Statistics
| Branch: | Revision:

root / hw / onenand.c @ 61b24405

History | View | Annotate | Download (19.4 kB)

1
/*
2
 * OneNAND flash memories emulation.
3
 *
4
 * Copyright (C) 2008 Nokia Corporation
5
 * Written by Andrzej Zaborowski <andrew@openedhand.com>
6
 *
7
 * This program is free software; you can redistribute it and/or
8
 * modify it under the terms of the GNU General Public License as
9
 * published by the Free Software Foundation; either version 2 or
10
 * (at your option) version 3 of the License.
11
 *
12
 * This program is distributed in the hope that it will be useful,
13
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15
 * GNU General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU General Public License
18
 * along with this program; if not, write to the Free Software
19
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
20
 * MA 02111-1307 USA
21
 */
22

    
23
#include "qemu-common.h"
24
#include "flash.h"
25
#include "irq.h"
26
#include "sysemu.h"
27
#include "block.h"
28

    
29
/* 11 for 2kB-page OneNAND ("2nd generation") and 10 for 1kB-page chips */
30
#define PAGE_SHIFT        11
31

    
32
/* Fixed */
33
#define BLOCK_SHIFT        (PAGE_SHIFT + 6)
34

    
35
struct onenand_s {
36
    uint32_t id;
37
    int shift;
38
    target_phys_addr_t base;
39
    qemu_irq intr;
40
    qemu_irq rdy;
41
    BlockDriverState *bdrv;
42
    BlockDriverState *bdrv_cur;
43
    uint8_t *image;
44
    uint8_t *otp;
45
    uint8_t *current;
46
    ram_addr_t ram;
47
    uint8_t *boot[2];
48
    uint8_t *data[2][2];
49
    int iomemtype;
50
    int cycle;
51
    int otpmode;
52

    
53
    uint16_t addr[8];
54
    uint16_t unladdr[8];
55
    int bufaddr;
56
    int count;
57
    uint16_t command;
58
    uint16_t config[2];
59
    uint16_t status;
60
    uint16_t intstatus;
61
    uint16_t wpstatus;
62

    
63
    struct ecc_state_s ecc;
64

    
65
    int density_mask;
66
    int secs;
67
    int secs_cur;
68
    int blocks;
69
    uint8_t *blockwp;
70
};
71

    
72
enum {
73
    ONEN_BUF_BLOCK = 0,
74
    ONEN_BUF_BLOCK2 = 1,
75
    ONEN_BUF_DEST_BLOCK = 2,
76
    ONEN_BUF_DEST_PAGE = 3,
77
    ONEN_BUF_PAGE = 7,
78
};
79

    
80
enum {
81
    ONEN_ERR_CMD = 1 << 10,
82
    ONEN_ERR_ERASE = 1 << 11,
83
    ONEN_ERR_PROG = 1 << 12,
84
    ONEN_ERR_LOAD = 1 << 13,
85
};
86

    
87
enum {
88
    ONEN_INT_RESET = 1 << 4,
89
    ONEN_INT_ERASE = 1 << 5,
90
    ONEN_INT_PROG = 1 << 6,
91
    ONEN_INT_LOAD = 1 << 7,
92
    ONEN_INT = 1 << 15,
93
};
94

    
95
enum {
96
    ONEN_LOCK_LOCKTIGHTEN = 1 << 0,
97
    ONEN_LOCK_LOCKED = 1 << 1,
98
    ONEN_LOCK_UNLOCKED = 1 << 2,
99
};
100

    
101
void onenand_base_update(void *opaque, target_phys_addr_t new)
102
{
103
    struct onenand_s *s = (struct onenand_s *) opaque;
104

    
105
    s->base = new;
106

    
107
    /* XXX: We should use IO_MEM_ROMD but we broke it earlier...
108
     * Both 0x0000 ... 0x01ff and 0x8000 ... 0x800f can be used to
109
     * write boot commands.  Also take note of the BWPS bit.  */
110
    cpu_register_physical_memory(s->base + (0x0000 << s->shift),
111
                    0x0200 << s->shift, s->iomemtype);
112
    cpu_register_physical_memory(s->base + (0x0200 << s->shift),
113
                    0xbe00 << s->shift,
114
                    (s->ram +(0x0200 << s->shift)) | IO_MEM_RAM);
115
    if (s->iomemtype)
116
        cpu_register_physical_memory_offset(s->base + (0xc000 << s->shift),
117
                    0x4000 << s->shift, s->iomemtype, (0xc000 << s->shift));
118
}
119

    
120
void onenand_base_unmap(void *opaque)
121
{
122
    struct onenand_s *s = (struct onenand_s *) opaque;
123

    
124
    cpu_register_physical_memory(s->base,
125
                    0x10000 << s->shift, IO_MEM_UNASSIGNED);
126
}
127

    
128
static void onenand_intr_update(struct onenand_s *s)
129
{
130
    qemu_set_irq(s->intr, ((s->intstatus >> 15) ^ (~s->config[0] >> 6)) & 1);
131
}
132

    
133
/* Hot reset (Reset OneNAND command) or warm reset (RP pin low) */
134
static void onenand_reset(struct onenand_s *s, int cold)
135
{
136
    memset(&s->addr, 0, sizeof(s->addr));
137
    s->command = 0;
138
    s->count = 1;
139
    s->bufaddr = 0;
140
    s->config[0] = 0x40c0;
141
    s->config[1] = 0x0000;
142
    onenand_intr_update(s);
143
    qemu_irq_raise(s->rdy);
144
    s->status = 0x0000;
145
    s->intstatus = cold ? 0x8080 : 0x8010;
146
    s->unladdr[0] = 0;
147
    s->unladdr[1] = 0;
148
    s->wpstatus = 0x0002;
149
    s->cycle = 0;
150
    s->otpmode = 0;
151
    s->bdrv_cur = s->bdrv;
152
    s->current = s->image;
153
    s->secs_cur = s->secs;
154

    
155
    if (cold) {
156
        /* Lock the whole flash */
157
        memset(s->blockwp, ONEN_LOCK_LOCKED, s->blocks);
158

    
159
        if (s->bdrv && bdrv_read(s->bdrv, 0, s->boot[0], 8) < 0)
160
            cpu_abort(cpu_single_env, "%s: Loading the BootRAM failed.\n",
161
                            __FUNCTION__);
162
    }
163
}
164

    
165
static inline int onenand_load_main(struct onenand_s *s, int sec, int secn,
166
                void *dest)
167
{
168
    if (s->bdrv_cur)
169
        return bdrv_read(s->bdrv_cur, sec, dest, secn) < 0;
170
    else if (sec + secn > s->secs_cur)
171
        return 1;
172

    
173
    memcpy(dest, s->current + (sec << 9), secn << 9);
174

    
175
    return 0;
176
}
177

    
178
static inline int onenand_prog_main(struct onenand_s *s, int sec, int secn,
179
                void *src)
180
{
181
    if (s->bdrv_cur)
182
        return bdrv_write(s->bdrv_cur, sec, src, secn) < 0;
183
    else if (sec + secn > s->secs_cur)
184
        return 1;
185

    
186
    memcpy(s->current + (sec << 9), src, secn << 9);
187

    
188
    return 0;
189
}
190

    
191
static inline int onenand_load_spare(struct onenand_s *s, int sec, int secn,
192
                void *dest)
193
{
194
    uint8_t buf[512];
195

    
196
    if (s->bdrv_cur) {
197
        if (bdrv_read(s->bdrv_cur, s->secs_cur + (sec >> 5), buf, 1) < 0)
198
            return 1;
199
        memcpy(dest, buf + ((sec & 31) << 4), secn << 4);
200
    } else if (sec + secn > s->secs_cur)
201
        return 1;
202
    else
203
        memcpy(dest, s->current + (s->secs_cur << 9) + (sec << 4), secn << 4);
204
 
205
    return 0;
206
}
207

    
208
static inline int onenand_prog_spare(struct onenand_s *s, int sec, int secn,
209
                void *src)
210
{
211
    uint8_t buf[512];
212

    
213
    if (s->bdrv_cur) {
214
        if (bdrv_read(s->bdrv_cur, s->secs_cur + (sec >> 5), buf, 1) < 0)
215
            return 1;
216
        memcpy(buf + ((sec & 31) << 4), src, secn << 4);
217
        return bdrv_write(s->bdrv_cur, s->secs_cur + (sec >> 5), buf, 1) < 0;
218
    } else if (sec + secn > s->secs_cur)
219
        return 1;
220

    
221
    memcpy(s->current + (s->secs_cur << 9) + (sec << 4), src, secn << 4);
222
 
223
    return 0;
224
}
225

    
226
static inline int onenand_erase(struct onenand_s *s, int sec, int num)
227
{
228
    /* TODO: optimise */
229
    uint8_t buf[512];
230

    
231
    memset(buf, 0xff, sizeof(buf));
232
    for (; num > 0; num --, sec ++) {
233
        if (onenand_prog_main(s, sec, 1, buf))
234
            return 1;
235
        if (onenand_prog_spare(s, sec, 1, buf))
236
            return 1;
237
    }
238

    
239
    return 0;
240
}
241

    
242
static void onenand_command(struct onenand_s *s, int cmd)
243
{
244
    int b;
245
    int sec;
246
    void *buf;
247
#define SETADDR(block, page)                        \
248
    sec = (s->addr[page] & 3) +                        \
249
            ((((s->addr[page] >> 2) & 0x3f) +        \
250
              (((s->addr[block] & 0xfff) |        \
251
                (s->addr[block] >> 15 ?                \
252
                 s->density_mask : 0)) << 6)) << (PAGE_SHIFT - 9));
253
#define SETBUF_M()                                \
254
    buf = (s->bufaddr & 8) ?                        \
255
            s->data[(s->bufaddr >> 2) & 1][0] : s->boot[0];        \
256
    buf += (s->bufaddr & 3) << 9;
257
#define SETBUF_S()                                \
258
    buf = (s->bufaddr & 8) ?                        \
259
            s->data[(s->bufaddr >> 2) & 1][1] : s->boot[1];        \
260
    buf += (s->bufaddr & 3) << 4;
261

    
262
    switch (cmd) {
263
    case 0x00:        /* Load single/multiple sector data unit into buffer */
264
        SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
265

    
266
        SETBUF_M()
267
        if (onenand_load_main(s, sec, s->count, buf))
268
            s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
269

    
270
#if 0
271
        SETBUF_S()
272
        if (onenand_load_spare(s, sec, s->count, buf))
273
            s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
274
#endif
275

    
276
        /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
277
         * or    if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
278
         * then we need two split the read/write into two chunks.
279
         */
280
        s->intstatus |= ONEN_INT | ONEN_INT_LOAD;
281
        break;
282
    case 0x13:        /* Load single/multiple spare sector into buffer */
283
        SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
284

    
285
        SETBUF_S()
286
        if (onenand_load_spare(s, sec, s->count, buf))
287
            s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
288

    
289
        /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
290
         * or    if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
291
         * then we need two split the read/write into two chunks.
292
         */
293
        s->intstatus |= ONEN_INT | ONEN_INT_LOAD;
294
        break;
295
    case 0x80:        /* Program single/multiple sector data unit from buffer */
296
        SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
297

    
298
        SETBUF_M()
299
        if (onenand_prog_main(s, sec, s->count, buf))
300
            s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
301

    
302
#if 0
303
        SETBUF_S()
304
        if (onenand_prog_spare(s, sec, s->count, buf))
305
            s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
306
#endif
307

    
308
        /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
309
         * or    if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
310
         * then we need two split the read/write into two chunks.
311
         */
312
        s->intstatus |= ONEN_INT | ONEN_INT_PROG;
313
        break;
314
    case 0x1a:        /* Program single/multiple spare area sector from buffer */
315
        SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
316

    
317
        SETBUF_S()
318
        if (onenand_prog_spare(s, sec, s->count, buf))
319
            s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
320

    
321
        /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
322
         * or    if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
323
         * then we need two split the read/write into two chunks.
324
         */
325
        s->intstatus |= ONEN_INT | ONEN_INT_PROG;
326
        break;
327
    case 0x1b:        /* Copy-back program */
328
        SETBUF_S()
329

    
330
        SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
331
        if (onenand_load_main(s, sec, s->count, buf))
332
            s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
333

    
334
        SETADDR(ONEN_BUF_DEST_BLOCK, ONEN_BUF_DEST_PAGE)
335
        if (onenand_prog_main(s, sec, s->count, buf))
336
            s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
337

    
338
        /* TODO: spare areas */
339

    
340
        s->intstatus |= ONEN_INT | ONEN_INT_PROG;
341
        break;
342

    
343
    case 0x23:        /* Unlock NAND array block(s) */
344
        s->intstatus |= ONEN_INT;
345

    
346
        /* XXX the previous (?) area should be locked automatically */
347
        for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
348
            if (b >= s->blocks) {
349
                s->status |= ONEN_ERR_CMD;
350
                break;
351
            }
352
            if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
353
                break;
354

    
355
            s->wpstatus = s->blockwp[b] = ONEN_LOCK_UNLOCKED;
356
        }
357
        break;
358
    case 0x27:        /* Unlock All NAND array blocks */
359
        s->intstatus |= ONEN_INT;
360

    
361
        for (b = 0; b < s->blocks; b ++) {
362
            if (b >= s->blocks) {
363
                s->status |= ONEN_ERR_CMD;
364
                break;
365
            }
366
            if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
367
                break;
368

    
369
            s->wpstatus = s->blockwp[b] = ONEN_LOCK_UNLOCKED;
370
        }
371
        break;
372

    
373
    case 0x2a:        /* Lock NAND array block(s) */
374
        s->intstatus |= ONEN_INT;
375

    
376
        for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
377
            if (b >= s->blocks) {
378
                s->status |= ONEN_ERR_CMD;
379
                break;
380
            }
381
            if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
382
                break;
383

    
384
            s->wpstatus = s->blockwp[b] = ONEN_LOCK_LOCKED;
385
        }
386
        break;
387
    case 0x2c:        /* Lock-tight NAND array block(s) */
388
        s->intstatus |= ONEN_INT;
389

    
390
        for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
391
            if (b >= s->blocks) {
392
                s->status |= ONEN_ERR_CMD;
393
                break;
394
            }
395
            if (s->blockwp[b] == ONEN_LOCK_UNLOCKED)
396
                continue;
397

    
398
            s->wpstatus = s->blockwp[b] = ONEN_LOCK_LOCKTIGHTEN;
399
        }
400
        break;
401

    
402
    case 0x71:        /* Erase-Verify-Read */
403
        s->intstatus |= ONEN_INT;
404
        break;
405
    case 0x95:        /* Multi-block erase */
406
        qemu_irq_pulse(s->intr);
407
        /* Fall through.  */
408
    case 0x94:        /* Block erase */
409
        sec = ((s->addr[ONEN_BUF_BLOCK] & 0xfff) |
410
                        (s->addr[ONEN_BUF_BLOCK] >> 15 ? s->density_mask : 0))
411
                << (BLOCK_SHIFT - 9);
412
        if (onenand_erase(s, sec, 1 << (BLOCK_SHIFT - 9)))
413
            s->status |= ONEN_ERR_CMD | ONEN_ERR_ERASE;
414

    
415
        s->intstatus |= ONEN_INT | ONEN_INT_ERASE;
416
        break;
417
    case 0xb0:        /* Erase suspend */
418
        break;
419
    case 0x30:        /* Erase resume */
420
        s->intstatus |= ONEN_INT | ONEN_INT_ERASE;
421
        break;
422

    
423
    case 0xf0:        /* Reset NAND Flash core */
424
        onenand_reset(s, 0);
425
        break;
426
    case 0xf3:        /* Reset OneNAND */
427
        onenand_reset(s, 0);
428
        break;
429

    
430
    case 0x65:        /* OTP Access */
431
        s->intstatus |= ONEN_INT;
432
        s->bdrv_cur = 0;
433
        s->current = s->otp;
434
        s->secs_cur = 1 << (BLOCK_SHIFT - 9);
435
        s->addr[ONEN_BUF_BLOCK] = 0;
436
        s->otpmode = 1;
437
        break;
438

    
439
    default:
440
        s->status |= ONEN_ERR_CMD;
441
        s->intstatus |= ONEN_INT;
442
        fprintf(stderr, "%s: unknown OneNAND command %x\n",
443
                        __FUNCTION__, cmd);
444
    }
445

    
446
    onenand_intr_update(s);
447
}
448

    
449
static uint32_t onenand_read(void *opaque, target_phys_addr_t addr)
450
{
451
    struct onenand_s *s = (struct onenand_s *) opaque;
452
    int offset = addr >> s->shift;
453

    
454
    switch (offset) {
455
    case 0x0000 ... 0xc000:
456
        return lduw_le_p(s->boot[0] + addr);
457

    
458
    case 0xf000:        /* Manufacturer ID */
459
        return (s->id >> 16) & 0xff;
460
    case 0xf001:        /* Device ID */
461
        return (s->id >>  8) & 0xff;
462
    /* TODO: get the following values from a real chip!  */
463
    case 0xf002:        /* Version ID */
464
        return (s->id >>  0) & 0xff;
465
    case 0xf003:        /* Data Buffer size */
466
        return 1 << PAGE_SHIFT;
467
    case 0xf004:        /* Boot Buffer size */
468
        return 0x200;
469
    case 0xf005:        /* Amount of buffers */
470
        return 1 | (2 << 8);
471
    case 0xf006:        /* Technology */
472
        return 0;
473

    
474
    case 0xf100 ... 0xf107:        /* Start addresses */
475
        return s->addr[offset - 0xf100];
476

    
477
    case 0xf200:        /* Start buffer */
478
        return (s->bufaddr << 8) | ((s->count - 1) & (1 << (PAGE_SHIFT - 10)));
479

    
480
    case 0xf220:        /* Command */
481
        return s->command;
482
    case 0xf221:        /* System Configuration 1 */
483
        return s->config[0] & 0xffe0;
484
    case 0xf222:        /* System Configuration 2 */
485
        return s->config[1];
486

    
487
    case 0xf240:        /* Controller Status */
488
        return s->status;
489
    case 0xf241:        /* Interrupt */
490
        return s->intstatus;
491
    case 0xf24c:        /* Unlock Start Block Address */
492
        return s->unladdr[0];
493
    case 0xf24d:        /* Unlock End Block Address */
494
        return s->unladdr[1];
495
    case 0xf24e:        /* Write Protection Status */
496
        return s->wpstatus;
497

    
498
    case 0xff00:        /* ECC Status */
499
        return 0x00;
500
    case 0xff01:        /* ECC Result of main area data */
501
    case 0xff02:        /* ECC Result of spare area data */
502
    case 0xff03:        /* ECC Result of main area data */
503
    case 0xff04:        /* ECC Result of spare area data */
504
        cpu_abort(cpu_single_env, "%s: imeplement ECC\n", __FUNCTION__);
505
        return 0x0000;
506
    }
507

    
508
    fprintf(stderr, "%s: unknown OneNAND register %x\n",
509
                    __FUNCTION__, offset);
510
    return 0;
511
}
512

    
513
static void onenand_write(void *opaque, target_phys_addr_t addr,
514
                uint32_t value)
515
{
516
    struct onenand_s *s = (struct onenand_s *) opaque;
517
    int offset = addr >> s->shift;
518
    int sec;
519

    
520
    switch (offset) {
521
    case 0x0000 ... 0x01ff:
522
    case 0x8000 ... 0x800f:
523
        if (s->cycle) {
524
            s->cycle = 0;
525

    
526
            if (value == 0x0000) {
527
                SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
528
                onenand_load_main(s, sec,
529
                                1 << (PAGE_SHIFT - 9), s->data[0][0]);
530
                s->addr[ONEN_BUF_PAGE] += 4;
531
                s->addr[ONEN_BUF_PAGE] &= 0xff;
532
            }
533
            break;
534
        }
535

    
536
        switch (value) {
537
        case 0x00f0:        /* Reset OneNAND */
538
            onenand_reset(s, 0);
539
            break;
540

    
541
        case 0x00e0:        /* Load Data into Buffer */
542
            s->cycle = 1;
543
            break;
544

    
545
        case 0x0090:        /* Read Identification Data */
546
            memset(s->boot[0], 0, 3 << s->shift);
547
            s->boot[0][0 << s->shift] = (s->id >> 16) & 0xff;
548
            s->boot[0][1 << s->shift] = (s->id >>  8) & 0xff;
549
            s->boot[0][2 << s->shift] = s->wpstatus & 0xff;
550
            break;
551

    
552
        default:
553
            fprintf(stderr, "%s: unknown OneNAND boot command %x\n",
554
                            __FUNCTION__, value);
555
        }
556
        break;
557

    
558
    case 0xf100 ... 0xf107:        /* Start addresses */
559
        s->addr[offset - 0xf100] = value;
560
        break;
561

    
562
    case 0xf200:        /* Start buffer */
563
        s->bufaddr = (value >> 8) & 0xf;
564
        if (PAGE_SHIFT == 11)
565
            s->count = (value & 3) ?: 4;
566
        else if (PAGE_SHIFT == 10)
567
            s->count = (value & 1) ?: 2;
568
        break;
569

    
570
    case 0xf220:        /* Command */
571
        if (s->intstatus & (1 << 15))
572
            break;
573
        s->command = value;
574
        onenand_command(s, s->command);
575
        break;
576
    case 0xf221:        /* System Configuration 1 */
577
        s->config[0] = value;
578
        onenand_intr_update(s);
579
        qemu_set_irq(s->rdy, (s->config[0] >> 7) & 1);
580
        break;
581
    case 0xf222:        /* System Configuration 2 */
582
        s->config[1] = value;
583
        break;
584

    
585
    case 0xf241:        /* Interrupt */
586
        s->intstatus &= value;
587
        if ((1 << 15) & ~s->intstatus)
588
            s->status &= ~(ONEN_ERR_CMD | ONEN_ERR_ERASE |
589
                            ONEN_ERR_PROG | ONEN_ERR_LOAD);
590
        onenand_intr_update(s);
591
        break;
592
    case 0xf24c:        /* Unlock Start Block Address */
593
        s->unladdr[0] = value & (s->blocks - 1);
594
        /* For some reason we have to set the end address to by default
595
         * be same as start because the software forgets to write anything
596
         * in there.  */
597
        s->unladdr[1] = value & (s->blocks - 1);
598
        break;
599
    case 0xf24d:        /* Unlock End Block Address */
600
        s->unladdr[1] = value & (s->blocks - 1);
601
        break;
602

    
603
    default:
604
        fprintf(stderr, "%s: unknown OneNAND register %x\n",
605
                        __FUNCTION__, offset);
606
    }
607
}
608

    
609
static CPUReadMemoryFunc *onenand_readfn[] = {
610
    onenand_read,        /* TODO */
611
    onenand_read,
612
    onenand_read,
613
};
614

    
615
static CPUWriteMemoryFunc *onenand_writefn[] = {
616
    onenand_write,        /* TODO */
617
    onenand_write,
618
    onenand_write,
619
};
620

    
621
void *onenand_init(uint32_t id, int regshift, qemu_irq irq)
622
{
623
    struct onenand_s *s = (struct onenand_s *) qemu_mallocz(sizeof(*s));
624
    int bdrv_index = drive_get_index(IF_MTD, 0, 0);
625
    uint32_t size = 1 << (24 + ((id >> 12) & 7));
626
    void *ram;
627

    
628
    s->shift = regshift;
629
    s->intr = irq;
630
    s->rdy = 0;
631
    s->id = id;
632
    s->blocks = size >> BLOCK_SHIFT;
633
    s->secs = size >> 9;
634
    s->blockwp = qemu_malloc(s->blocks);
635
    s->density_mask = (id & (1 << 11)) ? (1 << (6 + ((id >> 12) & 7))) : 0;
636
    s->iomemtype = cpu_register_io_memory(0, onenand_readfn,
637
                    onenand_writefn, s);
638
    if (bdrv_index == -1)
639
        s->image = memset(qemu_malloc(size + (size >> 5)),
640
                        0xff, size + (size >> 5));
641
    else
642
        s->bdrv = drives_table[bdrv_index].bdrv;
643
    s->otp = memset(qemu_malloc((64 + 2) << PAGE_SHIFT),
644
                    0xff, (64 + 2) << PAGE_SHIFT);
645
    s->ram = qemu_ram_alloc(0xc000 << s->shift);
646
    ram = phys_ram_base + s->ram;
647
    s->boot[0] = ram + (0x0000 << s->shift);
648
    s->boot[1] = ram + (0x8000 << s->shift);
649
    s->data[0][0] = ram + ((0x0200 + (0 << (PAGE_SHIFT - 1))) << s->shift);
650
    s->data[0][1] = ram + ((0x8010 + (0 << (PAGE_SHIFT - 6))) << s->shift);
651
    s->data[1][0] = ram + ((0x0200 + (1 << (PAGE_SHIFT - 1))) << s->shift);
652
    s->data[1][1] = ram + ((0x8010 + (1 << (PAGE_SHIFT - 6))) << s->shift);
653

    
654
    onenand_reset(s, 1);
655

    
656
    return s;
657
}
658

    
659
void *onenand_raw_otp(void *opaque)
660
{
661
    struct onenand_s *s = (struct onenand_s *) opaque;
662

    
663
    return s->otp;
664
}