Revision 664e0f19

b/Changelog
11 11
  - added generic 64 bit target support
12 12
  - initial x86_64 target support
13 13
  - initial APIC support
14
  - MMX/SSE/SSE2/PNI support
14 15

  
15 16
version 0.6.1:
16 17

  
b/Makefile.target
392 392
	$(CC) $(HELPER_CFLAGS) $(DEFINES) -c -o $@ $<
393 393

  
394 394
ifeq ($(TARGET_BASE_ARCH), i386)
395
op.o: op.c opreg_template.h ops_template.h ops_template_mem.h ops_mem.h
395
op.o: op.c opreg_template.h ops_template.h ops_template_mem.h ops_mem.h ops_sse.h
396 396
endif
397 397

  
398 398
ifeq ($(TARGET_ARCH), arm)
b/linux-user/main.c
1052 1052
    cpu_x86_set_cpl(env, 3);
1053 1053

  
1054 1054
    env->cr[0] = CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK;
1055
    env->hflags |= HF_PE_MASK;
1056

  
1055
    env->hflags |= HF_PE_MASK | HF_OSFXSR_MASK;
1056
    
1057 1057
    /* flags setup : we activate the IRQs by default as in user mode */
1058 1058
    env->eflags |= IF_MASK;
1059 1059
    
b/target-i386/cpu.h
135 135
#define HF_IOPL_SHIFT       12 /* must be same as eflags */
136 136
#define HF_LMA_SHIFT        14 /* only used on x86_64: long mode active */
137 137
#define HF_CS64_SHIFT       15 /* only used on x86_64: 64 bit code segment  */
138
#define HF_OSFXSR_SHIFT     16 /* CR4.OSFXSR */
138 139
#define HF_VM_SHIFT         17 /* must be same as eflags */
139 140

  
140 141
#define HF_CPL_MASK          (3 << HF_CPL_SHIFT)
......
150 151
#define HF_TS_MASK           (1 << HF_TS_SHIFT)
151 152
#define HF_LMA_MASK          (1 << HF_LMA_SHIFT)
152 153
#define HF_CS64_MASK         (1 << HF_CS64_SHIFT)
154
#define HF_OSFXSR_MASK       (1 << HF_OSFXSR_SHIFT)
153 155

  
154 156
#define CR0_PE_MASK  (1 << 0)
155 157
#define CR0_MP_MASK  (1 << 1)
......
340 342
} SegmentCache;
341 343

  
342 344
typedef union {
343
        uint8_t _b[16];
344
        uint16_t _w[8];
345
        uint32_t _l[4];
346
        uint64_t _q[2];
345
    uint8_t _b[16];
346
    uint16_t _w[8];
347
    uint32_t _l[4];
348
    uint64_t _q[2];
349
    float _s[4];
350
    double _d[2];
347 351
} XMMReg;
348 352

  
349 353
typedef union {
......
357 361
#define XMM_B(n) _b[15 - (n)]
358 362
#define XMM_W(n) _w[7 - (n)]
359 363
#define XMM_L(n) _l[3 - (n)]
364
#define XMM_S(n) _s[3 - (n)]
360 365
#define XMM_Q(n) _q[1 - (n)]
366
#define XMM_D(n) _d[1 - (n)]
361 367

  
362 368
#define MMX_B(n) _b[7 - (n)]
363 369
#define MMX_W(n) _w[3 - (n)]
......
366 372
#define XMM_B(n) _b[n]
367 373
#define XMM_W(n) _w[n]
368 374
#define XMM_L(n) _l[n]
375
#define XMM_S(n) _s[n]
369 376
#define XMM_Q(n) _q[n]
377
#define XMM_D(n) _d[n]
370 378

  
371 379
#define MMX_B(n) _b[n]
372 380
#define MMX_W(n) _w[n]
373 381
#define MMX_L(n) _l[n]
374 382
#endif
383
#define MMX_Q(n) q
375 384

  
376 385
#ifdef TARGET_X86_64
377 386
#define CPU_NB_REGS 16
......
404 413
    unsigned int fpus;
405 414
    unsigned int fpuc;
406 415
    uint8_t fptags[8];   /* 0 = valid, 1 = empty */
407
    CPU86_LDouble fpregs[8];
416
    union {
417
#ifdef USE_X86LDOUBLE
418
        CPU86_LDouble d __attribute__((aligned(16)));
419
#else
420
        CPU86_LDouble d;
421
#endif
422
        MMXReg mmx;
423
    } fpregs[8];
408 424

  
409 425
    /* emulator internal variables */
410 426
    CPU86_LDouble ft0;
......
421 437
    SegmentCache tr;
422 438
    SegmentCache gdt; /* only base and limit are used */
423 439
    SegmentCache idt; /* only base and limit are used */
424
    
440

  
441
    uint32_t mxcsr;
425 442
    XMMReg xmm_regs[CPU_NB_REGS];
426 443
    XMMReg xmm_t0;
444
    MMXReg mmx_t0;
427 445

  
428 446
    /* sysenter registers */
429 447
    uint32_t sysenter_cs;
b/target-i386/exec.h
131 131

  
132 132
/* float macros */
133 133
#define FT0    (env->ft0)
134
#define ST0    (env->fpregs[env->fpstt])
135
#define ST(n)  (env->fpregs[(env->fpstt + (n)) & 7])
134
#define ST0    (env->fpregs[env->fpstt].d)
135
#define ST(n)  (env->fpregs[(env->fpstt + (n)) & 7].d)
136 136
#define ST1    ST(1)
137 137

  
138 138
#ifdef USE_FP_CONVERT
......
459 459
    return temp.d;
460 460
}
461 461

  
462
static inline void helper_fstt(CPU86_LDouble f, uint8_t *ptr)
462
static inline void helper_fstt(CPU86_LDouble f, target_ulong ptr)
463 463
{
464 464
    CPU86_LDoubleU temp;
465 465
    int e;
......
557 557
void helper_fxrstor(target_ulong ptr, int data64);
558 558
void restore_native_fp_state(CPUState *env);
559 559
void save_native_fp_state(CPUState *env);
560
float approx_rsqrt(float a);
561
float approx_rcp(float a);
562
int fpu_isnan(double a);
560 563

  
561 564
extern const uint8_t parity_table[256];
562 565
extern const uint8_t rclw_table[32];
b/target-i386/helper.c
2444 2444
{
2445 2445
    int new_fpstt;
2446 2446
    new_fpstt = (env->fpstt - 1) & 7;
2447
    env->fpregs[new_fpstt] = helper_fldt(A0);
2447
    env->fpregs[new_fpstt].d = helper_fldt(A0);
2448 2448
    env->fpstt = new_fpstt;
2449 2449
    env->fptags[new_fpstt] = 0; /* validate stack entry */
2450 2450
}
......
2804 2804
	if (env->fptags[i]) {
2805 2805
            fptag |= 3;
2806 2806
	} else {
2807
            tmp.d = env->fpregs[i];
2807
            tmp.d = env->fpregs[i].d;
2808 2808
            exp = EXPD(tmp);
2809 2809
            mant = MANTD(tmp);
2810
            printf("mant=%llx exp=%x\n", mant, exp);
2810 2811
            if (exp == 0 && mant == 0) {
2811 2812
                /* zero */
2812 2813
	        fptag |= 1;
......
2930 2931
    
2931 2932
    if (env->cr[4] & CR4_OSFXSR_MASK) {
2932 2933
        /* XXX: finish it */
2933
        stl(ptr + 0x18, 0); /* mxcsr */
2934
        stl(ptr + 0x18, env->mxcsr); /* mxcsr */
2934 2935
        stl(ptr + 0x1c, 0); /* mxcsr_mask */
2935 2936
        nb_xmm_regs = 8 << data64;
2936 2937
        addr = ptr + 0xa0;
......
2967 2968

  
2968 2969
    if (env->cr[4] & CR4_OSFXSR_MASK) {
2969 2970
        /* XXX: finish it, endianness */
2970
        //ldl(ptr + 0x18);
2971
        env->mxcsr = ldl(ptr + 0x18);
2971 2972
        //ldl(ptr + 0x1c);
2972 2973
        nb_xmm_regs = 8 << data64;
2973 2974
        addr = ptr + 0xa0;
......
3209 3210

  
3210 3211
#endif
3211 3212

  
3213
/* XXX: do it */
3214
int fpu_isnan(double a)
3215
{
3216
    return 0;
3217
}
3218

  
3219
float approx_rsqrt(float a)
3220
{
3221
    return 1.0 / sqrt(a);
3222
}
3223

  
3224
float approx_rcp(float a)
3225
{
3226
    return 1.0 / a;
3227
}
3228

  
3229

  
3212 3230
#if !defined(CONFIG_USER_ONLY) 
3213 3231

  
3214 3232
#define MMUSUFFIX _mmu
b/target-i386/helper2.c
158 158
    for(i = 0;i < 8; i++)
159 159
        env->fptags[i] = 1;
160 160
    env->fpuc = 0x37f;
161

  
162
    env->mxcsr = 0x1f80;
161 163
}
162 164

  
163 165
void cpu_x86_close(CPUX86State *env)
......
376 378
    }
377 379
    if (flags & X86_DUMP_FPU) {
378 380
        cpu_fprintf(f, "ST0=%f ST1=%f ST2=%f ST3=%f\n", 
379
                (double)env->fpregs[0], 
380
                (double)env->fpregs[1], 
381
                (double)env->fpregs[2], 
382
                (double)env->fpregs[3]);
381
                (double)env->fpregs[0].d, 
382
                (double)env->fpregs[1].d, 
383
                (double)env->fpregs[2].d, 
384
                (double)env->fpregs[3].d);
383 385
        cpu_fprintf(f, "ST4=%f ST5=%f ST6=%f ST7=%f\n", 
384
                (double)env->fpregs[4], 
385
                (double)env->fpregs[5], 
386
                (double)env->fpregs[7], 
387
                (double)env->fpregs[8]);
386
                (double)env->fpregs[4].d, 
387
                (double)env->fpregs[5].d, 
388
                (double)env->fpregs[7].d, 
389
                (double)env->fpregs[8].d);
388 390
    }
389 391
}
390 392

  
......
471 473
        (env->cr[4] & (CR4_PGE_MASK | CR4_PAE_MASK | CR4_PSE_MASK))) {
472 474
        tlb_flush(env, 1);
473 475
    }
476
    /* SSE handling */
477
    if (!(env->cpuid_features & CPUID_SSE))
478
        new_cr4 &= ~CR4_OSFXSR_MASK;
479
    if (new_cr4 & CR4_OSFXSR_MASK)
480
        env->hflags |= HF_OSFXSR_MASK;
481
    else
482
        env->hflags &= ~HF_OSFXSR_MASK;
483

  
474 484
    env->cr[4] = new_cr4;
475 485
}
476 486

  
......
800 810
    fp->fptag = fptag;
801 811
    j = env->fpstt;
802 812
    for(i = 0;i < 8; i++) {
803
        memcpy(&fp->fpregs1[i * 10], &env->fpregs[j], 10);
813
        memcpy(&fp->fpregs1[i * 10], &env->fpregs[j].d, 10);
804 814
        j = (j + 1) & 7;
805 815
    }
806 816
    asm volatile ("frstor %0" : "=m" (*fp));
......
824 834
    }
825 835
    j = env->fpstt;
826 836
    for(i = 0;i < 8; i++) {
827
        memcpy(&env->fpregs[j], &fp->fpregs1[i * 10], 10);
837
        memcpy(&env->fpregs[j].d, &fp->fpregs1[i * 10], 10);
828 838
        j = (j + 1) & 7;
829 839
    }
830 840
    /* we must restore the default rounding state */
b/target-i386/op.c
752 752
    T0 = (int16_t)T0;
753 753
}
754 754

  
755
void OPPROTO op_movslq_T0_T0(void)
756
{
757
    T0 = (int32_t)T0;
758
}
759

  
760 755
void OPPROTO op_movzwl_T0_T0(void)
761 756
{
762 757
    T0 = (uint16_t)T0;
......
768 763
}
769 764

  
770 765
#ifdef TARGET_X86_64
766
void OPPROTO op_movslq_T0_T0(void)
767
{
768
    T0 = (int32_t)T0;
769
}
770

  
771 771
void OPPROTO op_movslq_RAX_EAX(void)
772 772
{
773 773
    EAX = (int32_t)EAX;
......
1695 1695
    new_fpstt = (env->fpstt - 1) & 7;
1696 1696
#ifdef USE_FP_CONVERT
1697 1697
    FP_CONVERT.i32 = ldl(A0);
1698
    env->fpregs[new_fpstt] = FP_CONVERT.f;
1698
    env->fpregs[new_fpstt].d = FP_CONVERT.f;
1699 1699
#else
1700
    env->fpregs[new_fpstt] = ldfl(A0);
1700
    env->fpregs[new_fpstt].d = ldfl(A0);
1701 1701
#endif
1702 1702
    env->fpstt = new_fpstt;
1703 1703
    env->fptags[new_fpstt] = 0; /* validate stack entry */
......
1709 1709
    new_fpstt = (env->fpstt - 1) & 7;
1710 1710
#ifdef USE_FP_CONVERT
1711 1711
    FP_CONVERT.i64 = ldq(A0);
1712
    env->fpregs[new_fpstt] = FP_CONVERT.d;
1712
    env->fpregs[new_fpstt].d = FP_CONVERT.d;
1713 1713
#else
1714
    env->fpregs[new_fpstt] = ldfq(A0);
1714
    env->fpregs[new_fpstt].d = ldfq(A0);
1715 1715
#endif
1716 1716
    env->fpstt = new_fpstt;
1717 1717
    env->fptags[new_fpstt] = 0; /* validate stack entry */
......
1729 1729
{
1730 1730
    int new_fpstt;
1731 1731
    new_fpstt = (env->fpstt - 1) & 7;
1732
    env->fpregs[new_fpstt] = (CPU86_LDouble)ldsw(A0);
1732
    env->fpregs[new_fpstt].d = (CPU86_LDouble)ldsw(A0);
1733 1733
    env->fpstt = new_fpstt;
1734 1734
    env->fptags[new_fpstt] = 0; /* validate stack entry */
1735 1735
}
......
1738 1738
{
1739 1739
    int new_fpstt;
1740 1740
    new_fpstt = (env->fpstt - 1) & 7;
1741
    env->fpregs[new_fpstt] = (CPU86_LDouble)((int32_t)ldl(A0));
1741
    env->fpregs[new_fpstt].d = (CPU86_LDouble)((int32_t)ldl(A0));
1742 1742
    env->fpstt = new_fpstt;
1743 1743
    env->fptags[new_fpstt] = 0; /* validate stack entry */
1744 1744
}
......
1747 1747
{
1748 1748
    int new_fpstt;
1749 1749
    new_fpstt = (env->fpstt - 1) & 7;
1750
    env->fpregs[new_fpstt] = (CPU86_LDouble)((int64_t)ldq(A0));
1750
    env->fpregs[new_fpstt].d = (CPU86_LDouble)((int64_t)ldq(A0));
1751 1751
    env->fpstt = new_fpstt;
1752 1752
    env->fptags[new_fpstt] = 0; /* validate stack entry */
1753 1753
}
......
1775 1775
    new_fpstt = (env->fpstt - 1) & 7;
1776 1776
#ifdef USE_FP_CONVERT
1777 1777
    FP_CONVERT.i32 = ldsw(A0);
1778
    env->fpregs[new_fpstt] = (CPU86_LDouble)FP_CONVERT.i32;
1778
    env->fpregs[new_fpstt].d = (CPU86_LDouble)FP_CONVERT.i32;
1779 1779
#else
1780
    env->fpregs[new_fpstt] = (CPU86_LDouble)ldsw(A0);
1780
    env->fpregs[new_fpstt].d = (CPU86_LDouble)ldsw(A0);
1781 1781
#endif
1782 1782
    env->fpstt = new_fpstt;
1783 1783
    env->fptags[new_fpstt] = 0; /* validate stack entry */
......
1789 1789
    new_fpstt = (env->fpstt - 1) & 7;
1790 1790
#ifdef USE_FP_CONVERT
1791 1791
    FP_CONVERT.i32 = (int32_t) ldl(A0);
1792
    env->fpregs[new_fpstt] = (CPU86_LDouble)FP_CONVERT.i32;
1792
    env->fpregs[new_fpstt].d = (CPU86_LDouble)FP_CONVERT.i32;
1793 1793
#else
1794
    env->fpregs[new_fpstt] = (CPU86_LDouble)((int32_t)ldl(A0));
1794
    env->fpregs[new_fpstt].d = (CPU86_LDouble)((int32_t)ldl(A0));
1795 1795
#endif
1796 1796
    env->fpstt = new_fpstt;
1797 1797
    env->fptags[new_fpstt] = 0; /* validate stack entry */
......
1803 1803
    new_fpstt = (env->fpstt - 1) & 7;
1804 1804
#ifdef USE_FP_CONVERT
1805 1805
    FP_CONVERT.i64 = (int64_t) ldq(A0);
1806
    env->fpregs[new_fpstt] = (CPU86_LDouble)FP_CONVERT.i64;
1806
    env->fpregs[new_fpstt].d = (CPU86_LDouble)FP_CONVERT.i64;
1807 1807
#else
1808
    env->fpregs[new_fpstt] = (CPU86_LDouble)((int64_t)ldq(A0));
1808
    env->fpregs[new_fpstt].d = (CPU86_LDouble)((int64_t)ldq(A0));
1809 1809
#endif
1810 1810
    env->fpstt = new_fpstt;
1811 1811
    env->fptags[new_fpstt] = 0; /* validate stack entry */
......
2322 2322
    memcpy16(d, s);
2323 2323
}
2324 2324

  
2325
void OPPROTO op_movq(void)
2326
{
2327
    uint64_t *d, *s;
2328
    d = (uint64_t *)((char *)env + PARAM1);
2329
    s = (uint64_t *)((char *)env + PARAM2);
2330
    *d = *s;
2331
}
2332

  
2333
void OPPROTO op_movl(void)
2334
{
2335
    uint32_t *d, *s;
2336
    d = (uint32_t *)((char *)env + PARAM1);
2337
    s = (uint32_t *)((char *)env + PARAM2);
2338
    *d = *s;
2339
}
2340

  
2341
void OPPROTO op_movq_env_0(void)
2342
{
2343
    uint64_t *d;
2344
    d = (uint64_t *)((char *)env + PARAM1);
2345
    *d = 0;
2346
}
2347

  
2325 2348
void OPPROTO op_fxsave_A0(void)
2326 2349
{
2327 2350
    helper_fxsave(A0, PARAM1);
......
2331 2354
{
2332 2355
    helper_fxrstor(A0, PARAM1);
2333 2356
}
2357

  
2358
/* XXX: optimize by storing fptt and fptags in the static cpu state */
2359
void OPPROTO op_enter_mmx(void)
2360
{
2361
    env->fpstt = 0;
2362
    *(uint32_t *)(env->fptags) = 0;
2363
    *(uint32_t *)(env->fptags + 4) = 0;
2364
}
2365

  
2366
void OPPROTO op_emms(void)
2367
{
2368
    /* set to empty state */
2369
    *(uint32_t *)(env->fptags) = 0x01010101;
2370
    *(uint32_t *)(env->fptags + 4) = 0x01010101;
2371
}
2372

  
2373
#define SHIFT 0
2374
#include "ops_sse.h"
2375

  
2376
#define SHIFT 1
2377
#include "ops_sse.h"
b/target-i386/ops_mem.h
80 80
    glue(stl, MEMSUFFIX)(A0, T1);
81 81
}
82 82

  
83
/* SSE support */
83
/* SSE/MMX support */
84
void OPPROTO glue(glue(op_ldq, MEMSUFFIX), _env_A0)(void)
85
{
86
    uint64_t *p;
87
    p = (uint64_t *)((char *)env + PARAM1);
88
    *p = glue(ldq, MEMSUFFIX)(A0);
89
}
90

  
91
void OPPROTO glue(glue(op_stq, MEMSUFFIX), _env_A0)(void)
92
{
93
    uint64_t *p;
94
    p = (uint64_t *)((char *)env + PARAM1);
95
    glue(stq, MEMSUFFIX)(A0, *p);
96
}
97

  
84 98
void OPPROTO glue(glue(op_ldo, MEMSUFFIX), _env_A0)(void)
85 99
{
86 100
    XMMReg *p;
b/target-i386/ops_sse.h
1
/*
2
 *  MMX/SSE/SSE2/PNI support
3
 * 
4
 *  Copyright (c) 2005 Fabrice Bellard
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, write to the Free Software
18
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19
 */
20
#if SHIFT == 0
21
#define Reg MMXReg
22
#define XMM_ONLY(x...)
23
#define B(n) MMX_B(n)
24
#define W(n) MMX_W(n)
25
#define L(n) MMX_L(n)
26
#define Q(n) q
27
#define SUFFIX _mmx
28
#else
29
#define Reg XMMReg
30
#define XMM_ONLY(x...) x
31
#define B(n) XMM_B(n)
32
#define W(n) XMM_W(n)
33
#define L(n) XMM_L(n)
34
#define Q(n) XMM_Q(n)
35
#define SUFFIX _xmm
36
#endif
37

  
38
void OPPROTO glue(op_psrlw, SUFFIX)(void)
39
{
40
    Reg *d, *s;
41
    int shift;
42

  
43
    d = (Reg *)((char *)env + PARAM1);
44
    s = (Reg *)((char *)env + PARAM2);
45

  
46
    if (s->Q(0) > 15) {
47
        d->Q(0) = 0;
48
#if SHIFT == 1
49
        d->Q(1) = 0;
50
#endif
51
    } else {
52
        shift = s->B(0);
53
        d->W(0) >>= shift;
54
        d->W(1) >>= shift;
55
        d->W(2) >>= shift;
56
        d->W(3) >>= shift;
57
#if SHIFT == 1
58
        d->W(4) >>= shift;
59
        d->W(5) >>= shift;
60
        d->W(6) >>= shift;
61
        d->W(7) >>= shift;
62
#endif
63
    }
64
}
65

  
66
void OPPROTO glue(op_psraw, SUFFIX)(void)
67
{
68
    Reg *d, *s;
69
    int shift;
70

  
71
    d = (Reg *)((char *)env + PARAM1);
72
    s = (Reg *)((char *)env + PARAM2);
73

  
74
    if (s->Q(0) > 15) {
75
        shift = 15;
76
    } else {
77
        shift = s->B(0);
78
    }
79
    d->W(0) = (int16_t)d->W(0) >> shift;
80
    d->W(1) = (int16_t)d->W(1) >> shift;
81
    d->W(2) = (int16_t)d->W(2) >> shift;
82
    d->W(3) = (int16_t)d->W(3) >> shift;
83
#if SHIFT == 1
84
    d->W(4) = (int16_t)d->W(4) >> shift;
85
    d->W(5) = (int16_t)d->W(5) >> shift;
86
    d->W(6) = (int16_t)d->W(6) >> shift;
87
    d->W(7) = (int16_t)d->W(7) >> shift;
88
#endif
89
}
90

  
91
void OPPROTO glue(op_psllw, SUFFIX)(void)
92
{
93
    Reg *d, *s;
94
    int shift;
95

  
96
    d = (Reg *)((char *)env + PARAM1);
97
    s = (Reg *)((char *)env + PARAM2);
98

  
99
    if (s->Q(0) > 15) {
100
        d->Q(0) = 0;
101
#if SHIFT == 1
102
        d->Q(1) = 0;
103
#endif
104
    } else {
105
        shift = s->B(0);
106
        d->W(0) <<= shift;
107
        d->W(1) <<= shift;
108
        d->W(2) <<= shift;
109
        d->W(3) <<= shift;
110
#if SHIFT == 1
111
        d->W(4) <<= shift;
112
        d->W(5) <<= shift;
113
        d->W(6) <<= shift;
114
        d->W(7) <<= shift;
115
#endif
116
    }
117
}
118

  
119
void OPPROTO glue(op_psrld, SUFFIX)(void)
120
{
121
    Reg *d, *s;
122
    int shift;
123

  
124
    d = (Reg *)((char *)env + PARAM1);
125
    s = (Reg *)((char *)env + PARAM2);
126

  
127
    if (s->Q(0) > 31) {
128
        d->Q(0) = 0;
129
#if SHIFT == 1
130
        d->Q(1) = 0;
131
#endif
132
    } else {
133
        shift = s->B(0);
134
        d->L(0) >>= shift;
135
        d->L(1) >>= shift;
136
#if SHIFT == 1
137
        d->L(2) >>= shift;
138
        d->L(3) >>= shift;
139
#endif
140
    }
141
}
142

  
143
void OPPROTO glue(op_psrad, SUFFIX)(void)
144
{
145
    Reg *d, *s;
146
    int shift;
147

  
148
    d = (Reg *)((char *)env + PARAM1);
149
    s = (Reg *)((char *)env + PARAM2);
150

  
151
    if (s->Q(0) > 31) {
152
        shift = 31;
153
    } else {
154
        shift = s->B(0);
155
    }
156
    d->L(0) = (int32_t)d->L(0) >> shift;
157
    d->L(1) = (int32_t)d->L(1) >> shift;
158
#if SHIFT == 1
159
    d->L(2) = (int32_t)d->L(2) >> shift;
160
    d->L(3) = (int32_t)d->L(3) >> shift;
161
#endif
162
}
163

  
164
void OPPROTO glue(op_pslld, SUFFIX)(void)
165
{
166
    Reg *d, *s;
167
    int shift;
168

  
169
    d = (Reg *)((char *)env + PARAM1);
170
    s = (Reg *)((char *)env + PARAM2);
171

  
172
    if (s->Q(0) > 31) {
173
        d->Q(0) = 0;
174
#if SHIFT == 1
175
        d->Q(1) = 0;
176
#endif
177
    } else {
178
        shift = s->B(0);
179
        d->L(0) <<= shift;
180
        d->L(1) <<= shift;
181
#if SHIFT == 1
182
        d->L(2) <<= shift;
183
        d->L(3) <<= shift;
184
#endif
185
    }
186
}
187

  
188
void OPPROTO glue(op_psrlq, SUFFIX)(void)
189
{
190
    Reg *d, *s;
191
    int shift;
192

  
193
    d = (Reg *)((char *)env + PARAM1);
194
    s = (Reg *)((char *)env + PARAM2);
195

  
196
    if (s->Q(0) > 63) {
197
        d->Q(0) = 0;
198
#if SHIFT == 1
199
        d->Q(1) = 0;
200
#endif
201
    } else {
202
        shift = s->B(0);
203
        d->Q(0) >>= shift;
204
#if SHIFT == 1
205
        d->Q(1) >>= shift;
206
#endif
207
    }
208
}
209

  
210
void OPPROTO glue(op_psllq, SUFFIX)(void)
211
{
212
    Reg *d, *s;
213
    int shift;
214

  
215
    d = (Reg *)((char *)env + PARAM1);
216
    s = (Reg *)((char *)env + PARAM2);
217

  
218
    if (s->Q(0) > 63) {
219
        d->Q(0) = 0;
220
#if SHIFT == 1
221
        d->Q(1) = 0;
222
#endif
223
    } else {
224
        shift = s->B(0);
225
        d->Q(0) <<= shift;
226
#if SHIFT == 1
227
        d->Q(1) <<= shift;
228
#endif
229
    }
230
}
231

  
232
#if SHIFT == 1
233
void OPPROTO glue(op_psrldq, SUFFIX)(void)
234
{
235
    Reg *d, *s;
236
    int shift, i;
237

  
238
    d = (Reg *)((char *)env + PARAM1);
239
    s = (Reg *)((char *)env + PARAM2);
240
    shift = s->L(0);
241
    if (shift > 16)
242
        shift = 16;
243
    for(i = 0; i < 16 - shift; i++)
244
        d->B(i) = d->B(i + shift);
245
    for(i = 16 - shift; i < 16; i++)
246
        d->B(i) = 0;
247
    FORCE_RET();
248
}
249

  
250
void OPPROTO glue(op_pslldq, SUFFIX)(void)
251
{
252
    Reg *d, *s;
253
    int shift, i;
254

  
255
    d = (Reg *)((char *)env + PARAM1);
256
    s = (Reg *)((char *)env + PARAM2);
257
    shift = s->L(0);
258
    if (shift > 16)
259
        shift = 16;
260
    for(i = 15; i >= shift; i--)
261
        d->B(i) = d->B(i - shift);
262
    for(i = 0; i < shift; i++)
263
        d->B(i) = 0;
264
    FORCE_RET();
265
}
266
#endif
267

  
268
#define SSE_OP_B(name, F)\
269
void OPPROTO glue(name, SUFFIX) (void)\
270
{\
271
    Reg *d, *s;\
272
    d = (Reg *)((char *)env + PARAM1);\
273
    s = (Reg *)((char *)env + PARAM2);\
274
    d->B(0) = F(d->B(0), s->B(0));\
275
    d->B(1) = F(d->B(1), s->B(1));\
276
    d->B(2) = F(d->B(2), s->B(2));\
277
    d->B(3) = F(d->B(3), s->B(3));\
278
    d->B(4) = F(d->B(4), s->B(4));\
279
    d->B(5) = F(d->B(5), s->B(5));\
280
    d->B(6) = F(d->B(6), s->B(6));\
281
    d->B(7) = F(d->B(7), s->B(7));\
282
    XMM_ONLY(\
283
    d->B(8) = F(d->B(8), s->B(8));\
284
    d->B(9) = F(d->B(9), s->B(9));\
285
    d->B(10) = F(d->B(10), s->B(10));\
286
    d->B(11) = F(d->B(11), s->B(11));\
287
    d->B(12) = F(d->B(12), s->B(12));\
288
    d->B(13) = F(d->B(13), s->B(13));\
289
    d->B(14) = F(d->B(14), s->B(14));\
290
    d->B(15) = F(d->B(15), s->B(15));\
291
    )\
292
}
293

  
294
#define SSE_OP_W(name, F)\
295
void OPPROTO glue(name, SUFFIX) (void)\
296
{\
297
    Reg *d, *s;\
298
    d = (Reg *)((char *)env + PARAM1);\
299
    s = (Reg *)((char *)env + PARAM2);\
300
    d->W(0) = F(d->W(0), s->W(0));\
301
    d->W(1) = F(d->W(1), s->W(1));\
302
    d->W(2) = F(d->W(2), s->W(2));\
303
    d->W(3) = F(d->W(3), s->W(3));\
304
    XMM_ONLY(\
305
    d->W(4) = F(d->W(4), s->W(4));\
306
    d->W(5) = F(d->W(5), s->W(5));\
307
    d->W(6) = F(d->W(6), s->W(6));\
308
    d->W(7) = F(d->W(7), s->W(7));\
309
    )\
310
}
311

  
312
#define SSE_OP_L(name, F)\
313
void OPPROTO glue(name, SUFFIX) (void)\
314
{\
315
    Reg *d, *s;\
316
    d = (Reg *)((char *)env + PARAM1);\
317
    s = (Reg *)((char *)env + PARAM2);\
318
    d->L(0) = F(d->L(0), s->L(0));\
319
    d->L(1) = F(d->L(1), s->L(1));\
320
    XMM_ONLY(\
321
    d->L(2) = F(d->L(2), s->L(2));\
322
    d->L(3) = F(d->L(3), s->L(3));\
323
    )\
324
}
325

  
326
#define SSE_OP_Q(name, F)\
327
void OPPROTO glue(name, SUFFIX) (void)\
328
{\
329
    Reg *d, *s;\
330
    d = (Reg *)((char *)env + PARAM1);\
331
    s = (Reg *)((char *)env + PARAM2);\
332
    d->Q(0) = F(d->Q(0), s->Q(0));\
333
    XMM_ONLY(\
334
    d->Q(1) = F(d->Q(1), s->Q(1));\
335
    )\
336
}
337

  
338
#if SHIFT == 0
339
static inline int satub(int x)
340
{
341
    if (x < 0)
342
        return 0;
343
    else if (x > 255)
344
        return 255;
345
    else
346
        return x;
347
}
348

  
349
static inline int satuw(int x)
350
{
351
    if (x < 0)
352
        return 0;
353
    else if (x > 65535)
354
        return 65535;
355
    else
356
        return x;
357
}
358

  
359
static inline int satsb(int x)
360
{
361
    if (x < -128)
362
        return -128;
363
    else if (x > 127)
364
        return 127;
365
    else
366
        return x;
367
}
368

  
369
static inline int satsw(int x)
370
{
371
    if (x < -32768)
372
        return -32768;
373
    else if (x > 32767)
374
        return 32767;
375
    else
376
        return x;
377
}
378

  
379
#define FADD(a, b) ((a) + (b))
380
#define FADDUB(a, b) satub((a) + (b))
381
#define FADDUW(a, b) satuw((a) + (b))
382
#define FADDSB(a, b) satsb((int8_t)(a) + (int8_t)(b))
383
#define FADDSW(a, b) satsw((int16_t)(a) + (int16_t)(b))
384

  
385
#define FSUB(a, b) ((a) - (b))
386
#define FSUBUB(a, b) satub((a) - (b))
387
#define FSUBUW(a, b) satuw((a) - (b))
388
#define FSUBSB(a, b) satsb((int8_t)(a) - (int8_t)(b))
389
#define FSUBSW(a, b) satsw((int16_t)(a) - (int16_t)(b))
390
#define FMINUB(a, b) ((a) < (b)) ? (a) : (b)
391
#define FMINSW(a, b) ((int16_t)(a) < (int16_t)(b)) ? (a) : (b)
392
#define FMAXUB(a, b) ((a) > (b)) ? (a) : (b)
393
#define FMAXSW(a, b) ((int16_t)(a) > (int16_t)(b)) ? (a) : (b)
394

  
395
#define FAND(a, b) (a) & (b)
396
#define FANDN(a, b) ((~(a)) & (b))
397
#define FOR(a, b) (a) | (b)
398
#define FXOR(a, b) (a) ^ (b)
399

  
400
#define FCMPGTB(a, b) (int8_t)(a) > (int8_t)(b) ? -1 : 0
401
#define FCMPGTW(a, b) (int16_t)(a) > (int16_t)(b) ? -1 : 0
402
#define FCMPGTL(a, b) (int32_t)(a) > (int32_t)(b) ? -1 : 0
403
#define FCMPEQ(a, b) (a) == (b) ? -1 : 0
404

  
405
#define FMULLW(a, b) (a) * (b)
406
#define FMULHUW(a, b) (a) * (b) >> 16
407
#define FMULHW(a, b) (int16_t)(a) * (int16_t)(b) >> 16
408

  
409
#define FAVG(a, b) ((a) + (b) + 1) >> 1
410
#endif
411

  
412
SSE_OP_B(op_paddb, FADD)
413
SSE_OP_W(op_paddw, FADD)
414
SSE_OP_L(op_paddl, FADD)
415
SSE_OP_Q(op_paddq, FADD)
416

  
417
SSE_OP_B(op_psubb, FSUB)
418
SSE_OP_W(op_psubw, FSUB)
419
SSE_OP_L(op_psubl, FSUB)
420
SSE_OP_Q(op_psubq, FSUB)
421

  
422
SSE_OP_B(op_paddusb, FADDUB)
423
SSE_OP_B(op_paddsb, FADDSB)
424
SSE_OP_B(op_psubusb, FSUBUB)
425
SSE_OP_B(op_psubsb, FSUBSB)
426

  
427
SSE_OP_W(op_paddusw, FADDUW)
428
SSE_OP_W(op_paddsw, FADDSW)
429
SSE_OP_W(op_psubusw, FSUBUW)
430
SSE_OP_W(op_psubsw, FSUBSW)
431

  
432
SSE_OP_B(op_pminub, FMINUB)
433
SSE_OP_B(op_pmaxub, FMAXUB)
434

  
435
SSE_OP_W(op_pminsw, FMINSW)
436
SSE_OP_W(op_pmaxsw, FMAXSW)
437

  
438
SSE_OP_Q(op_pand, FAND)
439
SSE_OP_Q(op_pandn, FANDN)
440
SSE_OP_Q(op_por, FOR)
441
SSE_OP_Q(op_pxor, FXOR)
442

  
443
SSE_OP_B(op_pcmpgtb, FCMPGTB)
444
SSE_OP_W(op_pcmpgtw, FCMPGTW)
445
SSE_OP_L(op_pcmpgtl, FCMPGTL)
446

  
447
SSE_OP_B(op_pcmpeqb, FCMPEQ)
448
SSE_OP_W(op_pcmpeqw, FCMPEQ)
449
SSE_OP_L(op_pcmpeql, FCMPEQ)
450

  
451
SSE_OP_W(op_pmullw, FMULLW)
452
SSE_OP_W(op_pmulhuw, FMULHUW)
453
SSE_OP_W(op_pmulhw, FMULHW)
454

  
455
SSE_OP_B(op_pavgb, FAVG)
456
SSE_OP_W(op_pavgw, FAVG)
457

  
458
void OPPROTO glue(op_pmuludq, SUFFIX) (void)
459
{
460
    Reg *d, *s;
461
    d = (Reg *)((char *)env + PARAM1);
462
    s = (Reg *)((char *)env + PARAM2);
463

  
464
    d->Q(0) = (uint64_t)s->L(0) * (uint64_t)d->L(0);
465
#if SHIFT == 1
466
    d->Q(1) = (uint64_t)s->L(2) * (uint64_t)d->L(2);
467
#endif
468
}
469

  
470
void OPPROTO glue(op_pmaddwd, SUFFIX) (void)
471
{
472
    int i;
473
    Reg *d, *s;
474
    d = (Reg *)((char *)env + PARAM1);
475
    s = (Reg *)((char *)env + PARAM2);
476

  
477
    for(i = 0; i < (2 << SHIFT); i++) {
478
        d->L(i) = (int16_t)s->W(2*i) * (int16_t)d->W(2*i) +
479
            (int16_t)s->W(2*i+1) * (int16_t)d->W(2*i+1);
480
    }
481
}
482

  
483
#if SHIFT == 0
484
static inline int abs1(int a)
485
{
486
    if (a < 0)
487
        return -a;
488
    else
489
        return a;
490
}
491
#endif
492
void OPPROTO glue(op_psadbw, SUFFIX) (void)
493
{
494
    unsigned int val;
495
    Reg *d, *s;
496
    d = (Reg *)((char *)env + PARAM1);
497
    s = (Reg *)((char *)env + PARAM2);
498

  
499
    val = 0;
500
    val += abs1(d->B(0) - s->B(0));
501
    val += abs1(d->B(1) - s->B(1));
502
    val += abs1(d->B(2) - s->B(2));
503
    val += abs1(d->B(3) - s->B(3));
504
    val += abs1(d->B(4) - s->B(4));
505
    val += abs1(d->B(5) - s->B(5));
506
    val += abs1(d->B(6) - s->B(6));
507
    val += abs1(d->B(7) - s->B(7));
508
    d->Q(0) = val;
509
#if SHIFT == 1
510
    val = 0;
511
    val += abs1(d->B(8) - s->B(8));
512
    val += abs1(d->B(9) - s->B(9));
513
    val += abs1(d->B(10) - s->B(10));
514
    val += abs1(d->B(11) - s->B(11));
515
    val += abs1(d->B(12) - s->B(12));
516
    val += abs1(d->B(13) - s->B(13));
517
    val += abs1(d->B(14) - s->B(14));
518
    val += abs1(d->B(15) - s->B(15));
519
    d->Q(1) = val;
520
#endif
521
}
522

  
523
void OPPROTO glue(op_maskmov, SUFFIX) (void)
524
{
525
    int i;
526
    Reg *d, *s;
527
    d = (Reg *)((char *)env + PARAM1);
528
    s = (Reg *)((char *)env + PARAM2);
529
    for(i = 0; i < (8 << SHIFT); i++) {
530
        if (s->B(i) & 0x80)
531
            stb(A0, d->B(i));
532
    }
533
}
534

  
535
void OPPROTO glue(op_movl_mm_T0, SUFFIX) (void)
536
{
537
    Reg *d;
538
    d = (Reg *)((char *)env + PARAM1);
539
    d->L(0) = T0;
540
    d->L(1) = 0;
541
#if SHIFT == 1
542
    d->Q(1) = 0;
543
#endif
544
}
545

  
546
void OPPROTO glue(op_movl_T0_mm, SUFFIX) (void)
547
{
548
    Reg *s;
549
    s = (Reg *)((char *)env + PARAM1);
550
    T0 = s->L(0);
551
}
552

  
553
#if SHIFT == 0
554
void OPPROTO glue(op_pshufw, SUFFIX) (void)
555
{
556
    Reg r, *d, *s;
557
    int order;
558
    d = (Reg *)((char *)env + PARAM1);
559
    s = (Reg *)((char *)env + PARAM2);
560
    order = PARAM3;
561
    r.W(0) = s->W(order & 3);
562
    r.W(1) = s->W((order >> 2) & 3);
563
    r.W(2) = s->W((order >> 4) & 3);
564
    r.W(3) = s->W((order >> 6) & 3);
565
    *d = r;
566
}
567
#else
568
void OPPROTO op_shufpd(void)
569
{
570
    Reg r, *d, *s;
571
    int order;
572
    d = (Reg *)((char *)env + PARAM1);
573
    s = (Reg *)((char *)env + PARAM2);
574
    order = PARAM3;
575
    r.Q(0) = s->Q(order & 1);
576
    r.Q(1) = s->Q((order >> 1) & 1);
577
    *d = r;
578
}
579

  
580
void OPPROTO glue(op_pshufd, SUFFIX) (void)
581
{
582
    Reg r, *d, *s;
583
    int order;
584
    d = (Reg *)((char *)env + PARAM1);
585
    s = (Reg *)((char *)env + PARAM2);
586
    order = PARAM3;
587
    r.L(0) = s->L(order & 3);
588
    r.L(1) = s->L((order >> 2) & 3);
589
    r.L(2) = s->L((order >> 4) & 3);
590
    r.L(3) = s->L((order >> 6) & 3);
591
    *d = r;
592
}
593

  
594
void OPPROTO glue(op_pshuflw, SUFFIX) (void)
595
{
596
    Reg r, *d, *s;
597
    int order;
598
    d = (Reg *)((char *)env + PARAM1);
599
    s = (Reg *)((char *)env + PARAM2);
600
    order = PARAM3;
601
    r.W(0) = s->W(order & 3);
602
    r.W(1) = s->W((order >> 2) & 3);
603
    r.W(2) = s->W((order >> 4) & 3);
604
    r.W(3) = s->W((order >> 6) & 3);
605
    r.Q(1) = s->Q(1);
606
    *d = r;
607
}
608

  
609
void OPPROTO glue(op_pshufhw, SUFFIX) (void)
610
{
611
    Reg r, *d, *s;
612
    int order;
613
    d = (Reg *)((char *)env + PARAM1);
614
    s = (Reg *)((char *)env + PARAM2);
615
    order = PARAM3;
616
    r.Q(0) = s->Q(0);
617
    r.W(4) = s->W(4 + (order & 3));
618
    r.W(5) = s->W(4 + ((order >> 2) & 3));
619
    r.W(6) = s->W(4 + ((order >> 4) & 3));
620
    r.W(7) = s->W(4 + ((order >> 6) & 3));
621
    *d = r;
622
}
623
#endif
624

  
625
#if SHIFT == 1
626
/* FPU ops */
627
/* XXX: not accurate */
628

  
629
#define SSE_OP_S(name, F)\
630
void OPPROTO op_ ## name ## ps (void)\
631
{\
632
    Reg *d, *s;\
633
    d = (Reg *)((char *)env + PARAM1);\
634
    s = (Reg *)((char *)env + PARAM2);\
635
    d->XMM_S(0) = F(d->XMM_S(0), s->XMM_S(0));\
636
    d->XMM_S(1) = F(d->XMM_S(1), s->XMM_S(1));\
637
    d->XMM_S(2) = F(d->XMM_S(2), s->XMM_S(2));\
638
    d->XMM_S(3) = F(d->XMM_S(3), s->XMM_S(3));\
639
}\
640
\
641
void OPPROTO op_ ## name ## ss (void)\
642
{\
643
    Reg *d, *s;\
644
    d = (Reg *)((char *)env + PARAM1);\
645
    s = (Reg *)((char *)env + PARAM2);\
646
    d->XMM_S(0) = F(d->XMM_S(0), s->XMM_S(0));\
647
}\
648
void OPPROTO op_ ## name ## pd (void)\
649
{\
650
    Reg *d, *s;\
651
    d = (Reg *)((char *)env + PARAM1);\
652
    s = (Reg *)((char *)env + PARAM2);\
653
    d->XMM_D(0) = F(d->XMM_D(0), s->XMM_D(0));\
654
    d->XMM_D(1) = F(d->XMM_D(1), s->XMM_D(1));\
655
}\
656
\
657
void OPPROTO op_ ## name ## sd (void)\
658
{\
659
    Reg *d, *s;\
660
    d = (Reg *)((char *)env + PARAM1);\
661
    s = (Reg *)((char *)env + PARAM2);\
662
    d->XMM_D(0) = F(d->XMM_D(0), s->XMM_D(0));\
663
}
664

  
665
#define FPU_ADD(a, b) (a) + (b)
666
#define FPU_SUB(a, b) (a) - (b)
667
#define FPU_MUL(a, b) (a) * (b)
668
#define FPU_DIV(a, b) (a) / (b)
669
#define FPU_MIN(a, b) (a) < (b) ? (a) : (b)
670
#define FPU_MAX(a, b) (a) > (b) ? (a) : (b)
671
#define FPU_SQRT(a, b) sqrt(b)
672

  
673
SSE_OP_S(add, FPU_ADD)
674
SSE_OP_S(sub, FPU_SUB)
675
SSE_OP_S(mul, FPU_MUL)
676
SSE_OP_S(div, FPU_DIV)
677
SSE_OP_S(min, FPU_MIN)
678
SSE_OP_S(max, FPU_MAX)
679
SSE_OP_S(sqrt, FPU_SQRT)
680

  
681

  
682
/* float to float conversions */
683
void OPPROTO op_cvtps2pd(void)
684
{
685
    float s0, s1;
686
    Reg *d, *s;
687
    d = (Reg *)((char *)env + PARAM1);
688
    s = (Reg *)((char *)env + PARAM2);
689
    s0 = s->XMM_S(0);
690
    s1 = s->XMM_S(1);
691
    d->XMM_D(0) = s0;
692
    d->XMM_D(1) = s1;
693
}
694

  
695
void OPPROTO op_cvtpd2ps(void)
696
{
697
    Reg *d, *s;
698
    d = (Reg *)((char *)env + PARAM1);
699
    s = (Reg *)((char *)env + PARAM2);
700
    d->XMM_S(0) = s->XMM_D(0);
701
    d->XMM_S(1) = s->XMM_D(1);
702
    d->Q(1) = 0;
703
}
704

  
705
void OPPROTO op_cvtss2sd(void)
706
{
707
    Reg *d, *s;
708
    d = (Reg *)((char *)env + PARAM1);
709
    s = (Reg *)((char *)env + PARAM2);
710
    d->XMM_D(0) = s->XMM_S(0);
711
}
712

  
713
void OPPROTO op_cvtsd2ss(void)
714
{
715
    Reg *d, *s;
716
    d = (Reg *)((char *)env + PARAM1);
717
    s = (Reg *)((char *)env + PARAM2);
718
    d->XMM_S(0) = s->XMM_D(0);
719
}
720

  
721
/* integer to float */
722
void OPPROTO op_cvtdq2ps(void)
723
{
724
    XMMReg *d = (XMMReg *)((char *)env + PARAM1);
725
    XMMReg *s = (XMMReg *)((char *)env + PARAM2);
726
    d->XMM_S(0) = (int32_t)s->XMM_L(0);
727
    d->XMM_S(1) = (int32_t)s->XMM_L(1);
728
    d->XMM_S(2) = (int32_t)s->XMM_L(2);
729
    d->XMM_S(3) = (int32_t)s->XMM_L(3);
730
}
731

  
732
void OPPROTO op_cvtdq2pd(void)
733
{
734
    XMMReg *d = (XMMReg *)((char *)env + PARAM1);
735
    XMMReg *s = (XMMReg *)((char *)env + PARAM2);
736
    int32_t l0, l1;
737
    l0 = (int32_t)s->XMM_L(0);
738
    l1 = (int32_t)s->XMM_L(1);
739
    d->XMM_D(0) = l0;
740
    d->XMM_D(1) = l1;
741
}
742

  
743
void OPPROTO op_cvtpi2ps(void)
744
{
745
    XMMReg *d = (Reg *)((char *)env + PARAM1);
746
    MMXReg *s = (MMXReg *)((char *)env + PARAM2);
747
    d->XMM_S(0) = (int32_t)s->MMX_L(0);
748
    d->XMM_S(1) = (int32_t)s->MMX_L(1);
749
}
750

  
751
void OPPROTO op_cvtpi2pd(void)
752
{
753
    XMMReg *d = (Reg *)((char *)env + PARAM1);
754
    MMXReg *s = (MMXReg *)((char *)env + PARAM2);
755
    d->XMM_D(0) = (int32_t)s->MMX_L(0);
756
    d->XMM_D(1) = (int32_t)s->MMX_L(1);
757
}
758

  
759
void OPPROTO op_cvtsi2ss(void)
760
{
761
    XMMReg *d = (Reg *)((char *)env + PARAM1);
762
    d->XMM_S(0) = (int32_t)T0;
763
}
764

  
765
void OPPROTO op_cvtsi2sd(void)
766
{
767
    XMMReg *d = (Reg *)((char *)env + PARAM1);
768
    d->XMM_D(0) = (int32_t)T0;
769
}
770

  
771
#ifdef TARGET_X86_64
772
void OPPROTO op_cvtsq2ss(void)
773
{
774
    XMMReg *d = (Reg *)((char *)env + PARAM1);
775
    d->XMM_S(0) = (int64_t)T0;
776
}
777

  
778
void OPPROTO op_cvtsq2sd(void)
779
{
780
    XMMReg *d = (Reg *)((char *)env + PARAM1);
781
    d->XMM_D(0) = (int64_t)T0;
782
}
783
#endif
784

  
785
/* float to integer */
786
void OPPROTO op_cvtps2dq(void)
787
{
788
    XMMReg *d = (XMMReg *)((char *)env + PARAM1);
789
    XMMReg *s = (XMMReg *)((char *)env + PARAM2);
790
    d->XMM_L(0) = lrint(s->XMM_S(0));
791
    d->XMM_L(1) = lrint(s->XMM_S(1));
792
    d->XMM_L(2) = lrint(s->XMM_S(2));
793
    d->XMM_L(3) = lrint(s->XMM_S(3));
794
}
795

  
796
void OPPROTO op_cvtpd2dq(void)
797
{
798
    XMMReg *d = (XMMReg *)((char *)env + PARAM1);
799
    XMMReg *s = (XMMReg *)((char *)env + PARAM2);
800
    d->XMM_L(0) = lrint(s->XMM_D(0));
801
    d->XMM_L(1) = lrint(s->XMM_D(1));
802
    d->XMM_Q(1) = 0;
803
}
804

  
805
void OPPROTO op_cvtps2pi(void)
806
{
807
    MMXReg *d = (MMXReg *)((char *)env + PARAM1);
808
    XMMReg *s = (XMMReg *)((char *)env + PARAM2);
809
    d->MMX_L(0) = lrint(s->XMM_S(0));
810
    d->MMX_L(1) = lrint(s->XMM_S(1));
811
}
812

  
813
void OPPROTO op_cvtpd2pi(void)
814
{
815
    MMXReg *d = (MMXReg *)((char *)env + PARAM1);
816
    XMMReg *s = (XMMReg *)((char *)env + PARAM2);
817
    d->MMX_L(0) = lrint(s->XMM_D(0));
818
    d->MMX_L(1) = lrint(s->XMM_D(1));
819
}
820

  
821
void OPPROTO op_cvtss2si(void)
822
{
823
    XMMReg *s = (XMMReg *)((char *)env + PARAM1);
824
    T0 = (int32_t)lrint(s->XMM_S(0));
825
}
826

  
827
void OPPROTO op_cvtsd2si(void)
828
{
829
    XMMReg *s = (XMMReg *)((char *)env + PARAM1);
830
    T0 = (int32_t)lrint(s->XMM_D(0));
831
}
832

  
833
#ifdef TARGET_X86_64
834
void OPPROTO op_cvtss2sq(void)
835
{
836
    XMMReg *s = (XMMReg *)((char *)env + PARAM1);
837
    T0 = llrint(s->XMM_S(0));
838
}
839

  
840
void OPPROTO op_cvtsd2sq(void)
841
{
842
    XMMReg *s = (XMMReg *)((char *)env + PARAM1);
843
    T0 = llrint(s->XMM_D(0));
844
}
845
#endif
846

  
847
/* float to integer truncated */
848
void OPPROTO op_cvttps2dq(void)
849
{
850
    XMMReg *d = (XMMReg *)((char *)env + PARAM1);
851
    XMMReg *s = (XMMReg *)((char *)env + PARAM2);
852
    d->XMM_L(0) = (int32_t)s->XMM_S(0);
853
    d->XMM_L(1) = (int32_t)s->XMM_S(1);
854
    d->XMM_L(2) = (int32_t)s->XMM_S(2);
855
    d->XMM_L(3) = (int32_t)s->XMM_S(3);
856
}
857

  
858
void OPPROTO op_cvttpd2dq(void)
859
{
860
    XMMReg *d = (XMMReg *)((char *)env + PARAM1);
861
    XMMReg *s = (XMMReg *)((char *)env + PARAM2);
862
    d->XMM_L(0) = (int32_t)s->XMM_D(0);
863
    d->XMM_L(1) = (int32_t)s->XMM_D(1);
864
    d->XMM_Q(1) = 0;
865
}
866

  
867
void OPPROTO op_cvttps2pi(void)
868
{
869
    MMXReg *d = (MMXReg *)((char *)env + PARAM1);
870
    XMMReg *s = (XMMReg *)((char *)env + PARAM2);
871
    d->MMX_L(0) = (int32_t)(s->XMM_S(0));
872
    d->MMX_L(1) = (int32_t)(s->XMM_S(1));
873
}
874

  
875
void OPPROTO op_cvttpd2pi(void)
876
{
877
    MMXReg *d = (MMXReg *)((char *)env + PARAM1);
878
    XMMReg *s = (XMMReg *)((char *)env + PARAM2);
879
    d->MMX_L(0) = (int32_t)(s->XMM_D(0));
880
    d->MMX_L(1) = (int32_t)(s->XMM_D(1));
881
}
882

  
883
void OPPROTO op_cvttss2si(void)
884
{
885
    XMMReg *s = (XMMReg *)((char *)env + PARAM1);
886
    T0 = (int32_t)(s->XMM_S(0));
887
}
888

  
889
void OPPROTO op_cvttsd2si(void)
890
{
891
    XMMReg *s = (XMMReg *)((char *)env + PARAM1);
892
    T0 = (int32_t)(s->XMM_D(0));
893
}
894

  
895
#ifdef TARGET_X86_64
896
void OPPROTO op_cvttss2sq(void)
897
{
898
    XMMReg *s = (XMMReg *)((char *)env + PARAM1);
899
    T0 = (int64_t)(s->XMM_S(0));
900
}
901

  
902
void OPPROTO op_cvttsd2sq(void)
903
{
904
    XMMReg *s = (XMMReg *)((char *)env + PARAM1);
905
    T0 = (int64_t)(s->XMM_D(0));
906
}
907
#endif
908

  
909
void OPPROTO op_rsqrtps(void)
910
{
911
    XMMReg *d = (XMMReg *)((char *)env + PARAM1);
912
    XMMReg *s = (XMMReg *)((char *)env + PARAM2);
913
    d->XMM_S(0) = approx_rsqrt(s->XMM_S(0));
914
    d->XMM_S(1) = approx_rsqrt(s->XMM_S(1));
915
    d->XMM_S(2) = approx_rsqrt(s->XMM_S(2));
916
    d->XMM_S(3) = approx_rsqrt(s->XMM_S(3));
917
}
918

  
919
void OPPROTO op_rsqrtss(void)
920
{
921
    XMMReg *d = (XMMReg *)((char *)env + PARAM1);
922
    XMMReg *s = (XMMReg *)((char *)env + PARAM2);
923
    d->XMM_S(0) = approx_rsqrt(s->XMM_S(0));
924
}
925

  
926
void OPPROTO op_rcpps(void)
927
{
928
    XMMReg *d = (XMMReg *)((char *)env + PARAM1);
929
    XMMReg *s = (XMMReg *)((char *)env + PARAM2);
930
    d->XMM_S(0) = approx_rcp(s->XMM_S(0));
931
    d->XMM_S(1) = approx_rcp(s->XMM_S(1));
932
    d->XMM_S(2) = approx_rcp(s->XMM_S(2));
933
    d->XMM_S(3) = approx_rcp(s->XMM_S(3));
934
}
935

  
936
void OPPROTO op_rcpss(void)
937
{
938
    XMMReg *d = (XMMReg *)((char *)env + PARAM1);
939
    XMMReg *s = (XMMReg *)((char *)env + PARAM2);
940
    d->XMM_S(0) = approx_rcp(s->XMM_S(0));
941
}
942

  
943
void OPPROTO op_haddps(void)
944
{
945
    XMMReg *d = (XMMReg *)((char *)env + PARAM1);
946
    XMMReg *s = (XMMReg *)((char *)env + PARAM2);
947
    XMMReg r;
948
    r.XMM_S(0) = d->XMM_S(0) + d->XMM_S(1);
949
    r.XMM_S(1) = d->XMM_S(2) + d->XMM_S(3);
950
    r.XMM_S(2) = s->XMM_S(0) + s->XMM_S(1);
951
    r.XMM_S(3) = s->XMM_S(2) + s->XMM_S(3);
952
    *d = r;
953
}
954

  
955
void OPPROTO op_haddpd(void)
956
{
957
    XMMReg *d = (XMMReg *)((char *)env + PARAM1);
958
    XMMReg *s = (XMMReg *)((char *)env + PARAM2);
959
    XMMReg r;
960
    r.XMM_D(0) = d->XMM_D(0) + d->XMM_D(1);
961
    r.XMM_D(1) = s->XMM_D(0) + s->XMM_D(1);
962
    *d = r;
963
}
964

  
965
void OPPROTO op_hsubps(void)
966
{
967
    XMMReg *d = (XMMReg *)((char *)env + PARAM1);
968
    XMMReg *s = (XMMReg *)((char *)env + PARAM2);
969
    XMMReg r;
970
    r.XMM_S(0) = d->XMM_S(0) - d->XMM_S(1);
971
    r.XMM_S(1) = d->XMM_S(2) - d->XMM_S(3);
972
    r.XMM_S(2) = s->XMM_S(0) - s->XMM_S(1);
973
    r.XMM_S(3) = s->XMM_S(2) - s->XMM_S(3);
974
    *d = r;
975
}
976

  
977
void OPPROTO op_hsubpd(void)
978
{
979
    XMMReg *d = (XMMReg *)((char *)env + PARAM1);
980
    XMMReg *s = (XMMReg *)((char *)env + PARAM2);
981
    XMMReg r;
982
    r.XMM_D(0) = d->XMM_D(0) - d->XMM_D(1);
983
    r.XMM_D(1) = s->XMM_D(0) - s->XMM_D(1);
984
    *d = r;
985
}
986

  
... This diff was truncated because it exceeds the maximum size that can be displayed.

Also available in: Unified diff