Statistics
| Branch: | Revision:

root / hw / lance.c @ 66321a11

History | View | Annotate | Download (14 kB)

1
/*
2
 * QEMU Lance emulation
3
 * 
4
 * Copyright (c) 2003-2005 Fabrice Bellard
5
 * 
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "vl.h"
25

    
26
/* debug LANCE card */
27
//#define DEBUG_LANCE
28

    
29
#ifdef DEBUG_LANCE
30
#define DPRINTF(fmt, args...) \
31
do { printf("LANCE: " fmt , ##args); } while (0)
32
#else
33
#define DPRINTF(fmt, args...)
34
#endif
35

    
36
#ifndef LANCE_LOG_TX_BUFFERS
37
#define LANCE_LOG_TX_BUFFERS 4
38
#define LANCE_LOG_RX_BUFFERS 4
39
#endif
40

    
41
#define LE_CSR0 0
42
#define LE_CSR1 1
43
#define LE_CSR2 2
44
#define LE_CSR3 3
45
#define LE_NREGS (LE_CSR3 + 1)
46
#define LE_MAXREG LE_CSR3
47

    
48
#define LE_RDP  0
49
#define LE_RAP  1
50

    
51
#define LE_MO_PROM      0x8000  /* Enable promiscuous mode */
52

    
53
#define        LE_C0_ERR        0x8000        /* Error: set if BAB, SQE, MISS or ME is set */
54
#define        LE_C0_BABL        0x4000        /* BAB:  Babble: tx timeout. */
55
#define        LE_C0_CERR        0x2000        /* SQE:  Signal quality error */
56
#define        LE_C0_MISS        0x1000        /* MISS: Missed a packet */
57
#define        LE_C0_MERR        0x0800        /* ME:   Memory error */
58
#define        LE_C0_RINT        0x0400        /* Received interrupt */
59
#define        LE_C0_TINT        0x0200        /* Transmitter Interrupt */
60
#define        LE_C0_IDON        0x0100        /* IFIN: Init finished. */
61
#define        LE_C0_INTR        0x0080        /* Interrupt or error */
62
#define        LE_C0_INEA        0x0040        /* Interrupt enable */
63
#define        LE_C0_RXON        0x0020        /* Receiver on */
64
#define        LE_C0_TXON        0x0010        /* Transmitter on */
65
#define        LE_C0_TDMD        0x0008        /* Transmitter demand */
66
#define        LE_C0_STOP        0x0004        /* Stop the card */
67
#define        LE_C0_STRT        0x0002        /* Start the card */
68
#define        LE_C0_INIT        0x0001        /* Init the card */
69

    
70
#define        LE_C3_BSWP        0x4     /* SWAP */
71
#define        LE_C3_ACON        0x2        /* ALE Control */
72
#define        LE_C3_BCON        0x1        /* Byte control */
73

    
74
/* Receive message descriptor 1 */
75
#define LE_R1_OWN       0x80    /* Who owns the entry */
76
#define LE_R1_ERR       0x40    /* Error: if FRA, OFL, CRC or BUF is set */
77
#define LE_R1_FRA       0x20    /* FRA: Frame error */
78
#define LE_R1_OFL       0x10    /* OFL: Frame overflow */
79
#define LE_R1_CRC       0x08    /* CRC error */
80
#define LE_R1_BUF       0x04    /* BUF: Buffer error */
81
#define LE_R1_SOP       0x02    /* Start of packet */
82
#define LE_R1_EOP       0x01    /* End of packet */
83
#define LE_R1_POK       0x03    /* Packet is complete: SOP + EOP */
84

    
85
#define LE_T1_OWN       0x80    /* Lance owns the packet */
86
#define LE_T1_ERR       0x40    /* Error summary */
87
#define LE_T1_EMORE     0x10    /* Error: more than one retry needed */
88
#define LE_T1_EONE      0x08    /* Error: one retry needed */
89
#define LE_T1_EDEF      0x04    /* Error: deferred */
90
#define LE_T1_SOP       0x02    /* Start of packet */
91
#define LE_T1_EOP       0x01    /* End of packet */
92
#define LE_T1_POK        0x03        /* Packet is complete: SOP + EOP */
93

    
94
#define LE_T3_BUF       0x8000  /* Buffer error */
95
#define LE_T3_UFL       0x4000  /* Error underflow */
96
#define LE_T3_LCOL      0x1000  /* Error late collision */
97
#define LE_T3_CLOS      0x0800  /* Error carrier loss */
98
#define LE_T3_RTY       0x0400  /* Error retry */
99
#define LE_T3_TDR       0x03ff  /* Time Domain Reflectometry counter */
100

    
101
#define TX_RING_SIZE                        (1 << (LANCE_LOG_TX_BUFFERS))
102
#define TX_RING_MOD_MASK                (TX_RING_SIZE - 1)
103
#define TX_RING_LEN_BITS                ((LANCE_LOG_TX_BUFFERS) << 29)
104

    
105
#define RX_RING_SIZE                        (1 << (LANCE_LOG_RX_BUFFERS))
106
#define RX_RING_MOD_MASK                (RX_RING_SIZE - 1)
107
#define RX_RING_LEN_BITS                ((LANCE_LOG_RX_BUFFERS) << 29)
108

    
109
#define PKT_BUF_SZ                1544
110
#define RX_BUFF_SIZE            PKT_BUF_SZ
111
#define TX_BUFF_SIZE            PKT_BUF_SZ
112

    
113
struct lance_rx_desc {
114
        unsigned short rmd0;        /* low address of packet */
115
        unsigned char  rmd1_bits;   /* descriptor bits */
116
        unsigned char  rmd1_hadr;   /* high address of packet */
117
        short    length;                /* This length is 2s complement (negative)!
118
                                     * Buffer length
119
                                     */
120
        unsigned short mblength;    /* This is the actual number of bytes received */
121
};
122

    
123
struct lance_tx_desc {
124
        unsigned short tmd0;        /* low address of packet */
125
        unsigned char  tmd1_bits;   /* descriptor bits */
126
        unsigned char  tmd1_hadr;   /* high address of packet */
127
        short length;                      /* Length is 2s complement (negative)! */
128
        unsigned short misc;
129
};
130

    
131
/* The LANCE initialization block, described in databook. */
132
/* On the Sparc, this block should be on a DMA region     */
133
struct lance_init_block {
134
        unsigned short mode;                /* Pre-set mode (reg. 15) */
135
        unsigned char phys_addr[6];     /* Physical ethernet address */
136
        unsigned filter[2];                /* Multicast filter. */
137

    
138
        /* Receive and transmit ring base, along with extra bits. */
139
        unsigned short rx_ptr;                /* receive descriptor addr */
140
        unsigned short rx_len;                /* receive len and high addr */
141
        unsigned short tx_ptr;                /* transmit descriptor addr */
142
        unsigned short tx_len;                /* transmit len and high addr */
143
    
144
        /* The Tx and Rx ring entries must aligned on 8-byte boundaries. */
145
        struct lance_rx_desc brx_ring[RX_RING_SIZE];
146
        struct lance_tx_desc btx_ring[TX_RING_SIZE];
147
    
148
        char   tx_buf [TX_RING_SIZE][TX_BUFF_SIZE];
149
        char   pad[2];                        /* align rx_buf for copy_and_sum(). */
150
        char   rx_buf [RX_RING_SIZE][RX_BUFF_SIZE];
151
};
152

    
153
#define LEDMA_REGS 4
154
#define LEDMA_MAXADDR (LEDMA_REGS * 4 - 1)
155

    
156
typedef struct LANCEState {
157
    NetDriverState *nd;
158
    uint32_t leptr;
159
    uint16_t addr;
160
    uint16_t regs[LE_NREGS];
161
    uint8_t phys[6]; /* mac address */
162
    int irq;
163
    unsigned int rxptr, txptr;
164
    uint32_t ledmaregs[LEDMA_REGS];
165
} LANCEState;
166

    
167
static void lance_send(void *opaque);
168

    
169
static void lance_reset(void *opaque)
170
{
171
    LANCEState *s = opaque;
172
    memcpy(s->phys, s->nd->macaddr, 6);
173
    s->rxptr = 0;
174
    s->txptr = 0;
175
    memset(s->regs, 0, LE_NREGS * 2);
176
    s->regs[LE_CSR0] = LE_C0_STOP;
177
    memset(s->ledmaregs, 0, LEDMA_REGS * 4);
178
}
179

    
180
static uint32_t lance_mem_readw(void *opaque, target_phys_addr_t addr)
181
{
182
    LANCEState *s = opaque;
183
    uint32_t saddr;
184

    
185
    saddr = addr & LE_MAXREG;
186
    switch (saddr >> 1) {
187
    case LE_RDP:
188
        DPRINTF("read dreg[%d] = %4.4x\n", s->addr, s->regs[s->addr]);
189
        return s->regs[s->addr];
190
    case LE_RAP:
191
        DPRINTF("read areg = %4.4x\n", s->addr);
192
        return s->addr;
193
    default:
194
        DPRINTF("read unknown(%d)\n", saddr>>1);
195
        break;
196
    }
197
    return 0;
198
}
199

    
200
static void lance_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
201
{
202
    LANCEState *s = opaque;
203
    uint32_t saddr;
204
    uint16_t reg;
205

    
206
    saddr = addr & LE_MAXREG;
207
    switch (saddr >> 1) {
208
    case LE_RDP:
209
        DPRINTF("write dreg[%d] = %4.4x\n", s->addr, val);
210
        switch(s->addr) {
211
        case LE_CSR0:
212
            if (val & LE_C0_STOP) {
213
                s->regs[LE_CSR0] = LE_C0_STOP;
214
                break;
215
            }
216

    
217
            reg = s->regs[LE_CSR0];
218

    
219
            // 1 = clear for some bits
220
            reg &= ~(val & 0x7f00);
221

    
222
            // generated bits
223
            reg &= ~(LE_C0_ERR | LE_C0_INTR);
224
            if (reg & 0x7100)
225
                reg |= LE_C0_ERR;
226
            if (reg & 0x7f00)
227
                reg |= LE_C0_INTR;
228

    
229
            // direct bit
230
            reg &= ~LE_C0_INEA;
231
            reg |= val & LE_C0_INEA;
232

    
233
            // exclusive bits
234
            if (val & LE_C0_INIT) {
235
                reg |= LE_C0_IDON | LE_C0_INIT;
236
                reg &= ~LE_C0_STOP;
237
            }
238
            else if (val & LE_C0_STRT) {
239
                reg |= LE_C0_STRT | LE_C0_RXON | LE_C0_TXON;
240
                reg &= ~LE_C0_STOP;
241
            }
242

    
243
            s->regs[LE_CSR0] = reg;
244
            break;
245
        case LE_CSR1:
246
            s->leptr = (s->leptr & 0xffff0000) | (val & 0xffff);
247
            s->regs[s->addr] = val;
248
            break;
249
        case LE_CSR2:
250
            s->leptr = (s->leptr & 0xffff) | ((val & 0xffff) << 16);
251
            s->regs[s->addr] = val;
252
            break;
253
        case LE_CSR3:
254
            s->regs[s->addr] = val;
255
            break;
256
        }
257
        break;
258
    case LE_RAP:
259
        DPRINTF("write areg = %4.4x\n", val);
260
        if (val < LE_NREGS)
261
            s->addr = val;
262
        break;
263
    default:
264
        DPRINTF("write unknown(%d) = %4.4x\n", saddr>>1, val);
265
        break;
266
    }
267
    lance_send(s);
268
}
269

    
270
static CPUReadMemoryFunc *lance_mem_read[3] = {
271
    lance_mem_readw,
272
    lance_mem_readw,
273
    lance_mem_readw,
274
};
275

    
276
static CPUWriteMemoryFunc *lance_mem_write[3] = {
277
    lance_mem_writew,
278
    lance_mem_writew,
279
    lance_mem_writew,
280
};
281

    
282

    
283
/* return the max buffer size if the LANCE can receive more data */
284
static int lance_can_receive(void *opaque)
285
{
286
    LANCEState *s = opaque;
287
    uint32_t dmaptr = s->leptr + s->ledmaregs[3];
288
    struct lance_init_block *ib;
289
    int i;
290
    uint8_t temp8;
291

    
292
    if ((s->regs[LE_CSR0] & LE_C0_STOP) == LE_C0_STOP)
293
        return 0;
294

    
295
    ib = (void *) iommu_translate(dmaptr);
296

    
297
    for (i = 0; i < RX_RING_SIZE; i++) {
298
        cpu_physical_memory_read((uint32_t)&ib->brx_ring[i].rmd1_bits, (void *) &temp8, 1);
299
        if (temp8 == (LE_R1_OWN)) {
300
            DPRINTF("can receive %d\n", RX_BUFF_SIZE);
301
            return RX_BUFF_SIZE;
302
        }
303
    }
304
    DPRINTF("cannot receive\n");
305
    return 0;
306
}
307

    
308
#define MIN_BUF_SIZE 60
309

    
310
static void lance_receive(void *opaque, const uint8_t *buf, int size)
311
{
312
    LANCEState *s = opaque;
313
    uint32_t dmaptr = s->leptr + s->ledmaregs[3];
314
    struct lance_init_block *ib;
315
    unsigned int i, old_rxptr;
316
    uint16_t temp16;
317
    uint8_t temp8;
318

    
319
    DPRINTF("receive size %d\n", size);
320
    if ((s->regs[LE_CSR0] & LE_C0_STOP) == LE_C0_STOP)
321
        return;
322

    
323
    ib = (void *) iommu_translate(dmaptr);
324

    
325
    old_rxptr = s->rxptr;
326
    for (i = s->rxptr; i != ((old_rxptr - 1) & RX_RING_MOD_MASK); i = (i + 1) & RX_RING_MOD_MASK) {
327
        cpu_physical_memory_read((uint32_t)&ib->brx_ring[i].rmd1_bits, (void *) &temp8, 1);
328
        if (temp8 == (LE_R1_OWN)) {
329
            s->rxptr = (s->rxptr + 1) & RX_RING_MOD_MASK;
330
            temp16 = size + 4;
331
            bswap16s(&temp16);
332
            cpu_physical_memory_write((uint32_t)&ib->brx_ring[i].mblength, (void *) &temp16, 2);
333
            cpu_physical_memory_write((uint32_t)&ib->rx_buf[i], buf, size);
334
            temp8 = LE_R1_POK;
335
            cpu_physical_memory_write((uint32_t)&ib->brx_ring[i].rmd1_bits, (void *) &temp8, 1);
336
            s->regs[LE_CSR0] |= LE_C0_RINT | LE_C0_INTR;
337
            if (s->regs[LE_CSR0] & LE_C0_INEA)
338
                pic_set_irq(s->irq, 1);
339
            DPRINTF("got packet, len %d\n", size);
340
            return;
341
        }
342
    }
343
}
344

    
345
static void lance_send(void *opaque)
346
{
347
    LANCEState *s = opaque;
348
    uint32_t dmaptr = s->leptr + s->ledmaregs[3];
349
    struct lance_init_block *ib;
350
    unsigned int i, old_txptr;
351
    uint16_t temp16;
352
    uint8_t temp8;
353
    char pkt_buf[PKT_BUF_SZ];
354

    
355
    DPRINTF("sending packet? (csr0 %4.4x)\n", s->regs[LE_CSR0]);
356
    if ((s->regs[LE_CSR0] & LE_C0_STOP) == LE_C0_STOP)
357
        return;
358

    
359
    ib = (void *) iommu_translate(dmaptr);
360

    
361
    DPRINTF("sending packet? (dmaptr %8.8x) (ib %p) (btx_ring %p)\n", dmaptr, ib, &ib->btx_ring);
362
    old_txptr = s->txptr;
363
    for (i = s->txptr; i != ((old_txptr - 1) & TX_RING_MOD_MASK); i = (i + 1) & TX_RING_MOD_MASK) {
364
        cpu_physical_memory_read((uint32_t)&ib->btx_ring[i].tmd1_bits, (void *) &temp8, 1);
365
        if (temp8 == (LE_T1_POK|LE_T1_OWN)) {
366
            cpu_physical_memory_read((uint32_t)&ib->btx_ring[i].length, (void *) &temp16, 2);
367
            bswap16s(&temp16);
368
            temp16 = (~temp16) + 1;
369
            cpu_physical_memory_read((uint32_t)&ib->tx_buf[i], pkt_buf, temp16);
370
            DPRINTF("sending packet, len %d\n", temp16);
371
            qemu_send_packet(s->nd, pkt_buf, temp16);
372
            temp8 = LE_T1_POK;
373
            cpu_physical_memory_write((uint32_t)&ib->btx_ring[i].tmd1_bits, (void *) &temp8, 1);
374
            s->txptr = (s->txptr + 1) & TX_RING_MOD_MASK;
375
            s->regs[LE_CSR0] |= LE_C0_TINT | LE_C0_INTR;
376
        }
377
    }
378
    if ((s->regs[LE_CSR0] & LE_C0_INTR) && (s->regs[LE_CSR0] & LE_C0_INEA))
379
        pic_set_irq(s->irq, 1);
380
}
381

    
382
static uint32_t ledma_mem_readl(void *opaque, target_phys_addr_t addr)
383
{
384
    LANCEState *s = opaque;
385
    uint32_t saddr;
386

    
387
    saddr = (addr & LEDMA_MAXADDR) >> 2;
388
    return s->ledmaregs[saddr];
389
}
390

    
391
static void ledma_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
392
{
393
    LANCEState *s = opaque;
394
    uint32_t saddr;
395

    
396
    saddr = (addr & LEDMA_MAXADDR) >> 2;
397
    s->ledmaregs[saddr] = val;
398
}
399

    
400
static CPUReadMemoryFunc *ledma_mem_read[3] = {
401
    ledma_mem_readl,
402
    ledma_mem_readl,
403
    ledma_mem_readl,
404
};
405

    
406
static CPUWriteMemoryFunc *ledma_mem_write[3] = {
407
    ledma_mem_writel,
408
    ledma_mem_writel,
409
    ledma_mem_writel,
410
};
411

    
412
static void lance_save(QEMUFile *f, void *opaque)
413
{
414
    LANCEState *s = opaque;
415
    int i;
416
    
417
    qemu_put_be32s(f, &s->leptr);
418
    qemu_put_be16s(f, &s->addr);
419
    for (i = 0; i < LE_NREGS; i ++)
420
        qemu_put_be16s(f, &s->regs[i]);
421
    qemu_put_buffer(f, s->phys, 6);
422
    qemu_put_be32s(f, &s->irq);
423
    for (i = 0; i < LEDMA_REGS; i ++)
424
        qemu_put_be32s(f, &s->ledmaregs[i]);
425
}
426

    
427
static int lance_load(QEMUFile *f, void *opaque, int version_id)
428
{
429
    LANCEState *s = opaque;
430
    int i;
431
    
432
    if (version_id != 1)
433
        return -EINVAL;
434

    
435
    qemu_get_be32s(f, &s->leptr);
436
    qemu_get_be16s(f, &s->addr);
437
    for (i = 0; i < LE_NREGS; i ++)
438
        qemu_get_be16s(f, &s->regs[i]);
439
    qemu_get_buffer(f, s->phys, 6);
440
    qemu_get_be32s(f, &s->irq);
441
    for (i = 0; i < LEDMA_REGS; i ++)
442
        qemu_get_be32s(f, &s->ledmaregs[i]);
443
    return 0;
444
}
445

    
446
void lance_init(NetDriverState *nd, int irq, uint32_t leaddr, uint32_t ledaddr)
447
{
448
    LANCEState *s;
449
    int lance_io_memory, ledma_io_memory;
450

    
451
    s = qemu_mallocz(sizeof(LANCEState));
452
    if (!s)
453
        return;
454

    
455
    s->nd = nd;
456
    s->irq = irq;
457

    
458
    lance_io_memory = cpu_register_io_memory(0, lance_mem_read, lance_mem_write, s);
459
    cpu_register_physical_memory(leaddr, 4, lance_io_memory);
460

    
461
    ledma_io_memory = cpu_register_io_memory(0, ledma_mem_read, ledma_mem_write, s);
462
    cpu_register_physical_memory(ledaddr, 16, ledma_io_memory);
463

    
464
    lance_reset(s);
465
    qemu_add_read_packet(nd, lance_can_receive, lance_receive, s);
466
    register_savevm("lance", leaddr, 1, lance_save, lance_load, s);
467
    qemu_register_reset(lance_reset, s);
468
}
469