AUX_SET_SAMPLE                0xF3        /* Set sample rate */
2606
#define AUX_ENABLE_DEV                0xF4        /* Enable aux device */
2607
#define AUX_DISABLE_DEV                0xF5        /* Disable aux device */
2608
#define AUX_RESET                0xFF        /* Reset aux device */
2609
#define AUX_ACK                        0xFA        /* Command byte ACK. */
2610

    
2611
#define KBD_QUEUE_SIZE 64
2612

    
2613
typedef struct {
2614
    uint8_t data[KBD_QUEUE_SIZE];
2615
    int rptr, wptr, count;
2616
} KBDQueue;
2617

    
2618
enum KBDWriteState {
2619
    KBD_STATE_CMD = 0,
2620
    KBD_STATE_LED,
2621
};
2622

    
2623
typedef struct KBDState {
2624
    KBDQueue queues[2];
2625
    uint8_t write_cmd; /* if non zero, write data to port 60 is expected */
2626
    uint8_t status;
2627
    uint8_t mode;
2628
    int kbd_write_cmd;
2629
    int scan_enabled;
2630
} KBDState;
2631

    
2632
KBDState kbd_state;
2633
int reset_requested;
2634
int a20_enabled;
2635

    
2636
static void kbd_update_irq(KBDState *s)
2637
{
2638
    int level;
2639
    
2640
    level = ((s->status & KBD_STAT_OBF) && (s->mode & KBD_MODE_KBD_INT));
2641
    pic_set_irq(1, level);
2642
    
2643
    level = ((s->status & KBD_STAT_MOUSE_OBF) && (s->mode & KBD_MODE_MOUSE_INT));
2644
    pic_set_irq(12, level);
2645
}
2646

    
2647
static void kbd_queue(KBDState *s, int b, int aux)
2648
{
2649
    KBDQueue *q = &kbd_state.queues[aux];
2650

    
2651
    if (q->count >= KBD_QUEUE_SIZE)
2652
        return;
2653
    q->data[q->wptr] = b;
2654
    if (++q->wptr == KBD_QUEUE_SIZE)
2655
        q->wptr = 0;
2656
    q->count++;
2657
    s->status |= KBD_STAT_OBF;
2658
    if (aux)
2659
        s->status |= KBD_STAT_MOUSE_OBF;
2660
    kbd_update_irq(s);
2661
}
2662

    
2663
uint32_t kbd_read_status(CPUX86State *env, uint32_t addr)
2664
{
2665
    KBDState *s = &kbd_state;
2666
    int val;
2667
    val = s->status;
2668
#if defined(DEBUG_KBD) && 0
2669
    printf("kbd: read status=0x%02x\n", val);
2670
#endif
2671
    return val;
2672
}
2673

    
2674
void kbd_write_command(CPUX86State *env, uint32_t addr, uint32_t val)
2675
{
2676
    KBDState *s = &kbd_state;
2677

    
2678
#ifdef DEBUG_KBD
2679
    printf("kbd: write cmd=0x%02x\n", val);
2680
#endif
2681
    switch(val) {
2682
    case KBD_CCMD_READ_MODE:
2683
        kbd_queue(s, s->mode, 0);
2684
        break;
2685
    case KBD_CCMD_WRITE_MODE:
2686
    case KBD_CCMD_WRITE_OBUF:
2687
    case KBD_CCMD_WRITE_AUX_OBUF:
2688
    case KBD_CCMD_WRITE_MOUSE:
2689
    case KBD_CCMD_WRITE_OUTPORT:
2690
        s->write_cmd = val;
2691
        break;
2692
    case KBD_CCMD_MOUSE_DISABLE:
2693
        s->mode |= KBD_MODE_DISABLE_MOUSE;
2694
        break;
2695
    case KBD_CCMD_MOUSE_ENABLE:
2696
        s->mode &= ~KBD_MODE_DISABLE_MOUSE;
2697
        break;
2698
    case KBD_CCMD_TEST_MOUSE:
2699
        kbd_queue(s, 0x00, 0);
2700
        break;
2701
    case KBD_CCMD_SELF_TEST:
2702
        s->status |= KBD_STAT_SELFTEST;
2703
        kbd_queue(s, 0x55, 0);
2704
        break;
2705
    case KBD_CCMD_KBD_TEST:
2706
        kbd_queue(s, 0x00, 0);
2707
        break;
2708
    case KBD_CCMD_KBD_DISABLE:
2709
        s->mode |= KBD_MODE_DISABLE_KBD;
2710
        break;
2711
    case KBD_CCMD_KBD_ENABLE:
2712
        s->mode &= ~KBD_MODE_DISABLE_KBD;
2713
        break;
2714
    case KBD_CCMD_READ_INPORT:
2715
        kbd_queue(s, 0x00, 0);
2716
        break;
2717
    case KBD_CCMD_READ_OUTPORT:
2718
        /* XXX: check that */
2719
        val = 0x01 | (a20_enabled << 1);
2720
        if (s->status & KBD_STAT_OBF)
2721
            val |= 0x10;
2722
        if (s->status & KBD_STAT_MOUSE_OBF)
2723
            val |= 0x20;
2724
        kbd_queue(s, val, 0);
2725
        break;
2726
    case KBD_CCMD_ENABLE_A20:
2727
        a20_enabled = 1;
2728
        break;
2729
    case KBD_CCMD_DISABLE_A20:
2730
        a20_enabled = 0;
2731
        break;
2732
    case KBD_CCMD_RESET:
2733
        reset_requested = 1;
2734
        cpu_x86_interrupt(global_env, CPU_INTERRUPT_EXIT);
2735
        break;
2736
    default:
2737
        fprintf(stderr, "vl: unsupported keyboard cmd=0x%02x\n", val);
2738
        break;
2739
    }
2740
}
2741

    
2742
uint32_t kbd_read_data(CPUX86State *env, uint32_t addr)
2743
{
2744
    KBDState *s = &kbd_state;
2745
    KBDQueue *q;
2746
    int val;
2747
    
2748
    q = &s->queues[1]; /* first check AUX data */
2749
    if (q->count == 0)
2750
        q = &s->queues[0]; /* then check KBD data */
2751
    if (q->count == 0) {
2752
        /* XXX: return something else ? */
2753
        val = 0;
2754
    } else {
2755
        val = q->data[q->rptr];
2756
        if (++q->rptr == KBD_QUEUE_SIZE)
2757
            q->rptr = 0;
2758
        q->count--;
2759
    }
2760
    if (s->queues[1].count == 0) {
2761
        s->status &= ~KBD_STAT_MOUSE_OBF;
2762
        if (s->queues[0].count == 0)
2763
            s->status &= ~KBD_STAT_OBF;
2764
        kbd_update_irq(s);
2765
    }
2766

    
2767
#ifdef DEBUG_KBD
2768
    printf("kbd: read data=0x%02x\n", val);
2769
#endif
2770
    return val;
2771
}
2772

    
2773
static void kbd_reset_keyboard(KBDState *s)
2774
{
2775
    s->scan_enabled = 1;
2776
}
2777

    
2778
static void kbd_write_keyboard(KBDState *s, int val)
2779
{
2780
    switch(s->kbd_write_cmd) {
2781
    default:
2782
    case -1:
2783
        switch(val) {
2784
        case 0x00:
2785
            kbd_queue(s, KBD_REPLY_ACK, 0);
2786
            break;
2787
        case 0x05:
2788
            kbd_queue(s, KBD_REPLY_RESEND, 0);
2789
            break;
2790
        case KBD_CMD_ECHO:
2791
            kbd_queue(s, KBD_CMD_ECHO, 0);
2792
            break;
2793
        case KBD_CMD_ENABLE:
2794
            s->scan_enabled = 1;
2795
            kbd_queue(s, KBD_REPLY_ACK, 0);
2796
            break;
2797
        case KBD_CMD_SET_LEDS:
2798
        case KBD_CMD_SET_RATE:
2799
            s->kbd_write_cmd = val;
2800
            break;
2801
        case KBD_CMD_RESET_DISABLE:
2802
            kbd_reset_keyboard(s);
2803
            s->scan_enabled = 0;
2804
            kbd_queue(s, KBD_REPLY_ACK, 0);
2805
            break;
2806
        case KBD_CMD_RESET_ENABLE:
2807
            kbd_reset_keyboard(s);
2808
            s->scan_enabled = 1;
2809
            kbd_queue(s, KBD_REPLY_ACK, 0);
2810
            break;
2811
        case KBD_CMD_RESET:
2812
            kbd_reset_keyboard(s);
2813
            kbd_queue(s, KBD_REPLY_ACK, 0);
2814
            kbd_queue(s, KBD_REPLY_POR, 0);
2815
            break;
2816
        default:
2817
            kbd_queue(s, KBD_REPLY_ACK, 0);
2818
            break;
2819
        }
2820
        break;
2821
    case KBD_CMD_SET_LEDS:
2822
        kbd_queue(s, KBD_REPLY_ACK, 0);
2823
        break;
2824
    case KBD_CMD_SET_RATE:
2825
        kbd_queue(s, KBD_REPLY_ACK, 0);
2826
        break;
2827
    }
2828
    s->kbd_write_cmd = -1;
2829
}
2830

    
2831
void kbd_write_data(CPUX86State *env, uint32_t addr, uint32_t val)
2832
{
2833
    KBDState *s = &kbd_state;
2834

    
2835
#ifdef DEBUG_KBD
2836
    printf("kbd: write data=0x%02x\n", val);
2837
#endif
2838

    
2839
    switch(s->write_cmd) {
2840
    case 0:
2841
        kbd_write_keyboard(s, val);
2842
        break;
2843
    case KBD_CCMD_WRITE_MODE:
2844
        s->mode = val;
2845
        kbd_update_irq(s);
2846
        break;
2847
    case KBD_CCMD_WRITE_OBUF:
2848
        kbd_queue(s, val, 0);
2849
        break;
2850
    case KBD_CCMD_WRITE_AUX_OBUF:
2851
        kbd_queue(s, val, 1);
2852
        break;
2853
    case KBD_CCMD_WRITE_OUTPORT:
2854
        a20_enabled = (val >> 1) & 1;
2855
        if (!(val & 1)) {
2856
            reset_requested = 1;
2857
            cpu_x86_interrupt(global_env, CPU_INTERRUPT_EXIT);
2858
        }
2859
        break;
2860
    default:
2861
        break;
2862
    }
2863
    s->write_cmd = 0;
2864
}
2865

    
2866
void kbd_reset(KBDState *s)
2867
{
2868
    KBDQueue *q;
2869
    int i;
2870

    
2871
    s->kbd_write_cmd = -1;
2872
    s->mode = KBD_MODE_KBD_INT | KBD_MODE_MOUSE_INT;
2873
    s->status = KBD_MODE_SYS | KBD_MODE_NO_KEYLOCK;
2874
    for(i = 0; i < 2; i++) {
2875
        q = &s->queues[i];
2876
        q->rptr = 0;
2877
        q->wptr = 0;
2878
        q->count = 0;
2879
    }
2880
}
2881

    
2882
void kbd_init(void)
2883
{
2884
    kbd_reset(&kbd_state);
2885
    register_ioport_read(0x60, 1, kbd_read_data, 1);
2886
    register_ioport_write(0x60, 1, kbd_write_data, 1);
2887
    register_ioport_read(0x64, 1, kbd_read_status, 1);
2888
    register_ioport_write(0x64, 1, kbd_write_command, 1);
2889
}
2890

    
2891
/***********************************************************/
2892
/* Bochs BIOS debug ports */
2893

    
2894
void bochs_bios_write(CPUX86State *env, uint32_t addr, uint32_t val)
2895
{
2896
    switch(addr) {
2897
        /* Bochs BIOS messages */
2898
    case 0x400:
2899
    case 0x401:
2900
        fprintf(stderr, "BIOS panic at rombios.c, line %d\n", val);
2901
        exit(1);
2902
    case 0x402:
2903
    case 0x403:
2904
#ifdef DEBUG_BIOS
2905
        fprintf(stderr, "%c", val);
2906
#endif
2907
        break;
2908

    
2909
        /* LGPL'ed VGA BIOS messages */
2910
    case 0x501:
2911
    case 0x502:
2912
        fprintf(stderr, "VGA BIOS panic, line %d\n", val);
2913
        exit(1);
2914
    case 0x500:
2915
    case 0x503:
2916
#ifdef DEBUG_BIOS
2917
        fprintf(stderr, "%c", val);
2918
#endif
2919
        break;
2920
    }
2921
}
2922

    
2923
void bochs_bios_init(void)
2924
{
2925
    register_ioport_write(0x400, 1, bochs_bios_write, 2);
2926
    register_ioport_write(0x401, 1, bochs_bios_write, 2);
2927
    register_ioport_write(0x402, 1, bochs_bios_write, 1);
2928
    register_ioport_write(0x403, 1, bochs_bios_write, 1);
2929

    
2930
    register_ioport_write(0x501, 1, bochs_bios_write, 2);
2931
    register_ioport_write(0x502, 1, bochs_bios_write, 2);
2932
    register_ioport_write(0x500, 1, bochs_bios_write, 1);
2933
    register_ioport_write(0x503, 1, bochs_bios_write, 1);
2934
}
2935

    
2936
/***********************************************************/
2937
/* cpu signal handler */
2938
static void host_segv_handler(int host_signum, siginfo_t *info, 
2939
                              void *puc)
2940
{
2941
    if (cpu_signal_handler(host_signum, info, puc))
2942
        return;
2943
    term_exit();
2944
    abort();
2945
}
2946

    
2947
static int timer_irq_pending;
2948
static int timer_irq_count;
2949

    
2950
static void host_alarm_handler(int host_signum, siginfo_t *info, 
2951
                               void *puc)
2952
{
2953
    /* NOTE: since usually the OS asks a 100 Hz clock, there can be
2954
       some drift between cpu_get_ticks() and the interrupt time. So
2955
       we queue some interrupts to avoid missing some */
2956
    timer_irq_count += pit_get_out_edges(&pit_channels[0]);
2957
    if (timer_irq_count) {
2958
        if (timer_irq_count > 2)
2959
            timer_irq_count = 2;
2960
        timer_irq_count--;
2961
        /* just exit from the cpu to have a chance to handle timers */
2962
        cpu_x86_interrupt(global_env, CPU_INTERRUPT_EXIT);
2963
        timer_irq_pending = 1;
2964
    }
2965
}
2966

    
2967
unsigned long mmap_addr = PHYS_RAM_BASE;
2968

    
2969
void *get_mmap_addr(unsigned long size)
2970
{
2971
    unsigned long addr;
2972
    addr = mmap_addr;
2973
    mmap_addr += ((size + 4095) & ~4095) + 4096;
2974
    return (void *)addr;
2975
}
2976

    
2977
/* main execution loop */
2978

    
2979
CPUState *cpu_gdbstub_get_env(void *opaque)
2980
{
2981
    return global_env;
2982
}
2983

    
2984
int main_loop(void *opaque)
2985
{
2986
    struct pollfd ufds[2], *pf, *serial_ufd, *net_ufd, *gdb_ufd;
2987
    int ret, n, timeout;
2988
    uint8_t ch;
2989
    CPUState *env = global_env;
2990

    
2991
    for(;;) {
2992

    
2993
        ret = cpu_x86_exec(env);
2994
        if (reset_requested)
2995
            break;
2996
        if (ret == EXCP_DEBUG)
2997
            return EXCP_DEBUG;
2998
        /* if hlt instruction, we wait until the next IRQ */
2999
        if (ret == EXCP_HLT) 
3000
            timeout = 10;
3001
        else
3002
            timeout = 0;
3003
        /* poll any events */
3004
        serial_ufd = NULL;
3005
        pf = ufds;
3006
        if (!(serial_ports[0].lsr & UART_LSR_DR)) {
3007
            serial_ufd = pf;
3008
            pf->fd = 0;
3009
            pf->events = POLLIN;
3010
            pf++;
3011
        }
3012
        net_ufd = NULL;
3013
        if (net_fd > 0 && ne2000_can_receive(&ne2000_state)) {
3014
            net_ufd = pf;
3015
            pf->fd = net_fd;
3016
            pf->events = POLLIN;
3017
            pf++;
3018
        }
3019
        gdb_ufd = NULL;
3020
        if (gdbstub_fd > 0) {
3021
            gdb_ufd = pf;
3022
            pf->fd = gdbstub_fd;
3023
            pf->events = POLLIN;
3024
            pf++;
3025
        }
3026

    
3027
        ret = poll(ufds, pf - ufds, timeout);
3028
        if (ret > 0) {
3029
            if (serial_ufd && (serial_ufd->revents & POLLIN)) {
3030
                n = read(0, &ch, 1);
3031
                if (n == 1) {
3032
                    serial_received_byte(&serial_ports[0], ch);
3033
                }
3034
            }
3035
            if (net_ufd && (net_ufd->revents & POLLIN)) {
3036
                uint8_t buf[MAX_ETH_FRAME_SIZE];
3037

    
3038
                n = read(net_fd, buf, MAX_ETH_FRAME_SIZE);
3039
                if (n > 0) {
3040
                    if (n < 60) {
3041
                        memset(buf + n, 0, 60 - n);
3042
                        n = 60;
3043
                    }
3044
                    ne2000_receive(&ne2000_state, buf, n);
3045
                }
3046
            }
3047
            if (gdb_ufd && (gdb_ufd->revents & POLLIN)) {
3048
                uint8_t buf[1];
3049
                /* stop emulation if requested by gdb */
3050
                n = read(gdbstub_fd, buf, 1);
3051
                if (n == 1)
3052
                    break;
3053
            }
3054
        }
3055

    
3056
        /* timer IRQ */
3057
        if (timer_irq_pending) {
3058
            pic_set_irq(0, 1);
3059
            pic_set_irq(0, 0);
3060
            timer_irq_pending = 0;
3061
        }
3062
    }
3063
    return EXCP_INTERRUPT;
3064
}
3065

    
3066
void help(void)
3067
{
3068
    printf("Virtual Linux version " QEMU_VERSION ", Copyright (c) 2003 Fabrice Bellard\n"
3069
           "usage: vl [options] [bzImage [kernel parameters...]]\n"
3070
           "\n"
3071
           "'bzImage' is a Linux kernel image (PAGE_OFFSET must be defined\n"
3072
           "to 0x90000000 in asm/page.h and arch/i386/vmlinux.lds)\n"
3073
           "\n"
3074
           "General options:\n"
3075
           "-initrd file   use 'file' as initial ram disk\n"
3076
           "-hda file      use 'file' as hard disk 0 image\n"
3077
           "-hdb file      use 'file' as hard disk 1 image\n"
3078
           "-snapshot      write to temporary files instead of disk image files\n"
3079
           "-m megs        set virtual RAM size to megs MB\n"
3080
           "-n script      set network init script [default=%s]\n"
3081
           "\n"
3082
           "Debug/Expert options:\n"
3083
           "-s             wait gdb connection to port %d\n"
3084
           "-p port        change gdb connection port\n"
3085
           "-d             output log in /tmp/vl.log\n"
3086
           "-hdachs c,h,s  force hard disk 0 geometry for non LBA disk images\n"
3087
           "-L path        set the directory for the BIOS and VGA BIOS\n"
3088
           "\n"
3089
           "During emulation, use C-a h to get terminal commands:\n",
3090
           DEFAULT_NETWORK_SCRIPT, DEFAULT_GDBSTUB_PORT);
3091
    term_print_help();
3092
    exit(1);
3093
}
3094

    
3095
struct option long_options[] = {
3096
    { "initrd", 1, NULL, 0, },
3097
    { "hda", 1, NULL, 0, },
3098
    { "hdb", 1, NULL, 0, },
3099
    { "snapshot", 0, NULL, 0, },
3100
    { "hdachs", 1, NULL, 0, },
3101
    { NULL, 0, NULL, 0 },
3102
};
3103

    
3104
int main(int argc, char **argv)
3105
{
3106
    int c, ret, initrd_size, i, use_gdbstub, gdbstub_port, long_index;
3107
    int snapshot, linux_boot;
3108
    struct linux_params *params;
3109
    struct sigaction act;
3110
    struct itimerval itv;
3111
    CPUX86State *env;
3112
    const char *tmpdir, *initrd_filename;
3113
    const char *hd_filename[MAX_DISKS];
3114
    
3115
    /* we never want that malloc() uses mmap() */
3116
    mallopt(M_MMAP_THRESHOLD, 4096 * 1024);
3117
    initrd_filename = NULL;
3118
    for(i = 0; i < MAX_DISKS; i++)
3119
        hd_filename[i] = NULL;
3120
    phys_ram_size = 32 * 1024 * 1024;
3121
    pstrcpy(network_script, sizeof(network_script), DEFAULT_NETWORK_SCRIPT);
3122
    use_gdbstub = 0;
3123
    gdbstub_port = DEFAULT_GDBSTUB_PORT;
3124
    snapshot = 0;
3125
    linux_boot = 0;
3126
    for(;;) {
3127
        c = getopt_long_only(argc, argv, "hm:dn:sp:L:", long_options, &long_index);
3128
        if (c == -1)
3129
            break;
3130
        switch(c) {
3131
        case 0:
3132
            switch(long_index) {
3133
            case 0:
3134
                initrd_filename = optarg;
3135
                break;
3136
            case 1:
3137
                hd_filename[0] = optarg;
3138
                break;
3139
            case 2:
3140
                hd_filename[1] = optarg;
3141
                break;
3142
            case 3:
3143
                snapshot = 1;
3144
                break;
3145
            case 4:
3146
                {
3147
                    int cyls, heads, secs;
3148
                    const char *p;
3149
                    p = optarg;
3150
                    cyls = strtol(p, (char **)&p, 0);
3151
                    if (*p != ',')
3152
                        goto chs_fail;
3153
                    p++;
3154
                    heads = strtol(p, (char **)&p, 0);
3155
                    if (*p != ',')
3156
                        goto chs_fail;
3157
                    p++;
3158
                    secs = strtol(p, (char **)&p, 0);
3159
                    if (*p != '\0')
3160
                        goto chs_fail;
3161
                    ide_state[0].cylinders = cyls;
3162
                    ide_state[0].heads = heads;
3163
                    ide_state[0].sectors = secs;
3164
                chs_fail: ;
3165
                }
3166
                break;
3167
            }
3168
            break;
3169
        case 'h':
3170
            help();
3171
            break;
3172
        case 'm':
3173
            phys_ram_size = atoi(optarg) * 1024 * 1024;
3174
            if (phys_ram_size <= 0)
3175
                help();
3176
            if (phys_ram_size > PHYS_RAM_MAX_SIZE) {
3177
                fprintf(stderr, "vl: at most %d MB RAM can be simulated\n",
3178
                        PHYS_RAM_MAX_SIZE / (1024 * 1024));
3179
                exit(1);
3180
            }
3181
            break;
3182
        case 'd':
3183
            loglevel = 1;
3184
            break;
3185
        case 'n':
3186
            pstrcpy(network_script, sizeof(network_script), optarg);
3187
            break;
3188
        case 's':
3189
            use_gdbstub = 1;
3190
            break;
3191
        case 'p':
3192
            gdbstub_port = atoi(optarg);
3193
            break;
3194
        case 'L':
3195
            interp_prefix = optarg;
3196
            break;
3197
        }
3198
    }
3199

    
3200
    linux_boot = (optind < argc);
3201
        
3202
    if (!linux_boot && hd_filename[0] == '\0')
3203
        help();
3204

    
3205
    /* init debug */
3206
    setvbuf(stdout, NULL, _IOLBF, 0);
3207
    if (loglevel) {
3208
        logfile = fopen(DEBUG_LOGFILE, "w");
3209
        if (!logfile) {
3210
            perror(DEBUG_LOGFILE);
3211
            _exit(1);
3212
        }
3213
        setvbuf(logfile, NULL, _IOLBF, 0);
3214
    }
3215

    
3216
    /* init network tun interface */
3217
    net_init();
3218

    
3219
    /* init the memory */
3220
    tmpdir = getenv("VLTMPDIR");
3221
    if (!tmpdir)
3222
        tmpdir = "/tmp";
3223
    snprintf(phys_ram_file, sizeof(phys_ram_file), "%s/vlXXXXXX", tmpdir);
3224
    if (mkstemp(phys_ram_file) < 0) {
3225
        fprintf(stderr, "Could not create temporary memory file '%s'\n", 
3226
                phys_ram_file);
3227
        exit(1);
3228
    }
3229
    phys_ram_fd = open(phys_ram_file, O_CREAT | O_TRUNC | O_RDWR, 0600);
3230
    if (phys_ram_fd < 0) {
3231
        fprintf(stderr, "Could not open temporary memory file '%s'\n", 
3232
                phys_ram_file);
3233
        exit(1);
3234
    }
3235
    ftruncate(phys_ram_fd, phys_ram_size);
3236
    unlink(phys_ram_file);
3237
    phys_ram_base = mmap(get_mmap_addr(phys_ram_size), phys_ram_size, 
3238
                         PROT_WRITE | PROT_READ, MAP_SHARED | MAP_FIXED, 
3239
                         phys_ram_fd, 0);
3240
    if (phys_ram_base == MAP_FAILED) {
3241
        fprintf(stderr, "Could not map physical memory\n");
3242
        exit(1);
3243
    }
3244

    
3245
    /* open the virtual block devices */
3246
    for(i = 0; i < MAX_DISKS; i++) {
3247
        if (hd_filename[i]) {
3248
            bs_table[i] = bdrv_open(hd_filename[i], snapshot);
3249
            if (!bs_table[i]) {
3250
                fprintf(stderr, "vl: could not open hard disk image '%s\n",
3251
                        hd_filename[i]);
3252
                exit(1);
3253
            }
3254
        }
3255
    }
3256

    
3257
    /* init CPU state */
3258
    env = cpu_init();
3259
    global_env = env;
3260
    cpu_single_env = env;
3261

    
3262
    init_ioports();
3263

    
3264
    if (linux_boot) {
3265
        /* now we can load the kernel */
3266
        ret = load_kernel(argv[optind], phys_ram_base + KERNEL_LOAD_ADDR);
3267
        if (ret < 0) {
3268
            fprintf(stderr, "vl: could not load kernel '%s'\n", argv[optind]);
3269
            exit(1);
3270
        }
3271
        
3272
        /* load initrd */
3273
        initrd_size = 0;
3274
        if (initrd_filename) {
3275
            initrd_size = load_image(initrd_filename, phys_ram_base + INITRD_LOAD_ADDR);
3276
            if (initrd_size < 0) {
3277
                fprintf(stderr, "vl: could not load initial ram disk '%s'\n", 
3278
                        initrd_filename);
3279
                exit(1);
3280
            }
3281
        }
3282
        
3283
        /* init kernel params */
3284
        params = (void *)(phys_ram_base + KERNEL_PARAMS_ADDR);
3285
        memset(params, 0, sizeof(struct linux_params));
3286
        params->mount_root_rdonly = 0;
3287
        params->cl_magic = 0xA33F;
3288
        params->cl_offset = params->commandline - (uint8_t *)params;
3289
        params->alt_mem_k = (phys_ram_size / 1024) - 1024;
3290
        for(i = optind + 1; i < argc; i++) {
3291
            if (i != optind + 1)
3292
                pstrcat(params->commandline, sizeof(params->commandline), " ");
3293
            pstrcat(params->commandline, sizeof(params->commandline), argv[i]);
3294
        }
3295
        params->loader_type = 0x01;
3296
        if (initrd_size > 0) {
3297
            params->initrd_start = INITRD_LOAD_ADDR;
3298
            params->initrd_size = initrd_size;
3299
        }
3300
        params->orig_video_lines = 25;
3301
        params->orig_video_cols = 80;
3302

    
3303
        /* setup basic memory access */
3304
        env->cr[0] = 0x00000033;
3305
        cpu_x86_init_mmu(env);
3306
        
3307
        memset(params->idt_table, 0, sizeof(params->idt_table));
3308
        
3309
        params->gdt_table[2] = 0x00cf9a000000ffffLL; /* KERNEL_CS */
3310
        params->gdt_table[3] = 0x00cf92000000ffffLL; /* KERNEL_DS */
3311
        
3312
        env->idt.base = (void *)params->idt_table;
3313
        env->idt.limit = sizeof(params->idt_table) - 1;
3314
        env->gdt.base = (void *)params->gdt_table;
3315
        env->gdt.limit = sizeof(params->gdt_table) - 1;
3316
        
3317
        cpu_x86_load_seg(env, R_CS, KERNEL_CS);
3318
        cpu_x86_load_seg(env, R_DS, KERNEL_DS);
3319
        cpu_x86_load_seg(env, R_ES, KERNEL_DS);
3320
        cpu_x86_load_seg(env, R_SS, KERNEL_DS);
3321
        cpu_x86_load_seg(env, R_FS, KERNEL_DS);
3322
        cpu_x86_load_seg(env, R_GS, KERNEL_DS);
3323
        
3324
        env->eip = KERNEL_LOAD_ADDR;
3325
        env->regs[R_ESI] = KERNEL_PARAMS_ADDR;
3326
        env->eflags = 0x2;
3327

    
3328
    } else {
3329
        char buf[1024];
3330
        
3331
        /* RAW PC boot */
3332

    
3333
        /* BIOS load */
3334
        snprintf(buf, sizeof(buf), "%s/%s", interp_prefix, BIOS_FILENAME);
3335
        ret = load_image(buf, phys_ram_base + 0x000f0000);
3336
        if (ret != 0x10000) {
3337
            fprintf(stderr, "vl: could not load PC bios '%s'\n", BIOS_FILENAME);
3338
            exit(1);
3339
        }
3340

    
3341
        /* VGA BIOS load */
3342
        snprintf(buf, sizeof(buf), "%s/%s", interp_prefix, VGABIOS_FILENAME);
3343
        ret = load_image(buf, phys_ram_base + 0x000c0000);
3344

    
3345
        /* setup basic memory access */
3346
        env->cr[0] = 0x60000010;
3347
        cpu_x86_init_mmu(env);
3348
        
3349
        env->idt.limit = 0xffff;
3350
        env->gdt.limit = 0xffff;
3351
        env->ldt.limit = 0xffff;
3352

    
3353
        /* not correct (CS base=0xffff0000) */
3354
        cpu_x86_load_seg(env, R_CS, 0xf000); 
3355
        cpu_x86_load_seg(env, R_DS, 0);
3356
        cpu_x86_load_seg(env, R_ES, 0);
3357
        cpu_x86_load_seg(env, R_SS, 0);
3358
        cpu_x86_load_seg(env, R_FS, 0);
3359
        cpu_x86_load_seg(env, R_GS, 0);
3360

    
3361
        env->eip = 0xfff0;
3362
        env->regs[R_EDX] = 0x600; /* indicate P6 processor */
3363

    
3364
        env->eflags = 0x2;
3365

    
3366
        bochs_bios_init();
3367
    }
3368

    
3369
    /* init basic PC hardware */
3370
    register_ioport_write(0x80, 1, ioport80_write, 1);
3371

    
3372
    register_ioport_write(0x3d4, 2, vga_ioport_write, 1);
3373

    
3374
    cmos_init();
3375
    pic_init();
3376
    pit_init();
3377
    serial_init();
3378
    ne2000_init();
3379
    ide_init();
3380
    kbd_init();
3381

    
3382
    /* setup cpu signal handlers for MMU / self modifying code handling */
3383
    sigfillset(&act.sa_mask);
3384
    act.sa_flags = SA_SIGINFO;
3385
    act.sa_sigaction = host_segv_handler;
3386
    sigaction(SIGSEGV, &act, NULL);
3387
    sigaction(SIGBUS, &act, NULL);
3388

    
3389
    act.sa_sigaction = host_alarm_handler;
3390
    sigaction(SIGALRM, &act, NULL);
3391

    
3392
    itv.it_interval.tv_sec = 0;
3393
    itv.it_interval.tv_usec = 1000;
3394
    itv.it_value.tv_sec = 0;
3395
    itv.it_value.tv_usec = 10 * 1000;
3396
    setitimer(ITIMER_REAL, &itv, NULL);
3397
    /* we probe the tick duration of the kernel to inform the user if
3398
       the emulated kernel requested a too high timer frequency */
3399
    getitimer(ITIMER_REAL, &itv);
3400
    pit_min_timer_count = ((uint64_t)itv.it_interval.tv_usec * PIT_FREQ) / 
3401
        1000000;
3402
    
3403
    if (use_gdbstub) {
3404
        cpu_gdbstub(NULL, main_loop, gdbstub_port);
3405
    } else {
3406
        main_loop(NULL);
3407
    }
3408
    return 0;
3409
}