Statistics
| Branch: | Revision:

root / kvm-all.c @ 670436ce

History | View | Annotate | Download (52.6 kB)

1
/*
2
 * QEMU KVM support
3
 *
4
 * Copyright IBM, Corp. 2008
5
 *           Red Hat, Inc. 2008
6
 *
7
 * Authors:
8
 *  Anthony Liguori   <aliguori@us.ibm.com>
9
 *  Glauber Costa     <gcosta@redhat.com>
10
 *
11
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12
 * See the COPYING file in the top-level directory.
13
 *
14
 */
15

    
16
#include <sys/types.h>
17
#include <sys/ioctl.h>
18
#include <sys/mman.h>
19
#include <stdarg.h>
20

    
21
#include <linux/kvm.h>
22

    
23
#include "qemu-common.h"
24
#include "qemu/atomic.h"
25
#include "qemu/option.h"
26
#include "qemu/config-file.h"
27
#include "sysemu/sysemu.h"
28
#include "hw/hw.h"
29
#include "hw/pci/msi.h"
30
#include "exec/gdbstub.h"
31
#include "sysemu/kvm.h"
32
#include "qemu/bswap.h"
33
#include "exec/memory.h"
34
#include "exec/address-spaces.h"
35
#include "qemu/event_notifier.h"
36
#include "trace.h"
37

    
38
/* This check must be after config-host.h is included */
39
#ifdef CONFIG_EVENTFD
40
#include <sys/eventfd.h>
41
#endif
42

    
43
#ifdef CONFIG_VALGRIND_H
44
#include <valgrind/memcheck.h>
45
#endif
46

    
47
/* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */
48
#define PAGE_SIZE TARGET_PAGE_SIZE
49

    
50
//#define DEBUG_KVM
51

    
52
#ifdef DEBUG_KVM
53
#define DPRINTF(fmt, ...) \
54
    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
55
#else
56
#define DPRINTF(fmt, ...) \
57
    do { } while (0)
58
#endif
59

    
60
#define KVM_MSI_HASHTAB_SIZE    256
61

    
62
typedef struct KVMSlot
63
{
64
    hwaddr start_addr;
65
    ram_addr_t memory_size;
66
    void *ram;
67
    int slot;
68
    int flags;
69
} KVMSlot;
70

    
71
typedef struct kvm_dirty_log KVMDirtyLog;
72

    
73
struct KVMState
74
{
75
    KVMSlot slots[32];
76
    int fd;
77
    int vmfd;
78
    int coalesced_mmio;
79
    struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
80
    bool coalesced_flush_in_progress;
81
    int broken_set_mem_region;
82
    int migration_log;
83
    int vcpu_events;
84
    int robust_singlestep;
85
    int debugregs;
86
#ifdef KVM_CAP_SET_GUEST_DEBUG
87
    struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
88
#endif
89
    int pit_state2;
90
    int xsave, xcrs;
91
    int many_ioeventfds;
92
    int intx_set_mask;
93
    /* The man page (and posix) say ioctl numbers are signed int, but
94
     * they're not.  Linux, glibc and *BSD all treat ioctl numbers as
95
     * unsigned, and treating them as signed here can break things */
96
    unsigned irq_set_ioctl;
97
#ifdef KVM_CAP_IRQ_ROUTING
98
    struct kvm_irq_routing *irq_routes;
99
    int nr_allocated_irq_routes;
100
    uint32_t *used_gsi_bitmap;
101
    unsigned int gsi_count;
102
    QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
103
    bool direct_msi;
104
#endif
105
};
106

    
107
KVMState *kvm_state;
108
bool kvm_kernel_irqchip;
109
bool kvm_async_interrupts_allowed;
110
bool kvm_halt_in_kernel_allowed;
111
bool kvm_irqfds_allowed;
112
bool kvm_msi_via_irqfd_allowed;
113
bool kvm_gsi_routing_allowed;
114
bool kvm_allowed;
115
bool kvm_readonly_mem_allowed;
116

    
117
static const KVMCapabilityInfo kvm_required_capabilites[] = {
118
    KVM_CAP_INFO(USER_MEMORY),
119
    KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
120
    KVM_CAP_LAST_INFO
121
};
122

    
123
static KVMSlot *kvm_alloc_slot(KVMState *s)
124
{
125
    int i;
126

    
127
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
128
        if (s->slots[i].memory_size == 0) {
129
            return &s->slots[i];
130
        }
131
    }
132

    
133
    fprintf(stderr, "%s: no free slot available\n", __func__);
134
    abort();
135
}
136

    
137
static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
138
                                         hwaddr start_addr,
139
                                         hwaddr end_addr)
140
{
141
    int i;
142

    
143
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
144
        KVMSlot *mem = &s->slots[i];
145

    
146
        if (start_addr == mem->start_addr &&
147
            end_addr == mem->start_addr + mem->memory_size) {
148
            return mem;
149
        }
150
    }
151

    
152
    return NULL;
153
}
154

    
155
/*
156
 * Find overlapping slot with lowest start address
157
 */
158
static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
159
                                            hwaddr start_addr,
160
                                            hwaddr end_addr)
161
{
162
    KVMSlot *found = NULL;
163
    int i;
164

    
165
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
166
        KVMSlot *mem = &s->slots[i];
167

    
168
        if (mem->memory_size == 0 ||
169
            (found && found->start_addr < mem->start_addr)) {
170
            continue;
171
        }
172

    
173
        if (end_addr > mem->start_addr &&
174
            start_addr < mem->start_addr + mem->memory_size) {
175
            found = mem;
176
        }
177
    }
178

    
179
    return found;
180
}
181

    
182
int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
183
                                       hwaddr *phys_addr)
184
{
185
    int i;
186

    
187
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
188
        KVMSlot *mem = &s->slots[i];
189

    
190
        if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
191
            *phys_addr = mem->start_addr + (ram - mem->ram);
192
            return 1;
193
        }
194
    }
195

    
196
    return 0;
197
}
198

    
199
static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
200
{
201
    struct kvm_userspace_memory_region mem;
202

    
203
    mem.slot = slot->slot;
204
    mem.guest_phys_addr = slot->start_addr;
205
    mem.userspace_addr = (unsigned long)slot->ram;
206
    mem.flags = slot->flags;
207
    if (s->migration_log) {
208
        mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
209
    }
210

    
211
    if (slot->memory_size && mem.flags & KVM_MEM_READONLY) {
212
        /* Set the slot size to 0 before setting the slot to the desired
213
         * value. This is needed based on KVM commit 75d61fbc. */
214
        mem.memory_size = 0;
215
        kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
216
    }
217
    mem.memory_size = slot->memory_size;
218
    return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
219
}
220

    
221
static void kvm_reset_vcpu(void *opaque)
222
{
223
    CPUState *cpu = opaque;
224

    
225
    kvm_arch_reset_vcpu(cpu);
226
}
227

    
228
int kvm_init_vcpu(CPUState *cpu)
229
{
230
    KVMState *s = kvm_state;
231
    long mmap_size;
232
    int ret;
233

    
234
    DPRINTF("kvm_init_vcpu\n");
235

    
236
    ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)kvm_arch_vcpu_id(cpu));
237
    if (ret < 0) {
238
        DPRINTF("kvm_create_vcpu failed\n");
239
        goto err;
240
    }
241

    
242
    cpu->kvm_fd = ret;
243
    cpu->kvm_state = s;
244
    cpu->kvm_vcpu_dirty = true;
245

    
246
    mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
247
    if (mmap_size < 0) {
248
        ret = mmap_size;
249
        DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
250
        goto err;
251
    }
252

    
253
    cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
254
                        cpu->kvm_fd, 0);
255
    if (cpu->kvm_run == MAP_FAILED) {
256
        ret = -errno;
257
        DPRINTF("mmap'ing vcpu state failed\n");
258
        goto err;
259
    }
260

    
261
    if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
262
        s->coalesced_mmio_ring =
263
            (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
264
    }
265

    
266
    ret = kvm_arch_init_vcpu(cpu);
267
    if (ret == 0) {
268
        qemu_register_reset(kvm_reset_vcpu, cpu);
269
        kvm_arch_reset_vcpu(cpu);
270
    }
271
err:
272
    return ret;
273
}
274

    
275
/*
276
 * dirty pages logging control
277
 */
278

    
279
static int kvm_mem_flags(KVMState *s, bool log_dirty, bool readonly)
280
{
281
    int flags = 0;
282
    flags = log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0;
283
    if (readonly && kvm_readonly_mem_allowed) {
284
        flags |= KVM_MEM_READONLY;
285
    }
286
    return flags;
287
}
288

    
289
static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty)
290
{
291
    KVMState *s = kvm_state;
292
    int flags, mask = KVM_MEM_LOG_DIRTY_PAGES;
293
    int old_flags;
294

    
295
    old_flags = mem->flags;
296

    
297
    flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty, false);
298
    mem->flags = flags;
299

    
300
    /* If nothing changed effectively, no need to issue ioctl */
301
    if (s->migration_log) {
302
        flags |= KVM_MEM_LOG_DIRTY_PAGES;
303
    }
304

    
305
    if (flags == old_flags) {
306
        return 0;
307
    }
308

    
309
    return kvm_set_user_memory_region(s, mem);
310
}
311

    
312
static int kvm_dirty_pages_log_change(hwaddr phys_addr,
313
                                      ram_addr_t size, bool log_dirty)
314
{
315
    KVMState *s = kvm_state;
316
    KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
317

    
318
    if (mem == NULL)  {
319
        fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
320
                TARGET_FMT_plx "\n", __func__, phys_addr,
321
                (hwaddr)(phys_addr + size - 1));
322
        return -EINVAL;
323
    }
324
    return kvm_slot_dirty_pages_log_change(mem, log_dirty);
325
}
326

    
327
static void kvm_log_start(MemoryListener *listener,
328
                          MemoryRegionSection *section)
329
{
330
    int r;
331

    
332
    r = kvm_dirty_pages_log_change(section->offset_within_address_space,
333
                                   int128_get64(section->size), true);
334
    if (r < 0) {
335
        abort();
336
    }
337
}
338

    
339
static void kvm_log_stop(MemoryListener *listener,
340
                          MemoryRegionSection *section)
341
{
342
    int r;
343

    
344
    r = kvm_dirty_pages_log_change(section->offset_within_address_space,
345
                                   int128_get64(section->size), false);
346
    if (r < 0) {
347
        abort();
348
    }
349
}
350

    
351
static int kvm_set_migration_log(int enable)
352
{
353
    KVMState *s = kvm_state;
354
    KVMSlot *mem;
355
    int i, err;
356

    
357
    s->migration_log = enable;
358

    
359
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
360
        mem = &s->slots[i];
361

    
362
        if (!mem->memory_size) {
363
            continue;
364
        }
365
        if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
366
            continue;
367
        }
368
        err = kvm_set_user_memory_region(s, mem);
369
        if (err) {
370
            return err;
371
        }
372
    }
373
    return 0;
374
}
375

    
376
/* get kvm's dirty pages bitmap and update qemu's */
377
static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
378
                                         unsigned long *bitmap)
379
{
380
    unsigned int i, j;
381
    unsigned long page_number, c;
382
    hwaddr addr, addr1;
383
    unsigned int pages = int128_get64(section->size) / getpagesize();
384
    unsigned int len = (pages + HOST_LONG_BITS - 1) / HOST_LONG_BITS;
385
    unsigned long hpratio = getpagesize() / TARGET_PAGE_SIZE;
386

    
387
    /*
388
     * bitmap-traveling is faster than memory-traveling (for addr...)
389
     * especially when most of the memory is not dirty.
390
     */
391
    for (i = 0; i < len; i++) {
392
        if (bitmap[i] != 0) {
393
            c = leul_to_cpu(bitmap[i]);
394
            do {
395
                j = ffsl(c) - 1;
396
                c &= ~(1ul << j);
397
                page_number = (i * HOST_LONG_BITS + j) * hpratio;
398
                addr1 = page_number * TARGET_PAGE_SIZE;
399
                addr = section->offset_within_region + addr1;
400
                memory_region_set_dirty(section->mr, addr,
401
                                        TARGET_PAGE_SIZE * hpratio);
402
            } while (c != 0);
403
        }
404
    }
405
    return 0;
406
}
407

    
408
#define ALIGN(x, y)  (((x)+(y)-1) & ~((y)-1))
409

    
410
/**
411
 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
412
 * This function updates qemu's dirty bitmap using
413
 * memory_region_set_dirty().  This means all bits are set
414
 * to dirty.
415
 *
416
 * @start_add: start of logged region.
417
 * @end_addr: end of logged region.
418
 */
419
static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection *section)
420
{
421
    KVMState *s = kvm_state;
422
    unsigned long size, allocated_size = 0;
423
    KVMDirtyLog d;
424
    KVMSlot *mem;
425
    int ret = 0;
426
    hwaddr start_addr = section->offset_within_address_space;
427
    hwaddr end_addr = start_addr + int128_get64(section->size);
428

    
429
    d.dirty_bitmap = NULL;
430
    while (start_addr < end_addr) {
431
        mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
432
        if (mem == NULL) {
433
            break;
434
        }
435

    
436
        /* XXX bad kernel interface alert
437
         * For dirty bitmap, kernel allocates array of size aligned to
438
         * bits-per-long.  But for case when the kernel is 64bits and
439
         * the userspace is 32bits, userspace can't align to the same
440
         * bits-per-long, since sizeof(long) is different between kernel
441
         * and user space.  This way, userspace will provide buffer which
442
         * may be 4 bytes less than the kernel will use, resulting in
443
         * userspace memory corruption (which is not detectable by valgrind
444
         * too, in most cases).
445
         * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
446
         * a hope that sizeof(long) wont become >8 any time soon.
447
         */
448
        size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
449
                     /*HOST_LONG_BITS*/ 64) / 8;
450
        if (!d.dirty_bitmap) {
451
            d.dirty_bitmap = g_malloc(size);
452
        } else if (size > allocated_size) {
453
            d.dirty_bitmap = g_realloc(d.dirty_bitmap, size);
454
        }
455
        allocated_size = size;
456
        memset(d.dirty_bitmap, 0, allocated_size);
457

    
458
        d.slot = mem->slot;
459

    
460
        if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
461
            DPRINTF("ioctl failed %d\n", errno);
462
            ret = -1;
463
            break;
464
        }
465

    
466
        kvm_get_dirty_pages_log_range(section, d.dirty_bitmap);
467
        start_addr = mem->start_addr + mem->memory_size;
468
    }
469
    g_free(d.dirty_bitmap);
470

    
471
    return ret;
472
}
473

    
474
static void kvm_coalesce_mmio_region(MemoryListener *listener,
475
                                     MemoryRegionSection *secion,
476
                                     hwaddr start, hwaddr size)
477
{
478
    KVMState *s = kvm_state;
479

    
480
    if (s->coalesced_mmio) {
481
        struct kvm_coalesced_mmio_zone zone;
482

    
483
        zone.addr = start;
484
        zone.size = size;
485
        zone.pad = 0;
486

    
487
        (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
488
    }
489
}
490

    
491
static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
492
                                       MemoryRegionSection *secion,
493
                                       hwaddr start, hwaddr size)
494
{
495
    KVMState *s = kvm_state;
496

    
497
    if (s->coalesced_mmio) {
498
        struct kvm_coalesced_mmio_zone zone;
499

    
500
        zone.addr = start;
501
        zone.size = size;
502
        zone.pad = 0;
503

    
504
        (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
505
    }
506
}
507

    
508
int kvm_check_extension(KVMState *s, unsigned int extension)
509
{
510
    int ret;
511

    
512
    ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
513
    if (ret < 0) {
514
        ret = 0;
515
    }
516

    
517
    return ret;
518
}
519

    
520
static int kvm_set_ioeventfd_mmio(int fd, uint32_t addr, uint32_t val,
521
                                  bool assign, uint32_t size, bool datamatch)
522
{
523
    int ret;
524
    struct kvm_ioeventfd iofd;
525

    
526
    iofd.datamatch = datamatch ? val : 0;
527
    iofd.addr = addr;
528
    iofd.len = size;
529
    iofd.flags = 0;
530
    iofd.fd = fd;
531

    
532
    if (!kvm_enabled()) {
533
        return -ENOSYS;
534
    }
535

    
536
    if (datamatch) {
537
        iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
538
    }
539
    if (!assign) {
540
        iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
541
    }
542

    
543
    ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
544

    
545
    if (ret < 0) {
546
        return -errno;
547
    }
548

    
549
    return 0;
550
}
551

    
552
static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
553
                                 bool assign, uint32_t size, bool datamatch)
554
{
555
    struct kvm_ioeventfd kick = {
556
        .datamatch = datamatch ? val : 0,
557
        .addr = addr,
558
        .flags = KVM_IOEVENTFD_FLAG_PIO,
559
        .len = size,
560
        .fd = fd,
561
    };
562
    int r;
563
    if (!kvm_enabled()) {
564
        return -ENOSYS;
565
    }
566
    if (datamatch) {
567
        kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
568
    }
569
    if (!assign) {
570
        kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
571
    }
572
    r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
573
    if (r < 0) {
574
        return r;
575
    }
576
    return 0;
577
}
578

    
579

    
580
static int kvm_check_many_ioeventfds(void)
581
{
582
    /* Userspace can use ioeventfd for io notification.  This requires a host
583
     * that supports eventfd(2) and an I/O thread; since eventfd does not
584
     * support SIGIO it cannot interrupt the vcpu.
585
     *
586
     * Older kernels have a 6 device limit on the KVM io bus.  Find out so we
587
     * can avoid creating too many ioeventfds.
588
     */
589
#if defined(CONFIG_EVENTFD)
590
    int ioeventfds[7];
591
    int i, ret = 0;
592
    for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
593
        ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
594
        if (ioeventfds[i] < 0) {
595
            break;
596
        }
597
        ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
598
        if (ret < 0) {
599
            close(ioeventfds[i]);
600
            break;
601
        }
602
    }
603

    
604
    /* Decide whether many devices are supported or not */
605
    ret = i == ARRAY_SIZE(ioeventfds);
606

    
607
    while (i-- > 0) {
608
        kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
609
        close(ioeventfds[i]);
610
    }
611
    return ret;
612
#else
613
    return 0;
614
#endif
615
}
616

    
617
static const KVMCapabilityInfo *
618
kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
619
{
620
    while (list->name) {
621
        if (!kvm_check_extension(s, list->value)) {
622
            return list;
623
        }
624
        list++;
625
    }
626
    return NULL;
627
}
628

    
629
static void kvm_set_phys_mem(MemoryRegionSection *section, bool add)
630
{
631
    KVMState *s = kvm_state;
632
    KVMSlot *mem, old;
633
    int err;
634
    MemoryRegion *mr = section->mr;
635
    bool log_dirty = memory_region_is_logging(mr);
636
    bool writeable = !mr->readonly && !mr->rom_device;
637
    bool readonly_flag = mr->readonly || memory_region_is_romd(mr);
638
    hwaddr start_addr = section->offset_within_address_space;
639
    ram_addr_t size = int128_get64(section->size);
640
    void *ram = NULL;
641
    unsigned delta;
642

    
643
    /* kvm works in page size chunks, but the function may be called
644
       with sub-page size and unaligned start address. */
645
    delta = TARGET_PAGE_ALIGN(size) - size;
646
    if (delta > size) {
647
        return;
648
    }
649
    start_addr += delta;
650
    size -= delta;
651
    size &= TARGET_PAGE_MASK;
652
    if (!size || (start_addr & ~TARGET_PAGE_MASK)) {
653
        return;
654
    }
655

    
656
    if (!memory_region_is_ram(mr)) {
657
        if (writeable || !kvm_readonly_mem_allowed) {
658
            return;
659
        } else if (!mr->romd_mode) {
660
            /* If the memory device is not in romd_mode, then we actually want
661
             * to remove the kvm memory slot so all accesses will trap. */
662
            add = false;
663
        }
664
    }
665

    
666
    ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta;
667

    
668
    while (1) {
669
        mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
670
        if (!mem) {
671
            break;
672
        }
673

    
674
        if (add && start_addr >= mem->start_addr &&
675
            (start_addr + size <= mem->start_addr + mem->memory_size) &&
676
            (ram - start_addr == mem->ram - mem->start_addr)) {
677
            /* The new slot fits into the existing one and comes with
678
             * identical parameters - update flags and done. */
679
            kvm_slot_dirty_pages_log_change(mem, log_dirty);
680
            return;
681
        }
682

    
683
        old = *mem;
684

    
685
        if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
686
            kvm_physical_sync_dirty_bitmap(section);
687
        }
688

    
689
        /* unregister the overlapping slot */
690
        mem->memory_size = 0;
691
        err = kvm_set_user_memory_region(s, mem);
692
        if (err) {
693
            fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
694
                    __func__, strerror(-err));
695
            abort();
696
        }
697

    
698
        /* Workaround for older KVM versions: we can't join slots, even not by
699
         * unregistering the previous ones and then registering the larger
700
         * slot. We have to maintain the existing fragmentation. Sigh.
701
         *
702
         * This workaround assumes that the new slot starts at the same
703
         * address as the first existing one. If not or if some overlapping
704
         * slot comes around later, we will fail (not seen in practice so far)
705
         * - and actually require a recent KVM version. */
706
        if (s->broken_set_mem_region &&
707
            old.start_addr == start_addr && old.memory_size < size && add) {
708
            mem = kvm_alloc_slot(s);
709
            mem->memory_size = old.memory_size;
710
            mem->start_addr = old.start_addr;
711
            mem->ram = old.ram;
712
            mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
713

    
714
            err = kvm_set_user_memory_region(s, mem);
715
            if (err) {
716
                fprintf(stderr, "%s: error updating slot: %s\n", __func__,
717
                        strerror(-err));
718
                abort();
719
            }
720

    
721
            start_addr += old.memory_size;
722
            ram += old.memory_size;
723
            size -= old.memory_size;
724
            continue;
725
        }
726

    
727
        /* register prefix slot */
728
        if (old.start_addr < start_addr) {
729
            mem = kvm_alloc_slot(s);
730
            mem->memory_size = start_addr - old.start_addr;
731
            mem->start_addr = old.start_addr;
732
            mem->ram = old.ram;
733
            mem->flags =  kvm_mem_flags(s, log_dirty, readonly_flag);
734

    
735
            err = kvm_set_user_memory_region(s, mem);
736
            if (err) {
737
                fprintf(stderr, "%s: error registering prefix slot: %s\n",
738
                        __func__, strerror(-err));
739
#ifdef TARGET_PPC
740
                fprintf(stderr, "%s: This is probably because your kernel's " \
741
                                "PAGE_SIZE is too big. Please try to use 4k " \
742
                                "PAGE_SIZE!\n", __func__);
743
#endif
744
                abort();
745
            }
746
        }
747

    
748
        /* register suffix slot */
749
        if (old.start_addr + old.memory_size > start_addr + size) {
750
            ram_addr_t size_delta;
751

    
752
            mem = kvm_alloc_slot(s);
753
            mem->start_addr = start_addr + size;
754
            size_delta = mem->start_addr - old.start_addr;
755
            mem->memory_size = old.memory_size - size_delta;
756
            mem->ram = old.ram + size_delta;
757
            mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
758

    
759
            err = kvm_set_user_memory_region(s, mem);
760
            if (err) {
761
                fprintf(stderr, "%s: error registering suffix slot: %s\n",
762
                        __func__, strerror(-err));
763
                abort();
764
            }
765
        }
766
    }
767

    
768
    /* in case the KVM bug workaround already "consumed" the new slot */
769
    if (!size) {
770
        return;
771
    }
772
    if (!add) {
773
        return;
774
    }
775
    mem = kvm_alloc_slot(s);
776
    mem->memory_size = size;
777
    mem->start_addr = start_addr;
778
    mem->ram = ram;
779
    mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
780

    
781
    err = kvm_set_user_memory_region(s, mem);
782
    if (err) {
783
        fprintf(stderr, "%s: error registering slot: %s\n", __func__,
784
                strerror(-err));
785
        abort();
786
    }
787
}
788

    
789
static void kvm_region_add(MemoryListener *listener,
790
                           MemoryRegionSection *section)
791
{
792
    memory_region_ref(section->mr);
793
    kvm_set_phys_mem(section, true);
794
}
795

    
796
static void kvm_region_del(MemoryListener *listener,
797
                           MemoryRegionSection *section)
798
{
799
    kvm_set_phys_mem(section, false);
800
    memory_region_unref(section->mr);
801
}
802

    
803
static void kvm_log_sync(MemoryListener *listener,
804
                         MemoryRegionSection *section)
805
{
806
    int r;
807

    
808
    r = kvm_physical_sync_dirty_bitmap(section);
809
    if (r < 0) {
810
        abort();
811
    }
812
}
813

    
814
static void kvm_log_global_start(struct MemoryListener *listener)
815
{
816
    int r;
817

    
818
    r = kvm_set_migration_log(1);
819
    assert(r >= 0);
820
}
821

    
822
static void kvm_log_global_stop(struct MemoryListener *listener)
823
{
824
    int r;
825

    
826
    r = kvm_set_migration_log(0);
827
    assert(r >= 0);
828
}
829

    
830
static void kvm_mem_ioeventfd_add(MemoryListener *listener,
831
                                  MemoryRegionSection *section,
832
                                  bool match_data, uint64_t data,
833
                                  EventNotifier *e)
834
{
835
    int fd = event_notifier_get_fd(e);
836
    int r;
837

    
838
    r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
839
                               data, true, int128_get64(section->size),
840
                               match_data);
841
    if (r < 0) {
842
        fprintf(stderr, "%s: error adding ioeventfd: %s\n",
843
                __func__, strerror(-r));
844
        abort();
845
    }
846
}
847

    
848
static void kvm_mem_ioeventfd_del(MemoryListener *listener,
849
                                  MemoryRegionSection *section,
850
                                  bool match_data, uint64_t data,
851
                                  EventNotifier *e)
852
{
853
    int fd = event_notifier_get_fd(e);
854
    int r;
855

    
856
    r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
857
                               data, false, int128_get64(section->size),
858
                               match_data);
859
    if (r < 0) {
860
        abort();
861
    }
862
}
863

    
864
static void kvm_io_ioeventfd_add(MemoryListener *listener,
865
                                 MemoryRegionSection *section,
866
                                 bool match_data, uint64_t data,
867
                                 EventNotifier *e)
868
{
869
    int fd = event_notifier_get_fd(e);
870
    int r;
871

    
872
    r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
873
                              data, true, int128_get64(section->size),
874
                              match_data);
875
    if (r < 0) {
876
        fprintf(stderr, "%s: error adding ioeventfd: %s\n",
877
                __func__, strerror(-r));
878
        abort();
879
    }
880
}
881

    
882
static void kvm_io_ioeventfd_del(MemoryListener *listener,
883
                                 MemoryRegionSection *section,
884
                                 bool match_data, uint64_t data,
885
                                 EventNotifier *e)
886

    
887
{
888
    int fd = event_notifier_get_fd(e);
889
    int r;
890

    
891
    r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
892
                              data, false, int128_get64(section->size),
893
                              match_data);
894
    if (r < 0) {
895
        abort();
896
    }
897
}
898

    
899
static MemoryListener kvm_memory_listener = {
900
    .region_add = kvm_region_add,
901
    .region_del = kvm_region_del,
902
    .log_start = kvm_log_start,
903
    .log_stop = kvm_log_stop,
904
    .log_sync = kvm_log_sync,
905
    .log_global_start = kvm_log_global_start,
906
    .log_global_stop = kvm_log_global_stop,
907
    .eventfd_add = kvm_mem_ioeventfd_add,
908
    .eventfd_del = kvm_mem_ioeventfd_del,
909
    .coalesced_mmio_add = kvm_coalesce_mmio_region,
910
    .coalesced_mmio_del = kvm_uncoalesce_mmio_region,
911
    .priority = 10,
912
};
913

    
914
static MemoryListener kvm_io_listener = {
915
    .eventfd_add = kvm_io_ioeventfd_add,
916
    .eventfd_del = kvm_io_ioeventfd_del,
917
    .priority = 10,
918
};
919

    
920
static void kvm_handle_interrupt(CPUState *cpu, int mask)
921
{
922
    cpu->interrupt_request |= mask;
923

    
924
    if (!qemu_cpu_is_self(cpu)) {
925
        qemu_cpu_kick(cpu);
926
    }
927
}
928

    
929
int kvm_set_irq(KVMState *s, int irq, int level)
930
{
931
    struct kvm_irq_level event;
932
    int ret;
933

    
934
    assert(kvm_async_interrupts_enabled());
935

    
936
    event.level = level;
937
    event.irq = irq;
938
    ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
939
    if (ret < 0) {
940
        perror("kvm_set_irq");
941
        abort();
942
    }
943

    
944
    return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
945
}
946

    
947
#ifdef KVM_CAP_IRQ_ROUTING
948
typedef struct KVMMSIRoute {
949
    struct kvm_irq_routing_entry kroute;
950
    QTAILQ_ENTRY(KVMMSIRoute) entry;
951
} KVMMSIRoute;
952

    
953
static void set_gsi(KVMState *s, unsigned int gsi)
954
{
955
    s->used_gsi_bitmap[gsi / 32] |= 1U << (gsi % 32);
956
}
957

    
958
static void clear_gsi(KVMState *s, unsigned int gsi)
959
{
960
    s->used_gsi_bitmap[gsi / 32] &= ~(1U << (gsi % 32));
961
}
962

    
963
void kvm_init_irq_routing(KVMState *s)
964
{
965
    int gsi_count, i;
966

    
967
    gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING);
968
    if (gsi_count > 0) {
969
        unsigned int gsi_bits, i;
970

    
971
        /* Round up so we can search ints using ffs */
972
        gsi_bits = ALIGN(gsi_count, 32);
973
        s->used_gsi_bitmap = g_malloc0(gsi_bits / 8);
974
        s->gsi_count = gsi_count;
975

    
976
        /* Mark any over-allocated bits as already in use */
977
        for (i = gsi_count; i < gsi_bits; i++) {
978
            set_gsi(s, i);
979
        }
980
    }
981

    
982
    s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
983
    s->nr_allocated_irq_routes = 0;
984

    
985
    if (!s->direct_msi) {
986
        for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
987
            QTAILQ_INIT(&s->msi_hashtab[i]);
988
        }
989
    }
990

    
991
    kvm_arch_init_irq_routing(s);
992
}
993

    
994
void kvm_irqchip_commit_routes(KVMState *s)
995
{
996
    int ret;
997

    
998
    s->irq_routes->flags = 0;
999
    ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
1000
    assert(ret == 0);
1001
}
1002

    
1003
static void kvm_add_routing_entry(KVMState *s,
1004
                                  struct kvm_irq_routing_entry *entry)
1005
{
1006
    struct kvm_irq_routing_entry *new;
1007
    int n, size;
1008

    
1009
    if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
1010
        n = s->nr_allocated_irq_routes * 2;
1011
        if (n < 64) {
1012
            n = 64;
1013
        }
1014
        size = sizeof(struct kvm_irq_routing);
1015
        size += n * sizeof(*new);
1016
        s->irq_routes = g_realloc(s->irq_routes, size);
1017
        s->nr_allocated_irq_routes = n;
1018
    }
1019
    n = s->irq_routes->nr++;
1020
    new = &s->irq_routes->entries[n];
1021

    
1022
    *new = *entry;
1023

    
1024
    set_gsi(s, entry->gsi);
1025
}
1026

    
1027
static int kvm_update_routing_entry(KVMState *s,
1028
                                    struct kvm_irq_routing_entry *new_entry)
1029
{
1030
    struct kvm_irq_routing_entry *entry;
1031
    int n;
1032

    
1033
    for (n = 0; n < s->irq_routes->nr; n++) {
1034
        entry = &s->irq_routes->entries[n];
1035
        if (entry->gsi != new_entry->gsi) {
1036
            continue;
1037
        }
1038

    
1039
        if(!memcmp(entry, new_entry, sizeof *entry)) {
1040
            return 0;
1041
        }
1042

    
1043
        *entry = *new_entry;
1044

    
1045
        kvm_irqchip_commit_routes(s);
1046

    
1047
        return 0;
1048
    }
1049

    
1050
    return -ESRCH;
1051
}
1052

    
1053
void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
1054
{
1055
    struct kvm_irq_routing_entry e = {};
1056

    
1057
    assert(pin < s->gsi_count);
1058

    
1059
    e.gsi = irq;
1060
    e.type = KVM_IRQ_ROUTING_IRQCHIP;
1061
    e.flags = 0;
1062
    e.u.irqchip.irqchip = irqchip;
1063
    e.u.irqchip.pin = pin;
1064
    kvm_add_routing_entry(s, &e);
1065
}
1066

    
1067
void kvm_irqchip_release_virq(KVMState *s, int virq)
1068
{
1069
    struct kvm_irq_routing_entry *e;
1070
    int i;
1071

    
1072
    for (i = 0; i < s->irq_routes->nr; i++) {
1073
        e = &s->irq_routes->entries[i];
1074
        if (e->gsi == virq) {
1075
            s->irq_routes->nr--;
1076
            *e = s->irq_routes->entries[s->irq_routes->nr];
1077
        }
1078
    }
1079
    clear_gsi(s, virq);
1080
}
1081

    
1082
static unsigned int kvm_hash_msi(uint32_t data)
1083
{
1084
    /* This is optimized for IA32 MSI layout. However, no other arch shall
1085
     * repeat the mistake of not providing a direct MSI injection API. */
1086
    return data & 0xff;
1087
}
1088

    
1089
static void kvm_flush_dynamic_msi_routes(KVMState *s)
1090
{
1091
    KVMMSIRoute *route, *next;
1092
    unsigned int hash;
1093

    
1094
    for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1095
        QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1096
            kvm_irqchip_release_virq(s, route->kroute.gsi);
1097
            QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1098
            g_free(route);
1099
        }
1100
    }
1101
}
1102

    
1103
static int kvm_irqchip_get_virq(KVMState *s)
1104
{
1105
    uint32_t *word = s->used_gsi_bitmap;
1106
    int max_words = ALIGN(s->gsi_count, 32) / 32;
1107
    int i, bit;
1108
    bool retry = true;
1109

    
1110
again:
1111
    /* Return the lowest unused GSI in the bitmap */
1112
    for (i = 0; i < max_words; i++) {
1113
        bit = ffs(~word[i]);
1114
        if (!bit) {
1115
            continue;
1116
        }
1117

    
1118
        return bit - 1 + i * 32;
1119
    }
1120
    if (!s->direct_msi && retry) {
1121
        retry = false;
1122
        kvm_flush_dynamic_msi_routes(s);
1123
        goto again;
1124
    }
1125
    return -ENOSPC;
1126

    
1127
}
1128

    
1129
static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1130
{
1131
    unsigned int hash = kvm_hash_msi(msg.data);
1132
    KVMMSIRoute *route;
1133

    
1134
    QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1135
        if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1136
            route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1137
            route->kroute.u.msi.data == le32_to_cpu(msg.data)) {
1138
            return route;
1139
        }
1140
    }
1141
    return NULL;
1142
}
1143

    
1144
int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1145
{
1146
    struct kvm_msi msi;
1147
    KVMMSIRoute *route;
1148

    
1149
    if (s->direct_msi) {
1150
        msi.address_lo = (uint32_t)msg.address;
1151
        msi.address_hi = msg.address >> 32;
1152
        msi.data = le32_to_cpu(msg.data);
1153
        msi.flags = 0;
1154
        memset(msi.pad, 0, sizeof(msi.pad));
1155

    
1156
        return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1157
    }
1158

    
1159
    route = kvm_lookup_msi_route(s, msg);
1160
    if (!route) {
1161
        int virq;
1162

    
1163
        virq = kvm_irqchip_get_virq(s);
1164
        if (virq < 0) {
1165
            return virq;
1166
        }
1167

    
1168
        route = g_malloc0(sizeof(KVMMSIRoute));
1169
        route->kroute.gsi = virq;
1170
        route->kroute.type = KVM_IRQ_ROUTING_MSI;
1171
        route->kroute.flags = 0;
1172
        route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1173
        route->kroute.u.msi.address_hi = msg.address >> 32;
1174
        route->kroute.u.msi.data = le32_to_cpu(msg.data);
1175

    
1176
        kvm_add_routing_entry(s, &route->kroute);
1177
        kvm_irqchip_commit_routes(s);
1178

    
1179
        QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1180
                           entry);
1181
    }
1182

    
1183
    assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1184

    
1185
    return kvm_set_irq(s, route->kroute.gsi, 1);
1186
}
1187

    
1188
int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1189
{
1190
    struct kvm_irq_routing_entry kroute = {};
1191
    int virq;
1192

    
1193
    if (!kvm_gsi_routing_enabled()) {
1194
        return -ENOSYS;
1195
    }
1196

    
1197
    virq = kvm_irqchip_get_virq(s);
1198
    if (virq < 0) {
1199
        return virq;
1200
    }
1201

    
1202
    kroute.gsi = virq;
1203
    kroute.type = KVM_IRQ_ROUTING_MSI;
1204
    kroute.flags = 0;
1205
    kroute.u.msi.address_lo = (uint32_t)msg.address;
1206
    kroute.u.msi.address_hi = msg.address >> 32;
1207
    kroute.u.msi.data = le32_to_cpu(msg.data);
1208

    
1209
    kvm_add_routing_entry(s, &kroute);
1210
    kvm_irqchip_commit_routes(s);
1211

    
1212
    return virq;
1213
}
1214

    
1215
int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1216
{
1217
    struct kvm_irq_routing_entry kroute = {};
1218

    
1219
    if (!kvm_irqchip_in_kernel()) {
1220
        return -ENOSYS;
1221
    }
1222

    
1223
    kroute.gsi = virq;
1224
    kroute.type = KVM_IRQ_ROUTING_MSI;
1225
    kroute.flags = 0;
1226
    kroute.u.msi.address_lo = (uint32_t)msg.address;
1227
    kroute.u.msi.address_hi = msg.address >> 32;
1228
    kroute.u.msi.data = le32_to_cpu(msg.data);
1229

    
1230
    return kvm_update_routing_entry(s, &kroute);
1231
}
1232

    
1233
static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int rfd, int virq,
1234
                                    bool assign)
1235
{
1236
    struct kvm_irqfd irqfd = {
1237
        .fd = fd,
1238
        .gsi = virq,
1239
        .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
1240
    };
1241

    
1242
    if (rfd != -1) {
1243
        irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
1244
        irqfd.resamplefd = rfd;
1245
    }
1246

    
1247
    if (!kvm_irqfds_enabled()) {
1248
        return -ENOSYS;
1249
    }
1250

    
1251
    return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
1252
}
1253

    
1254
#else /* !KVM_CAP_IRQ_ROUTING */
1255

    
1256
void kvm_init_irq_routing(KVMState *s)
1257
{
1258
}
1259

    
1260
void kvm_irqchip_release_virq(KVMState *s, int virq)
1261
{
1262
}
1263

    
1264
int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1265
{
1266
    abort();
1267
}
1268

    
1269
int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1270
{
1271
    return -ENOSYS;
1272
}
1273

    
1274
static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1275
{
1276
    abort();
1277
}
1278

    
1279
int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1280
{
1281
    return -ENOSYS;
1282
}
1283
#endif /* !KVM_CAP_IRQ_ROUTING */
1284

    
1285
int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
1286
                                   EventNotifier *rn, int virq)
1287
{
1288
    return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n),
1289
           rn ? event_notifier_get_fd(rn) : -1, virq, true);
1290
}
1291

    
1292
int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, int virq)
1293
{
1294
    return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), -1, virq,
1295
           false);
1296
}
1297

    
1298
static int kvm_irqchip_create(KVMState *s)
1299
{
1300
    int ret;
1301

    
1302
    if (!qemu_opt_get_bool(qemu_get_machine_opts(), "kernel_irqchip", true) ||
1303
        !kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
1304
        return 0;
1305
    }
1306

    
1307
    ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
1308
    if (ret < 0) {
1309
        fprintf(stderr, "Create kernel irqchip failed\n");
1310
        return ret;
1311
    }
1312

    
1313
    kvm_kernel_irqchip = true;
1314
    /* If we have an in-kernel IRQ chip then we must have asynchronous
1315
     * interrupt delivery (though the reverse is not necessarily true)
1316
     */
1317
    kvm_async_interrupts_allowed = true;
1318
    kvm_halt_in_kernel_allowed = true;
1319

    
1320
    kvm_init_irq_routing(s);
1321

    
1322
    return 0;
1323
}
1324

    
1325
/* Find number of supported CPUs using the recommended
1326
 * procedure from the kernel API documentation to cope with
1327
 * older kernels that may be missing capabilities.
1328
 */
1329
static int kvm_recommended_vcpus(KVMState *s)
1330
{
1331
    int ret = kvm_check_extension(s, KVM_CAP_NR_VCPUS);
1332
    return (ret) ? ret : 4;
1333
}
1334

    
1335
static int kvm_max_vcpus(KVMState *s)
1336
{
1337
    int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
1338
    return (ret) ? ret : kvm_recommended_vcpus(s);
1339
}
1340

    
1341
int kvm_init(void)
1342
{
1343
    static const char upgrade_note[] =
1344
        "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1345
        "(see http://sourceforge.net/projects/kvm).\n";
1346
    struct {
1347
        const char *name;
1348
        int num;
1349
    } num_cpus[] = {
1350
        { "SMP",          smp_cpus },
1351
        { "hotpluggable", max_cpus },
1352
        { NULL, }
1353
    }, *nc = num_cpus;
1354
    int soft_vcpus_limit, hard_vcpus_limit;
1355
    KVMState *s;
1356
    const KVMCapabilityInfo *missing_cap;
1357
    int ret;
1358
    int i;
1359

    
1360
    s = g_malloc0(sizeof(KVMState));
1361

    
1362
    /*
1363
     * On systems where the kernel can support different base page
1364
     * sizes, host page size may be different from TARGET_PAGE_SIZE,
1365
     * even with KVM.  TARGET_PAGE_SIZE is assumed to be the minimum
1366
     * page size for the system though.
1367
     */
1368
    assert(TARGET_PAGE_SIZE <= getpagesize());
1369

    
1370
#ifdef KVM_CAP_SET_GUEST_DEBUG
1371
    QTAILQ_INIT(&s->kvm_sw_breakpoints);
1372
#endif
1373
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
1374
        s->slots[i].slot = i;
1375
    }
1376
    s->vmfd = -1;
1377
    s->fd = qemu_open("/dev/kvm", O_RDWR);
1378
    if (s->fd == -1) {
1379
        fprintf(stderr, "Could not access KVM kernel module: %m\n");
1380
        ret = -errno;
1381
        goto err;
1382
    }
1383

    
1384
    ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
1385
    if (ret < KVM_API_VERSION) {
1386
        if (ret > 0) {
1387
            ret = -EINVAL;
1388
        }
1389
        fprintf(stderr, "kvm version too old\n");
1390
        goto err;
1391
    }
1392

    
1393
    if (ret > KVM_API_VERSION) {
1394
        ret = -EINVAL;
1395
        fprintf(stderr, "kvm version not supported\n");
1396
        goto err;
1397
    }
1398

    
1399
    /* check the vcpu limits */
1400
    soft_vcpus_limit = kvm_recommended_vcpus(s);
1401
    hard_vcpus_limit = kvm_max_vcpus(s);
1402

    
1403
    while (nc->name) {
1404
        if (nc->num > soft_vcpus_limit) {
1405
            fprintf(stderr,
1406
                    "Warning: Number of %s cpus requested (%d) exceeds "
1407
                    "the recommended cpus supported by KVM (%d)\n",
1408
                    nc->name, nc->num, soft_vcpus_limit);
1409

    
1410
            if (nc->num > hard_vcpus_limit) {
1411
                ret = -EINVAL;
1412
                fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
1413
                        "the maximum cpus supported by KVM (%d)\n",
1414
                        nc->name, nc->num, hard_vcpus_limit);
1415
                goto err;
1416
            }
1417
        }
1418
        nc++;
1419
    }
1420

    
1421
    s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
1422
    if (s->vmfd < 0) {
1423
#ifdef TARGET_S390X
1424
        fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
1425
                        "your host kernel command line\n");
1426
#endif
1427
        ret = s->vmfd;
1428
        goto err;
1429
    }
1430

    
1431
    missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
1432
    if (!missing_cap) {
1433
        missing_cap =
1434
            kvm_check_extension_list(s, kvm_arch_required_capabilities);
1435
    }
1436
    if (missing_cap) {
1437
        ret = -EINVAL;
1438
        fprintf(stderr, "kvm does not support %s\n%s",
1439
                missing_cap->name, upgrade_note);
1440
        goto err;
1441
    }
1442

    
1443
    s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
1444

    
1445
    s->broken_set_mem_region = 1;
1446
    ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
1447
    if (ret > 0) {
1448
        s->broken_set_mem_region = 0;
1449
    }
1450

    
1451
#ifdef KVM_CAP_VCPU_EVENTS
1452
    s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
1453
#endif
1454

    
1455
    s->robust_singlestep =
1456
        kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
1457

    
1458
#ifdef KVM_CAP_DEBUGREGS
1459
    s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
1460
#endif
1461

    
1462
#ifdef KVM_CAP_XSAVE
1463
    s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
1464
#endif
1465

    
1466
#ifdef KVM_CAP_XCRS
1467
    s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
1468
#endif
1469

    
1470
#ifdef KVM_CAP_PIT_STATE2
1471
    s->pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
1472
#endif
1473

    
1474
#ifdef KVM_CAP_IRQ_ROUTING
1475
    s->direct_msi = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
1476
#endif
1477

    
1478
    s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
1479

    
1480
    s->irq_set_ioctl = KVM_IRQ_LINE;
1481
    if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
1482
        s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
1483
    }
1484

    
1485
#ifdef KVM_CAP_READONLY_MEM
1486
    kvm_readonly_mem_allowed =
1487
        (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
1488
#endif
1489

    
1490
    ret = kvm_arch_init(s);
1491
    if (ret < 0) {
1492
        goto err;
1493
    }
1494

    
1495
    ret = kvm_irqchip_create(s);
1496
    if (ret < 0) {
1497
        goto err;
1498
    }
1499

    
1500
    kvm_state = s;
1501
    memory_listener_register(&kvm_memory_listener, &address_space_memory);
1502
    memory_listener_register(&kvm_io_listener, &address_space_io);
1503

    
1504
    s->many_ioeventfds = kvm_check_many_ioeventfds();
1505

    
1506
    cpu_interrupt_handler = kvm_handle_interrupt;
1507

    
1508
    return 0;
1509

    
1510
err:
1511
    if (s->vmfd >= 0) {
1512
        close(s->vmfd);
1513
    }
1514
    if (s->fd != -1) {
1515
        close(s->fd);
1516
    }
1517
    g_free(s);
1518

    
1519
    return ret;
1520
}
1521

    
1522
static void kvm_handle_io(uint16_t port, void *data, int direction, int size,
1523
                          uint32_t count)
1524
{
1525
    int i;
1526
    uint8_t *ptr = data;
1527

    
1528
    for (i = 0; i < count; i++) {
1529
        address_space_rw(&address_space_io, port, ptr, size,
1530
                         direction == KVM_EXIT_IO_OUT);
1531
        ptr += size;
1532
    }
1533
}
1534

    
1535
static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
1536
{
1537
    fprintf(stderr, "KVM internal error.");
1538
    if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
1539
        int i;
1540

    
1541
        fprintf(stderr, " Suberror: %d\n", run->internal.suberror);
1542
        for (i = 0; i < run->internal.ndata; ++i) {
1543
            fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
1544
                    i, (uint64_t)run->internal.data[i]);
1545
        }
1546
    } else {
1547
        fprintf(stderr, "\n");
1548
    }
1549
    if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
1550
        fprintf(stderr, "emulation failure\n");
1551
        if (!kvm_arch_stop_on_emulation_error(cpu)) {
1552
            cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE);
1553
            return EXCP_INTERRUPT;
1554
        }
1555
    }
1556
    /* FIXME: Should trigger a qmp message to let management know
1557
     * something went wrong.
1558
     */
1559
    return -1;
1560
}
1561

    
1562
void kvm_flush_coalesced_mmio_buffer(void)
1563
{
1564
    KVMState *s = kvm_state;
1565

    
1566
    if (s->coalesced_flush_in_progress) {
1567
        return;
1568
    }
1569

    
1570
    s->coalesced_flush_in_progress = true;
1571

    
1572
    if (s->coalesced_mmio_ring) {
1573
        struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
1574
        while (ring->first != ring->last) {
1575
            struct kvm_coalesced_mmio *ent;
1576

    
1577
            ent = &ring->coalesced_mmio[ring->first];
1578

    
1579
            cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
1580
            smp_wmb();
1581
            ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
1582
        }
1583
    }
1584

    
1585
    s->coalesced_flush_in_progress = false;
1586
}
1587

    
1588
static void do_kvm_cpu_synchronize_state(void *arg)
1589
{
1590
    CPUState *cpu = arg;
1591

    
1592
    if (!cpu->kvm_vcpu_dirty) {
1593
        kvm_arch_get_registers(cpu);
1594
        cpu->kvm_vcpu_dirty = true;
1595
    }
1596
}
1597

    
1598
void kvm_cpu_synchronize_state(CPUState *cpu)
1599
{
1600
    if (!cpu->kvm_vcpu_dirty) {
1601
        run_on_cpu(cpu, do_kvm_cpu_synchronize_state, cpu);
1602
    }
1603
}
1604

    
1605
void kvm_cpu_synchronize_post_reset(CPUState *cpu)
1606
{
1607
    kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
1608
    cpu->kvm_vcpu_dirty = false;
1609
}
1610

    
1611
void kvm_cpu_synchronize_post_init(CPUState *cpu)
1612
{
1613
    kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
1614
    cpu->kvm_vcpu_dirty = false;
1615
}
1616

    
1617
int kvm_cpu_exec(CPUState *cpu)
1618
{
1619
    struct kvm_run *run = cpu->kvm_run;
1620
    int ret, run_ret;
1621

    
1622
    DPRINTF("kvm_cpu_exec()\n");
1623

    
1624
    if (kvm_arch_process_async_events(cpu)) {
1625
        cpu->exit_request = 0;
1626
        return EXCP_HLT;
1627
    }
1628

    
1629
    do {
1630
        if (cpu->kvm_vcpu_dirty) {
1631
            kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
1632
            cpu->kvm_vcpu_dirty = false;
1633
        }
1634

    
1635
        kvm_arch_pre_run(cpu, run);
1636
        if (cpu->exit_request) {
1637
            DPRINTF("interrupt exit requested\n");
1638
            /*
1639
             * KVM requires us to reenter the kernel after IO exits to complete
1640
             * instruction emulation. This self-signal will ensure that we
1641
             * leave ASAP again.
1642
             */
1643
            qemu_cpu_kick_self();
1644
        }
1645
        qemu_mutex_unlock_iothread();
1646

    
1647
        run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
1648

    
1649
        qemu_mutex_lock_iothread();
1650
        kvm_arch_post_run(cpu, run);
1651

    
1652
        if (run_ret < 0) {
1653
            if (run_ret == -EINTR || run_ret == -EAGAIN) {
1654
                DPRINTF("io window exit\n");
1655
                ret = EXCP_INTERRUPT;
1656
                break;
1657
            }
1658
            fprintf(stderr, "error: kvm run failed %s\n",
1659
                    strerror(-run_ret));
1660
            abort();
1661
        }
1662

    
1663
        trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
1664
        switch (run->exit_reason) {
1665
        case KVM_EXIT_IO:
1666
            DPRINTF("handle_io\n");
1667
            kvm_handle_io(run->io.port,
1668
                          (uint8_t *)run + run->io.data_offset,
1669
                          run->io.direction,
1670
                          run->io.size,
1671
                          run->io.count);
1672
            ret = 0;
1673
            break;
1674
        case KVM_EXIT_MMIO:
1675
            DPRINTF("handle_mmio\n");
1676
            cpu_physical_memory_rw(run->mmio.phys_addr,
1677
                                   run->mmio.data,
1678
                                   run->mmio.len,
1679
                                   run->mmio.is_write);
1680
            ret = 0;
1681
            break;
1682
        case KVM_EXIT_IRQ_WINDOW_OPEN:
1683
            DPRINTF("irq_window_open\n");
1684
            ret = EXCP_INTERRUPT;
1685
            break;
1686
        case KVM_EXIT_SHUTDOWN:
1687
            DPRINTF("shutdown\n");
1688
            qemu_system_reset_request();
1689
            ret = EXCP_INTERRUPT;
1690
            break;
1691
        case KVM_EXIT_UNKNOWN:
1692
            fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
1693
                    (uint64_t)run->hw.hardware_exit_reason);
1694
            ret = -1;
1695
            break;
1696
        case KVM_EXIT_INTERNAL_ERROR:
1697
            ret = kvm_handle_internal_error(cpu, run);
1698
            break;
1699
        default:
1700
            DPRINTF("kvm_arch_handle_exit\n");
1701
            ret = kvm_arch_handle_exit(cpu, run);
1702
            break;
1703
        }
1704
    } while (ret == 0);
1705

    
1706
    if (ret < 0) {
1707
        cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE);
1708
        vm_stop(RUN_STATE_INTERNAL_ERROR);
1709
    }
1710

    
1711
    cpu->exit_request = 0;
1712
    return ret;
1713
}
1714

    
1715
int kvm_ioctl(KVMState *s, int type, ...)
1716
{
1717
    int ret;
1718
    void *arg;
1719
    va_list ap;
1720

    
1721
    va_start(ap, type);
1722
    arg = va_arg(ap, void *);
1723
    va_end(ap);
1724

    
1725
    trace_kvm_ioctl(type, arg);
1726
    ret = ioctl(s->fd, type, arg);
1727
    if (ret == -1) {
1728
        ret = -errno;
1729
    }
1730
    return ret;
1731
}
1732

    
1733
int kvm_vm_ioctl(KVMState *s, int type, ...)
1734
{
1735
    int ret;
1736
    void *arg;
1737
    va_list ap;
1738

    
1739
    va_start(ap, type);
1740
    arg = va_arg(ap, void *);
1741
    va_end(ap);
1742

    
1743
    trace_kvm_vm_ioctl(type, arg);
1744
    ret = ioctl(s->vmfd, type, arg);
1745
    if (ret == -1) {
1746
        ret = -errno;
1747
    }
1748
    return ret;
1749
}
1750

    
1751
int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
1752
{
1753
    int ret;
1754
    void *arg;
1755
    va_list ap;
1756

    
1757
    va_start(ap, type);
1758
    arg = va_arg(ap, void *);
1759
    va_end(ap);
1760

    
1761
    trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
1762
    ret = ioctl(cpu->kvm_fd, type, arg);
1763
    if (ret == -1) {
1764
        ret = -errno;
1765
    }
1766
    return ret;
1767
}
1768

    
1769
int kvm_has_sync_mmu(void)
1770
{
1771
    return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
1772
}
1773

    
1774
int kvm_has_vcpu_events(void)
1775
{
1776
    return kvm_state->vcpu_events;
1777
}
1778

    
1779
int kvm_has_robust_singlestep(void)
1780
{
1781
    return kvm_state->robust_singlestep;
1782
}
1783

    
1784
int kvm_has_debugregs(void)
1785
{
1786
    return kvm_state->debugregs;
1787
}
1788

    
1789
int kvm_has_xsave(void)
1790
{
1791
    return kvm_state->xsave;
1792
}
1793

    
1794
int kvm_has_xcrs(void)
1795
{
1796
    return kvm_state->xcrs;
1797
}
1798

    
1799
int kvm_has_pit_state2(void)
1800
{
1801
    return kvm_state->pit_state2;
1802
}
1803

    
1804
int kvm_has_many_ioeventfds(void)
1805
{
1806
    if (!kvm_enabled()) {
1807
        return 0;
1808
    }
1809
    return kvm_state->many_ioeventfds;
1810
}
1811

    
1812
int kvm_has_gsi_routing(void)
1813
{
1814
#ifdef KVM_CAP_IRQ_ROUTING
1815
    return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
1816
#else
1817
    return false;
1818
#endif
1819
}
1820

    
1821
int kvm_has_intx_set_mask(void)
1822
{
1823
    return kvm_state->intx_set_mask;
1824
}
1825

    
1826
void *kvm_ram_alloc(ram_addr_t size)
1827
{
1828
#ifdef TARGET_S390X
1829
    void *mem;
1830

    
1831
    mem = kvm_arch_ram_alloc(size);
1832
    if (mem) {
1833
        return mem;
1834
    }
1835
#endif
1836
    return qemu_anon_ram_alloc(size);
1837
}
1838

    
1839
void kvm_setup_guest_memory(void *start, size_t size)
1840
{
1841
#ifdef CONFIG_VALGRIND_H
1842
    VALGRIND_MAKE_MEM_DEFINED(start, size);
1843
#endif
1844
    if (!kvm_has_sync_mmu()) {
1845
        int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
1846

    
1847
        if (ret) {
1848
            perror("qemu_madvise");
1849
            fprintf(stderr,
1850
                    "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1851
            exit(1);
1852
        }
1853
    }
1854
}
1855

    
1856
#ifdef KVM_CAP_SET_GUEST_DEBUG
1857
struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
1858
                                                 target_ulong pc)
1859
{
1860
    struct kvm_sw_breakpoint *bp;
1861

    
1862
    QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
1863
        if (bp->pc == pc) {
1864
            return bp;
1865
        }
1866
    }
1867
    return NULL;
1868
}
1869

    
1870
int kvm_sw_breakpoints_active(CPUState *cpu)
1871
{
1872
    return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
1873
}
1874

    
1875
struct kvm_set_guest_debug_data {
1876
    struct kvm_guest_debug dbg;
1877
    CPUState *cpu;
1878
    int err;
1879
};
1880

    
1881
static void kvm_invoke_set_guest_debug(void *data)
1882
{
1883
    struct kvm_set_guest_debug_data *dbg_data = data;
1884

    
1885
    dbg_data->err = kvm_vcpu_ioctl(dbg_data->cpu, KVM_SET_GUEST_DEBUG,
1886
                                   &dbg_data->dbg);
1887
}
1888

    
1889
int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
1890
{
1891
    struct kvm_set_guest_debug_data data;
1892

    
1893
    data.dbg.control = reinject_trap;
1894

    
1895
    if (cpu->singlestep_enabled) {
1896
        data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1897
    }
1898
    kvm_arch_update_guest_debug(cpu, &data.dbg);
1899
    data.cpu = cpu;
1900

    
1901
    run_on_cpu(cpu, kvm_invoke_set_guest_debug, &data);
1902
    return data.err;
1903
}
1904

    
1905
int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
1906
                          target_ulong len, int type)
1907
{
1908
    struct kvm_sw_breakpoint *bp;
1909
    int err;
1910

    
1911
    if (type == GDB_BREAKPOINT_SW) {
1912
        bp = kvm_find_sw_breakpoint(cpu, addr);
1913
        if (bp) {
1914
            bp->use_count++;
1915
            return 0;
1916
        }
1917

    
1918
        bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
1919
        if (!bp) {
1920
            return -ENOMEM;
1921
        }
1922

    
1923
        bp->pc = addr;
1924
        bp->use_count = 1;
1925
        err = kvm_arch_insert_sw_breakpoint(cpu, bp);
1926
        if (err) {
1927
            g_free(bp);
1928
            return err;
1929
        }
1930

    
1931
        QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
1932
    } else {
1933
        err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1934
        if (err) {
1935
            return err;
1936
        }
1937
    }
1938

    
1939
    CPU_FOREACH(cpu) {
1940
        err = kvm_update_guest_debug(cpu, 0);
1941
        if (err) {
1942
            return err;
1943
        }
1944
    }
1945
    return 0;
1946
}
1947

    
1948
int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
1949
                          target_ulong len, int type)
1950
{
1951
    struct kvm_sw_breakpoint *bp;
1952
    int err;
1953

    
1954
    if (type == GDB_BREAKPOINT_SW) {
1955
        bp = kvm_find_sw_breakpoint(cpu, addr);
1956
        if (!bp) {
1957
            return -ENOENT;
1958
        }
1959

    
1960
        if (bp->use_count > 1) {
1961
            bp->use_count--;
1962
            return 0;
1963
        }
1964

    
1965
        err = kvm_arch_remove_sw_breakpoint(cpu, bp);
1966
        if (err) {
1967
            return err;
1968
        }
1969

    
1970
        QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
1971
        g_free(bp);
1972
    } else {
1973
        err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1974
        if (err) {
1975
            return err;
1976
        }
1977
    }
1978

    
1979
    CPU_FOREACH(cpu) {
1980
        err = kvm_update_guest_debug(cpu, 0);
1981
        if (err) {
1982
            return err;
1983
        }
1984
    }
1985
    return 0;
1986
}
1987

    
1988
void kvm_remove_all_breakpoints(CPUState *cpu)
1989
{
1990
    struct kvm_sw_breakpoint *bp, *next;
1991
    KVMState *s = cpu->kvm_state;
1992

    
1993
    QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1994
        if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
1995
            /* Try harder to find a CPU that currently sees the breakpoint. */
1996
            CPU_FOREACH(cpu) {
1997
                if (kvm_arch_remove_sw_breakpoint(cpu, bp) == 0) {
1998
                    break;
1999
                }
2000
            }
2001
        }
2002
        QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
2003
        g_free(bp);
2004
    }
2005
    kvm_arch_remove_all_hw_breakpoints();
2006

    
2007
    CPU_FOREACH(cpu) {
2008
        kvm_update_guest_debug(cpu, 0);
2009
    }
2010
}
2011

    
2012
#else /* !KVM_CAP_SET_GUEST_DEBUG */
2013

    
2014
int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2015
{
2016
    return -EINVAL;
2017
}
2018

    
2019
int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2020
                          target_ulong len, int type)
2021
{
2022
    return -EINVAL;
2023
}
2024

    
2025
int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2026
                          target_ulong len, int type)
2027
{
2028
    return -EINVAL;
2029
}
2030

    
2031
void kvm_remove_all_breakpoints(CPUState *cpu)
2032
{
2033
}
2034
#endif /* !KVM_CAP_SET_GUEST_DEBUG */
2035

    
2036
int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
2037
{
2038
    struct kvm_signal_mask *sigmask;
2039
    int r;
2040

    
2041
    if (!sigset) {
2042
        return kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, NULL);
2043
    }
2044

    
2045
    sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
2046

    
2047
    sigmask->len = 8;
2048
    memcpy(sigmask->sigset, sigset, sizeof(*sigset));
2049
    r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
2050
    g_free(sigmask);
2051

    
2052
    return r;
2053
}
2054
int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
2055
{
2056
    return kvm_arch_on_sigbus_vcpu(cpu, code, addr);
2057
}
2058

    
2059
int kvm_on_sigbus(int code, void *addr)
2060
{
2061
    return kvm_arch_on_sigbus(code, addr);
2062
}