Statistics
| Branch: | Revision:

root / kvm-all.c @ 651eb0f4

History | View | Annotate | Download (52.5 kB)

1
/*
2
 * QEMU KVM support
3
 *
4
 * Copyright IBM, Corp. 2008
5
 *           Red Hat, Inc. 2008
6
 *
7
 * Authors:
8
 *  Anthony Liguori   <aliguori@us.ibm.com>
9
 *  Glauber Costa     <gcosta@redhat.com>
10
 *
11
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12
 * See the COPYING file in the top-level directory.
13
 *
14
 */
15

    
16
#include <sys/types.h>
17
#include <sys/ioctl.h>
18
#include <sys/mman.h>
19
#include <stdarg.h>
20

    
21
#include <linux/kvm.h>
22

    
23
#include "qemu-common.h"
24
#include "qemu/atomic.h"
25
#include "qemu/option.h"
26
#include "qemu/config-file.h"
27
#include "sysemu/sysemu.h"
28
#include "hw/hw.h"
29
#include "hw/pci/msi.h"
30
#include "exec/gdbstub.h"
31
#include "sysemu/kvm.h"
32
#include "qemu/bswap.h"
33
#include "exec/memory.h"
34
#include "exec/address-spaces.h"
35
#include "qemu/event_notifier.h"
36
#include "trace.h"
37

    
38
/* This check must be after config-host.h is included */
39
#ifdef CONFIG_EVENTFD
40
#include <sys/eventfd.h>
41
#endif
42

    
43
#ifdef CONFIG_VALGRIND_H
44
#include <valgrind/memcheck.h>
45
#endif
46

    
47
/* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */
48
#define PAGE_SIZE TARGET_PAGE_SIZE
49

    
50
//#define DEBUG_KVM
51

    
52
#ifdef DEBUG_KVM
53
#define DPRINTF(fmt, ...) \
54
    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
55
#else
56
#define DPRINTF(fmt, ...) \
57
    do { } while (0)
58
#endif
59

    
60
#define KVM_MSI_HASHTAB_SIZE    256
61

    
62
typedef struct KVMSlot
63
{
64
    hwaddr start_addr;
65
    ram_addr_t memory_size;
66
    void *ram;
67
    int slot;
68
    int flags;
69
} KVMSlot;
70

    
71
typedef struct kvm_dirty_log KVMDirtyLog;
72

    
73
struct KVMState
74
{
75
    KVMSlot slots[32];
76
    int fd;
77
    int vmfd;
78
    int coalesced_mmio;
79
    struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
80
    bool coalesced_flush_in_progress;
81
    int broken_set_mem_region;
82
    int migration_log;
83
    int vcpu_events;
84
    int robust_singlestep;
85
    int debugregs;
86
#ifdef KVM_CAP_SET_GUEST_DEBUG
87
    struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
88
#endif
89
    int pit_state2;
90
    int xsave, xcrs;
91
    int many_ioeventfds;
92
    int intx_set_mask;
93
    /* The man page (and posix) say ioctl numbers are signed int, but
94
     * they're not.  Linux, glibc and *BSD all treat ioctl numbers as
95
     * unsigned, and treating them as signed here can break things */
96
    unsigned irq_set_ioctl;
97
#ifdef KVM_CAP_IRQ_ROUTING
98
    struct kvm_irq_routing *irq_routes;
99
    int nr_allocated_irq_routes;
100
    uint32_t *used_gsi_bitmap;
101
    unsigned int gsi_count;
102
    QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
103
    bool direct_msi;
104
#endif
105
};
106

    
107
KVMState *kvm_state;
108
bool kvm_kernel_irqchip;
109
bool kvm_async_interrupts_allowed;
110
bool kvm_irqfds_allowed;
111
bool kvm_msi_via_irqfd_allowed;
112
bool kvm_gsi_routing_allowed;
113
bool kvm_allowed;
114
bool kvm_readonly_mem_allowed;
115

    
116
static const KVMCapabilityInfo kvm_required_capabilites[] = {
117
    KVM_CAP_INFO(USER_MEMORY),
118
    KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
119
    KVM_CAP_LAST_INFO
120
};
121

    
122
static KVMSlot *kvm_alloc_slot(KVMState *s)
123
{
124
    int i;
125

    
126
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
127
        if (s->slots[i].memory_size == 0) {
128
            return &s->slots[i];
129
        }
130
    }
131

    
132
    fprintf(stderr, "%s: no free slot available\n", __func__);
133
    abort();
134
}
135

    
136
static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
137
                                         hwaddr start_addr,
138
                                         hwaddr end_addr)
139
{
140
    int i;
141

    
142
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
143
        KVMSlot *mem = &s->slots[i];
144

    
145
        if (start_addr == mem->start_addr &&
146
            end_addr == mem->start_addr + mem->memory_size) {
147
            return mem;
148
        }
149
    }
150

    
151
    return NULL;
152
}
153

    
154
/*
155
 * Find overlapping slot with lowest start address
156
 */
157
static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
158
                                            hwaddr start_addr,
159
                                            hwaddr end_addr)
160
{
161
    KVMSlot *found = NULL;
162
    int i;
163

    
164
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
165
        KVMSlot *mem = &s->slots[i];
166

    
167
        if (mem->memory_size == 0 ||
168
            (found && found->start_addr < mem->start_addr)) {
169
            continue;
170
        }
171

    
172
        if (end_addr > mem->start_addr &&
173
            start_addr < mem->start_addr + mem->memory_size) {
174
            found = mem;
175
        }
176
    }
177

    
178
    return found;
179
}
180

    
181
int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
182
                                       hwaddr *phys_addr)
183
{
184
    int i;
185

    
186
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
187
        KVMSlot *mem = &s->slots[i];
188

    
189
        if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
190
            *phys_addr = mem->start_addr + (ram - mem->ram);
191
            return 1;
192
        }
193
    }
194

    
195
    return 0;
196
}
197

    
198
static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
199
{
200
    struct kvm_userspace_memory_region mem;
201

    
202
    mem.slot = slot->slot;
203
    mem.guest_phys_addr = slot->start_addr;
204
    mem.userspace_addr = (unsigned long)slot->ram;
205
    mem.flags = slot->flags;
206
    if (s->migration_log) {
207
        mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
208
    }
209

    
210
    if (slot->memory_size && mem.flags & KVM_MEM_READONLY) {
211
        /* Set the slot size to 0 before setting the slot to the desired
212
         * value. This is needed based on KVM commit 75d61fbc. */
213
        mem.memory_size = 0;
214
        kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
215
    }
216
    mem.memory_size = slot->memory_size;
217
    return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
218
}
219

    
220
static void kvm_reset_vcpu(void *opaque)
221
{
222
    CPUState *cpu = opaque;
223

    
224
    kvm_arch_reset_vcpu(cpu);
225
}
226

    
227
int kvm_init_vcpu(CPUState *cpu)
228
{
229
    KVMState *s = kvm_state;
230
    long mmap_size;
231
    int ret;
232

    
233
    DPRINTF("kvm_init_vcpu\n");
234

    
235
    ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)kvm_arch_vcpu_id(cpu));
236
    if (ret < 0) {
237
        DPRINTF("kvm_create_vcpu failed\n");
238
        goto err;
239
    }
240

    
241
    cpu->kvm_fd = ret;
242
    cpu->kvm_state = s;
243
    cpu->kvm_vcpu_dirty = true;
244

    
245
    mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
246
    if (mmap_size < 0) {
247
        ret = mmap_size;
248
        DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
249
        goto err;
250
    }
251

    
252
    cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
253
                        cpu->kvm_fd, 0);
254
    if (cpu->kvm_run == MAP_FAILED) {
255
        ret = -errno;
256
        DPRINTF("mmap'ing vcpu state failed\n");
257
        goto err;
258
    }
259

    
260
    if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
261
        s->coalesced_mmio_ring =
262
            (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
263
    }
264

    
265
    ret = kvm_arch_init_vcpu(cpu);
266
    if (ret == 0) {
267
        qemu_register_reset(kvm_reset_vcpu, cpu);
268
        kvm_arch_reset_vcpu(cpu);
269
    }
270
err:
271
    return ret;
272
}
273

    
274
/*
275
 * dirty pages logging control
276
 */
277

    
278
static int kvm_mem_flags(KVMState *s, bool log_dirty, bool readonly)
279
{
280
    int flags = 0;
281
    flags = log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0;
282
    if (readonly && kvm_readonly_mem_allowed) {
283
        flags |= KVM_MEM_READONLY;
284
    }
285
    return flags;
286
}
287

    
288
static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty)
289
{
290
    KVMState *s = kvm_state;
291
    int flags, mask = KVM_MEM_LOG_DIRTY_PAGES;
292
    int old_flags;
293

    
294
    old_flags = mem->flags;
295

    
296
    flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty, false);
297
    mem->flags = flags;
298

    
299
    /* If nothing changed effectively, no need to issue ioctl */
300
    if (s->migration_log) {
301
        flags |= KVM_MEM_LOG_DIRTY_PAGES;
302
    }
303

    
304
    if (flags == old_flags) {
305
        return 0;
306
    }
307

    
308
    return kvm_set_user_memory_region(s, mem);
309
}
310

    
311
static int kvm_dirty_pages_log_change(hwaddr phys_addr,
312
                                      ram_addr_t size, bool log_dirty)
313
{
314
    KVMState *s = kvm_state;
315
    KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
316

    
317
    if (mem == NULL)  {
318
        fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
319
                TARGET_FMT_plx "\n", __func__, phys_addr,
320
                (hwaddr)(phys_addr + size - 1));
321
        return -EINVAL;
322
    }
323
    return kvm_slot_dirty_pages_log_change(mem, log_dirty);
324
}
325

    
326
static void kvm_log_start(MemoryListener *listener,
327
                          MemoryRegionSection *section)
328
{
329
    int r;
330

    
331
    r = kvm_dirty_pages_log_change(section->offset_within_address_space,
332
                                   section->size, true);
333
    if (r < 0) {
334
        abort();
335
    }
336
}
337

    
338
static void kvm_log_stop(MemoryListener *listener,
339
                          MemoryRegionSection *section)
340
{
341
    int r;
342

    
343
    r = kvm_dirty_pages_log_change(section->offset_within_address_space,
344
                                   section->size, false);
345
    if (r < 0) {
346
        abort();
347
    }
348
}
349

    
350
static int kvm_set_migration_log(int enable)
351
{
352
    KVMState *s = kvm_state;
353
    KVMSlot *mem;
354
    int i, err;
355

    
356
    s->migration_log = enable;
357

    
358
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
359
        mem = &s->slots[i];
360

    
361
        if (!mem->memory_size) {
362
            continue;
363
        }
364
        if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
365
            continue;
366
        }
367
        err = kvm_set_user_memory_region(s, mem);
368
        if (err) {
369
            return err;
370
        }
371
    }
372
    return 0;
373
}
374

    
375
/* get kvm's dirty pages bitmap and update qemu's */
376
static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
377
                                         unsigned long *bitmap)
378
{
379
    unsigned int i, j;
380
    unsigned long page_number, c;
381
    hwaddr addr, addr1;
382
    unsigned int len = ((section->size / getpagesize()) + HOST_LONG_BITS - 1) / HOST_LONG_BITS;
383
    unsigned long hpratio = getpagesize() / TARGET_PAGE_SIZE;
384

    
385
    /*
386
     * bitmap-traveling is faster than memory-traveling (for addr...)
387
     * especially when most of the memory is not dirty.
388
     */
389
    for (i = 0; i < len; i++) {
390
        if (bitmap[i] != 0) {
391
            c = leul_to_cpu(bitmap[i]);
392
            do {
393
                j = ffsl(c) - 1;
394
                c &= ~(1ul << j);
395
                page_number = (i * HOST_LONG_BITS + j) * hpratio;
396
                addr1 = page_number * TARGET_PAGE_SIZE;
397
                addr = section->offset_within_region + addr1;
398
                memory_region_set_dirty(section->mr, addr,
399
                                        TARGET_PAGE_SIZE * hpratio);
400
            } while (c != 0);
401
        }
402
    }
403
    return 0;
404
}
405

    
406
#define ALIGN(x, y)  (((x)+(y)-1) & ~((y)-1))
407

    
408
/**
409
 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
410
 * This function updates qemu's dirty bitmap using
411
 * memory_region_set_dirty().  This means all bits are set
412
 * to dirty.
413
 *
414
 * @start_add: start of logged region.
415
 * @end_addr: end of logged region.
416
 */
417
static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection *section)
418
{
419
    KVMState *s = kvm_state;
420
    unsigned long size, allocated_size = 0;
421
    KVMDirtyLog d;
422
    KVMSlot *mem;
423
    int ret = 0;
424
    hwaddr start_addr = section->offset_within_address_space;
425
    hwaddr end_addr = start_addr + section->size;
426

    
427
    d.dirty_bitmap = NULL;
428
    while (start_addr < end_addr) {
429
        mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
430
        if (mem == NULL) {
431
            break;
432
        }
433

    
434
        /* XXX bad kernel interface alert
435
         * For dirty bitmap, kernel allocates array of size aligned to
436
         * bits-per-long.  But for case when the kernel is 64bits and
437
         * the userspace is 32bits, userspace can't align to the same
438
         * bits-per-long, since sizeof(long) is different between kernel
439
         * and user space.  This way, userspace will provide buffer which
440
         * may be 4 bytes less than the kernel will use, resulting in
441
         * userspace memory corruption (which is not detectable by valgrind
442
         * too, in most cases).
443
         * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
444
         * a hope that sizeof(long) wont become >8 any time soon.
445
         */
446
        size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
447
                     /*HOST_LONG_BITS*/ 64) / 8;
448
        if (!d.dirty_bitmap) {
449
            d.dirty_bitmap = g_malloc(size);
450
        } else if (size > allocated_size) {
451
            d.dirty_bitmap = g_realloc(d.dirty_bitmap, size);
452
        }
453
        allocated_size = size;
454
        memset(d.dirty_bitmap, 0, allocated_size);
455

    
456
        d.slot = mem->slot;
457

    
458
        if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
459
            DPRINTF("ioctl failed %d\n", errno);
460
            ret = -1;
461
            break;
462
        }
463

    
464
        kvm_get_dirty_pages_log_range(section, d.dirty_bitmap);
465
        start_addr = mem->start_addr + mem->memory_size;
466
    }
467
    g_free(d.dirty_bitmap);
468

    
469
    return ret;
470
}
471

    
472
static void kvm_coalesce_mmio_region(MemoryListener *listener,
473
                                     MemoryRegionSection *secion,
474
                                     hwaddr start, hwaddr size)
475
{
476
    KVMState *s = kvm_state;
477

    
478
    if (s->coalesced_mmio) {
479
        struct kvm_coalesced_mmio_zone zone;
480

    
481
        zone.addr = start;
482
        zone.size = size;
483
        zone.pad = 0;
484

    
485
        (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
486
    }
487
}
488

    
489
static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
490
                                       MemoryRegionSection *secion,
491
                                       hwaddr start, hwaddr size)
492
{
493
    KVMState *s = kvm_state;
494

    
495
    if (s->coalesced_mmio) {
496
        struct kvm_coalesced_mmio_zone zone;
497

    
498
        zone.addr = start;
499
        zone.size = size;
500
        zone.pad = 0;
501

    
502
        (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
503
    }
504
}
505

    
506
int kvm_check_extension(KVMState *s, unsigned int extension)
507
{
508
    int ret;
509

    
510
    ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
511
    if (ret < 0) {
512
        ret = 0;
513
    }
514

    
515
    return ret;
516
}
517

    
518
static int kvm_set_ioeventfd_mmio(int fd, uint32_t addr, uint32_t val,
519
                                  bool assign, uint32_t size, bool datamatch)
520
{
521
    int ret;
522
    struct kvm_ioeventfd iofd;
523

    
524
    iofd.datamatch = datamatch ? val : 0;
525
    iofd.addr = addr;
526
    iofd.len = size;
527
    iofd.flags = 0;
528
    iofd.fd = fd;
529

    
530
    if (!kvm_enabled()) {
531
        return -ENOSYS;
532
    }
533

    
534
    if (datamatch) {
535
        iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
536
    }
537
    if (!assign) {
538
        iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
539
    }
540

    
541
    ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
542

    
543
    if (ret < 0) {
544
        return -errno;
545
    }
546

    
547
    return 0;
548
}
549

    
550
static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
551
                                 bool assign, uint32_t size, bool datamatch)
552
{
553
    struct kvm_ioeventfd kick = {
554
        .datamatch = datamatch ? val : 0,
555
        .addr = addr,
556
        .flags = KVM_IOEVENTFD_FLAG_PIO,
557
        .len = size,
558
        .fd = fd,
559
    };
560
    int r;
561
    if (!kvm_enabled()) {
562
        return -ENOSYS;
563
    }
564
    if (datamatch) {
565
        kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
566
    }
567
    if (!assign) {
568
        kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
569
    }
570
    r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
571
    if (r < 0) {
572
        return r;
573
    }
574
    return 0;
575
}
576

    
577

    
578
static int kvm_check_many_ioeventfds(void)
579
{
580
    /* Userspace can use ioeventfd for io notification.  This requires a host
581
     * that supports eventfd(2) and an I/O thread; since eventfd does not
582
     * support SIGIO it cannot interrupt the vcpu.
583
     *
584
     * Older kernels have a 6 device limit on the KVM io bus.  Find out so we
585
     * can avoid creating too many ioeventfds.
586
     */
587
#if defined(CONFIG_EVENTFD)
588
    int ioeventfds[7];
589
    int i, ret = 0;
590
    for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
591
        ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
592
        if (ioeventfds[i] < 0) {
593
            break;
594
        }
595
        ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
596
        if (ret < 0) {
597
            close(ioeventfds[i]);
598
            break;
599
        }
600
    }
601

    
602
    /* Decide whether many devices are supported or not */
603
    ret = i == ARRAY_SIZE(ioeventfds);
604

    
605
    while (i-- > 0) {
606
        kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
607
        close(ioeventfds[i]);
608
    }
609
    return ret;
610
#else
611
    return 0;
612
#endif
613
}
614

    
615
static const KVMCapabilityInfo *
616
kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
617
{
618
    while (list->name) {
619
        if (!kvm_check_extension(s, list->value)) {
620
            return list;
621
        }
622
        list++;
623
    }
624
    return NULL;
625
}
626

    
627
static void kvm_set_phys_mem(MemoryRegionSection *section, bool add)
628
{
629
    KVMState *s = kvm_state;
630
    KVMSlot *mem, old;
631
    int err;
632
    MemoryRegion *mr = section->mr;
633
    bool log_dirty = memory_region_is_logging(mr);
634
    bool writeable = !mr->readonly && !mr->rom_device;
635
    bool readonly_flag = mr->readonly || memory_region_is_romd(mr);
636
    hwaddr start_addr = section->offset_within_address_space;
637
    ram_addr_t size = section->size;
638
    void *ram = NULL;
639
    unsigned delta;
640

    
641
    /* kvm works in page size chunks, but the function may be called
642
       with sub-page size and unaligned start address. */
643
    delta = TARGET_PAGE_ALIGN(size) - size;
644
    if (delta > size) {
645
        return;
646
    }
647
    start_addr += delta;
648
    size -= delta;
649
    size &= TARGET_PAGE_MASK;
650
    if (!size || (start_addr & ~TARGET_PAGE_MASK)) {
651
        return;
652
    }
653

    
654
    if (!memory_region_is_ram(mr)) {
655
        if (writeable || !kvm_readonly_mem_allowed) {
656
            return;
657
        } else if (!mr->romd_mode) {
658
            /* If the memory device is not in romd_mode, then we actually want
659
             * to remove the kvm memory slot so all accesses will trap. */
660
            add = false;
661
        }
662
    }
663

    
664
    ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta;
665

    
666
    while (1) {
667
        mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
668
        if (!mem) {
669
            break;
670
        }
671

    
672
        if (add && start_addr >= mem->start_addr &&
673
            (start_addr + size <= mem->start_addr + mem->memory_size) &&
674
            (ram - start_addr == mem->ram - mem->start_addr)) {
675
            /* The new slot fits into the existing one and comes with
676
             * identical parameters - update flags and done. */
677
            kvm_slot_dirty_pages_log_change(mem, log_dirty);
678
            return;
679
        }
680

    
681
        old = *mem;
682

    
683
        if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
684
            kvm_physical_sync_dirty_bitmap(section);
685
        }
686

    
687
        /* unregister the overlapping slot */
688
        mem->memory_size = 0;
689
        err = kvm_set_user_memory_region(s, mem);
690
        if (err) {
691
            fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
692
                    __func__, strerror(-err));
693
            abort();
694
        }
695

    
696
        /* Workaround for older KVM versions: we can't join slots, even not by
697
         * unregistering the previous ones and then registering the larger
698
         * slot. We have to maintain the existing fragmentation. Sigh.
699
         *
700
         * This workaround assumes that the new slot starts at the same
701
         * address as the first existing one. If not or if some overlapping
702
         * slot comes around later, we will fail (not seen in practice so far)
703
         * - and actually require a recent KVM version. */
704
        if (s->broken_set_mem_region &&
705
            old.start_addr == start_addr && old.memory_size < size && add) {
706
            mem = kvm_alloc_slot(s);
707
            mem->memory_size = old.memory_size;
708
            mem->start_addr = old.start_addr;
709
            mem->ram = old.ram;
710
            mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
711

    
712
            err = kvm_set_user_memory_region(s, mem);
713
            if (err) {
714
                fprintf(stderr, "%s: error updating slot: %s\n", __func__,
715
                        strerror(-err));
716
                abort();
717
            }
718

    
719
            start_addr += old.memory_size;
720
            ram += old.memory_size;
721
            size -= old.memory_size;
722
            continue;
723
        }
724

    
725
        /* register prefix slot */
726
        if (old.start_addr < start_addr) {
727
            mem = kvm_alloc_slot(s);
728
            mem->memory_size = start_addr - old.start_addr;
729
            mem->start_addr = old.start_addr;
730
            mem->ram = old.ram;
731
            mem->flags =  kvm_mem_flags(s, log_dirty, readonly_flag);
732

    
733
            err = kvm_set_user_memory_region(s, mem);
734
            if (err) {
735
                fprintf(stderr, "%s: error registering prefix slot: %s\n",
736
                        __func__, strerror(-err));
737
#ifdef TARGET_PPC
738
                fprintf(stderr, "%s: This is probably because your kernel's " \
739
                                "PAGE_SIZE is too big. Please try to use 4k " \
740
                                "PAGE_SIZE!\n", __func__);
741
#endif
742
                abort();
743
            }
744
        }
745

    
746
        /* register suffix slot */
747
        if (old.start_addr + old.memory_size > start_addr + size) {
748
            ram_addr_t size_delta;
749

    
750
            mem = kvm_alloc_slot(s);
751
            mem->start_addr = start_addr + size;
752
            size_delta = mem->start_addr - old.start_addr;
753
            mem->memory_size = old.memory_size - size_delta;
754
            mem->ram = old.ram + size_delta;
755
            mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
756

    
757
            err = kvm_set_user_memory_region(s, mem);
758
            if (err) {
759
                fprintf(stderr, "%s: error registering suffix slot: %s\n",
760
                        __func__, strerror(-err));
761
                abort();
762
            }
763
        }
764
    }
765

    
766
    /* in case the KVM bug workaround already "consumed" the new slot */
767
    if (!size) {
768
        return;
769
    }
770
    if (!add) {
771
        return;
772
    }
773
    mem = kvm_alloc_slot(s);
774
    mem->memory_size = size;
775
    mem->start_addr = start_addr;
776
    mem->ram = ram;
777
    mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
778

    
779
    err = kvm_set_user_memory_region(s, mem);
780
    if (err) {
781
        fprintf(stderr, "%s: error registering slot: %s\n", __func__,
782
                strerror(-err));
783
        abort();
784
    }
785
}
786

    
787
static void kvm_region_add(MemoryListener *listener,
788
                           MemoryRegionSection *section)
789
{
790
    kvm_set_phys_mem(section, true);
791
}
792

    
793
static void kvm_region_del(MemoryListener *listener,
794
                           MemoryRegionSection *section)
795
{
796
    kvm_set_phys_mem(section, false);
797
}
798

    
799
static void kvm_log_sync(MemoryListener *listener,
800
                         MemoryRegionSection *section)
801
{
802
    int r;
803

    
804
    r = kvm_physical_sync_dirty_bitmap(section);
805
    if (r < 0) {
806
        abort();
807
    }
808
}
809

    
810
static void kvm_log_global_start(struct MemoryListener *listener)
811
{
812
    int r;
813

    
814
    r = kvm_set_migration_log(1);
815
    assert(r >= 0);
816
}
817

    
818
static void kvm_log_global_stop(struct MemoryListener *listener)
819
{
820
    int r;
821

    
822
    r = kvm_set_migration_log(0);
823
    assert(r >= 0);
824
}
825

    
826
static void kvm_mem_ioeventfd_add(MemoryListener *listener,
827
                                  MemoryRegionSection *section,
828
                                  bool match_data, uint64_t data,
829
                                  EventNotifier *e)
830
{
831
    int fd = event_notifier_get_fd(e);
832
    int r;
833

    
834
    r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
835
                               data, true, section->size, match_data);
836
    if (r < 0) {
837
        abort();
838
    }
839
}
840

    
841
static void kvm_mem_ioeventfd_del(MemoryListener *listener,
842
                                  MemoryRegionSection *section,
843
                                  bool match_data, uint64_t data,
844
                                  EventNotifier *e)
845
{
846
    int fd = event_notifier_get_fd(e);
847
    int r;
848

    
849
    r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
850
                               data, false, section->size, match_data);
851
    if (r < 0) {
852
        abort();
853
    }
854
}
855

    
856
static void kvm_io_ioeventfd_add(MemoryListener *listener,
857
                                 MemoryRegionSection *section,
858
                                 bool match_data, uint64_t data,
859
                                 EventNotifier *e)
860
{
861
    int fd = event_notifier_get_fd(e);
862
    int r;
863

    
864
    r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
865
                              data, true, section->size, match_data);
866
    if (r < 0) {
867
        abort();
868
    }
869
}
870

    
871
static void kvm_io_ioeventfd_del(MemoryListener *listener,
872
                                 MemoryRegionSection *section,
873
                                 bool match_data, uint64_t data,
874
                                 EventNotifier *e)
875

    
876
{
877
    int fd = event_notifier_get_fd(e);
878
    int r;
879

    
880
    r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
881
                              data, false, section->size, match_data);
882
    if (r < 0) {
883
        abort();
884
    }
885
}
886

    
887
static MemoryListener kvm_memory_listener = {
888
    .region_add = kvm_region_add,
889
    .region_del = kvm_region_del,
890
    .log_start = kvm_log_start,
891
    .log_stop = kvm_log_stop,
892
    .log_sync = kvm_log_sync,
893
    .log_global_start = kvm_log_global_start,
894
    .log_global_stop = kvm_log_global_stop,
895
    .eventfd_add = kvm_mem_ioeventfd_add,
896
    .eventfd_del = kvm_mem_ioeventfd_del,
897
    .coalesced_mmio_add = kvm_coalesce_mmio_region,
898
    .coalesced_mmio_del = kvm_uncoalesce_mmio_region,
899
    .priority = 10,
900
};
901

    
902
static MemoryListener kvm_io_listener = {
903
    .eventfd_add = kvm_io_ioeventfd_add,
904
    .eventfd_del = kvm_io_ioeventfd_del,
905
    .priority = 10,
906
};
907

    
908
static void kvm_handle_interrupt(CPUState *cpu, int mask)
909
{
910
    cpu->interrupt_request |= mask;
911

    
912
    if (!qemu_cpu_is_self(cpu)) {
913
        qemu_cpu_kick(cpu);
914
    }
915
}
916

    
917
int kvm_set_irq(KVMState *s, int irq, int level)
918
{
919
    struct kvm_irq_level event;
920
    int ret;
921

    
922
    assert(kvm_async_interrupts_enabled());
923

    
924
    event.level = level;
925
    event.irq = irq;
926
    ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
927
    if (ret < 0) {
928
        perror("kvm_set_irq");
929
        abort();
930
    }
931

    
932
    return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
933
}
934

    
935
#ifdef KVM_CAP_IRQ_ROUTING
936
typedef struct KVMMSIRoute {
937
    struct kvm_irq_routing_entry kroute;
938
    QTAILQ_ENTRY(KVMMSIRoute) entry;
939
} KVMMSIRoute;
940

    
941
static void set_gsi(KVMState *s, unsigned int gsi)
942
{
943
    s->used_gsi_bitmap[gsi / 32] |= 1U << (gsi % 32);
944
}
945

    
946
static void clear_gsi(KVMState *s, unsigned int gsi)
947
{
948
    s->used_gsi_bitmap[gsi / 32] &= ~(1U << (gsi % 32));
949
}
950

    
951
static void kvm_init_irq_routing(KVMState *s)
952
{
953
    int gsi_count, i;
954

    
955
    gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING);
956
    if (gsi_count > 0) {
957
        unsigned int gsi_bits, i;
958

    
959
        /* Round up so we can search ints using ffs */
960
        gsi_bits = ALIGN(gsi_count, 32);
961
        s->used_gsi_bitmap = g_malloc0(gsi_bits / 8);
962
        s->gsi_count = gsi_count;
963

    
964
        /* Mark any over-allocated bits as already in use */
965
        for (i = gsi_count; i < gsi_bits; i++) {
966
            set_gsi(s, i);
967
        }
968
    }
969

    
970
    s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
971
    s->nr_allocated_irq_routes = 0;
972

    
973
    if (!s->direct_msi) {
974
        for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
975
            QTAILQ_INIT(&s->msi_hashtab[i]);
976
        }
977
    }
978

    
979
    kvm_arch_init_irq_routing(s);
980
}
981

    
982
static void kvm_irqchip_commit_routes(KVMState *s)
983
{
984
    int ret;
985

    
986
    s->irq_routes->flags = 0;
987
    ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
988
    assert(ret == 0);
989
}
990

    
991
static void kvm_add_routing_entry(KVMState *s,
992
                                  struct kvm_irq_routing_entry *entry)
993
{
994
    struct kvm_irq_routing_entry *new;
995
    int n, size;
996

    
997
    if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
998
        n = s->nr_allocated_irq_routes * 2;
999
        if (n < 64) {
1000
            n = 64;
1001
        }
1002
        size = sizeof(struct kvm_irq_routing);
1003
        size += n * sizeof(*new);
1004
        s->irq_routes = g_realloc(s->irq_routes, size);
1005
        s->nr_allocated_irq_routes = n;
1006
    }
1007
    n = s->irq_routes->nr++;
1008
    new = &s->irq_routes->entries[n];
1009
    memset(new, 0, sizeof(*new));
1010
    new->gsi = entry->gsi;
1011
    new->type = entry->type;
1012
    new->flags = entry->flags;
1013
    new->u = entry->u;
1014

    
1015
    set_gsi(s, entry->gsi);
1016

    
1017
    kvm_irqchip_commit_routes(s);
1018
}
1019

    
1020
static int kvm_update_routing_entry(KVMState *s,
1021
                                    struct kvm_irq_routing_entry *new_entry)
1022
{
1023
    struct kvm_irq_routing_entry *entry;
1024
    int n;
1025

    
1026
    for (n = 0; n < s->irq_routes->nr; n++) {
1027
        entry = &s->irq_routes->entries[n];
1028
        if (entry->gsi != new_entry->gsi) {
1029
            continue;
1030
        }
1031

    
1032
        entry->type = new_entry->type;
1033
        entry->flags = new_entry->flags;
1034
        entry->u = new_entry->u;
1035

    
1036
        kvm_irqchip_commit_routes(s);
1037

    
1038
        return 0;
1039
    }
1040

    
1041
    return -ESRCH;
1042
}
1043

    
1044
void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
1045
{
1046
    struct kvm_irq_routing_entry e;
1047

    
1048
    assert(pin < s->gsi_count);
1049

    
1050
    e.gsi = irq;
1051
    e.type = KVM_IRQ_ROUTING_IRQCHIP;
1052
    e.flags = 0;
1053
    e.u.irqchip.irqchip = irqchip;
1054
    e.u.irqchip.pin = pin;
1055
    kvm_add_routing_entry(s, &e);
1056
}
1057

    
1058
void kvm_irqchip_release_virq(KVMState *s, int virq)
1059
{
1060
    struct kvm_irq_routing_entry *e;
1061
    int i;
1062

    
1063
    for (i = 0; i < s->irq_routes->nr; i++) {
1064
        e = &s->irq_routes->entries[i];
1065
        if (e->gsi == virq) {
1066
            s->irq_routes->nr--;
1067
            *e = s->irq_routes->entries[s->irq_routes->nr];
1068
        }
1069
    }
1070
    clear_gsi(s, virq);
1071
}
1072

    
1073
static unsigned int kvm_hash_msi(uint32_t data)
1074
{
1075
    /* This is optimized for IA32 MSI layout. However, no other arch shall
1076
     * repeat the mistake of not providing a direct MSI injection API. */
1077
    return data & 0xff;
1078
}
1079

    
1080
static void kvm_flush_dynamic_msi_routes(KVMState *s)
1081
{
1082
    KVMMSIRoute *route, *next;
1083
    unsigned int hash;
1084

    
1085
    for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1086
        QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1087
            kvm_irqchip_release_virq(s, route->kroute.gsi);
1088
            QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1089
            g_free(route);
1090
        }
1091
    }
1092
}
1093

    
1094
static int kvm_irqchip_get_virq(KVMState *s)
1095
{
1096
    uint32_t *word = s->used_gsi_bitmap;
1097
    int max_words = ALIGN(s->gsi_count, 32) / 32;
1098
    int i, bit;
1099
    bool retry = true;
1100

    
1101
again:
1102
    /* Return the lowest unused GSI in the bitmap */
1103
    for (i = 0; i < max_words; i++) {
1104
        bit = ffs(~word[i]);
1105
        if (!bit) {
1106
            continue;
1107
        }
1108

    
1109
        return bit - 1 + i * 32;
1110
    }
1111
    if (!s->direct_msi && retry) {
1112
        retry = false;
1113
        kvm_flush_dynamic_msi_routes(s);
1114
        goto again;
1115
    }
1116
    return -ENOSPC;
1117

    
1118
}
1119

    
1120
static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1121
{
1122
    unsigned int hash = kvm_hash_msi(msg.data);
1123
    KVMMSIRoute *route;
1124

    
1125
    QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1126
        if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1127
            route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1128
            route->kroute.u.msi.data == msg.data) {
1129
            return route;
1130
        }
1131
    }
1132
    return NULL;
1133
}
1134

    
1135
int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1136
{
1137
    struct kvm_msi msi;
1138
    KVMMSIRoute *route;
1139

    
1140
    if (s->direct_msi) {
1141
        msi.address_lo = (uint32_t)msg.address;
1142
        msi.address_hi = msg.address >> 32;
1143
        msi.data = msg.data;
1144
        msi.flags = 0;
1145
        memset(msi.pad, 0, sizeof(msi.pad));
1146

    
1147
        return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1148
    }
1149

    
1150
    route = kvm_lookup_msi_route(s, msg);
1151
    if (!route) {
1152
        int virq;
1153

    
1154
        virq = kvm_irqchip_get_virq(s);
1155
        if (virq < 0) {
1156
            return virq;
1157
        }
1158

    
1159
        route = g_malloc(sizeof(KVMMSIRoute));
1160
        route->kroute.gsi = virq;
1161
        route->kroute.type = KVM_IRQ_ROUTING_MSI;
1162
        route->kroute.flags = 0;
1163
        route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1164
        route->kroute.u.msi.address_hi = msg.address >> 32;
1165
        route->kroute.u.msi.data = msg.data;
1166

    
1167
        kvm_add_routing_entry(s, &route->kroute);
1168

    
1169
        QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1170
                           entry);
1171
    }
1172

    
1173
    assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1174

    
1175
    return kvm_set_irq(s, route->kroute.gsi, 1);
1176
}
1177

    
1178
int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1179
{
1180
    struct kvm_irq_routing_entry kroute;
1181
    int virq;
1182

    
1183
    if (!kvm_gsi_routing_enabled()) {
1184
        return -ENOSYS;
1185
    }
1186

    
1187
    virq = kvm_irqchip_get_virq(s);
1188
    if (virq < 0) {
1189
        return virq;
1190
    }
1191

    
1192
    kroute.gsi = virq;
1193
    kroute.type = KVM_IRQ_ROUTING_MSI;
1194
    kroute.flags = 0;
1195
    kroute.u.msi.address_lo = (uint32_t)msg.address;
1196
    kroute.u.msi.address_hi = msg.address >> 32;
1197
    kroute.u.msi.data = msg.data;
1198

    
1199
    kvm_add_routing_entry(s, &kroute);
1200

    
1201
    return virq;
1202
}
1203

    
1204
int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1205
{
1206
    struct kvm_irq_routing_entry kroute;
1207

    
1208
    if (!kvm_irqchip_in_kernel()) {
1209
        return -ENOSYS;
1210
    }
1211

    
1212
    kroute.gsi = virq;
1213
    kroute.type = KVM_IRQ_ROUTING_MSI;
1214
    kroute.flags = 0;
1215
    kroute.u.msi.address_lo = (uint32_t)msg.address;
1216
    kroute.u.msi.address_hi = msg.address >> 32;
1217
    kroute.u.msi.data = msg.data;
1218

    
1219
    return kvm_update_routing_entry(s, &kroute);
1220
}
1221

    
1222
static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1223
{
1224
    struct kvm_irqfd irqfd = {
1225
        .fd = fd,
1226
        .gsi = virq,
1227
        .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
1228
    };
1229

    
1230
    if (!kvm_irqfds_enabled()) {
1231
        return -ENOSYS;
1232
    }
1233

    
1234
    return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
1235
}
1236

    
1237
#else /* !KVM_CAP_IRQ_ROUTING */
1238

    
1239
static void kvm_init_irq_routing(KVMState *s)
1240
{
1241
}
1242

    
1243
void kvm_irqchip_release_virq(KVMState *s, int virq)
1244
{
1245
}
1246

    
1247
int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1248
{
1249
    abort();
1250
}
1251

    
1252
int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1253
{
1254
    return -ENOSYS;
1255
}
1256

    
1257
static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1258
{
1259
    abort();
1260
}
1261

    
1262
int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1263
{
1264
    return -ENOSYS;
1265
}
1266
#endif /* !KVM_CAP_IRQ_ROUTING */
1267

    
1268
int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, int virq)
1269
{
1270
    return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), virq, true);
1271
}
1272

    
1273
int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, int virq)
1274
{
1275
    return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), virq, false);
1276
}
1277

    
1278
static int kvm_irqchip_create(KVMState *s)
1279
{
1280
    QemuOptsList *list = qemu_find_opts("machine");
1281
    int ret;
1282

    
1283
    if (QTAILQ_EMPTY(&list->head) ||
1284
        !qemu_opt_get_bool(QTAILQ_FIRST(&list->head),
1285
                           "kernel_irqchip", true) ||
1286
        !kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
1287
        return 0;
1288
    }
1289

    
1290
    ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
1291
    if (ret < 0) {
1292
        fprintf(stderr, "Create kernel irqchip failed\n");
1293
        return ret;
1294
    }
1295

    
1296
    kvm_kernel_irqchip = true;
1297
    /* If we have an in-kernel IRQ chip then we must have asynchronous
1298
     * interrupt delivery (though the reverse is not necessarily true)
1299
     */
1300
    kvm_async_interrupts_allowed = true;
1301

    
1302
    kvm_init_irq_routing(s);
1303

    
1304
    return 0;
1305
}
1306

    
1307
static int kvm_max_vcpus(KVMState *s)
1308
{
1309
    int ret;
1310

    
1311
    /* Find number of supported CPUs using the recommended
1312
     * procedure from the kernel API documentation to cope with
1313
     * older kernels that may be missing capabilities.
1314
     */
1315
    ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
1316
    if (ret) {
1317
        return ret;
1318
    }
1319
    ret = kvm_check_extension(s, KVM_CAP_NR_VCPUS);
1320
    if (ret) {
1321
        return ret;
1322
    }
1323

    
1324
    return 4;
1325
}
1326

    
1327
int kvm_init(void)
1328
{
1329
    static const char upgrade_note[] =
1330
        "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1331
        "(see http://sourceforge.net/projects/kvm).\n";
1332
    KVMState *s;
1333
    const KVMCapabilityInfo *missing_cap;
1334
    int ret;
1335
    int i;
1336
    int max_vcpus;
1337

    
1338
    s = g_malloc0(sizeof(KVMState));
1339

    
1340
    /*
1341
     * On systems where the kernel can support different base page
1342
     * sizes, host page size may be different from TARGET_PAGE_SIZE,
1343
     * even with KVM.  TARGET_PAGE_SIZE is assumed to be the minimum
1344
     * page size for the system though.
1345
     */
1346
    assert(TARGET_PAGE_SIZE <= getpagesize());
1347

    
1348
#ifdef KVM_CAP_SET_GUEST_DEBUG
1349
    QTAILQ_INIT(&s->kvm_sw_breakpoints);
1350
#endif
1351
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
1352
        s->slots[i].slot = i;
1353
    }
1354
    s->vmfd = -1;
1355
    s->fd = qemu_open("/dev/kvm", O_RDWR);
1356
    if (s->fd == -1) {
1357
        fprintf(stderr, "Could not access KVM kernel module: %m\n");
1358
        ret = -errno;
1359
        goto err;
1360
    }
1361

    
1362
    ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
1363
    if (ret < KVM_API_VERSION) {
1364
        if (ret > 0) {
1365
            ret = -EINVAL;
1366
        }
1367
        fprintf(stderr, "kvm version too old\n");
1368
        goto err;
1369
    }
1370

    
1371
    if (ret > KVM_API_VERSION) {
1372
        ret = -EINVAL;
1373
        fprintf(stderr, "kvm version not supported\n");
1374
        goto err;
1375
    }
1376

    
1377
    max_vcpus = kvm_max_vcpus(s);
1378
    if (smp_cpus > max_vcpus) {
1379
        ret = -EINVAL;
1380
        fprintf(stderr, "Number of SMP cpus requested (%d) exceeds max cpus "
1381
                "supported by KVM (%d)\n", smp_cpus, max_vcpus);
1382
        goto err;
1383
    }
1384

    
1385
    s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
1386
    if (s->vmfd < 0) {
1387
#ifdef TARGET_S390X
1388
        fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
1389
                        "your host kernel command line\n");
1390
#endif
1391
        ret = s->vmfd;
1392
        goto err;
1393
    }
1394

    
1395
    missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
1396
    if (!missing_cap) {
1397
        missing_cap =
1398
            kvm_check_extension_list(s, kvm_arch_required_capabilities);
1399
    }
1400
    if (missing_cap) {
1401
        ret = -EINVAL;
1402
        fprintf(stderr, "kvm does not support %s\n%s",
1403
                missing_cap->name, upgrade_note);
1404
        goto err;
1405
    }
1406

    
1407
    s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
1408

    
1409
    s->broken_set_mem_region = 1;
1410
    ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
1411
    if (ret > 0) {
1412
        s->broken_set_mem_region = 0;
1413
    }
1414

    
1415
#ifdef KVM_CAP_VCPU_EVENTS
1416
    s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
1417
#endif
1418

    
1419
    s->robust_singlestep =
1420
        kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
1421

    
1422
#ifdef KVM_CAP_DEBUGREGS
1423
    s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
1424
#endif
1425

    
1426
#ifdef KVM_CAP_XSAVE
1427
    s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
1428
#endif
1429

    
1430
#ifdef KVM_CAP_XCRS
1431
    s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
1432
#endif
1433

    
1434
#ifdef KVM_CAP_PIT_STATE2
1435
    s->pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
1436
#endif
1437

    
1438
#ifdef KVM_CAP_IRQ_ROUTING
1439
    s->direct_msi = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
1440
#endif
1441

    
1442
    s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
1443

    
1444
    s->irq_set_ioctl = KVM_IRQ_LINE;
1445
    if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
1446
        s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
1447
    }
1448

    
1449
#ifdef KVM_CAP_READONLY_MEM
1450
    kvm_readonly_mem_allowed =
1451
        (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
1452
#endif
1453

    
1454
    ret = kvm_arch_init(s);
1455
    if (ret < 0) {
1456
        goto err;
1457
    }
1458

    
1459
    ret = kvm_irqchip_create(s);
1460
    if (ret < 0) {
1461
        goto err;
1462
    }
1463

    
1464
    kvm_state = s;
1465
    memory_listener_register(&kvm_memory_listener, &address_space_memory);
1466
    memory_listener_register(&kvm_io_listener, &address_space_io);
1467

    
1468
    s->many_ioeventfds = kvm_check_many_ioeventfds();
1469

    
1470
    cpu_interrupt_handler = kvm_handle_interrupt;
1471

    
1472
    return 0;
1473

    
1474
err:
1475
    if (s->vmfd >= 0) {
1476
        close(s->vmfd);
1477
    }
1478
    if (s->fd != -1) {
1479
        close(s->fd);
1480
    }
1481
    g_free(s);
1482

    
1483
    return ret;
1484
}
1485

    
1486
static void kvm_handle_io(uint16_t port, void *data, int direction, int size,
1487
                          uint32_t count)
1488
{
1489
    int i;
1490
    uint8_t *ptr = data;
1491

    
1492
    for (i = 0; i < count; i++) {
1493
        if (direction == KVM_EXIT_IO_IN) {
1494
            switch (size) {
1495
            case 1:
1496
                stb_p(ptr, cpu_inb(port));
1497
                break;
1498
            case 2:
1499
                stw_p(ptr, cpu_inw(port));
1500
                break;
1501
            case 4:
1502
                stl_p(ptr, cpu_inl(port));
1503
                break;
1504
            }
1505
        } else {
1506
            switch (size) {
1507
            case 1:
1508
                cpu_outb(port, ldub_p(ptr));
1509
                break;
1510
            case 2:
1511
                cpu_outw(port, lduw_p(ptr));
1512
                break;
1513
            case 4:
1514
                cpu_outl(port, ldl_p(ptr));
1515
                break;
1516
            }
1517
        }
1518

    
1519
        ptr += size;
1520
    }
1521
}
1522

    
1523
static int kvm_handle_internal_error(CPUArchState *env, struct kvm_run *run)
1524
{
1525
    CPUState *cpu = ENV_GET_CPU(env);
1526

    
1527
    fprintf(stderr, "KVM internal error.");
1528
    if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
1529
        int i;
1530

    
1531
        fprintf(stderr, " Suberror: %d\n", run->internal.suberror);
1532
        for (i = 0; i < run->internal.ndata; ++i) {
1533
            fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
1534
                    i, (uint64_t)run->internal.data[i]);
1535
        }
1536
    } else {
1537
        fprintf(stderr, "\n");
1538
    }
1539
    if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
1540
        fprintf(stderr, "emulation failure\n");
1541
        if (!kvm_arch_stop_on_emulation_error(cpu)) {
1542
            cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
1543
            return EXCP_INTERRUPT;
1544
        }
1545
    }
1546
    /* FIXME: Should trigger a qmp message to let management know
1547
     * something went wrong.
1548
     */
1549
    return -1;
1550
}
1551

    
1552
void kvm_flush_coalesced_mmio_buffer(void)
1553
{
1554
    KVMState *s = kvm_state;
1555

    
1556
    if (s->coalesced_flush_in_progress) {
1557
        return;
1558
    }
1559

    
1560
    s->coalesced_flush_in_progress = true;
1561

    
1562
    if (s->coalesced_mmio_ring) {
1563
        struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
1564
        while (ring->first != ring->last) {
1565
            struct kvm_coalesced_mmio *ent;
1566

    
1567
            ent = &ring->coalesced_mmio[ring->first];
1568

    
1569
            cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
1570
            smp_wmb();
1571
            ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
1572
        }
1573
    }
1574

    
1575
    s->coalesced_flush_in_progress = false;
1576
}
1577

    
1578
static void do_kvm_cpu_synchronize_state(void *arg)
1579
{
1580
    CPUState *cpu = arg;
1581

    
1582
    if (!cpu->kvm_vcpu_dirty) {
1583
        kvm_arch_get_registers(cpu);
1584
        cpu->kvm_vcpu_dirty = true;
1585
    }
1586
}
1587

    
1588
void kvm_cpu_synchronize_state(CPUArchState *env)
1589
{
1590
    CPUState *cpu = ENV_GET_CPU(env);
1591

    
1592
    if (!cpu->kvm_vcpu_dirty) {
1593
        run_on_cpu(cpu, do_kvm_cpu_synchronize_state, cpu);
1594
    }
1595
}
1596

    
1597
void kvm_cpu_synchronize_post_reset(CPUState *cpu)
1598
{
1599
    kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
1600
    cpu->kvm_vcpu_dirty = false;
1601
}
1602

    
1603
void kvm_cpu_synchronize_post_init(CPUState *cpu)
1604
{
1605
    kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
1606
    cpu->kvm_vcpu_dirty = false;
1607
}
1608

    
1609
int kvm_cpu_exec(CPUArchState *env)
1610
{
1611
    CPUState *cpu = ENV_GET_CPU(env);
1612
    struct kvm_run *run = cpu->kvm_run;
1613
    int ret, run_ret;
1614

    
1615
    DPRINTF("kvm_cpu_exec()\n");
1616

    
1617
    if (kvm_arch_process_async_events(cpu)) {
1618
        cpu->exit_request = 0;
1619
        return EXCP_HLT;
1620
    }
1621

    
1622
    do {
1623
        if (cpu->kvm_vcpu_dirty) {
1624
            kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
1625
            cpu->kvm_vcpu_dirty = false;
1626
        }
1627

    
1628
        kvm_arch_pre_run(cpu, run);
1629
        if (cpu->exit_request) {
1630
            DPRINTF("interrupt exit requested\n");
1631
            /*
1632
             * KVM requires us to reenter the kernel after IO exits to complete
1633
             * instruction emulation. This self-signal will ensure that we
1634
             * leave ASAP again.
1635
             */
1636
            qemu_cpu_kick_self();
1637
        }
1638
        qemu_mutex_unlock_iothread();
1639

    
1640
        run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
1641

    
1642
        qemu_mutex_lock_iothread();
1643
        kvm_arch_post_run(cpu, run);
1644

    
1645
        if (run_ret < 0) {
1646
            if (run_ret == -EINTR || run_ret == -EAGAIN) {
1647
                DPRINTF("io window exit\n");
1648
                ret = EXCP_INTERRUPT;
1649
                break;
1650
            }
1651
            fprintf(stderr, "error: kvm run failed %s\n",
1652
                    strerror(-run_ret));
1653
            abort();
1654
        }
1655

    
1656
        trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
1657
        switch (run->exit_reason) {
1658
        case KVM_EXIT_IO:
1659
            DPRINTF("handle_io\n");
1660
            kvm_handle_io(run->io.port,
1661
                          (uint8_t *)run + run->io.data_offset,
1662
                          run->io.direction,
1663
                          run->io.size,
1664
                          run->io.count);
1665
            ret = 0;
1666
            break;
1667
        case KVM_EXIT_MMIO:
1668
            DPRINTF("handle_mmio\n");
1669
            cpu_physical_memory_rw(run->mmio.phys_addr,
1670
                                   run->mmio.data,
1671
                                   run->mmio.len,
1672
                                   run->mmio.is_write);
1673
            ret = 0;
1674
            break;
1675
        case KVM_EXIT_IRQ_WINDOW_OPEN:
1676
            DPRINTF("irq_window_open\n");
1677
            ret = EXCP_INTERRUPT;
1678
            break;
1679
        case KVM_EXIT_SHUTDOWN:
1680
            DPRINTF("shutdown\n");
1681
            qemu_system_reset_request();
1682
            ret = EXCP_INTERRUPT;
1683
            break;
1684
        case KVM_EXIT_UNKNOWN:
1685
            fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
1686
                    (uint64_t)run->hw.hardware_exit_reason);
1687
            ret = -1;
1688
            break;
1689
        case KVM_EXIT_INTERNAL_ERROR:
1690
            ret = kvm_handle_internal_error(env, run);
1691
            break;
1692
        default:
1693
            DPRINTF("kvm_arch_handle_exit\n");
1694
            ret = kvm_arch_handle_exit(cpu, run);
1695
            break;
1696
        }
1697
    } while (ret == 0);
1698

    
1699
    if (ret < 0) {
1700
        cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
1701
        vm_stop(RUN_STATE_INTERNAL_ERROR);
1702
    }
1703

    
1704
    cpu->exit_request = 0;
1705
    return ret;
1706
}
1707

    
1708
int kvm_ioctl(KVMState *s, int type, ...)
1709
{
1710
    int ret;
1711
    void *arg;
1712
    va_list ap;
1713

    
1714
    va_start(ap, type);
1715
    arg = va_arg(ap, void *);
1716
    va_end(ap);
1717

    
1718
    trace_kvm_ioctl(type, arg);
1719
    ret = ioctl(s->fd, type, arg);
1720
    if (ret == -1) {
1721
        ret = -errno;
1722
    }
1723
    return ret;
1724
}
1725

    
1726
int kvm_vm_ioctl(KVMState *s, int type, ...)
1727
{
1728
    int ret;
1729
    void *arg;
1730
    va_list ap;
1731

    
1732
    va_start(ap, type);
1733
    arg = va_arg(ap, void *);
1734
    va_end(ap);
1735

    
1736
    trace_kvm_vm_ioctl(type, arg);
1737
    ret = ioctl(s->vmfd, type, arg);
1738
    if (ret == -1) {
1739
        ret = -errno;
1740
    }
1741
    return ret;
1742
}
1743

    
1744
int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
1745
{
1746
    int ret;
1747
    void *arg;
1748
    va_list ap;
1749

    
1750
    va_start(ap, type);
1751
    arg = va_arg(ap, void *);
1752
    va_end(ap);
1753

    
1754
    trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
1755
    ret = ioctl(cpu->kvm_fd, type, arg);
1756
    if (ret == -1) {
1757
        ret = -errno;
1758
    }
1759
    return ret;
1760
}
1761

    
1762
int kvm_has_sync_mmu(void)
1763
{
1764
    return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
1765
}
1766

    
1767
int kvm_has_vcpu_events(void)
1768
{
1769
    return kvm_state->vcpu_events;
1770
}
1771

    
1772
int kvm_has_robust_singlestep(void)
1773
{
1774
    return kvm_state->robust_singlestep;
1775
}
1776

    
1777
int kvm_has_debugregs(void)
1778
{
1779
    return kvm_state->debugregs;
1780
}
1781

    
1782
int kvm_has_xsave(void)
1783
{
1784
    return kvm_state->xsave;
1785
}
1786

    
1787
int kvm_has_xcrs(void)
1788
{
1789
    return kvm_state->xcrs;
1790
}
1791

    
1792
int kvm_has_pit_state2(void)
1793
{
1794
    return kvm_state->pit_state2;
1795
}
1796

    
1797
int kvm_has_many_ioeventfds(void)
1798
{
1799
    if (!kvm_enabled()) {
1800
        return 0;
1801
    }
1802
    return kvm_state->many_ioeventfds;
1803
}
1804

    
1805
int kvm_has_gsi_routing(void)
1806
{
1807
#ifdef KVM_CAP_IRQ_ROUTING
1808
    return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
1809
#else
1810
    return false;
1811
#endif
1812
}
1813

    
1814
int kvm_has_intx_set_mask(void)
1815
{
1816
    return kvm_state->intx_set_mask;
1817
}
1818

    
1819
void *kvm_ram_alloc(ram_addr_t size)
1820
{
1821
#ifdef TARGET_S390X
1822
    void *mem;
1823

    
1824
    mem = kvm_arch_ram_alloc(size);
1825
    if (mem) {
1826
        return mem;
1827
    }
1828
#endif
1829
    return qemu_anon_ram_alloc(size);
1830
}
1831

    
1832
void kvm_setup_guest_memory(void *start, size_t size)
1833
{
1834
#ifdef CONFIG_VALGRIND_H
1835
    VALGRIND_MAKE_MEM_DEFINED(start, size);
1836
#endif
1837
    if (!kvm_has_sync_mmu()) {
1838
        int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
1839

    
1840
        if (ret) {
1841
            perror("qemu_madvise");
1842
            fprintf(stderr,
1843
                    "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1844
            exit(1);
1845
        }
1846
    }
1847
}
1848

    
1849
#ifdef KVM_CAP_SET_GUEST_DEBUG
1850
struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
1851
                                                 target_ulong pc)
1852
{
1853
    struct kvm_sw_breakpoint *bp;
1854

    
1855
    QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
1856
        if (bp->pc == pc) {
1857
            return bp;
1858
        }
1859
    }
1860
    return NULL;
1861
}
1862

    
1863
int kvm_sw_breakpoints_active(CPUState *cpu)
1864
{
1865
    return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
1866
}
1867

    
1868
struct kvm_set_guest_debug_data {
1869
    struct kvm_guest_debug dbg;
1870
    CPUState *cpu;
1871
    int err;
1872
};
1873

    
1874
static void kvm_invoke_set_guest_debug(void *data)
1875
{
1876
    struct kvm_set_guest_debug_data *dbg_data = data;
1877

    
1878
    dbg_data->err = kvm_vcpu_ioctl(dbg_data->cpu, KVM_SET_GUEST_DEBUG,
1879
                                   &dbg_data->dbg);
1880
}
1881

    
1882
int kvm_update_guest_debug(CPUArchState *env, unsigned long reinject_trap)
1883
{
1884
    CPUState *cpu = ENV_GET_CPU(env);
1885
    struct kvm_set_guest_debug_data data;
1886

    
1887
    data.dbg.control = reinject_trap;
1888

    
1889
    if (env->singlestep_enabled) {
1890
        data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1891
    }
1892
    kvm_arch_update_guest_debug(cpu, &data.dbg);
1893
    data.cpu = cpu;
1894

    
1895
    run_on_cpu(cpu, kvm_invoke_set_guest_debug, &data);
1896
    return data.err;
1897
}
1898

    
1899
int kvm_insert_breakpoint(CPUArchState *current_env, target_ulong addr,
1900
                          target_ulong len, int type)
1901
{
1902
    CPUState *current_cpu = ENV_GET_CPU(current_env);
1903
    struct kvm_sw_breakpoint *bp;
1904
    CPUArchState *env;
1905
    int err;
1906

    
1907
    if (type == GDB_BREAKPOINT_SW) {
1908
        bp = kvm_find_sw_breakpoint(current_cpu, addr);
1909
        if (bp) {
1910
            bp->use_count++;
1911
            return 0;
1912
        }
1913

    
1914
        bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
1915
        if (!bp) {
1916
            return -ENOMEM;
1917
        }
1918

    
1919
        bp->pc = addr;
1920
        bp->use_count = 1;
1921
        err = kvm_arch_insert_sw_breakpoint(current_cpu, bp);
1922
        if (err) {
1923
            g_free(bp);
1924
            return err;
1925
        }
1926

    
1927
        QTAILQ_INSERT_HEAD(&current_cpu->kvm_state->kvm_sw_breakpoints,
1928
                          bp, entry);
1929
    } else {
1930
        err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1931
        if (err) {
1932
            return err;
1933
        }
1934
    }
1935

    
1936
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
1937
        err = kvm_update_guest_debug(env, 0);
1938
        if (err) {
1939
            return err;
1940
        }
1941
    }
1942
    return 0;
1943
}
1944

    
1945
int kvm_remove_breakpoint(CPUArchState *current_env, target_ulong addr,
1946
                          target_ulong len, int type)
1947
{
1948
    CPUState *current_cpu = ENV_GET_CPU(current_env);
1949
    struct kvm_sw_breakpoint *bp;
1950
    CPUArchState *env;
1951
    int err;
1952

    
1953
    if (type == GDB_BREAKPOINT_SW) {
1954
        bp = kvm_find_sw_breakpoint(current_cpu, addr);
1955
        if (!bp) {
1956
            return -ENOENT;
1957
        }
1958

    
1959
        if (bp->use_count > 1) {
1960
            bp->use_count--;
1961
            return 0;
1962
        }
1963

    
1964
        err = kvm_arch_remove_sw_breakpoint(current_cpu, bp);
1965
        if (err) {
1966
            return err;
1967
        }
1968

    
1969
        QTAILQ_REMOVE(&current_cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
1970
        g_free(bp);
1971
    } else {
1972
        err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1973
        if (err) {
1974
            return err;
1975
        }
1976
    }
1977

    
1978
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
1979
        err = kvm_update_guest_debug(env, 0);
1980
        if (err) {
1981
            return err;
1982
        }
1983
    }
1984
    return 0;
1985
}
1986

    
1987
void kvm_remove_all_breakpoints(CPUArchState *current_env)
1988
{
1989
    CPUState *current_cpu = ENV_GET_CPU(current_env);
1990
    struct kvm_sw_breakpoint *bp, *next;
1991
    KVMState *s = current_cpu->kvm_state;
1992
    CPUArchState *env;
1993
    CPUState *cpu;
1994

    
1995
    QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1996
        if (kvm_arch_remove_sw_breakpoint(current_cpu, bp) != 0) {
1997
            /* Try harder to find a CPU that currently sees the breakpoint. */
1998
            for (env = first_cpu; env != NULL; env = env->next_cpu) {
1999
                cpu = ENV_GET_CPU(env);
2000
                if (kvm_arch_remove_sw_breakpoint(cpu, bp) == 0) {
2001
                    break;
2002
                }
2003
            }
2004
        }
2005
        QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
2006
        g_free(bp);
2007
    }
2008
    kvm_arch_remove_all_hw_breakpoints();
2009

    
2010
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
2011
        kvm_update_guest_debug(env, 0);
2012
    }
2013
}
2014

    
2015
#else /* !KVM_CAP_SET_GUEST_DEBUG */
2016

    
2017
int kvm_update_guest_debug(CPUArchState *env, unsigned long reinject_trap)
2018
{
2019
    return -EINVAL;
2020
}
2021

    
2022
int kvm_insert_breakpoint(CPUArchState *current_env, target_ulong addr,
2023
                          target_ulong len, int type)
2024
{
2025
    return -EINVAL;
2026
}
2027

    
2028
int kvm_remove_breakpoint(CPUArchState *current_env, target_ulong addr,
2029
                          target_ulong len, int type)
2030
{
2031
    return -EINVAL;
2032
}
2033

    
2034
void kvm_remove_all_breakpoints(CPUArchState *current_env)
2035
{
2036
}
2037
#endif /* !KVM_CAP_SET_GUEST_DEBUG */
2038

    
2039
int kvm_set_signal_mask(CPUArchState *env, const sigset_t *sigset)
2040
{
2041
    CPUState *cpu = ENV_GET_CPU(env);
2042
    struct kvm_signal_mask *sigmask;
2043
    int r;
2044

    
2045
    if (!sigset) {
2046
        return kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, NULL);
2047
    }
2048

    
2049
    sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
2050

    
2051
    sigmask->len = 8;
2052
    memcpy(sigmask->sigset, sigset, sizeof(*sigset));
2053
    r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
2054
    g_free(sigmask);
2055

    
2056
    return r;
2057
}
2058
int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
2059
{
2060
    return kvm_arch_on_sigbus_vcpu(cpu, code, addr);
2061
}
2062

    
2063
int kvm_on_sigbus(int code, void *addr)
2064
{
2065
    return kvm_arch_on_sigbus(code, addr);
2066
}