Statistics
| Branch: | Revision:

root / tests / test-i386.c @ 681f8c29

History | View | Annotate | Download (70.1 kB)

1
/*
2
 *  x86 CPU test
3
 *
4
 *  Copyright (c) 2003 Fabrice Bellard
5
 *
6
 *  This program is free software; you can redistribute it and/or modify
7
 *  it under the terms of the GNU General Public License as published by
8
 *  the Free Software Foundation; either version 2 of the License, or
9
 *  (at your option) any later version.
10
 *
11
 *  This program is distributed in the hope that it will be useful,
12
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14
 *  GNU General Public License for more details.
15
 *
16
 *  You should have received a copy of the GNU General Public License
17
 *  along with this program; if not, write to the Free Software
18
 *  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19
 */
20
#define _GNU_SOURCE
21
#include <stdlib.h>
22
#include <stdio.h>
23
#include <string.h>
24
#include <inttypes.h>
25
#include <math.h>
26
#include <signal.h>
27
#include <setjmp.h>
28
#include <errno.h>
29
#include <sys/ucontext.h>
30
#include <sys/mman.h>
31

    
32
#if !defined(__x86_64__)
33
//#define TEST_VM86
34
#define TEST_SEGS
35
#endif
36
//#define LINUX_VM86_IOPL_FIX
37
//#define TEST_P4_FLAGS
38
#ifdef __SSE__
39
#define TEST_SSE
40
#define TEST_CMOV  1
41
#define TEST_FCOMI 1
42
#else
43
#undef TEST_SSE
44
#define TEST_CMOV  1
45
#define TEST_FCOMI 1
46
#endif
47

    
48
#if defined(__x86_64__)
49
#define FMT64X "%016lx"
50
#define FMTLX "%016lx"
51
#define X86_64_ONLY(x) x
52
#else
53
#define FMT64X "%016" PRIx64
54
#define FMTLX "%08lx"
55
#define X86_64_ONLY(x)
56
#endif
57

    
58
#ifdef TEST_VM86
59
#include <asm/vm86.h>
60
#endif
61

    
62
#define xglue(x, y) x ## y
63
#define glue(x, y) xglue(x, y)
64
#define stringify(s)        tostring(s)
65
#define tostring(s)        #s
66

    
67
#define CC_C           0x0001
68
#define CC_P         0x0004
69
#define CC_A        0x0010
70
#define CC_Z        0x0040
71
#define CC_S    0x0080
72
#define CC_O    0x0800
73

    
74
#define __init_call        __attribute__ ((unused,__section__ ("initcall")))
75

    
76
#define CC_MASK (CC_C | CC_P | CC_Z | CC_S | CC_O | CC_A)
77

    
78
#if defined(__x86_64__)
79
static inline long i2l(long v)
80
{
81
    return v | ((v ^ 0xabcd) << 32);
82
}
83
#else
84
static inline long i2l(long v)
85
{
86
    return v;
87
}
88
#endif
89

    
90
#define OP add
91
#include "test-i386.h"
92

    
93
#define OP sub
94
#include "test-i386.h"
95

    
96
#define OP xor
97
#include "test-i386.h"
98

    
99
#define OP and
100
#include "test-i386.h"
101

    
102
#define OP or
103
#include "test-i386.h"
104

    
105
#define OP cmp
106
#include "test-i386.h"
107

    
108
#define OP adc
109
#define OP_CC
110
#include "test-i386.h"
111

    
112
#define OP sbb
113
#define OP_CC
114
#include "test-i386.h"
115

    
116
#define OP inc
117
#define OP_CC
118
#define OP1
119
#include "test-i386.h"
120

    
121
#define OP dec
122
#define OP_CC
123
#define OP1
124
#include "test-i386.h"
125

    
126
#define OP neg
127
#define OP_CC
128
#define OP1
129
#include "test-i386.h"
130

    
131
#define OP not
132
#define OP_CC
133
#define OP1
134
#include "test-i386.h"
135

    
136
#undef CC_MASK
137
#define CC_MASK (CC_C | CC_P | CC_Z | CC_S | CC_O)
138

    
139
#define OP shl
140
#include "test-i386-shift.h"
141

    
142
#define OP shr
143
#include "test-i386-shift.h"
144

    
145
#define OP sar
146
#include "test-i386-shift.h"
147

    
148
#define OP rol
149
#include "test-i386-shift.h"
150

    
151
#define OP ror
152
#include "test-i386-shift.h"
153

    
154
#define OP rcr
155
#define OP_CC
156
#include "test-i386-shift.h"
157

    
158
#define OP rcl
159
#define OP_CC
160
#include "test-i386-shift.h"
161

    
162
#define OP shld
163
#define OP_SHIFTD
164
#define OP_NOBYTE
165
#include "test-i386-shift.h"
166

    
167
#define OP shrd
168
#define OP_SHIFTD
169
#define OP_NOBYTE
170
#include "test-i386-shift.h"
171

    
172
/* XXX: should be more precise ? */
173
#undef CC_MASK
174
#define CC_MASK (CC_C)
175

    
176
#define OP bt
177
#define OP_NOBYTE
178
#include "test-i386-shift.h"
179

    
180
#define OP bts
181
#define OP_NOBYTE
182
#include "test-i386-shift.h"
183

    
184
#define OP btr
185
#define OP_NOBYTE
186
#include "test-i386-shift.h"
187

    
188
#define OP btc
189
#define OP_NOBYTE
190
#include "test-i386-shift.h"
191

    
192
/* lea test (modrm support) */
193
#define TEST_LEAQ(STR)\
194
{\
195
    asm("lea " STR ", %0"\
196
        : "=r" (res)\
197
        : "a" (eax), "b" (ebx), "c" (ecx), "d" (edx), "S" (esi), "D" (edi));\
198
    printf("lea %s = " FMTLX "\n", STR, res);\
199
}
200

    
201
#define TEST_LEA(STR)\
202
{\
203
    asm("lea " STR ", %0"\
204
        : "=r" (res)\
205
        : "a" (eax), "b" (ebx), "c" (ecx), "d" (edx), "S" (esi), "D" (edi));\
206
    printf("lea %s = " FMTLX "\n", STR, res);\
207
}
208

    
209
#define TEST_LEA16(STR)\
210
{\
211
    asm(".code16 ; .byte 0x67 ; leal " STR ", %0 ; .code32"\
212
        : "=wq" (res)\
213
        : "a" (eax), "b" (ebx), "c" (ecx), "d" (edx), "S" (esi), "D" (edi));\
214
    printf("lea %s = %08lx\n", STR, res);\
215
}
216

    
217

    
218
void test_lea(void)
219
{
220
    long eax, ebx, ecx, edx, esi, edi, res;
221
    eax = i2l(0x0001);
222
    ebx = i2l(0x0002);
223
    ecx = i2l(0x0004);
224
    edx = i2l(0x0008);
225
    esi = i2l(0x0010);
226
    edi = i2l(0x0020);
227

    
228
    TEST_LEA("0x4000");
229

    
230
    TEST_LEA("(%%eax)");
231
    TEST_LEA("(%%ebx)");
232
    TEST_LEA("(%%ecx)");
233
    TEST_LEA("(%%edx)");
234
    TEST_LEA("(%%esi)");
235
    TEST_LEA("(%%edi)");
236

    
237
    TEST_LEA("0x40(%%eax)");
238
    TEST_LEA("0x40(%%ebx)");
239
    TEST_LEA("0x40(%%ecx)");
240
    TEST_LEA("0x40(%%edx)");
241
    TEST_LEA("0x40(%%esi)");
242
    TEST_LEA("0x40(%%edi)");
243

    
244
    TEST_LEA("0x4000(%%eax)");
245
    TEST_LEA("0x4000(%%ebx)");
246
    TEST_LEA("0x4000(%%ecx)");
247
    TEST_LEA("0x4000(%%edx)");
248
    TEST_LEA("0x4000(%%esi)");
249
    TEST_LEA("0x4000(%%edi)");
250

    
251
    TEST_LEA("(%%eax, %%ecx)");
252
    TEST_LEA("(%%ebx, %%edx)");
253
    TEST_LEA("(%%ecx, %%ecx)");
254
    TEST_LEA("(%%edx, %%ecx)");
255
    TEST_LEA("(%%esi, %%ecx)");
256
    TEST_LEA("(%%edi, %%ecx)");
257

    
258
    TEST_LEA("0x40(%%eax, %%ecx)");
259
    TEST_LEA("0x4000(%%ebx, %%edx)");
260

    
261
    TEST_LEA("(%%ecx, %%ecx, 2)");
262
    TEST_LEA("(%%edx, %%ecx, 4)");
263
    TEST_LEA("(%%esi, %%ecx, 8)");
264

    
265
    TEST_LEA("(,%%eax, 2)");
266
    TEST_LEA("(,%%ebx, 4)");
267
    TEST_LEA("(,%%ecx, 8)");
268

    
269
    TEST_LEA("0x40(,%%eax, 2)");
270
    TEST_LEA("0x40(,%%ebx, 4)");
271
    TEST_LEA("0x40(,%%ecx, 8)");
272

    
273

    
274
    TEST_LEA("-10(%%ecx, %%ecx, 2)");
275
    TEST_LEA("-10(%%edx, %%ecx, 4)");
276
    TEST_LEA("-10(%%esi, %%ecx, 8)");
277

    
278
    TEST_LEA("0x4000(%%ecx, %%ecx, 2)");
279
    TEST_LEA("0x4000(%%edx, %%ecx, 4)");
280
    TEST_LEA("0x4000(%%esi, %%ecx, 8)");
281

    
282
#if defined(__x86_64__)
283
    TEST_LEAQ("0x4000");
284
    TEST_LEAQ("0x4000(%%rip)");
285

    
286
    TEST_LEAQ("(%%rax)");
287
    TEST_LEAQ("(%%rbx)");
288
    TEST_LEAQ("(%%rcx)");
289
    TEST_LEAQ("(%%rdx)");
290
    TEST_LEAQ("(%%rsi)");
291
    TEST_LEAQ("(%%rdi)");
292

    
293
    TEST_LEAQ("0x40(%%rax)");
294
    TEST_LEAQ("0x40(%%rbx)");
295
    TEST_LEAQ("0x40(%%rcx)");
296
    TEST_LEAQ("0x40(%%rdx)");
297
    TEST_LEAQ("0x40(%%rsi)");
298
    TEST_LEAQ("0x40(%%rdi)");
299

    
300
    TEST_LEAQ("0x4000(%%rax)");
301
    TEST_LEAQ("0x4000(%%rbx)");
302
    TEST_LEAQ("0x4000(%%rcx)");
303
    TEST_LEAQ("0x4000(%%rdx)");
304
    TEST_LEAQ("0x4000(%%rsi)");
305
    TEST_LEAQ("0x4000(%%rdi)");
306

    
307
    TEST_LEAQ("(%%rax, %%rcx)");
308
    TEST_LEAQ("(%%rbx, %%rdx)");
309
    TEST_LEAQ("(%%rcx, %%rcx)");
310
    TEST_LEAQ("(%%rdx, %%rcx)");
311
    TEST_LEAQ("(%%rsi, %%rcx)");
312
    TEST_LEAQ("(%%rdi, %%rcx)");
313

    
314
    TEST_LEAQ("0x40(%%rax, %%rcx)");
315
    TEST_LEAQ("0x4000(%%rbx, %%rdx)");
316

    
317
    TEST_LEAQ("(%%rcx, %%rcx, 2)");
318
    TEST_LEAQ("(%%rdx, %%rcx, 4)");
319
    TEST_LEAQ("(%%rsi, %%rcx, 8)");
320

    
321
    TEST_LEAQ("(,%%rax, 2)");
322
    TEST_LEAQ("(,%%rbx, 4)");
323
    TEST_LEAQ("(,%%rcx, 8)");
324

    
325
    TEST_LEAQ("0x40(,%%rax, 2)");
326
    TEST_LEAQ("0x40(,%%rbx, 4)");
327
    TEST_LEAQ("0x40(,%%rcx, 8)");
328

    
329

    
330
    TEST_LEAQ("-10(%%rcx, %%rcx, 2)");
331
    TEST_LEAQ("-10(%%rdx, %%rcx, 4)");
332
    TEST_LEAQ("-10(%%rsi, %%rcx, 8)");
333

    
334
    TEST_LEAQ("0x4000(%%rcx, %%rcx, 2)");
335
    TEST_LEAQ("0x4000(%%rdx, %%rcx, 4)");
336
    TEST_LEAQ("0x4000(%%rsi, %%rcx, 8)");
337
#else
338
    /* limited 16 bit addressing test */
339
    TEST_LEA16("0x4000");
340
    TEST_LEA16("(%%bx)");
341
    TEST_LEA16("(%%si)");
342
    TEST_LEA16("(%%di)");
343
    TEST_LEA16("0x40(%%bx)");
344
    TEST_LEA16("0x40(%%si)");
345
    TEST_LEA16("0x40(%%di)");
346
    TEST_LEA16("0x4000(%%bx)");
347
    TEST_LEA16("0x4000(%%si)");
348
    TEST_LEA16("(%%bx,%%si)");
349
    TEST_LEA16("(%%bx,%%di)");
350
    TEST_LEA16("0x40(%%bx,%%si)");
351
    TEST_LEA16("0x40(%%bx,%%di)");
352
    TEST_LEA16("0x4000(%%bx,%%si)");
353
    TEST_LEA16("0x4000(%%bx,%%di)");
354
#endif
355
}
356

    
357
#define TEST_JCC(JCC, v1, v2)\
358
{\
359
    int res;\
360
    asm("movl $1, %0\n\t"\
361
        "cmpl %2, %1\n\t"\
362
        "j" JCC " 1f\n\t"\
363
        "movl $0, %0\n\t"\
364
        "1:\n\t"\
365
        : "=r" (res)\
366
        : "r" (v1), "r" (v2));\
367
    printf("%-10s %d\n", "j" JCC, res);\
368
\
369
    asm("movl $0, %0\n\t"\
370
        "cmpl %2, %1\n\t"\
371
        "set" JCC " %b0\n\t"\
372
        : "=r" (res)\
373
        : "r" (v1), "r" (v2));\
374
    printf("%-10s %d\n", "set" JCC, res);\
375
 if (TEST_CMOV) {\
376
    long val = i2l(1);\
377
    long res = i2l(0x12345678);\
378
X86_64_ONLY(\
379
    asm("cmpl %2, %1\n\t"\
380
        "cmov" JCC "q %3, %0\n\t"\
381
        : "=r" (res)\
382
        : "r" (v1), "r" (v2), "m" (val), "0" (res));\
383
        printf("%-10s R=" FMTLX "\n", "cmov" JCC "q", res);)\
384
    asm("cmpl %2, %1\n\t"\
385
        "cmov" JCC "l %k3, %k0\n\t"\
386
        : "=r" (res)\
387
        : "r" (v1), "r" (v2), "m" (val), "0" (res));\
388
        printf("%-10s R=" FMTLX "\n", "cmov" JCC "l", res);\
389
    asm("cmpl %2, %1\n\t"\
390
        "cmov" JCC "w %w3, %w0\n\t"\
391
        : "=r" (res)\
392
        : "r" (v1), "r" (v2), "r" (1), "0" (res));\
393
        printf("%-10s R=" FMTLX "\n", "cmov" JCC "w", res);\
394
 } \
395
}
396

    
397
/* various jump tests */
398
void test_jcc(void)
399
{
400
    TEST_JCC("ne", 1, 1);
401
    TEST_JCC("ne", 1, 0);
402

    
403
    TEST_JCC("e", 1, 1);
404
    TEST_JCC("e", 1, 0);
405

    
406
    TEST_JCC("l", 1, 1);
407
    TEST_JCC("l", 1, 0);
408
    TEST_JCC("l", 1, -1);
409

    
410
    TEST_JCC("le", 1, 1);
411
    TEST_JCC("le", 1, 0);
412
    TEST_JCC("le", 1, -1);
413

    
414
    TEST_JCC("ge", 1, 1);
415
    TEST_JCC("ge", 1, 0);
416
    TEST_JCC("ge", -1, 1);
417

    
418
    TEST_JCC("g", 1, 1);
419
    TEST_JCC("g", 1, 0);
420
    TEST_JCC("g", 1, -1);
421

    
422
    TEST_JCC("b", 1, 1);
423
    TEST_JCC("b", 1, 0);
424
    TEST_JCC("b", 1, -1);
425

    
426
    TEST_JCC("be", 1, 1);
427
    TEST_JCC("be", 1, 0);
428
    TEST_JCC("be", 1, -1);
429

    
430
    TEST_JCC("ae", 1, 1);
431
    TEST_JCC("ae", 1, 0);
432
    TEST_JCC("ae", 1, -1);
433

    
434
    TEST_JCC("a", 1, 1);
435
    TEST_JCC("a", 1, 0);
436
    TEST_JCC("a", 1, -1);
437

    
438

    
439
    TEST_JCC("p", 1, 1);
440
    TEST_JCC("p", 1, 0);
441

    
442
    TEST_JCC("np", 1, 1);
443
    TEST_JCC("np", 1, 0);
444

    
445
    TEST_JCC("o", 0x7fffffff, 0);
446
    TEST_JCC("o", 0x7fffffff, -1);
447

    
448
    TEST_JCC("no", 0x7fffffff, 0);
449
    TEST_JCC("no", 0x7fffffff, -1);
450

    
451
    TEST_JCC("s", 0, 1);
452
    TEST_JCC("s", 0, -1);
453
    TEST_JCC("s", 0, 0);
454

    
455
    TEST_JCC("ns", 0, 1);
456
    TEST_JCC("ns", 0, -1);
457
    TEST_JCC("ns", 0, 0);
458
}
459

    
460
#define TEST_LOOP(insn) \
461
{\
462
    for(i = 0; i < sizeof(ecx_vals) / sizeof(long); i++) {\
463
        ecx = ecx_vals[i];\
464
        for(zf = 0; zf < 2; zf++) {\
465
    asm("test %2, %2\n\t"\
466
        "movl $1, %0\n\t"\
467
          insn " 1f\n\t" \
468
        "movl $0, %0\n\t"\
469
        "1:\n\t"\
470
        : "=a" (res)\
471
        : "c" (ecx), "b" (!zf)); \
472
    printf("%-10s ECX=" FMTLX " ZF=%ld r=%d\n", insn, ecx, zf, res);      \
473
        }\
474
   }\
475
}
476

    
477
void test_loop(void)
478
{
479
    long ecx, zf;
480
    const long ecx_vals[] = {
481
        0,
482
        1,
483
        0x10000,
484
        0x10001,
485
#if defined(__x86_64__)
486
        0x100000000L,
487
        0x100000001L,
488
#endif
489
    };
490
    int i, res;
491

    
492
    TEST_LOOP("jcxz");
493
    TEST_LOOP("loopw");
494
    TEST_LOOP("loopzw");
495
    TEST_LOOP("loopnzw");
496

    
497
    TEST_LOOP("jecxz");
498
    TEST_LOOP("loopl");
499
    TEST_LOOP("loopzl");
500
    TEST_LOOP("loopnzl");
501
}
502

    
503
#undef CC_MASK
504
#ifdef TEST_P4_FLAGS
505
#define CC_MASK (CC_C | CC_P | CC_Z | CC_S | CC_O | CC_A)
506
#else
507
#define CC_MASK (CC_O | CC_C)
508
#endif
509

    
510
#define OP mul
511
#include "test-i386-muldiv.h"
512

    
513
#define OP imul
514
#include "test-i386-muldiv.h"
515

    
516
void test_imulw2(long op0, long op1)
517
{
518
    long res, s1, s0, flags;
519
    s0 = op0;
520
    s1 = op1;
521
    res = s0;
522
    flags = 0;
523
    asm volatile ("push %4\n\t"
524
         "popf\n\t"
525
         "imulw %w2, %w0\n\t"
526
         "pushf\n\t"
527
         "pop %1\n\t"
528
         : "=q" (res), "=g" (flags)
529
         : "q" (s1), "0" (res), "1" (flags));
530
    printf("%-10s A=" FMTLX " B=" FMTLX " R=" FMTLX " CC=%04lx\n",
531
           "imulw", s0, s1, res, flags & CC_MASK);
532
}
533

    
534
void test_imull2(long op0, long op1)
535
{
536
    long res, s1, s0, flags;
537
    s0 = op0;
538
    s1 = op1;
539
    res = s0;
540
    flags = 0;
541
    asm volatile ("push %4\n\t"
542
         "popf\n\t"
543
         "imull %k2, %k0\n\t"
544
         "pushf\n\t"
545
         "pop %1\n\t"
546
         : "=q" (res), "=g" (flags)
547
         : "q" (s1), "0" (res), "1" (flags));
548
    printf("%-10s A=" FMTLX " B=" FMTLX " R=" FMTLX " CC=%04lx\n",
549
           "imull", s0, s1, res, flags & CC_MASK);
550
}
551

    
552
#if defined(__x86_64__)
553
void test_imulq2(long op0, long op1)
554
{
555
    long res, s1, s0, flags;
556
    s0 = op0;
557
    s1 = op1;
558
    res = s0;
559
    flags = 0;
560
    asm volatile ("push %4\n\t"
561
         "popf\n\t"
562
         "imulq %2, %0\n\t"
563
         "pushf\n\t"
564
         "pop %1\n\t"
565
         : "=q" (res), "=g" (flags)
566
         : "q" (s1), "0" (res), "1" (flags));
567
    printf("%-10s A=" FMTLX " B=" FMTLX " R=" FMTLX " CC=%04lx\n",
568
           "imulq", s0, s1, res, flags & CC_MASK);
569
}
570
#endif
571

    
572
#define TEST_IMUL_IM(size, rsize, op0, op1)\
573
{\
574
    long res, flags, s1;\
575
    flags = 0;\
576
    res = 0;\
577
    s1 = op1;\
578
    asm volatile ("push %3\n\t"\
579
         "popf\n\t"\
580
         "imul" size " $" #op0 ", %" rsize "2, %" rsize "0\n\t" \
581
         "pushf\n\t"\
582
         "pop %1\n\t"\
583
         : "=r" (res), "=g" (flags)\
584
         : "r" (s1), "1" (flags), "0" (res));\
585
    printf("%-10s A=" FMTLX " B=" FMTLX " R=" FMTLX " CC=%04lx\n",\
586
           "imul" size " im", (long)op0, (long)op1, res, flags & CC_MASK);\
587
}
588

    
589

    
590
#undef CC_MASK
591
#define CC_MASK (0)
592

    
593
#define OP div
594
#include "test-i386-muldiv.h"
595

    
596
#define OP idiv
597
#include "test-i386-muldiv.h"
598

    
599
void test_mul(void)
600
{
601
    test_imulb(0x1234561d, 4);
602
    test_imulb(3, -4);
603
    test_imulb(0x80, 0x80);
604
    test_imulb(0x10, 0x10);
605

    
606
    test_imulw(0, 0x1234001d, 45);
607
    test_imulw(0, 23, -45);
608
    test_imulw(0, 0x8000, 0x8000);
609
    test_imulw(0, 0x100, 0x100);
610

    
611
    test_imull(0, 0x1234001d, 45);
612
    test_imull(0, 23, -45);
613
    test_imull(0, 0x80000000, 0x80000000);
614
    test_imull(0, 0x10000, 0x10000);
615

    
616
    test_mulb(0x1234561d, 4);
617
    test_mulb(3, -4);
618
    test_mulb(0x80, 0x80);
619
    test_mulb(0x10, 0x10);
620

    
621
    test_mulw(0, 0x1234001d, 45);
622
    test_mulw(0, 23, -45);
623
    test_mulw(0, 0x8000, 0x8000);
624
    test_mulw(0, 0x100, 0x100);
625

    
626
    test_mull(0, 0x1234001d, 45);
627
    test_mull(0, 23, -45);
628
    test_mull(0, 0x80000000, 0x80000000);
629
    test_mull(0, 0x10000, 0x10000);
630

    
631
    test_imulw2(0x1234001d, 45);
632
    test_imulw2(23, -45);
633
    test_imulw2(0x8000, 0x8000);
634
    test_imulw2(0x100, 0x100);
635

    
636
    test_imull2(0x1234001d, 45);
637
    test_imull2(23, -45);
638
    test_imull2(0x80000000, 0x80000000);
639
    test_imull2(0x10000, 0x10000);
640

    
641
    TEST_IMUL_IM("w", "w", 45, 0x1234);
642
    TEST_IMUL_IM("w", "w", -45, 23);
643
    TEST_IMUL_IM("w", "w", 0x8000, 0x80000000);
644
    TEST_IMUL_IM("w", "w", 0x7fff, 0x1000);
645

    
646
    TEST_IMUL_IM("l", "k", 45, 0x1234);
647
    TEST_IMUL_IM("l", "k", -45, 23);
648
    TEST_IMUL_IM("l", "k", 0x8000, 0x80000000);
649
    TEST_IMUL_IM("l", "k", 0x7fff, 0x1000);
650

    
651
    test_idivb(0x12341678, 0x127e);
652
    test_idivb(0x43210123, -5);
653
    test_idivb(0x12340004, -1);
654

    
655
    test_idivw(0, 0x12345678, 12347);
656
    test_idivw(0, -23223, -45);
657
    test_idivw(0, 0x12348000, -1);
658
    test_idivw(0x12343, 0x12345678, 0x81238567);
659

    
660
    test_idivl(0, 0x12345678, 12347);
661
    test_idivl(0, -233223, -45);
662
    test_idivl(0, 0x80000000, -1);
663
    test_idivl(0x12343, 0x12345678, 0x81234567);
664

    
665
    test_divb(0x12341678, 0x127e);
666
    test_divb(0x43210123, -5);
667
    test_divb(0x12340004, -1);
668

    
669
    test_divw(0, 0x12345678, 12347);
670
    test_divw(0, -23223, -45);
671
    test_divw(0, 0x12348000, -1);
672
    test_divw(0x12343, 0x12345678, 0x81238567);
673

    
674
    test_divl(0, 0x12345678, 12347);
675
    test_divl(0, -233223, -45);
676
    test_divl(0, 0x80000000, -1);
677
    test_divl(0x12343, 0x12345678, 0x81234567);
678

    
679
#if defined(__x86_64__)
680
    test_imulq(0, 0x1234001d1234001d, 45);
681
    test_imulq(0, 23, -45);
682
    test_imulq(0, 0x8000000000000000, 0x8000000000000000);
683
    test_imulq(0, 0x100000000, 0x100000000);
684

    
685
    test_mulq(0, 0x1234001d1234001d, 45);
686
    test_mulq(0, 23, -45);
687
    test_mulq(0, 0x8000000000000000, 0x8000000000000000);
688
    test_mulq(0, 0x100000000, 0x100000000);
689

    
690
    test_imulq2(0x1234001d1234001d, 45);
691
    test_imulq2(23, -45);
692
    test_imulq2(0x8000000000000000, 0x8000000000000000);
693
    test_imulq2(0x100000000, 0x100000000);
694

    
695
    TEST_IMUL_IM("q", "", 45, 0x12341234);
696
    TEST_IMUL_IM("q", "", -45, 23);
697
    TEST_IMUL_IM("q", "", 0x8000, 0x8000000000000000);
698
    TEST_IMUL_IM("q", "", 0x7fff, 0x10000000);
699

    
700
    test_idivq(0, 0x12345678abcdef, 12347);
701
    test_idivq(0, -233223, -45);
702
    test_idivq(0, 0x8000000000000000, -1);
703
    test_idivq(0x12343, 0x12345678, 0x81234567);
704

    
705
    test_divq(0, 0x12345678abcdef, 12347);
706
    test_divq(0, -233223, -45);
707
    test_divq(0, 0x8000000000000000, -1);
708
    test_divq(0x12343, 0x12345678, 0x81234567);
709
#endif
710
}
711

    
712
#define TEST_BSX(op, size, op0)\
713
{\
714
    long res, val, resz;\
715
    val = op0;\
716
    asm("xor %1, %1\n"\
717
        "mov $0x12345678, %0\n"\
718
        #op " %" size "2, %" size "0 ; setz %b1" \
719
        : "=r" (res), "=q" (resz)\
720
        : "g" (val));\
721
    printf("%-10s A=" FMTLX " R=" FMTLX " %ld\n", #op, val, res, resz);\
722
}
723

    
724
void test_bsx(void)
725
{
726
    TEST_BSX(bsrw, "w", 0);
727
    TEST_BSX(bsrw, "w", 0x12340128);
728
    TEST_BSX(bsfw, "w", 0);
729
    TEST_BSX(bsfw, "w", 0x12340128);
730
    TEST_BSX(bsrl, "k", 0);
731
    TEST_BSX(bsrl, "k", 0x00340128);
732
    TEST_BSX(bsfl, "k", 0);
733
    TEST_BSX(bsfl, "k", 0x00340128);
734
#if defined(__x86_64__)
735
    TEST_BSX(bsrq, "", 0);
736
    TEST_BSX(bsrq, "", 0x003401281234);
737
    TEST_BSX(bsfq, "", 0);
738
    TEST_BSX(bsfq, "", 0x003401281234);
739
#endif
740
}
741

    
742
/**********************************************/
743

    
744
union float64u {
745
    double d;
746
    uint64_t l;
747
};
748

    
749
union float64u q_nan = { .l = 0xFFF8000000000000LL };
750
union float64u s_nan = { .l = 0xFFF0000000000000LL };
751

    
752
void test_fops(double a, double b)
753
{
754
    printf("a=%f b=%f a+b=%f\n", a, b, a + b);
755
    printf("a=%f b=%f a-b=%f\n", a, b, a - b);
756
    printf("a=%f b=%f a*b=%f\n", a, b, a * b);
757
    printf("a=%f b=%f a/b=%f\n", a, b, a / b);
758
    printf("a=%f b=%f fmod(a, b)=%f\n", a, b, fmod(a, b));
759
    printf("a=%f sqrt(a)=%f\n", a, sqrt(a));
760
    printf("a=%f sin(a)=%f\n", a, sin(a));
761
    printf("a=%f cos(a)=%f\n", a, cos(a));
762
    printf("a=%f tan(a)=%f\n", a, tan(a));
763
    printf("a=%f log(a)=%f\n", a, log(a));
764
    printf("a=%f exp(a)=%f\n", a, exp(a));
765
    printf("a=%f b=%f atan2(a, b)=%f\n", a, b, atan2(a, b));
766
    /* just to test some op combining */
767
    printf("a=%f asin(sin(a))=%f\n", a, asin(sin(a)));
768
    printf("a=%f acos(cos(a))=%f\n", a, acos(cos(a)));
769
    printf("a=%f atan(tan(a))=%f\n", a, atan(tan(a)));
770

    
771
}
772

    
773
void fpu_clear_exceptions(void)
774
{
775
    struct __attribute__((packed)) {
776
        uint16_t fpuc;
777
        uint16_t dummy1;
778
        uint16_t fpus;
779
        uint16_t dummy2;
780
        uint16_t fptag;
781
        uint16_t dummy3;
782
        uint32_t ignored[4];
783
        long double fpregs[8];
784
    } float_env32;
785

    
786
    asm volatile ("fnstenv %0\n" : : "m" (float_env32));
787
    float_env32.fpus &= ~0x7f;
788
    asm volatile ("fldenv %0\n" : : "m" (float_env32));
789
}
790

    
791
/* XXX: display exception bits when supported */
792
#define FPUS_EMASK 0x0000
793
//#define FPUS_EMASK 0x007f
794

    
795
void test_fcmp(double a, double b)
796
{
797
    long eflags, fpus;
798

    
799
    fpu_clear_exceptions();
800
    asm("fcom %2\n"
801
        "fstsw %%ax\n"
802
        : "=a" (fpus)
803
        : "t" (a), "u" (b));
804
    printf("fcom(%f %f)=%04lx \n",
805
           a, b, fpus & (0x4500 | FPUS_EMASK));
806
    fpu_clear_exceptions();
807
    asm("fucom %2\n"
808
        "fstsw %%ax\n"
809
        : "=a" (fpus)
810
        : "t" (a), "u" (b));
811
    printf("fucom(%f %f)=%04lx\n",
812
           a, b, fpus & (0x4500 | FPUS_EMASK));
813
    if (TEST_FCOMI) {
814
        /* test f(u)comi instruction */
815
        fpu_clear_exceptions();
816
        asm("fcomi %3, %2\n"
817
            "fstsw %%ax\n"
818
            "pushf\n"
819
            "pop %0\n"
820
            : "=r" (eflags), "=a" (fpus)
821
            : "t" (a), "u" (b));
822
        printf("fcomi(%f %f)=%04lx %02lx\n",
823
               a, b, fpus & FPUS_EMASK, eflags & (CC_Z | CC_P | CC_C));
824
        fpu_clear_exceptions();
825
        asm("fucomi %3, %2\n"
826
            "fstsw %%ax\n"
827
            "pushf\n"
828
            "pop %0\n"
829
            : "=r" (eflags), "=a" (fpus)
830
            : "t" (a), "u" (b));
831
        printf("fucomi(%f %f)=%04lx %02lx\n",
832
               a, b, fpus & FPUS_EMASK, eflags & (CC_Z | CC_P | CC_C));
833
    }
834
    fpu_clear_exceptions();
835
    asm volatile("fxam\n"
836
                 "fstsw %%ax\n"
837
                 : "=a" (fpus)
838
                 : "t" (a));
839
    printf("fxam(%f)=%04lx\n", a, fpus & 0x4700);
840
    fpu_clear_exceptions();
841
}
842

    
843
void test_fcvt(double a)
844
{
845
    float fa;
846
    long double la;
847
    int16_t fpuc;
848
    int i;
849
    int64_t lla;
850
    int ia;
851
    int16_t wa;
852
    double ra;
853

    
854
    fa = a;
855
    la = a;
856
    printf("(float)%f = %f\n", a, fa);
857
    printf("(long double)%f = %Lf\n", a, la);
858
    printf("a=" FMT64X "\n", *(uint64_t *)&a);
859
    printf("la=" FMT64X " %04x\n", *(uint64_t *)&la,
860
           *(unsigned short *)((char *)(&la) + 8));
861

    
862
    /* test all roundings */
863
    asm volatile ("fstcw %0" : "=m" (fpuc));
864
    for(i=0;i<4;i++) {
865
        uint16_t val16;
866
        val16 = (fpuc & ~0x0c00) | (i << 10);
867
        asm volatile ("fldcw %0" : : "m" (val16));
868
        asm volatile ("fist %0" : "=m" (wa) : "t" (a));
869
        asm volatile ("fistl %0" : "=m" (ia) : "t" (a));
870
        asm volatile ("fistpll %0" : "=m" (lla) : "t" (a) : "st");
871
        asm volatile ("frndint ; fstl %0" : "=m" (ra) : "t" (a));
872
        asm volatile ("fldcw %0" : : "m" (fpuc));
873
        printf("(short)a = %d\n", wa);
874
        printf("(int)a = %d\n", ia);
875
        printf("(int64_t)a = " FMT64X "\n", lla);
876
        printf("rint(a) = %f\n", ra);
877
    }
878
}
879

    
880
#define TEST(N) \
881
    asm("fld" #N : "=t" (a)); \
882
    printf("fld" #N "= %f\n", a);
883

    
884
void test_fconst(void)
885
{
886
    double a;
887
    TEST(1);
888
    TEST(l2t);
889
    TEST(l2e);
890
    TEST(pi);
891
    TEST(lg2);
892
    TEST(ln2);
893
    TEST(z);
894
}
895

    
896
void test_fbcd(double a)
897
{
898
    unsigned short bcd[5];
899
    double b;
900

    
901
    asm("fbstp %0" : "=m" (bcd[0]) : "t" (a) : "st");
902
    asm("fbld %1" : "=t" (b) : "m" (bcd[0]));
903
    printf("a=%f bcd=%04x%04x%04x%04x%04x b=%f\n",
904
           a, bcd[4], bcd[3], bcd[2], bcd[1], bcd[0], b);
905
}
906

    
907
#define TEST_ENV(env, save, restore)\
908
{\
909
    memset((env), 0xaa, sizeof(*(env)));\
910
    for(i=0;i<5;i++)\
911
        asm volatile ("fldl %0" : : "m" (dtab[i]));\
912
    asm volatile (save " %0\n" : : "m" (*(env)));\
913
    asm volatile (restore " %0\n": : "m" (*(env)));\
914
    for(i=0;i<5;i++)\
915
        asm volatile ("fstpl %0" : "=m" (rtab[i]));\
916
    for(i=0;i<5;i++)\
917
        printf("res[%d]=%f\n", i, rtab[i]);\
918
    printf("fpuc=%04x fpus=%04x fptag=%04x\n",\
919
           (env)->fpuc,\
920
           (env)->fpus & 0xff00,\
921
           (env)->fptag);\
922
}
923

    
924
void test_fenv(void)
925
{
926
    struct __attribute__((packed)) {
927
        uint16_t fpuc;
928
        uint16_t dummy1;
929
        uint16_t fpus;
930
        uint16_t dummy2;
931
        uint16_t fptag;
932
        uint16_t dummy3;
933
        uint32_t ignored[4];
934
        long double fpregs[8];
935
    } float_env32;
936
    struct __attribute__((packed)) {
937
        uint16_t fpuc;
938
        uint16_t fpus;
939
        uint16_t fptag;
940
        uint16_t ignored[4];
941
        long double fpregs[8];
942
    } float_env16;
943
    double dtab[8];
944
    double rtab[8];
945
    int i;
946

    
947
    for(i=0;i<8;i++)
948
        dtab[i] = i + 1;
949

    
950
    TEST_ENV(&float_env16, "data16 fnstenv", "data16 fldenv");
951
    TEST_ENV(&float_env16, "data16 fnsave", "data16 frstor");
952
    TEST_ENV(&float_env32, "fnstenv", "fldenv");
953
    TEST_ENV(&float_env32, "fnsave", "frstor");
954

    
955
    /* test for ffree */
956
    for(i=0;i<5;i++)
957
        asm volatile ("fldl %0" : : "m" (dtab[i]));
958
    asm volatile("ffree %st(2)");
959
    asm volatile ("fnstenv %0\n" : : "m" (float_env32));
960
    asm volatile ("fninit");
961
    printf("fptag=%04x\n", float_env32.fptag);
962
}
963

    
964

    
965
#define TEST_FCMOV(a, b, eflags, CC)\
966
{\
967
    double res;\
968
    asm("push %3\n"\
969
        "popf\n"\
970
        "fcmov" CC " %2, %0\n"\
971
        : "=t" (res)\
972
        : "0" (a), "u" (b), "g" (eflags));\
973
    printf("fcmov%s eflags=0x%04lx-> %f\n", \
974
           CC, (long)eflags, res);\
975
}
976

    
977
void test_fcmov(void)
978
{
979
    double a, b;
980
    long eflags, i;
981

    
982
    a = 1.0;
983
    b = 2.0;
984
    for(i = 0; i < 4; i++) {
985
        eflags = 0;
986
        if (i & 1)
987
            eflags |= CC_C;
988
        if (i & 2)
989
            eflags |= CC_Z;
990
        TEST_FCMOV(a, b, eflags, "b");
991
        TEST_FCMOV(a, b, eflags, "e");
992
        TEST_FCMOV(a, b, eflags, "be");
993
        TEST_FCMOV(a, b, eflags, "nb");
994
        TEST_FCMOV(a, b, eflags, "ne");
995
        TEST_FCMOV(a, b, eflags, "nbe");
996
    }
997
    TEST_FCMOV(a, b, 0, "u");
998
    TEST_FCMOV(a, b, CC_P, "u");
999
    TEST_FCMOV(a, b, 0, "nu");
1000
    TEST_FCMOV(a, b, CC_P, "nu");
1001
}
1002

    
1003
void test_floats(void)
1004
{
1005
    test_fops(2, 3);
1006
    test_fops(1.4, -5);
1007
    test_fcmp(2, -1);
1008
    test_fcmp(2, 2);
1009
    test_fcmp(2, 3);
1010
    test_fcmp(2, q_nan.d);
1011
    test_fcmp(q_nan.d, -1);
1012
    test_fcmp(-1.0/0.0, -1);
1013
    test_fcmp(1.0/0.0, -1);
1014
    test_fcvt(0.5);
1015
    test_fcvt(-0.5);
1016
    test_fcvt(1.0/7.0);
1017
    test_fcvt(-1.0/9.0);
1018
    test_fcvt(32768);
1019
    test_fcvt(-1e20);
1020
    test_fcvt(-1.0/0.0);
1021
    test_fcvt(1.0/0.0);
1022
    test_fcvt(q_nan.d);
1023
    test_fconst();
1024
    test_fbcd(1234567890123456.0);
1025
    test_fbcd(-123451234567890.0);
1026
    test_fenv();
1027
    if (TEST_CMOV) {
1028
        test_fcmov();
1029
    }
1030
}
1031

    
1032
/**********************************************/
1033
#if !defined(__x86_64__)
1034

    
1035
#define TEST_BCD(op, op0, cc_in, cc_mask)\
1036
{\
1037
    int res, flags;\
1038
    res = op0;\
1039
    flags = cc_in;\
1040
    asm ("push %3\n\t"\
1041
         "popf\n\t"\
1042
         #op "\n\t"\
1043
         "pushf\n\t"\
1044
         "pop %1\n\t"\
1045
        : "=a" (res), "=g" (flags)\
1046
        : "0" (res), "1" (flags));\
1047
    printf("%-10s A=%08x R=%08x CCIN=%04x CC=%04x\n",\
1048
           #op, op0, res, cc_in, flags & cc_mask);\
1049
}
1050

    
1051
void test_bcd(void)
1052
{
1053
    TEST_BCD(daa, 0x12340503, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1054
    TEST_BCD(daa, 0x12340506, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1055
    TEST_BCD(daa, 0x12340507, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1056
    TEST_BCD(daa, 0x12340559, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1057
    TEST_BCD(daa, 0x12340560, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1058
    TEST_BCD(daa, 0x1234059f, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1059
    TEST_BCD(daa, 0x123405a0, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1060
    TEST_BCD(daa, 0x12340503, 0, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1061
    TEST_BCD(daa, 0x12340506, 0, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1062
    TEST_BCD(daa, 0x12340503, CC_C, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1063
    TEST_BCD(daa, 0x12340506, CC_C, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1064
    TEST_BCD(daa, 0x12340503, CC_C | CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1065
    TEST_BCD(daa, 0x12340506, CC_C | CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1066

    
1067
    TEST_BCD(das, 0x12340503, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1068
    TEST_BCD(das, 0x12340506, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1069
    TEST_BCD(das, 0x12340507, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1070
    TEST_BCD(das, 0x12340559, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1071
    TEST_BCD(das, 0x12340560, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1072
    TEST_BCD(das, 0x1234059f, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1073
    TEST_BCD(das, 0x123405a0, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1074
    TEST_BCD(das, 0x12340503, 0, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1075
    TEST_BCD(das, 0x12340506, 0, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1076
    TEST_BCD(das, 0x12340503, CC_C, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1077
    TEST_BCD(das, 0x12340506, CC_C, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1078
    TEST_BCD(das, 0x12340503, CC_C | CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1079
    TEST_BCD(das, 0x12340506, CC_C | CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1080

    
1081
    TEST_BCD(aaa, 0x12340205, CC_A, (CC_C | CC_A));
1082
    TEST_BCD(aaa, 0x12340306, CC_A, (CC_C | CC_A));
1083
    TEST_BCD(aaa, 0x1234040a, CC_A, (CC_C | CC_A));
1084
    TEST_BCD(aaa, 0x123405fa, CC_A, (CC_C | CC_A));
1085
    TEST_BCD(aaa, 0x12340205, 0, (CC_C | CC_A));
1086
    TEST_BCD(aaa, 0x12340306, 0, (CC_C | CC_A));
1087
    TEST_BCD(aaa, 0x1234040a, 0, (CC_C | CC_A));
1088
    TEST_BCD(aaa, 0x123405fa, 0, (CC_C | CC_A));
1089

    
1090
    TEST_BCD(aas, 0x12340205, CC_A, (CC_C | CC_A));
1091
    TEST_BCD(aas, 0x12340306, CC_A, (CC_C | CC_A));
1092
    TEST_BCD(aas, 0x1234040a, CC_A, (CC_C | CC_A));
1093
    TEST_BCD(aas, 0x123405fa, CC_A, (CC_C | CC_A));
1094
    TEST_BCD(aas, 0x12340205, 0, (CC_C | CC_A));
1095
    TEST_BCD(aas, 0x12340306, 0, (CC_C | CC_A));
1096
    TEST_BCD(aas, 0x1234040a, 0, (CC_C | CC_A));
1097
    TEST_BCD(aas, 0x123405fa, 0, (CC_C | CC_A));
1098

    
1099
    TEST_BCD(aam, 0x12340547, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_O | CC_A));
1100
    TEST_BCD(aad, 0x12340407, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_O | CC_A));
1101
}
1102
#endif
1103

    
1104
#define TEST_XCHG(op, size, opconst)\
1105
{\
1106
    long op0, op1;\
1107
    op0 = i2l(0x12345678);\
1108
    op1 = i2l(0xfbca7654);\
1109
    asm(#op " %" size "0, %" size "1" \
1110
        : "=q" (op0), opconst (op1) \
1111
        : "0" (op0));\
1112
    printf("%-10s A=" FMTLX " B=" FMTLX "\n",\
1113
           #op, op0, op1);\
1114
}
1115

    
1116
#define TEST_CMPXCHG(op, size, opconst, eax)\
1117
{\
1118
    long op0, op1, op2;\
1119
    op0 = i2l(0x12345678);\
1120
    op1 = i2l(0xfbca7654);\
1121
    op2 = i2l(eax);\
1122
    asm(#op " %" size "0, %" size "1" \
1123
        : "=q" (op0), opconst (op1) \
1124
        : "0" (op0), "a" (op2));\
1125
    printf("%-10s EAX=" FMTLX " A=" FMTLX " C=" FMTLX "\n",\
1126
           #op, op2, op0, op1);\
1127
}
1128

    
1129
void test_xchg(void)
1130
{
1131
#if defined(__x86_64__)
1132
    TEST_XCHG(xchgq, "", "+q");
1133
#endif
1134
    TEST_XCHG(xchgl, "k", "+q");
1135
    TEST_XCHG(xchgw, "w", "+q");
1136
    TEST_XCHG(xchgb, "b", "+q");
1137

    
1138
#if defined(__x86_64__)
1139
    TEST_XCHG(xchgq, "", "=m");
1140
#endif
1141
    TEST_XCHG(xchgl, "k", "+m");
1142
    TEST_XCHG(xchgw, "w", "+m");
1143
    TEST_XCHG(xchgb, "b", "+m");
1144

    
1145
#if defined(__x86_64__)
1146
    TEST_XCHG(xaddq, "", "+q");
1147
#endif
1148
    TEST_XCHG(xaddl, "k", "+q");
1149
    TEST_XCHG(xaddw, "w", "+q");
1150
    TEST_XCHG(xaddb, "b", "+q");
1151

    
1152
    {
1153
        int res;
1154
        res = 0x12345678;
1155
        asm("xaddl %1, %0" : "=r" (res) : "0" (res));
1156
        printf("xaddl same res=%08x\n", res);
1157
    }
1158

    
1159
#if defined(__x86_64__)
1160
    TEST_XCHG(xaddq, "", "+m");
1161
#endif
1162
    TEST_XCHG(xaddl, "k", "+m");
1163
    TEST_XCHG(xaddw, "w", "+m");
1164
    TEST_XCHG(xaddb, "b", "+m");
1165

    
1166
#if defined(__x86_64__)
1167
    TEST_CMPXCHG(cmpxchgq, "", "+q", 0xfbca7654);
1168
#endif
1169
    TEST_CMPXCHG(cmpxchgl, "k", "+q", 0xfbca7654);
1170
    TEST_CMPXCHG(cmpxchgw, "w", "+q", 0xfbca7654);
1171
    TEST_CMPXCHG(cmpxchgb, "b", "+q", 0xfbca7654);
1172

    
1173
#if defined(__x86_64__)
1174
    TEST_CMPXCHG(cmpxchgq, "", "+q", 0xfffefdfc);
1175
#endif
1176
    TEST_CMPXCHG(cmpxchgl, "k", "+q", 0xfffefdfc);
1177
    TEST_CMPXCHG(cmpxchgw, "w", "+q", 0xfffefdfc);
1178
    TEST_CMPXCHG(cmpxchgb, "b", "+q", 0xfffefdfc);
1179

    
1180
#if defined(__x86_64__)
1181
    TEST_CMPXCHG(cmpxchgq, "", "+m", 0xfbca7654);
1182
#endif
1183
    TEST_CMPXCHG(cmpxchgl, "k", "+m", 0xfbca7654);
1184
    TEST_CMPXCHG(cmpxchgw, "w", "+m", 0xfbca7654);
1185
    TEST_CMPXCHG(cmpxchgb, "b", "+m", 0xfbca7654);
1186

    
1187
#if defined(__x86_64__)
1188
    TEST_CMPXCHG(cmpxchgq, "", "+m", 0xfffefdfc);
1189
#endif
1190
    TEST_CMPXCHG(cmpxchgl, "k", "+m", 0xfffefdfc);
1191
    TEST_CMPXCHG(cmpxchgw, "w", "+m", 0xfffefdfc);
1192
    TEST_CMPXCHG(cmpxchgb, "b", "+m", 0xfffefdfc);
1193

    
1194
    {
1195
        uint64_t op0, op1, op2;
1196
        long eax, edx;
1197
        long i, eflags;
1198

    
1199
        for(i = 0; i < 2; i++) {
1200
            op0 = 0x123456789abcdLL;
1201
            eax = i2l(op0 & 0xffffffff);
1202
            edx = i2l(op0 >> 32);
1203
            if (i == 0)
1204
                op1 = 0xfbca765423456LL;
1205
            else
1206
                op1 = op0;
1207
            op2 = 0x6532432432434LL;
1208
            asm("cmpxchg8b %2\n"
1209
                "pushf\n"
1210
                "pop %3\n"
1211
                : "=a" (eax), "=d" (edx), "=m" (op1), "=g" (eflags)
1212
                : "0" (eax), "1" (edx), "m" (op1), "b" ((int)op2), "c" ((int)(op2 >> 32)));
1213
            printf("cmpxchg8b: eax=" FMTLX " edx=" FMTLX " op1=" FMT64X " CC=%02lx\n",
1214
                   eax, edx, op1, eflags & CC_Z);
1215
        }
1216
    }
1217
}
1218

    
1219
#ifdef TEST_SEGS
1220
/**********************************************/
1221
/* segmentation tests */
1222

    
1223
#include <sys/syscall.h>
1224
#include <unistd.h>
1225
#include <asm/ldt.h>
1226
#include <linux/version.h>
1227

    
1228
static inline int modify_ldt(int func, void * ptr, unsigned long bytecount)
1229
{
1230
    return syscall(__NR_modify_ldt, func, ptr, bytecount);
1231
}
1232

    
1233
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 5, 66)
1234
#define modify_ldt_ldt_s user_desc
1235
#endif
1236

    
1237
#define MK_SEL(n) (((n) << 3) | 7)
1238

    
1239
uint8_t seg_data1[4096];
1240
uint8_t seg_data2[4096];
1241

    
1242
#define TEST_LR(op, size, seg, mask)\
1243
{\
1244
    int res, res2;\
1245
    uint16_t mseg = seg;\
1246
    res = 0x12345678;\
1247
    asm (op " %" size "2, %" size "0\n" \
1248
         "movl $0, %1\n"\
1249
         "jnz 1f\n"\
1250
         "movl $1, %1\n"\
1251
         "1:\n"\
1252
         : "=r" (res), "=r" (res2) : "m" (mseg), "0" (res));\
1253
    printf(op ": Z=%d %08x\n", res2, res & ~(mask));\
1254
}
1255

    
1256
#define TEST_ARPL(op, size, op1, op2)\
1257
{\
1258
    long a, b, c;                               \
1259
    a = (op1);                                  \
1260
    b = (op2);                                  \
1261
    asm volatile(op " %" size "3, %" size "0\n"\
1262
                 "movl $0,%1\n"\
1263
                 "jnz 1f\n"\
1264
                 "movl $1,%1\n"\
1265
                 "1:\n"\
1266
                 : "=r" (a), "=r" (c) : "0" (a), "r" (b));    \
1267
    printf(op size " A=" FMTLX " B=" FMTLX " R=" FMTLX " z=%ld\n",\
1268
           (long)(op1), (long)(op2), a, c);\
1269
}
1270

    
1271
/* NOTE: we use Linux modify_ldt syscall */
1272
void test_segs(void)
1273
{
1274
    struct modify_ldt_ldt_s ldt;
1275
    long long ldt_table[3];
1276
    int res, res2;
1277
    char tmp;
1278
    struct {
1279
        uint32_t offset;
1280
        uint16_t seg;
1281
    } __attribute__((packed)) segoff;
1282

    
1283
    ldt.entry_number = 1;
1284
    ldt.base_addr = (unsigned long)&seg_data1;
1285
    ldt.limit = (sizeof(seg_data1) + 0xfff) >> 12;
1286
    ldt.seg_32bit = 1;
1287
    ldt.contents = MODIFY_LDT_CONTENTS_DATA;
1288
    ldt.read_exec_only = 0;
1289
    ldt.limit_in_pages = 1;
1290
    ldt.seg_not_present = 0;
1291
    ldt.useable = 1;
1292
    modify_ldt(1, &ldt, sizeof(ldt)); /* write ldt entry */
1293

    
1294
    ldt.entry_number = 2;
1295
    ldt.base_addr = (unsigned long)&seg_data2;
1296
    ldt.limit = (sizeof(seg_data2) + 0xfff) >> 12;
1297
    ldt.seg_32bit = 1;
1298
    ldt.contents = MODIFY_LDT_CONTENTS_DATA;
1299
    ldt.read_exec_only = 0;
1300
    ldt.limit_in_pages = 1;
1301
    ldt.seg_not_present = 0;
1302
    ldt.useable = 1;
1303
    modify_ldt(1, &ldt, sizeof(ldt)); /* write ldt entry */
1304

    
1305
    modify_ldt(0, &ldt_table, sizeof(ldt_table)); /* read ldt entries */
1306
#if 0
1307
    {
1308
        int i;
1309
        for(i=0;i<3;i++)
1310
            printf("%d: %016Lx\n", i, ldt_table[i]);
1311
    }
1312
#endif
1313
    /* do some tests with fs or gs */
1314
    asm volatile ("movl %0, %%fs" : : "r" (MK_SEL(1)));
1315

    
1316
    seg_data1[1] = 0xaa;
1317
    seg_data2[1] = 0x55;
1318

    
1319
    asm volatile ("fs movzbl 0x1, %0" : "=r" (res));
1320
    printf("FS[1] = %02x\n", res);
1321

    
1322
    asm volatile ("pushl %%gs\n"
1323
                  "movl %1, %%gs\n"
1324
                  "gs movzbl 0x1, %0\n"
1325
                  "popl %%gs\n"
1326
                  : "=r" (res)
1327
                  : "r" (MK_SEL(2)));
1328
    printf("GS[1] = %02x\n", res);
1329

    
1330
    /* tests with ds/ss (implicit segment case) */
1331
    tmp = 0xa5;
1332
    asm volatile ("pushl %%ebp\n\t"
1333
                  "pushl %%ds\n\t"
1334
                  "movl %2, %%ds\n\t"
1335
                  "movl %3, %%ebp\n\t"
1336
                  "movzbl 0x1, %0\n\t"
1337
                  "movzbl (%%ebp), %1\n\t"
1338
                  "popl %%ds\n\t"
1339
                  "popl %%ebp\n\t"
1340
                  : "=r" (res), "=r" (res2)
1341
                  : "r" (MK_SEL(1)), "r" (&tmp));
1342
    printf("DS[1] = %02x\n", res);
1343
    printf("SS[tmp] = %02x\n", res2);
1344

    
1345
    segoff.seg = MK_SEL(2);
1346
    segoff.offset = 0xabcdef12;
1347
    asm volatile("lfs %2, %0\n\t"
1348
                 "movl %%fs, %1\n\t"
1349
                 : "=r" (res), "=g" (res2)
1350
                 : "m" (segoff));
1351
    printf("FS:reg = %04x:%08x\n", res2, res);
1352

    
1353
    TEST_LR("larw", "w", MK_SEL(2), 0x0100);
1354
    TEST_LR("larl", "", MK_SEL(2), 0x0100);
1355
    TEST_LR("lslw", "w", MK_SEL(2), 0);
1356
    TEST_LR("lsll", "", MK_SEL(2), 0);
1357

    
1358
    TEST_LR("larw", "w", 0xfff8, 0);
1359
    TEST_LR("larl", "", 0xfff8, 0);
1360
    TEST_LR("lslw", "w", 0xfff8, 0);
1361
    TEST_LR("lsll", "", 0xfff8, 0);
1362

    
1363
    TEST_ARPL("arpl", "w", 0x12345678 | 3, 0x762123c | 1);
1364
    TEST_ARPL("arpl", "w", 0x12345678 | 1, 0x762123c | 3);
1365
    TEST_ARPL("arpl", "w", 0x12345678 | 1, 0x762123c | 1);
1366
}
1367

    
1368
/* 16 bit code test */
1369
extern char code16_start, code16_end;
1370
extern char code16_func1;
1371
extern char code16_func2;
1372
extern char code16_func3;
1373

    
1374
void test_code16(void)
1375
{
1376
    struct modify_ldt_ldt_s ldt;
1377
    int res, res2;
1378

    
1379
    /* build a code segment */
1380
    ldt.entry_number = 1;
1381
    ldt.base_addr = (unsigned long)&code16_start;
1382
    ldt.limit = &code16_end - &code16_start;
1383
    ldt.seg_32bit = 0;
1384
    ldt.contents = MODIFY_LDT_CONTENTS_CODE;
1385
    ldt.read_exec_only = 0;
1386
    ldt.limit_in_pages = 0;
1387
    ldt.seg_not_present = 0;
1388
    ldt.useable = 1;
1389
    modify_ldt(1, &ldt, sizeof(ldt)); /* write ldt entry */
1390

    
1391
    /* call the first function */
1392
    asm volatile ("lcall %1, %2"
1393
                  : "=a" (res)
1394
                  : "i" (MK_SEL(1)), "i" (&code16_func1): "memory", "cc");
1395
    printf("func1() = 0x%08x\n", res);
1396
    asm volatile ("lcall %2, %3"
1397
                  : "=a" (res), "=c" (res2)
1398
                  : "i" (MK_SEL(1)), "i" (&code16_func2): "memory", "cc");
1399
    printf("func2() = 0x%08x spdec=%d\n", res, res2);
1400
    asm volatile ("lcall %1, %2"
1401
                  : "=a" (res)
1402
                  : "i" (MK_SEL(1)), "i" (&code16_func3): "memory", "cc");
1403
    printf("func3() = 0x%08x\n", res);
1404
}
1405
#endif
1406

    
1407
#if defined(__x86_64__)
1408
asm(".globl func_lret\n"
1409
    "func_lret:\n"
1410
    "movl $0x87654641, %eax\n"
1411
    "lretq\n");
1412
#else
1413
asm(".globl func_lret\n"
1414
    "func_lret:\n"
1415
    "movl $0x87654321, %eax\n"
1416
    "lret\n"
1417

    
1418
    ".globl func_iret\n"
1419
    "func_iret:\n"
1420
    "movl $0xabcd4321, %eax\n"
1421
    "iret\n");
1422
#endif
1423

    
1424
extern char func_lret;
1425
extern char func_iret;
1426

    
1427
void test_misc(void)
1428
{
1429
    char table[256];
1430
    long res, i;
1431

    
1432
    for(i=0;i<256;i++) table[i] = 256 - i;
1433
    res = 0x12345678;
1434
    asm ("xlat" : "=a" (res) : "b" (table), "0" (res));
1435
    printf("xlat: EAX=" FMTLX "\n", res);
1436

    
1437
#if defined(__x86_64__)
1438
#if 0
1439
    {
1440
        /* XXX: see if Intel Core2 and AMD64 behavior really
1441
           differ. Here we implemented the Intel way which is not
1442
           compatible yet with QEMU. */
1443
        static struct __attribute__((packed)) {
1444
            uint64_t offset;
1445
            uint16_t seg;
1446
        } desc;
1447
        long cs_sel;
1448

1449
        asm volatile ("mov %%cs, %0" : "=r" (cs_sel));
1450

1451
        asm volatile ("push %1\n"
1452
                      "call func_lret\n"
1453
                      : "=a" (res)
1454
                      : "r" (cs_sel) : "memory", "cc");
1455
        printf("func_lret=" FMTLX "\n", res);
1456

1457
        desc.offset = (long)&func_lret;
1458
        desc.seg = cs_sel;
1459

1460
        asm volatile ("xor %%rax, %%rax\n"
1461
                      "rex64 lcall *(%%rcx)\n"
1462
                      : "=a" (res)
1463
                      : "c" (&desc)
1464
                      : "memory", "cc");
1465
        printf("func_lret2=" FMTLX "\n", res);
1466

1467
        asm volatile ("push %2\n"
1468
                      "mov $ 1f, %%rax\n"
1469
                      "push %%rax\n"
1470
                      "rex64 ljmp *(%%rcx)\n"
1471
                      "1:\n"
1472
                      : "=a" (res)
1473
                      : "c" (&desc), "b" (cs_sel)
1474
                      : "memory", "cc");
1475
        printf("func_lret3=" FMTLX "\n", res);
1476
    }
1477
#endif
1478
#else
1479
    asm volatile ("push %%cs ; call %1"
1480
                  : "=a" (res)
1481
                  : "m" (func_lret): "memory", "cc");
1482
    printf("func_lret=" FMTLX "\n", res);
1483

    
1484
    asm volatile ("pushf ; push %%cs ; call %1"
1485
                  : "=a" (res)
1486
                  : "m" (func_iret): "memory", "cc");
1487
    printf("func_iret=" FMTLX "\n", res);
1488
#endif
1489

    
1490
#if defined(__x86_64__)
1491
    /* specific popl test */
1492
    asm volatile ("push $12345432 ; push $0x9abcdef ; pop (%%rsp) ; pop %0"
1493
                  : "=g" (res));
1494
    printf("popl esp=" FMTLX "\n", res);
1495
#else
1496
    /* specific popl test */
1497
    asm volatile ("pushl $12345432 ; pushl $0x9abcdef ; popl (%%esp) ; popl %0"
1498
                  : "=g" (res));
1499
    printf("popl esp=" FMTLX "\n", res);
1500

    
1501
    /* specific popw test */
1502
    asm volatile ("pushl $12345432 ; pushl $0x9abcdef ; popw (%%esp) ; addl $2, %%esp ; popl %0"
1503
                  : "=g" (res));
1504
    printf("popw esp=" FMTLX "\n", res);
1505
#endif
1506
}
1507

    
1508
uint8_t str_buffer[4096];
1509

    
1510
#define TEST_STRING1(OP, size, DF, REP)\
1511
{\
1512
    long esi, edi, eax, ecx, eflags;\
1513
\
1514
    esi = (long)(str_buffer + sizeof(str_buffer) / 2);\
1515
    edi = (long)(str_buffer + sizeof(str_buffer) / 2) + 16;\
1516
    eax = i2l(0x12345678);\
1517
    ecx = 17;\
1518
\
1519
    asm volatile ("push $0\n\t"\
1520
                  "popf\n\t"\
1521
                  DF "\n\t"\
1522
                  REP #OP size "\n\t"\
1523
                  "cld\n\t"\
1524
                  "pushf\n\t"\
1525
                  "pop %4\n\t"\
1526
                  : "=S" (esi), "=D" (edi), "=a" (eax), "=c" (ecx), "=g" (eflags)\
1527
                  : "0" (esi), "1" (edi), "2" (eax), "3" (ecx));\
1528
    printf("%-10s ESI=" FMTLX " EDI=" FMTLX " EAX=" FMTLX " ECX=" FMTLX " EFL=%04x\n",\
1529
           REP #OP size, esi, edi, eax, ecx,\
1530
           (int)(eflags & (CC_C | CC_P | CC_Z | CC_S | CC_O | CC_A)));\
1531
}
1532

    
1533
#define TEST_STRING(OP, REP)\
1534
    TEST_STRING1(OP, "b", "", REP);\
1535
    TEST_STRING1(OP, "w", "", REP);\
1536
    TEST_STRING1(OP, "l", "", REP);\
1537
    X86_64_ONLY(TEST_STRING1(OP, "q", "", REP));\
1538
    TEST_STRING1(OP, "b", "std", REP);\
1539
    TEST_STRING1(OP, "w", "std", REP);\
1540
    TEST_STRING1(OP, "l", "std", REP);\
1541
    X86_64_ONLY(TEST_STRING1(OP, "q", "std", REP))
1542

    
1543
void test_string(void)
1544
{
1545
    int i;
1546
    for(i = 0;i < sizeof(str_buffer); i++)
1547
        str_buffer[i] = i + 0x56;
1548
   TEST_STRING(stos, "");
1549
   TEST_STRING(stos, "rep ");
1550
   TEST_STRING(lods, ""); /* to verify stos */
1551
   TEST_STRING(lods, "rep ");
1552
   TEST_STRING(movs, "");
1553
   TEST_STRING(movs, "rep ");
1554
   TEST_STRING(lods, ""); /* to verify stos */
1555

    
1556
   /* XXX: better tests */
1557
   TEST_STRING(scas, "");
1558
   TEST_STRING(scas, "repz ");
1559
   TEST_STRING(scas, "repnz ");
1560
   TEST_STRING(cmps, "");
1561
   TEST_STRING(cmps, "repz ");
1562
   TEST_STRING(cmps, "repnz ");
1563
}
1564

    
1565
#ifdef TEST_VM86
1566
/* VM86 test */
1567

    
1568
static inline void set_bit(uint8_t *a, unsigned int bit)
1569
{
1570
    a[bit / 8] |= (1 << (bit % 8));
1571
}
1572

    
1573
static inline uint8_t *seg_to_linear(unsigned int seg, unsigned int reg)
1574
{
1575
    return (uint8_t *)((seg << 4) + (reg & 0xffff));
1576
}
1577

    
1578
static inline void pushw(struct vm86_regs *r, int val)
1579
{
1580
    r->esp = (r->esp & ~0xffff) | ((r->esp - 2) & 0xffff);
1581
    *(uint16_t *)seg_to_linear(r->ss, r->esp) = val;
1582
}
1583

    
1584
static inline int vm86(int func, struct vm86plus_struct *v86)
1585
{
1586
    return syscall(__NR_vm86, func, v86);
1587
}
1588

    
1589
extern char vm86_code_start;
1590
extern char vm86_code_end;
1591

    
1592
#define VM86_CODE_CS 0x100
1593
#define VM86_CODE_IP 0x100
1594

    
1595
void test_vm86(void)
1596
{
1597
    struct vm86plus_struct ctx;
1598
    struct vm86_regs *r;
1599
    uint8_t *vm86_mem;
1600
    int seg, ret;
1601

    
1602
    vm86_mem = mmap((void *)0x00000000, 0x110000,
1603
                    PROT_WRITE | PROT_READ | PROT_EXEC,
1604
                    MAP_FIXED | MAP_ANON | MAP_PRIVATE, -1, 0);
1605
    if (vm86_mem == MAP_FAILED) {
1606
        printf("ERROR: could not map vm86 memory");
1607
        return;
1608
    }
1609
    memset(&ctx, 0, sizeof(ctx));
1610

    
1611
    /* init basic registers */
1612
    r = &ctx.regs;
1613
    r->eip = VM86_CODE_IP;
1614
    r->esp = 0xfffe;
1615
    seg = VM86_CODE_CS;
1616
    r->cs = seg;
1617
    r->ss = seg;
1618
    r->ds = seg;
1619
    r->es = seg;
1620
    r->fs = seg;
1621
    r->gs = seg;
1622
    r->eflags = VIF_MASK;
1623

    
1624
    /* move code to proper address. We use the same layout as a .com
1625
       dos program. */
1626
    memcpy(vm86_mem + (VM86_CODE_CS << 4) + VM86_CODE_IP,
1627
           &vm86_code_start, &vm86_code_end - &vm86_code_start);
1628

    
1629
    /* mark int 0x21 as being emulated */
1630
    set_bit((uint8_t *)&ctx.int_revectored, 0x21);
1631

    
1632
    for(;;) {
1633
        ret = vm86(VM86_ENTER, &ctx);
1634
        switch(VM86_TYPE(ret)) {
1635
        case VM86_INTx:
1636
            {
1637
                int int_num, ah, v;
1638

    
1639
                int_num = VM86_ARG(ret);
1640
                if (int_num != 0x21)
1641
                    goto unknown_int;
1642
                ah = (r->eax >> 8) & 0xff;
1643
                switch(ah) {
1644
                case 0x00: /* exit */
1645
                    goto the_end;
1646
                case 0x02: /* write char */
1647
                    {
1648
                        uint8_t c = r->edx;
1649
                        putchar(c);
1650
                    }
1651
                    break;
1652
                case 0x09: /* write string */
1653
                    {
1654
                        uint8_t c, *ptr;
1655
                        ptr = seg_to_linear(r->ds, r->edx);
1656
                        for(;;) {
1657
                            c = *ptr++;
1658
                            if (c == '$')
1659
                                break;
1660
                            putchar(c);
1661
                        }
1662
                        r->eax = (r->eax & ~0xff) | '$';
1663
                    }
1664
                    break;
1665
                case 0xff: /* extension: write eflags number in edx */
1666
                    v = (int)r->edx;
1667
#ifndef LINUX_VM86_IOPL_FIX
1668
                    v &= ~0x3000;
1669
#endif
1670
                    printf("%08x\n", v);
1671
                    break;
1672
                default:
1673
                unknown_int:
1674
                    printf("unsupported int 0x%02x\n", int_num);
1675
                    goto the_end;
1676
                }
1677
            }
1678
            break;
1679
        case VM86_SIGNAL:
1680
            /* a signal came, we just ignore that */
1681
            break;
1682
        case VM86_STI:
1683
            break;
1684
        default:
1685
            printf("ERROR: unhandled vm86 return code (0x%x)\n", ret);
1686
            goto the_end;
1687
        }
1688
    }
1689
 the_end:
1690
    printf("VM86 end\n");
1691
    munmap(vm86_mem, 0x110000);
1692
}
1693
#endif
1694

    
1695
/* exception tests */
1696
#if defined(__i386__) && !defined(REG_EAX)
1697
#define REG_EAX EAX
1698
#define REG_EBX EBX
1699
#define REG_ECX ECX
1700
#define REG_EDX EDX
1701
#define REG_ESI ESI
1702
#define REG_EDI EDI
1703
#define REG_EBP EBP
1704
#define REG_ESP ESP
1705
#define REG_EIP EIP
1706
#define REG_EFL EFL
1707
#define REG_TRAPNO TRAPNO
1708
#define REG_ERR ERR
1709
#endif
1710

    
1711
#if defined(__x86_64__)
1712
#define REG_EIP REG_RIP
1713
#endif
1714

    
1715
jmp_buf jmp_env;
1716
int v1;
1717
int tab[2];
1718

    
1719
void sig_handler(int sig, siginfo_t *info, void *puc)
1720
{
1721
    struct ucontext *uc = puc;
1722

    
1723
    printf("si_signo=%d si_errno=%d si_code=%d",
1724
           info->si_signo, info->si_errno, info->si_code);
1725
    printf(" si_addr=0x%08lx",
1726
           (unsigned long)info->si_addr);
1727
    printf("\n");
1728

    
1729
    printf("trapno=" FMTLX " err=" FMTLX,
1730
           (long)uc->uc_mcontext.gregs[REG_TRAPNO],
1731
           (long)uc->uc_mcontext.gregs[REG_ERR]);
1732
    printf(" EIP=" FMTLX, (long)uc->uc_mcontext.gregs[REG_EIP]);
1733
    printf("\n");
1734
    longjmp(jmp_env, 1);
1735
}
1736

    
1737
void test_exceptions(void)
1738
{
1739
    struct sigaction act;
1740
    volatile int val;
1741

    
1742
    act.sa_sigaction = sig_handler;
1743
    sigemptyset(&act.sa_mask);
1744
    act.sa_flags = SA_SIGINFO | SA_NODEFER;
1745
    sigaction(SIGFPE, &act, NULL);
1746
    sigaction(SIGILL, &act, NULL);
1747
    sigaction(SIGSEGV, &act, NULL);
1748
    sigaction(SIGBUS, &act, NULL);
1749
    sigaction(SIGTRAP, &act, NULL);
1750

    
1751
    /* test division by zero reporting */
1752
    printf("DIVZ exception:\n");
1753
    if (setjmp(jmp_env) == 0) {
1754
        /* now divide by zero */
1755
        v1 = 0;
1756
        v1 = 2 / v1;
1757
    }
1758

    
1759
#if !defined(__x86_64__)
1760
    printf("BOUND exception:\n");
1761
    if (setjmp(jmp_env) == 0) {
1762
        /* bound exception */
1763
        tab[0] = 1;
1764
        tab[1] = 10;
1765
        asm volatile ("bound %0, %1" : : "r" (11), "m" (tab[0]));
1766
    }
1767
#endif
1768

    
1769
#ifdef TEST_SEGS
1770
    printf("segment exceptions:\n");
1771
    if (setjmp(jmp_env) == 0) {
1772
        /* load an invalid segment */
1773
        asm volatile ("movl %0, %%fs" : : "r" ((0x1234 << 3) | 1));
1774
    }
1775
    if (setjmp(jmp_env) == 0) {
1776
        /* null data segment is valid */
1777
        asm volatile ("movl %0, %%fs" : : "r" (3));
1778
        /* null stack segment */
1779
        asm volatile ("movl %0, %%ss" : : "r" (3));
1780
    }
1781

    
1782
    {
1783
        struct modify_ldt_ldt_s ldt;
1784
        ldt.entry_number = 1;
1785
        ldt.base_addr = (unsigned long)&seg_data1;
1786
        ldt.limit = (sizeof(seg_data1) + 0xfff) >> 12;
1787
        ldt.seg_32bit = 1;
1788
        ldt.contents = MODIFY_LDT_CONTENTS_DATA;
1789
        ldt.read_exec_only = 0;
1790
        ldt.limit_in_pages = 1;
1791
        ldt.seg_not_present = 1;
1792
        ldt.useable = 1;
1793
        modify_ldt(1, &ldt, sizeof(ldt)); /* write ldt entry */
1794

    
1795
        if (setjmp(jmp_env) == 0) {
1796
            /* segment not present */
1797
            asm volatile ("movl %0, %%fs" : : "r" (MK_SEL(1)));
1798
        }
1799
    }
1800
#endif
1801

    
1802
    /* test SEGV reporting */
1803
    printf("PF exception:\n");
1804
    if (setjmp(jmp_env) == 0) {
1805
        val = 1;
1806
        /* we add a nop to test a weird PC retrieval case */
1807
        asm volatile ("nop");
1808
        /* now store in an invalid address */
1809
        *(char *)0x1234 = 1;
1810
    }
1811

    
1812
    /* test SEGV reporting */
1813
    printf("PF exception:\n");
1814
    if (setjmp(jmp_env) == 0) {
1815
        val = 1;
1816
        /* read from an invalid address */
1817
        v1 = *(char *)0x1234;
1818
    }
1819

    
1820
    /* test illegal instruction reporting */
1821
    printf("UD2 exception:\n");
1822
    if (setjmp(jmp_env) == 0) {
1823
        /* now execute an invalid instruction */
1824
        asm volatile("ud2");
1825
    }
1826
    printf("lock nop exception:\n");
1827
    if (setjmp(jmp_env) == 0) {
1828
        /* now execute an invalid instruction */
1829
        asm volatile("lock nop");
1830
    }
1831

    
1832
    printf("INT exception:\n");
1833
    if (setjmp(jmp_env) == 0) {
1834
        asm volatile ("int $0xfd");
1835
    }
1836
    if (setjmp(jmp_env) == 0) {
1837
        asm volatile ("int $0x01");
1838
    }
1839
    if (setjmp(jmp_env) == 0) {
1840
        asm volatile (".byte 0xcd, 0x03");
1841
    }
1842
    if (setjmp(jmp_env) == 0) {
1843
        asm volatile ("int $0x04");
1844
    }
1845
    if (setjmp(jmp_env) == 0) {
1846
        asm volatile ("int $0x05");
1847
    }
1848

    
1849
    printf("INT3 exception:\n");
1850
    if (setjmp(jmp_env) == 0) {
1851
        asm volatile ("int3");
1852
    }
1853

    
1854
    printf("CLI exception:\n");
1855
    if (setjmp(jmp_env) == 0) {
1856
        asm volatile ("cli");
1857
    }
1858

    
1859
    printf("STI exception:\n");
1860
    if (setjmp(jmp_env) == 0) {
1861
        asm volatile ("cli");
1862
    }
1863

    
1864
#if !defined(__x86_64__)
1865
    printf("INTO exception:\n");
1866
    if (setjmp(jmp_env) == 0) {
1867
        /* overflow exception */
1868
        asm volatile ("addl $1, %0 ; into" : : "r" (0x7fffffff));
1869
    }
1870
#endif
1871

    
1872
    printf("OUTB exception:\n");
1873
    if (setjmp(jmp_env) == 0) {
1874
        asm volatile ("outb %%al, %%dx" : : "d" (0x4321), "a" (0));
1875
    }
1876

    
1877
    printf("INB exception:\n");
1878
    if (setjmp(jmp_env) == 0) {
1879
        asm volatile ("inb %%dx, %%al" : "=a" (val) : "d" (0x4321));
1880
    }
1881

    
1882
    printf("REP OUTSB exception:\n");
1883
    if (setjmp(jmp_env) == 0) {
1884
        asm volatile ("rep outsb" : : "d" (0x4321), "S" (tab), "c" (1));
1885
    }
1886

    
1887
    printf("REP INSB exception:\n");
1888
    if (setjmp(jmp_env) == 0) {
1889
        asm volatile ("rep insb" : : "d" (0x4321), "D" (tab), "c" (1));
1890
    }
1891

    
1892
    printf("HLT exception:\n");
1893
    if (setjmp(jmp_env) == 0) {
1894
        asm volatile ("hlt");
1895
    }
1896

    
1897
    printf("single step exception:\n");
1898
    val = 0;
1899
    if (setjmp(jmp_env) == 0) {
1900
        asm volatile ("pushf\n"
1901
                      "orl $0x00100, (%%esp)\n"
1902
                      "popf\n"
1903
                      "movl $0xabcd, %0\n"
1904
                      "movl $0x0, %0\n" : "=m" (val) : : "cc", "memory");
1905
    }
1906
    printf("val=0x%x\n", val);
1907
}
1908

    
1909
#if !defined(__x86_64__)
1910
/* specific precise single step test */
1911
void sig_trap_handler(int sig, siginfo_t *info, void *puc)
1912
{
1913
    struct ucontext *uc = puc;
1914
    printf("EIP=" FMTLX "\n", (long)uc->uc_mcontext.gregs[REG_EIP]);
1915
}
1916

    
1917
const uint8_t sstep_buf1[4] = { 1, 2, 3, 4};
1918
uint8_t sstep_buf2[4];
1919

    
1920
void test_single_step(void)
1921
{
1922
    struct sigaction act;
1923
    volatile int val;
1924
    int i;
1925

    
1926
    val = 0;
1927
    act.sa_sigaction = sig_trap_handler;
1928
    sigemptyset(&act.sa_mask);
1929
    act.sa_flags = SA_SIGINFO;
1930
    sigaction(SIGTRAP, &act, NULL);
1931
    asm volatile ("pushf\n"
1932
                  "orl $0x00100, (%%esp)\n"
1933
                  "popf\n"
1934
                  "movl $0xabcd, %0\n"
1935

    
1936
                  /* jmp test */
1937
                  "movl $3, %%ecx\n"
1938
                  "1:\n"
1939
                  "addl $1, %0\n"
1940
                  "decl %%ecx\n"
1941
                  "jnz 1b\n"
1942

    
1943
                  /* movsb: the single step should stop at each movsb iteration */
1944
                  "movl $sstep_buf1, %%esi\n"
1945
                  "movl $sstep_buf2, %%edi\n"
1946
                  "movl $0, %%ecx\n"
1947
                  "rep movsb\n"
1948
                  "movl $3, %%ecx\n"
1949
                  "rep movsb\n"
1950
                  "movl $1, %%ecx\n"
1951
                  "rep movsb\n"
1952

    
1953
                  /* cmpsb: the single step should stop at each cmpsb iteration */
1954
                  "movl $sstep_buf1, %%esi\n"
1955
                  "movl $sstep_buf2, %%edi\n"
1956
                  "movl $0, %%ecx\n"
1957
                  "rep cmpsb\n"
1958
                  "movl $4, %%ecx\n"
1959
                  "rep cmpsb\n"
1960

    
1961
                  /* getpid() syscall: single step should skip one
1962
                     instruction */
1963
                  "movl $20, %%eax\n"
1964
                  "int $0x80\n"
1965
                  "movl $0, %%eax\n"
1966

    
1967
                  /* when modifying SS, trace is not done on the next
1968
                     instruction */
1969
                  "movl %%ss, %%ecx\n"
1970
                  "movl %%ecx, %%ss\n"
1971
                  "addl $1, %0\n"
1972
                  "movl $1, %%eax\n"
1973
                  "movl %%ecx, %%ss\n"
1974
                  "jmp 1f\n"
1975
                  "addl $1, %0\n"
1976
                  "1:\n"
1977
                  "movl $1, %%eax\n"
1978
                  "pushl %%ecx\n"
1979
                  "popl %%ss\n"
1980
                  "addl $1, %0\n"
1981
                  "movl $1, %%eax\n"
1982

    
1983
                  "pushf\n"
1984
                  "andl $~0x00100, (%%esp)\n"
1985
                  "popf\n"
1986
                  : "=m" (val)
1987
                  :
1988
                  : "cc", "memory", "eax", "ecx", "esi", "edi");
1989
    printf("val=%d\n", val);
1990
    for(i = 0; i < 4; i++)
1991
        printf("sstep_buf2[%d] = %d\n", i, sstep_buf2[i]);
1992
}
1993

    
1994
/* self modifying code test */
1995
uint8_t code[] = {
1996
    0xb8, 0x1, 0x00, 0x00, 0x00, /* movl $1, %eax */
1997
    0xc3, /* ret */
1998
};
1999

    
2000
asm(".section \".data\"\n"
2001
    "smc_code2:\n"
2002
    "movl 4(%esp), %eax\n"
2003
    "movl %eax, smc_patch_addr2 + 1\n"
2004
    "nop\n"
2005
    "nop\n"
2006
    "nop\n"
2007
    "nop\n"
2008
    "nop\n"
2009
    "nop\n"
2010
    "nop\n"
2011
    "nop\n"
2012
    "smc_patch_addr2:\n"
2013
    "movl $1, %eax\n"
2014
    "ret\n"
2015
    ".previous\n"
2016
    );
2017

    
2018
typedef int FuncType(void);
2019
extern int smc_code2(int);
2020
void test_self_modifying_code(void)
2021
{
2022
    int i;
2023
    printf("self modifying code:\n");
2024
    printf("func1 = 0x%x\n", ((FuncType *)code)());
2025
    for(i = 2; i <= 4; i++) {
2026
        code[1] = i;
2027
        printf("func%d = 0x%x\n", i, ((FuncType *)code)());
2028
    }
2029

    
2030
    /* more difficult test : the modified code is just after the
2031
       modifying instruction. It is forbidden in Intel specs, but it
2032
       is used by old DOS programs */
2033
    for(i = 2; i <= 4; i++) {
2034
        printf("smc_code2(%d) = %d\n", i, smc_code2(i));
2035
    }
2036
}
2037
#endif
2038

    
2039
long enter_stack[4096];
2040

    
2041
#if defined(__x86_64__)
2042
#define RSP "%%rsp"
2043
#define RBP "%%rbp"
2044
#else
2045
#define RSP "%%esp"
2046
#define RBP "%%ebp"
2047
#endif
2048

    
2049
#define TEST_ENTER(size, stack_type, level)\
2050
{\
2051
    long esp_save, esp_val, ebp_val, ebp_save, i;\
2052
    stack_type *ptr, *stack_end, *stack_ptr;\
2053
    memset(enter_stack, 0, sizeof(enter_stack));\
2054
    stack_end = stack_ptr = (stack_type *)(enter_stack + 4096);\
2055
    ebp_val = (long)stack_ptr;\
2056
    for(i=1;i<=32;i++)\
2057
       *--stack_ptr = i;\
2058
    esp_val = (long)stack_ptr;\
2059
    asm("mov " RSP ", %[esp_save]\n"\
2060
        "mov " RBP ", %[ebp_save]\n"\
2061
        "mov %[esp_val], " RSP "\n"\
2062
        "mov %[ebp_val], " RBP "\n"\
2063
        "enter" size " $8, $" #level "\n"\
2064
        "mov " RSP ", %[esp_val]\n"\
2065
        "mov " RBP ", %[ebp_val]\n"\
2066
        "mov %[esp_save], " RSP "\n"\
2067
        "mov %[ebp_save], " RBP "\n"\
2068
        : [esp_save] "=r" (esp_save),\
2069
        [ebp_save] "=r" (ebp_save),\
2070
        [esp_val] "=r" (esp_val),\
2071
        [ebp_val] "=r" (ebp_val)\
2072
        :  "[esp_val]" (esp_val),\
2073
        "[ebp_val]" (ebp_val));\
2074
    printf("level=%d:\n", level);\
2075
    printf("esp_val=" FMTLX "\n", esp_val - (long)stack_end);\
2076
    printf("ebp_val=" FMTLX "\n", ebp_val - (long)stack_end);\
2077
    for(ptr = (stack_type *)esp_val; ptr < stack_end; ptr++)\
2078
        printf(FMTLX "\n", (long)ptr[0]);\
2079
}
2080

    
2081
static void test_enter(void)
2082
{
2083
#if defined(__x86_64__)
2084
    TEST_ENTER("q", uint64_t, 0);
2085
    TEST_ENTER("q", uint64_t, 1);
2086
    TEST_ENTER("q", uint64_t, 2);
2087
    TEST_ENTER("q", uint64_t, 31);
2088
#else
2089
    TEST_ENTER("l", uint32_t, 0);
2090
    TEST_ENTER("l", uint32_t, 1);
2091
    TEST_ENTER("l", uint32_t, 2);
2092
    TEST_ENTER("l", uint32_t, 31);
2093
#endif
2094

    
2095
    TEST_ENTER("w", uint16_t, 0);
2096
    TEST_ENTER("w", uint16_t, 1);
2097
    TEST_ENTER("w", uint16_t, 2);
2098
    TEST_ENTER("w", uint16_t, 31);
2099
}
2100

    
2101
#ifdef TEST_SSE
2102

    
2103
typedef int __m64 __attribute__ ((__mode__ (__V2SI__)));
2104
typedef float __m128 __attribute__ ((__mode__(__V4SF__)));
2105

    
2106
typedef union {
2107
    double d[2];
2108
    float s[4];
2109
    uint32_t l[4];
2110
    uint64_t q[2];
2111
    __m128 dq;
2112
} XMMReg;
2113

    
2114
static uint64_t __attribute__((aligned(16))) test_values[4][2] = {
2115
    { 0x456723c698694873, 0xdc515cff944a58ec },
2116
    { 0x1f297ccd58bad7ab, 0x41f21efba9e3e146 },
2117
    { 0x007c62c2085427f8, 0x231be9e8cde7438d },
2118
    { 0x0f76255a085427f8, 0xc233e9e8c4c9439a },
2119
};
2120

    
2121
#define SSE_OP(op)\
2122
{\
2123
    asm volatile (#op " %2, %0" : "=x" (r.dq) : "0" (a.dq), "x" (b.dq));\
2124
    printf("%-9s: a=" FMT64X "" FMT64X " b=" FMT64X "" FMT64X " r=" FMT64X "" FMT64X "\n",\
2125
           #op,\
2126
           a.q[1], a.q[0],\
2127
           b.q[1], b.q[0],\
2128
           r.q[1], r.q[0]);\
2129
}
2130

    
2131
#define SSE_OP2(op)\
2132
{\
2133
    int i;\
2134
    for(i=0;i<2;i++) {\
2135
    a.q[0] = test_values[2*i][0];\
2136
    a.q[1] = test_values[2*i][1];\
2137
    b.q[0] = test_values[2*i+1][0];\
2138
    b.q[1] = test_values[2*i+1][1];\
2139
    SSE_OP(op);\
2140
    }\
2141
}
2142

    
2143
#define MMX_OP2(op)\
2144
{\
2145
    int i;\
2146
    for(i=0;i<2;i++) {\
2147
    a.q[0] = test_values[2*i][0];\
2148
    b.q[0] = test_values[2*i+1][0];\
2149
    asm volatile (#op " %2, %0" : "=y" (r.q[0]) : "0" (a.q[0]), "y" (b.q[0]));\
2150
    printf("%-9s: a=" FMT64X " b=" FMT64X " r=" FMT64X "\n",\
2151
           #op,\
2152
           a.q[0],\
2153
           b.q[0],\
2154
           r.q[0]);\
2155
    }\
2156
    SSE_OP2(op);\
2157
}
2158

    
2159
#define SHUF_OP(op, ib)\
2160
{\
2161
    a.q[0] = test_values[0][0];\
2162
    a.q[1] = test_values[0][1];\
2163
    b.q[0] = test_values[1][0];\
2164
    b.q[1] = test_values[1][1];\
2165
    asm volatile (#op " $" #ib ", %2, %0" : "=x" (r.dq) : "0" (a.dq), "x" (b.dq));\
2166
    printf("%-9s: a=" FMT64X "" FMT64X " b=" FMT64X "" FMT64X " ib=%02x r=" FMT64X "" FMT64X "\n",\
2167
           #op,\
2168
           a.q[1], a.q[0],\
2169
           b.q[1], b.q[0],\
2170
           ib,\
2171
           r.q[1], r.q[0]);\
2172
}
2173

    
2174
#define PSHUF_OP(op, ib)\
2175
{\
2176
    int i;\
2177
    for(i=0;i<2;i++) {\
2178
    a.q[0] = test_values[2*i][0];\
2179
    a.q[1] = test_values[2*i][1];\
2180
    asm volatile (#op " $" #ib ", %1, %0" : "=x" (r.dq) : "x" (a.dq));\
2181
    printf("%-9s: a=" FMT64X "" FMT64X " ib=%02x r=" FMT64X "" FMT64X "\n",\
2182
           #op,\
2183
           a.q[1], a.q[0],\
2184
           ib,\
2185
           r.q[1], r.q[0]);\
2186
    }\
2187
}
2188

    
2189
#define SHIFT_IM(op, ib)\
2190
{\
2191
    int i;\
2192
    for(i=0;i<2;i++) {\
2193
    a.q[0] = test_values[2*i][0];\
2194
    a.q[1] = test_values[2*i][1];\
2195
    asm volatile (#op " $" #ib ", %0" : "=x" (r.dq) : "0" (a.dq));\
2196
    printf("%-9s: a=" FMT64X "" FMT64X " ib=%02x r=" FMT64X "" FMT64X "\n",\
2197
           #op,\
2198
           a.q[1], a.q[0],\
2199
           ib,\
2200
           r.q[1], r.q[0]);\
2201
    }\
2202
}
2203

    
2204
#define SHIFT_OP(op, ib)\
2205
{\
2206
    int i;\
2207
    SHIFT_IM(op, ib);\
2208
    for(i=0;i<2;i++) {\
2209
    a.q[0] = test_values[2*i][0];\
2210
    a.q[1] = test_values[2*i][1];\
2211
    b.q[0] = ib;\
2212
    b.q[1] = 0;\
2213
    asm volatile (#op " %2, %0" : "=x" (r.dq) : "0" (a.dq), "x" (b.dq));\
2214
    printf("%-9s: a=" FMT64X "" FMT64X " b=" FMT64X "" FMT64X " r=" FMT64X "" FMT64X "\n",\
2215
           #op,\
2216
           a.q[1], a.q[0],\
2217
           b.q[1], b.q[0],\
2218
           r.q[1], r.q[0]);\
2219
    }\
2220
}
2221

    
2222
#define MOVMSK(op)\
2223
{\
2224
    int i, reg;\
2225
    for(i=0;i<2;i++) {\
2226
    a.q[0] = test_values[2*i][0];\
2227
    a.q[1] = test_values[2*i][1];\
2228
    asm volatile (#op " %1, %0" : "=r" (reg) : "x" (a.dq));\
2229
    printf("%-9s: a=" FMT64X "" FMT64X " r=%08x\n",\
2230
           #op,\
2231
           a.q[1], a.q[0],\
2232
           reg);\
2233
    }\
2234
}
2235

    
2236
#define SSE_OPS(a) \
2237
SSE_OP(a ## ps);\
2238
SSE_OP(a ## ss);
2239

    
2240
#define SSE_OPD(a) \
2241
SSE_OP(a ## pd);\
2242
SSE_OP(a ## sd);
2243

    
2244
#define SSE_COMI(op, field)\
2245
{\
2246
    unsigned int eflags;\
2247
    XMMReg a, b;\
2248
    a.field[0] = a1;\
2249
    b.field[0] = b1;\
2250
    asm volatile (#op " %2, %1\n"\
2251
        "pushf\n"\
2252
        "pop %0\n"\
2253
        : "=m" (eflags)\
2254
        : "x" (a.dq), "x" (b.dq));\
2255
    printf("%-9s: a=%f b=%f cc=%04x\n",\
2256
           #op, a1, b1,\
2257
           eflags & (CC_C | CC_P | CC_Z | CC_S | CC_O | CC_A));\
2258
}
2259

    
2260
void test_sse_comi(double a1, double b1)
2261
{
2262
    SSE_COMI(ucomiss, s);
2263
    SSE_COMI(ucomisd, d);
2264
    SSE_COMI(comiss, s);
2265
    SSE_COMI(comisd, d);
2266
}
2267

    
2268
#define CVT_OP_XMM(op)\
2269
{\
2270
    asm volatile (#op " %1, %0" : "=x" (r.dq) : "x" (a.dq));\
2271
    printf("%-9s: a=" FMT64X "" FMT64X " r=" FMT64X "" FMT64X "\n",\
2272
           #op,\
2273
           a.q[1], a.q[0],\
2274
           r.q[1], r.q[0]);\
2275
}
2276

    
2277
/* Force %xmm0 usage to avoid the case where both register index are 0
2278
   to test intruction decoding more extensively */
2279
#define CVT_OP_XMM2MMX(op)\
2280
{\
2281
    asm volatile (#op " %1, %0" : "=y" (r.q[0]) : "x" (a.dq) \
2282
                  : "%xmm0"); \
2283
    asm volatile("emms\n"); \
2284
    printf("%-9s: a=" FMT64X "" FMT64X " r=" FMT64X "\n",\
2285
           #op,\
2286
           a.q[1], a.q[0],\
2287
           r.q[0]);\
2288
}
2289

    
2290
#define CVT_OP_MMX2XMM(op)\
2291
{\
2292
    asm volatile (#op " %1, %0" : "=x" (r.dq) : "y" (a.q[0]));\
2293
    asm volatile("emms\n"); \
2294
    printf("%-9s: a=" FMT64X " r=" FMT64X "" FMT64X "\n",\
2295
           #op,\
2296
           a.q[0],\
2297
           r.q[1], r.q[0]);\
2298
}
2299

    
2300
#define CVT_OP_REG2XMM(op)\
2301
{\
2302
    asm volatile (#op " %1, %0" : "=x" (r.dq) : "r" (a.l[0]));\
2303
    printf("%-9s: a=%08x r=" FMT64X "" FMT64X "\n",\
2304
           #op,\
2305
           a.l[0],\
2306
           r.q[1], r.q[0]);\
2307
}
2308

    
2309
#define CVT_OP_XMM2REG(op)\
2310
{\
2311
    asm volatile (#op " %1, %0" : "=r" (r.l[0]) : "x" (a.dq));\
2312
    printf("%-9s: a=" FMT64X "" FMT64X " r=%08x\n",\
2313
           #op,\
2314
           a.q[1], a.q[0],\
2315
           r.l[0]);\
2316
}
2317

    
2318
struct fpxstate {
2319
    uint16_t fpuc;
2320
    uint16_t fpus;
2321
    uint16_t fptag;
2322
    uint16_t fop;
2323
    uint32_t fpuip;
2324
    uint16_t cs_sel;
2325
    uint16_t dummy0;
2326
    uint32_t fpudp;
2327
    uint16_t ds_sel;
2328
    uint16_t dummy1;
2329
    uint32_t mxcsr;
2330
    uint32_t mxcsr_mask;
2331
    uint8_t fpregs1[8 * 16];
2332
    uint8_t xmm_regs[8 * 16];
2333
    uint8_t dummy2[224];
2334
};
2335

    
2336
static struct fpxstate fpx_state __attribute__((aligned(16)));
2337
static struct fpxstate fpx_state2 __attribute__((aligned(16)));
2338

    
2339
void test_fxsave(void)
2340
{
2341
    struct fpxstate *fp = &fpx_state;
2342
    struct fpxstate *fp2 = &fpx_state2;
2343
    int i, nb_xmm;
2344
    XMMReg a, b;
2345
    a.q[0] = test_values[0][0];
2346
    a.q[1] = test_values[0][1];
2347
    b.q[0] = test_values[1][0];
2348
    b.q[1] = test_values[1][1];
2349

    
2350
    asm("movdqa %2, %%xmm0\n"
2351
        "movdqa %3, %%xmm7\n"
2352
#if defined(__x86_64__)
2353
        "movdqa %2, %%xmm15\n"
2354
#endif
2355
        " fld1\n"
2356
        " fldpi\n"
2357
        " fldln2\n"
2358
        " fxsave %0\n"
2359
        " fxrstor %0\n"
2360
        " fxsave %1\n"
2361
        " fninit\n"
2362
        : "=m" (*(uint32_t *)fp2), "=m" (*(uint32_t *)fp)
2363
        : "m" (a), "m" (b));
2364
    printf("fpuc=%04x\n", fp->fpuc);
2365
    printf("fpus=%04x\n", fp->fpus);
2366
    printf("fptag=%04x\n", fp->fptag);
2367
    for(i = 0; i < 3; i++) {
2368
        printf("ST%d: " FMT64X " %04x\n",
2369
               i,
2370
               *(uint64_t *)&fp->fpregs1[i * 16],
2371
               *(uint16_t *)&fp->fpregs1[i * 16 + 8]);
2372
    }
2373
    printf("mxcsr=%08x\n", fp->mxcsr & 0x1f80);
2374
#if defined(__x86_64__)
2375
    nb_xmm = 16;
2376
#else
2377
    nb_xmm = 8;
2378
#endif
2379
    for(i = 0; i < nb_xmm; i++) {
2380
        printf("xmm%d: " FMT64X "" FMT64X "\n",
2381
               i,
2382
               *(uint64_t *)&fp->xmm_regs[i * 16],
2383
               *(uint64_t *)&fp->xmm_regs[i * 16 + 8]);
2384
    }
2385
}
2386

    
2387
void test_sse(void)
2388
{
2389
    XMMReg r, a, b;
2390
    int i;
2391

    
2392
    MMX_OP2(punpcklbw);
2393
    MMX_OP2(punpcklwd);
2394
    MMX_OP2(punpckldq);
2395
    MMX_OP2(packsswb);
2396
    MMX_OP2(pcmpgtb);
2397
    MMX_OP2(pcmpgtw);
2398
    MMX_OP2(pcmpgtd);
2399
    MMX_OP2(packuswb);
2400
    MMX_OP2(punpckhbw);
2401
    MMX_OP2(punpckhwd);
2402
    MMX_OP2(punpckhdq);
2403
    MMX_OP2(packssdw);
2404
    MMX_OP2(pcmpeqb);
2405
    MMX_OP2(pcmpeqw);
2406
    MMX_OP2(pcmpeqd);
2407

    
2408
    MMX_OP2(paddq);
2409
    MMX_OP2(pmullw);
2410
    MMX_OP2(psubusb);
2411
    MMX_OP2(psubusw);
2412
    MMX_OP2(pminub);
2413
    MMX_OP2(pand);
2414
    MMX_OP2(paddusb);
2415
    MMX_OP2(paddusw);
2416
    MMX_OP2(pmaxub);
2417
    MMX_OP2(pandn);
2418

    
2419
    MMX_OP2(pmulhuw);
2420
    MMX_OP2(pmulhw);
2421

    
2422
    MMX_OP2(psubsb);
2423
    MMX_OP2(psubsw);
2424
    MMX_OP2(pminsw);
2425
    MMX_OP2(por);
2426
    MMX_OP2(paddsb);
2427
    MMX_OP2(paddsw);
2428
    MMX_OP2(pmaxsw);
2429
    MMX_OP2(pxor);
2430
    MMX_OP2(pmuludq);
2431
    MMX_OP2(pmaddwd);
2432
    MMX_OP2(psadbw);
2433
    MMX_OP2(psubb);
2434
    MMX_OP2(psubw);
2435
    MMX_OP2(psubd);
2436
    MMX_OP2(psubq);
2437
    MMX_OP2(paddb);
2438
    MMX_OP2(paddw);
2439
    MMX_OP2(paddd);
2440

    
2441
    MMX_OP2(pavgb);
2442
    MMX_OP2(pavgw);
2443

    
2444
    asm volatile ("pinsrw $1, %1, %0" : "=y" (r.q[0]) : "r" (0x12345678));
2445
    printf("%-9s: r=" FMT64X "\n", "pinsrw", r.q[0]);
2446

    
2447
    asm volatile ("pinsrw $5, %1, %0" : "=x" (r.dq) : "r" (0x12345678));
2448
    printf("%-9s: r=" FMT64X "" FMT64X "\n", "pinsrw", r.q[1], r.q[0]);
2449

    
2450
    a.q[0] = test_values[0][0];
2451
    a.q[1] = test_values[0][1];
2452
    asm volatile ("pextrw $1, %1, %0" : "=r" (r.l[0]) : "y" (a.q[0]));
2453
    printf("%-9s: r=%08x\n", "pextrw", r.l[0]);
2454

    
2455
    asm volatile ("pextrw $5, %1, %0" : "=r" (r.l[0]) : "x" (a.dq));
2456
    printf("%-9s: r=%08x\n", "pextrw", r.l[0]);
2457

    
2458
    asm volatile ("pmovmskb %1, %0" : "=r" (r.l[0]) : "y" (a.q[0]));
2459
    printf("%-9s: r=%08x\n", "pmovmskb", r.l[0]);
2460

    
2461
    asm volatile ("pmovmskb %1, %0" : "=r" (r.l[0]) : "x" (a.dq));
2462
    printf("%-9s: r=%08x\n", "pmovmskb", r.l[0]);
2463

    
2464
    {
2465
        r.q[0] = -1;
2466
        r.q[1] = -1;
2467

    
2468
        a.q[0] = test_values[0][0];
2469
        a.q[1] = test_values[0][1];
2470
        b.q[0] = test_values[1][0];
2471
        b.q[1] = test_values[1][1];
2472
        asm volatile("maskmovq %1, %0" :
2473
                     : "y" (a.q[0]), "y" (b.q[0]), "D" (&r)
2474
                     : "memory");
2475
        printf("%-9s: r=" FMT64X " a=" FMT64X " b=" FMT64X "\n",
2476
               "maskmov",
2477
               r.q[0],
2478
               a.q[0],
2479
               b.q[0]);
2480
        asm volatile("maskmovdqu %1, %0" :
2481
                     : "x" (a.dq), "x" (b.dq), "D" (&r)
2482
                     : "memory");
2483
        printf("%-9s: r=" FMT64X "" FMT64X " a=" FMT64X "" FMT64X " b=" FMT64X "" FMT64X "\n",
2484
               "maskmov",
2485
               r.q[1], r.q[0],
2486
               a.q[1], a.q[0],
2487
               b.q[1], b.q[0]);
2488
    }
2489

    
2490
    asm volatile ("emms");
2491

    
2492
    SSE_OP2(punpcklqdq);
2493
    SSE_OP2(punpckhqdq);
2494
    SSE_OP2(andps);
2495
    SSE_OP2(andpd);
2496
    SSE_OP2(andnps);
2497
    SSE_OP2(andnpd);
2498
    SSE_OP2(orps);
2499
    SSE_OP2(orpd);
2500
    SSE_OP2(xorps);
2501
    SSE_OP2(xorpd);
2502

    
2503
    SSE_OP2(unpcklps);
2504
    SSE_OP2(unpcklpd);
2505
    SSE_OP2(unpckhps);
2506
    SSE_OP2(unpckhpd);
2507

    
2508
    SHUF_OP(shufps, 0x78);
2509
    SHUF_OP(shufpd, 0x02);
2510

    
2511
    PSHUF_OP(pshufd, 0x78);
2512
    PSHUF_OP(pshuflw, 0x78);
2513
    PSHUF_OP(pshufhw, 0x78);
2514

    
2515
    SHIFT_OP(psrlw, 7);
2516
    SHIFT_OP(psrlw, 16);
2517
    SHIFT_OP(psraw, 7);
2518
    SHIFT_OP(psraw, 16);
2519
    SHIFT_OP(psllw, 7);
2520
    SHIFT_OP(psllw, 16);
2521

    
2522
    SHIFT_OP(psrld, 7);
2523
    SHIFT_OP(psrld, 32);
2524
    SHIFT_OP(psrad, 7);
2525
    SHIFT_OP(psrad, 32);
2526
    SHIFT_OP(pslld, 7);
2527
    SHIFT_OP(pslld, 32);
2528

    
2529
    SHIFT_OP(psrlq, 7);
2530
    SHIFT_OP(psrlq, 32);
2531
    SHIFT_OP(psllq, 7);
2532
    SHIFT_OP(psllq, 32);
2533

    
2534
    SHIFT_IM(psrldq, 16);
2535
    SHIFT_IM(psrldq, 7);
2536
    SHIFT_IM(pslldq, 16);
2537
    SHIFT_IM(pslldq, 7);
2538

    
2539
    MOVMSK(movmskps);
2540
    MOVMSK(movmskpd);
2541

    
2542
    /* FPU specific ops */
2543

    
2544
    {
2545
        uint32_t mxcsr;
2546
        asm volatile("stmxcsr %0" : "=m" (mxcsr));
2547
        printf("mxcsr=%08x\n", mxcsr & 0x1f80);
2548
        asm volatile("ldmxcsr %0" : : "m" (mxcsr));
2549
    }
2550

    
2551
    test_sse_comi(2, -1);
2552
    test_sse_comi(2, 2);
2553
    test_sse_comi(2, 3);
2554
    test_sse_comi(2, q_nan.d);
2555
    test_sse_comi(q_nan.d, -1);
2556

    
2557
    for(i = 0; i < 2; i++) {
2558
        a.s[0] = 2.7;
2559
        a.s[1] = 3.4;
2560
        a.s[2] = 4;
2561
        a.s[3] = -6.3;
2562
        b.s[0] = 45.7;
2563
        b.s[1] = 353.4;
2564
        b.s[2] = 4;
2565
        b.s[3] = 56.3;
2566
        if (i == 1) {
2567
            a.s[0] = q_nan.d;
2568
            b.s[3] = q_nan.d;
2569
        }
2570

    
2571
        SSE_OPS(add);
2572
        SSE_OPS(mul);
2573
        SSE_OPS(sub);
2574
        SSE_OPS(min);
2575
        SSE_OPS(div);
2576
        SSE_OPS(max);
2577
        SSE_OPS(sqrt);
2578
        SSE_OPS(cmpeq);
2579
        SSE_OPS(cmplt);
2580
        SSE_OPS(cmple);
2581
        SSE_OPS(cmpunord);
2582
        SSE_OPS(cmpneq);
2583
        SSE_OPS(cmpnlt);
2584
        SSE_OPS(cmpnle);
2585
        SSE_OPS(cmpord);
2586

    
2587

    
2588
        a.d[0] = 2.7;
2589
        a.d[1] = -3.4;
2590
        b.d[0] = 45.7;
2591
        b.d[1] = -53.4;
2592
        if (i == 1) {
2593
            a.d[0] = q_nan.d;
2594
            b.d[1] = q_nan.d;
2595
        }
2596
        SSE_OPD(add);
2597
        SSE_OPD(mul);
2598
        SSE_OPD(sub);
2599
        SSE_OPD(min);
2600
        SSE_OPD(div);
2601
        SSE_OPD(max);
2602
        SSE_OPD(sqrt);
2603
        SSE_OPD(cmpeq);
2604
        SSE_OPD(cmplt);
2605
        SSE_OPD(cmple);
2606
        SSE_OPD(cmpunord);
2607
        SSE_OPD(cmpneq);
2608
        SSE_OPD(cmpnlt);
2609
        SSE_OPD(cmpnle);
2610
        SSE_OPD(cmpord);
2611
    }
2612

    
2613
    /* float to float/int */
2614
    a.s[0] = 2.7;
2615
    a.s[1] = 3.4;
2616
    a.s[2] = 4;
2617
    a.s[3] = -6.3;
2618
    CVT_OP_XMM(cvtps2pd);
2619
    CVT_OP_XMM(cvtss2sd);
2620
    CVT_OP_XMM2MMX(cvtps2pi);
2621
    CVT_OP_XMM2MMX(cvttps2pi);
2622
    CVT_OP_XMM2REG(cvtss2si);
2623
    CVT_OP_XMM2REG(cvttss2si);
2624
    CVT_OP_XMM(cvtps2dq);
2625
    CVT_OP_XMM(cvttps2dq);
2626

    
2627
    a.d[0] = 2.6;
2628
    a.d[1] = -3.4;
2629
    CVT_OP_XMM(cvtpd2ps);
2630
    CVT_OP_XMM(cvtsd2ss);
2631
    CVT_OP_XMM2MMX(cvtpd2pi);
2632
    CVT_OP_XMM2MMX(cvttpd2pi);
2633
    CVT_OP_XMM2REG(cvtsd2si);
2634
    CVT_OP_XMM2REG(cvttsd2si);
2635
    CVT_OP_XMM(cvtpd2dq);
2636
    CVT_OP_XMM(cvttpd2dq);
2637

    
2638
    /* sse/mmx moves */
2639
    CVT_OP_XMM2MMX(movdq2q);
2640
    CVT_OP_MMX2XMM(movq2dq);
2641

    
2642
    /* int to float */
2643
    a.l[0] = -6;
2644
    a.l[1] = 2;
2645
    a.l[2] = 100;
2646
    a.l[3] = -60000;
2647
    CVT_OP_MMX2XMM(cvtpi2ps);
2648
    CVT_OP_MMX2XMM(cvtpi2pd);
2649
    CVT_OP_REG2XMM(cvtsi2ss);
2650
    CVT_OP_REG2XMM(cvtsi2sd);
2651
    CVT_OP_XMM(cvtdq2ps);
2652
    CVT_OP_XMM(cvtdq2pd);
2653

    
2654
    /* XXX: test PNI insns */
2655
#if 0
2656
    SSE_OP2(movshdup);
2657
#endif
2658
    asm volatile ("emms");
2659
}
2660

    
2661
#endif
2662

    
2663
#define TEST_CONV_RAX(op)\
2664
{\
2665
    unsigned long a, r;\
2666
    a = i2l(0x8234a6f8);\
2667
    r = a;\
2668
    asm volatile(#op : "=a" (r) : "0" (r));\
2669
    printf("%-10s A=" FMTLX " R=" FMTLX "\n", #op, a, r);\
2670
}
2671

    
2672
#define TEST_CONV_RAX_RDX(op)\
2673
{\
2674
    unsigned long a, d, r, rh;                   \
2675
    a = i2l(0x8234a6f8);\
2676
    d = i2l(0x8345a1f2);\
2677
    r = a;\
2678
    rh = d;\
2679
    asm volatile(#op : "=a" (r), "=d" (rh) : "0" (r), "1" (rh));   \
2680
    printf("%-10s A=" FMTLX " R=" FMTLX ":" FMTLX "\n", #op, a, r, rh);  \
2681
}
2682

    
2683
void test_conv(void)
2684
{
2685
    TEST_CONV_RAX(cbw);
2686
    TEST_CONV_RAX(cwde);
2687
#if defined(__x86_64__)
2688
    TEST_CONV_RAX(cdqe);
2689
#endif
2690

    
2691
    TEST_CONV_RAX_RDX(cwd);
2692
    TEST_CONV_RAX_RDX(cdq);
2693
#if defined(__x86_64__)
2694
    TEST_CONV_RAX_RDX(cqo);
2695
#endif
2696

    
2697
    {
2698
        unsigned long a, r;
2699
        a = i2l(0x12345678);
2700
        asm volatile("bswapl %k0" : "=r" (r) : "0" (a));
2701
        printf("%-10s: A=" FMTLX " R=" FMTLX "\n", "bswapl", a, r);
2702
    }
2703
#if defined(__x86_64__)
2704
    {
2705
        unsigned long a, r;
2706
        a = i2l(0x12345678);
2707
        asm volatile("bswapq %0" : "=r" (r) : "0" (a));
2708
        printf("%-10s: A=" FMTLX " R=" FMTLX "\n", "bswapq", a, r);
2709
    }
2710
#endif
2711
}
2712

    
2713
extern void *__start_initcall;
2714
extern void *__stop_initcall;
2715

    
2716

    
2717
int main(int argc, char **argv)
2718
{
2719
    void **ptr;
2720
    void (*func)(void);
2721

    
2722
    ptr = &__start_initcall;
2723
    while (ptr != &__stop_initcall) {
2724
        func = *ptr++;
2725
        func();
2726
    }
2727
    test_bsx();
2728
    test_mul();
2729
    test_jcc();
2730
    test_loop();
2731
    test_floats();
2732
#if !defined(__x86_64__)
2733
    test_bcd();
2734
#endif
2735
    test_xchg();
2736
    test_string();
2737
    test_misc();
2738
    test_lea();
2739
#ifdef TEST_SEGS
2740
    test_segs();
2741
    test_code16();
2742
#endif
2743
#ifdef TEST_VM86
2744
    test_vm86();
2745
#endif
2746
#if !defined(__x86_64__)
2747
    test_exceptions();
2748
    test_self_modifying_code();
2749
    test_single_step();
2750
#endif
2751
    test_enter();
2752
    test_conv();
2753
#ifdef TEST_SSE
2754
    test_sse();
2755
    test_fxsave();
2756
#endif
2757
    return 0;
2758
}