Statistics
| Branch: | Revision:

root / hw / mips_malta.c @ 69c38b8f

History | View | Annotate | Download (31.4 kB)

1
/*
2
 * QEMU Malta board support
3
 *
4
 * Copyright (c) 2006 Aurelien Jarno
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24

    
25
#include "hw.h"
26
#include "pc.h"
27
#include "fdc.h"
28
#include "net.h"
29
#include "boards.h"
30
#include "smbus.h"
31
#include "block.h"
32
#include "flash.h"
33
#include "mips.h"
34
#include "mips_cpudevs.h"
35
#include "pci.h"
36
#include "usb-uhci.h"
37
#include "vmware_vga.h"
38
#include "qemu-char.h"
39
#include "sysemu.h"
40
#include "arch_init.h"
41
#include "boards.h"
42
#include "qemu-log.h"
43
#include "mips-bios.h"
44
#include "ide.h"
45
#include "loader.h"
46
#include "elf.h"
47
#include "mc146818rtc.h"
48
#include "blockdev.h"
49

    
50
//#define DEBUG_BOARD_INIT
51

    
52
#define ENVP_ADDR                0x80002000l
53
#define ENVP_NB_ENTRIES                 16
54
#define ENVP_ENTRY_SIZE                 256
55

    
56
#define MAX_IDE_BUS 2
57

    
58
typedef struct {
59
    uint32_t leds;
60
    uint32_t brk;
61
    uint32_t gpout;
62
    uint32_t i2cin;
63
    uint32_t i2coe;
64
    uint32_t i2cout;
65
    uint32_t i2csel;
66
    CharDriverState *display;
67
    char display_text[9];
68
    SerialState *uart;
69
} MaltaFPGAState;
70

    
71
static ISADevice *pit;
72

    
73
static struct _loaderparams {
74
    int ram_size;
75
    const char *kernel_filename;
76
    const char *kernel_cmdline;
77
    const char *initrd_filename;
78
} loaderparams;
79

    
80
/* Malta FPGA */
81
static void malta_fpga_update_display(void *opaque)
82
{
83
    char leds_text[9];
84
    int i;
85
    MaltaFPGAState *s = opaque;
86

    
87
    for (i = 7 ; i >= 0 ; i--) {
88
        if (s->leds & (1 << i))
89
            leds_text[i] = '#';
90
        else
91
            leds_text[i] = ' ';
92
    }
93
    leds_text[8] = '\0';
94

    
95
    qemu_chr_printf(s->display, "\e[H\n\n|\e[32m%-8.8s\e[00m|\r\n", leds_text);
96
    qemu_chr_printf(s->display, "\n\n\n\n|\e[31m%-8.8s\e[00m|", s->display_text);
97
}
98

    
99
/*
100
 * EEPROM 24C01 / 24C02 emulation.
101
 *
102
 * Emulation for serial EEPROMs:
103
 * 24C01 - 1024 bit (128 x 8)
104
 * 24C02 - 2048 bit (256 x 8)
105
 *
106
 * Typical device names include Microchip 24C02SC or SGS Thomson ST24C02.
107
 */
108

    
109
//~ #define DEBUG
110

    
111
#if defined(DEBUG)
112
#  define logout(fmt, ...) fprintf(stderr, "MALTA\t%-24s" fmt, __func__, ## __VA_ARGS__)
113
#else
114
#  define logout(fmt, ...) ((void)0)
115
#endif
116

    
117
struct _eeprom24c0x_t {
118
  uint8_t tick;
119
  uint8_t address;
120
  uint8_t command;
121
  uint8_t ack;
122
  uint8_t scl;
123
  uint8_t sda;
124
  uint8_t data;
125
  //~ uint16_t size;
126
  uint8_t contents[256];
127
};
128

    
129
typedef struct _eeprom24c0x_t eeprom24c0x_t;
130

    
131
static eeprom24c0x_t eeprom = {
132
    .contents = {
133
        /* 00000000: */ 0x80,0x08,0x04,0x0D,0x0A,0x01,0x40,0x00,
134
        /* 00000008: */ 0x01,0x75,0x54,0x00,0x82,0x08,0x00,0x01,
135
        /* 00000010: */ 0x8F,0x04,0x02,0x01,0x01,0x00,0x0E,0x00,
136
        /* 00000018: */ 0x00,0x00,0x00,0x14,0x0F,0x14,0x2D,0x40,
137
        /* 00000020: */ 0x15,0x08,0x15,0x08,0x00,0x00,0x00,0x00,
138
        /* 00000028: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
139
        /* 00000030: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
140
        /* 00000038: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x12,0xD0,
141
        /* 00000040: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
142
        /* 00000048: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
143
        /* 00000050: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
144
        /* 00000058: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
145
        /* 00000060: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
146
        /* 00000068: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
147
        /* 00000070: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
148
        /* 00000078: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x64,0xF4,
149
    },
150
};
151

    
152
static uint8_t eeprom24c0x_read(void)
153
{
154
    logout("%u: scl = %u, sda = %u, data = 0x%02x\n",
155
        eeprom.tick, eeprom.scl, eeprom.sda, eeprom.data);
156
    return eeprom.sda;
157
}
158

    
159
static void eeprom24c0x_write(int scl, int sda)
160
{
161
    if (eeprom.scl && scl && (eeprom.sda != sda)) {
162
        logout("%u: scl = %u->%u, sda = %u->%u i2c %s\n",
163
                eeprom.tick, eeprom.scl, scl, eeprom.sda, sda, sda ? "stop" : "start");
164
        if (!sda) {
165
            eeprom.tick = 1;
166
            eeprom.command = 0;
167
        }
168
    } else if (eeprom.tick == 0 && !eeprom.ack) {
169
        /* Waiting for start. */
170
        logout("%u: scl = %u->%u, sda = %u->%u wait for i2c start\n",
171
                eeprom.tick, eeprom.scl, scl, eeprom.sda, sda);
172
    } else if (!eeprom.scl && scl) {
173
        logout("%u: scl = %u->%u, sda = %u->%u trigger bit\n",
174
                eeprom.tick, eeprom.scl, scl, eeprom.sda, sda);
175
        if (eeprom.ack) {
176
            logout("\ti2c ack bit = 0\n");
177
            sda = 0;
178
            eeprom.ack = 0;
179
        } else if (eeprom.sda == sda) {
180
            uint8_t bit = (sda != 0);
181
            logout("\ti2c bit = %d\n", bit);
182
            if (eeprom.tick < 9) {
183
                eeprom.command <<= 1;
184
                eeprom.command += bit;
185
                eeprom.tick++;
186
                if (eeprom.tick == 9) {
187
                    logout("\tcommand 0x%04x, %s\n", eeprom.command, bit ? "read" : "write");
188
                    eeprom.ack = 1;
189
                }
190
            } else if (eeprom.tick < 17) {
191
                if (eeprom.command & 1) {
192
                    sda = ((eeprom.data & 0x80) != 0);
193
                }
194
                eeprom.address <<= 1;
195
                eeprom.address += bit;
196
                eeprom.tick++;
197
                eeprom.data <<= 1;
198
                if (eeprom.tick == 17) {
199
                    eeprom.data = eeprom.contents[eeprom.address];
200
                    logout("\taddress 0x%04x, data 0x%02x\n", eeprom.address, eeprom.data);
201
                    eeprom.ack = 1;
202
                    eeprom.tick = 0;
203
                }
204
            } else if (eeprom.tick >= 17) {
205
                sda = 0;
206
            }
207
        } else {
208
            logout("\tsda changed with raising scl\n");
209
        }
210
    } else {
211
        logout("%u: scl = %u->%u, sda = %u->%u\n", eeprom.tick, eeprom.scl, scl, eeprom.sda, sda);
212
    }
213
    eeprom.scl = scl;
214
    eeprom.sda = sda;
215
}
216

    
217
static uint32_t malta_fpga_readl(void *opaque, target_phys_addr_t addr)
218
{
219
    MaltaFPGAState *s = opaque;
220
    uint32_t val = 0;
221
    uint32_t saddr;
222

    
223
    saddr = (addr & 0xfffff);
224

    
225
    switch (saddr) {
226

    
227
    /* SWITCH Register */
228
    case 0x00200:
229
        val = 0x00000000;                /* All switches closed */
230
        break;
231

    
232
    /* STATUS Register */
233
    case 0x00208:
234
#ifdef TARGET_WORDS_BIGENDIAN
235
        val = 0x00000012;
236
#else
237
        val = 0x00000010;
238
#endif
239
        break;
240

    
241
    /* JMPRS Register */
242
    case 0x00210:
243
        val = 0x00;
244
        break;
245

    
246
    /* LEDBAR Register */
247
    case 0x00408:
248
        val = s->leds;
249
        break;
250

    
251
    /* BRKRES Register */
252
    case 0x00508:
253
        val = s->brk;
254
        break;
255

    
256
    /* UART Registers are handled directly by the serial device */
257

    
258
    /* GPOUT Register */
259
    case 0x00a00:
260
        val = s->gpout;
261
        break;
262

    
263
    /* XXX: implement a real I2C controller */
264

    
265
    /* GPINP Register */
266
    case 0x00a08:
267
        /* IN = OUT until a real I2C control is implemented */
268
        if (s->i2csel)
269
            val = s->i2cout;
270
        else
271
            val = 0x00;
272
        break;
273

    
274
    /* I2CINP Register */
275
    case 0x00b00:
276
        val = ((s->i2cin & ~1) | eeprom24c0x_read());
277
        break;
278

    
279
    /* I2COE Register */
280
    case 0x00b08:
281
        val = s->i2coe;
282
        break;
283

    
284
    /* I2COUT Register */
285
    case 0x00b10:
286
        val = s->i2cout;
287
        break;
288

    
289
    /* I2CSEL Register */
290
    case 0x00b18:
291
        val = s->i2csel;
292
        break;
293

    
294
    default:
295
#if 0
296
        printf ("malta_fpga_read: Bad register offset 0x" TARGET_FMT_lx "\n",
297
                addr);
298
#endif
299
        break;
300
    }
301
    return val;
302
}
303

    
304
static void malta_fpga_writel(void *opaque, target_phys_addr_t addr,
305
                              uint32_t val)
306
{
307
    MaltaFPGAState *s = opaque;
308
    uint32_t saddr;
309

    
310
    saddr = (addr & 0xfffff);
311

    
312
    switch (saddr) {
313

    
314
    /* SWITCH Register */
315
    case 0x00200:
316
        break;
317

    
318
    /* JMPRS Register */
319
    case 0x00210:
320
        break;
321

    
322
    /* LEDBAR Register */
323
    /* XXX: implement a 8-LED array */
324
    case 0x00408:
325
        s->leds = val & 0xff;
326
        break;
327

    
328
    /* ASCIIWORD Register */
329
    case 0x00410:
330
        snprintf(s->display_text, 9, "%08X", val);
331
        malta_fpga_update_display(s);
332
        break;
333

    
334
    /* ASCIIPOS0 to ASCIIPOS7 Registers */
335
    case 0x00418:
336
    case 0x00420:
337
    case 0x00428:
338
    case 0x00430:
339
    case 0x00438:
340
    case 0x00440:
341
    case 0x00448:
342
    case 0x00450:
343
        s->display_text[(saddr - 0x00418) >> 3] = (char) val;
344
        malta_fpga_update_display(s);
345
        break;
346

    
347
    /* SOFTRES Register */
348
    case 0x00500:
349
        if (val == 0x42)
350
            qemu_system_reset_request ();
351
        break;
352

    
353
    /* BRKRES Register */
354
    case 0x00508:
355
        s->brk = val & 0xff;
356
        break;
357

    
358
    /* UART Registers are handled directly by the serial device */
359

    
360
    /* GPOUT Register */
361
    case 0x00a00:
362
        s->gpout = val & 0xff;
363
        break;
364

    
365
    /* I2COE Register */
366
    case 0x00b08:
367
        s->i2coe = val & 0x03;
368
        break;
369

    
370
    /* I2COUT Register */
371
    case 0x00b10:
372
        eeprom24c0x_write(val & 0x02, val & 0x01);
373
        s->i2cout = val;
374
        break;
375

    
376
    /* I2CSEL Register */
377
    case 0x00b18:
378
        s->i2csel = val & 0x01;
379
        break;
380

    
381
    default:
382
#if 0
383
        printf ("malta_fpga_write: Bad register offset 0x" TARGET_FMT_lx "\n",
384
                addr);
385
#endif
386
        break;
387
    }
388
}
389

    
390
static CPUReadMemoryFunc * const malta_fpga_read[] = {
391
   malta_fpga_readl,
392
   malta_fpga_readl,
393
   malta_fpga_readl
394
};
395

    
396
static CPUWriteMemoryFunc * const malta_fpga_write[] = {
397
   malta_fpga_writel,
398
   malta_fpga_writel,
399
   malta_fpga_writel
400
};
401

    
402
static void malta_fpga_reset(void *opaque)
403
{
404
    MaltaFPGAState *s = opaque;
405

    
406
    s->leds   = 0x00;
407
    s->brk    = 0x0a;
408
    s->gpout  = 0x00;
409
    s->i2cin  = 0x3;
410
    s->i2coe  = 0x0;
411
    s->i2cout = 0x3;
412
    s->i2csel = 0x1;
413

    
414
    s->display_text[8] = '\0';
415
    snprintf(s->display_text, 9, "        ");
416
}
417

    
418
static void malta_fpga_led_init(CharDriverState *chr)
419
{
420
    qemu_chr_printf(chr, "\e[HMalta LEDBAR\r\n");
421
    qemu_chr_printf(chr, "+--------+\r\n");
422
    qemu_chr_printf(chr, "+        +\r\n");
423
    qemu_chr_printf(chr, "+--------+\r\n");
424
    qemu_chr_printf(chr, "\n");
425
    qemu_chr_printf(chr, "Malta ASCII\r\n");
426
    qemu_chr_printf(chr, "+--------+\r\n");
427
    qemu_chr_printf(chr, "+        +\r\n");
428
    qemu_chr_printf(chr, "+--------+\r\n");
429
}
430

    
431
static MaltaFPGAState *malta_fpga_init(target_phys_addr_t base, qemu_irq uart_irq, CharDriverState *uart_chr)
432
{
433
    MaltaFPGAState *s;
434
    int malta;
435

    
436
    s = (MaltaFPGAState *)qemu_mallocz(sizeof(MaltaFPGAState));
437

    
438
    malta = cpu_register_io_memory(malta_fpga_read,
439
                                   malta_fpga_write, s,
440
                                   DEVICE_NATIVE_ENDIAN);
441

    
442
    cpu_register_physical_memory(base, 0x900, malta);
443
    /* 0xa00 is less than a page, so will still get the right offsets.  */
444
    cpu_register_physical_memory(base + 0xa00, 0x100000 - 0xa00, malta);
445

    
446
    s->display = qemu_chr_open("fpga", "vc:320x200", malta_fpga_led_init);
447

    
448
#ifdef TARGET_WORDS_BIGENDIAN
449
    s->uart = serial_mm_init(base + 0x900, 3, uart_irq, 230400, uart_chr, 1, 1);
450
#else
451
    s->uart = serial_mm_init(base + 0x900, 3, uart_irq, 230400, uart_chr, 1, 0);
452
#endif
453

    
454
    malta_fpga_reset(s);
455
    qemu_register_reset(malta_fpga_reset, s);
456

    
457
    return s;
458
}
459

    
460
/* Network support */
461
static void network_init(void)
462
{
463
    int i;
464

    
465
    for(i = 0; i < nb_nics; i++) {
466
        NICInfo *nd = &nd_table[i];
467
        const char *default_devaddr = NULL;
468

    
469
        if (i == 0 && (!nd->model || strcmp(nd->model, "pcnet") == 0))
470
            /* The malta board has a PCNet card using PCI SLOT 11 */
471
            default_devaddr = "0b";
472

    
473
        pci_nic_init_nofail(nd, "pcnet", default_devaddr);
474
    }
475
}
476

    
477
/* ROM and pseudo bootloader
478

479
   The following code implements a very very simple bootloader. It first
480
   loads the registers a0 to a3 to the values expected by the OS, and
481
   then jump at the kernel address.
482

483
   The bootloader should pass the locations of the kernel arguments and
484
   environment variables tables. Those tables contain the 32-bit address
485
   of NULL terminated strings. The environment variables table should be
486
   terminated by a NULL address.
487

488
   For a simpler implementation, the number of kernel arguments is fixed
489
   to two (the name of the kernel and the command line), and the two
490
   tables are actually the same one.
491

492
   The registers a0 to a3 should contain the following values:
493
     a0 - number of kernel arguments
494
     a1 - 32-bit address of the kernel arguments table
495
     a2 - 32-bit address of the environment variables table
496
     a3 - RAM size in bytes
497
*/
498

    
499
static void write_bootloader (CPUState *env, uint8_t *base,
500
                              int64_t kernel_entry)
501
{
502
    uint32_t *p;
503

    
504
    /* Small bootloader */
505
    p = (uint32_t *)base;
506
    stl_raw(p++, 0x0bf00160);                                      /* j 0x1fc00580 */
507
    stl_raw(p++, 0x00000000);                                      /* nop */
508

    
509
    /* YAMON service vector */
510
    stl_raw(base + 0x500, 0xbfc00580);      /* start: */
511
    stl_raw(base + 0x504, 0xbfc0083c);      /* print_count: */
512
    stl_raw(base + 0x520, 0xbfc00580);      /* start: */
513
    stl_raw(base + 0x52c, 0xbfc00800);      /* flush_cache: */
514
    stl_raw(base + 0x534, 0xbfc00808);      /* print: */
515
    stl_raw(base + 0x538, 0xbfc00800);      /* reg_cpu_isr: */
516
    stl_raw(base + 0x53c, 0xbfc00800);      /* unred_cpu_isr: */
517
    stl_raw(base + 0x540, 0xbfc00800);      /* reg_ic_isr: */
518
    stl_raw(base + 0x544, 0xbfc00800);      /* unred_ic_isr: */
519
    stl_raw(base + 0x548, 0xbfc00800);      /* reg_esr: */
520
    stl_raw(base + 0x54c, 0xbfc00800);      /* unreg_esr: */
521
    stl_raw(base + 0x550, 0xbfc00800);      /* getchar: */
522
    stl_raw(base + 0x554, 0xbfc00800);      /* syscon_read: */
523

    
524

    
525
    /* Second part of the bootloader */
526
    p = (uint32_t *) (base + 0x580);
527
    stl_raw(p++, 0x24040002);                                      /* addiu a0, zero, 2 */
528
    stl_raw(p++, 0x3c1d0000 | (((ENVP_ADDR - 64) >> 16) & 0xffff)); /* lui sp, high(ENVP_ADDR) */
529
    stl_raw(p++, 0x37bd0000 | ((ENVP_ADDR - 64) & 0xffff));        /* ori sp, sp, low(ENVP_ADDR) */
530
    stl_raw(p++, 0x3c050000 | ((ENVP_ADDR >> 16) & 0xffff));       /* lui a1, high(ENVP_ADDR) */
531
    stl_raw(p++, 0x34a50000 | (ENVP_ADDR & 0xffff));               /* ori a1, a1, low(ENVP_ADDR) */
532
    stl_raw(p++, 0x3c060000 | (((ENVP_ADDR + 8) >> 16) & 0xffff)); /* lui a2, high(ENVP_ADDR + 8) */
533
    stl_raw(p++, 0x34c60000 | ((ENVP_ADDR + 8) & 0xffff));         /* ori a2, a2, low(ENVP_ADDR + 8) */
534
    stl_raw(p++, 0x3c070000 | (loaderparams.ram_size >> 16));     /* lui a3, high(ram_size) */
535
    stl_raw(p++, 0x34e70000 | (loaderparams.ram_size & 0xffff));  /* ori a3, a3, low(ram_size) */
536

    
537
    /* Load BAR registers as done by YAMON */
538
    stl_raw(p++, 0x3c09b400);                                      /* lui t1, 0xb400 */
539

    
540
#ifdef TARGET_WORDS_BIGENDIAN
541
    stl_raw(p++, 0x3c08df00);                                      /* lui t0, 0xdf00 */
542
#else
543
    stl_raw(p++, 0x340800df);                                      /* ori t0, r0, 0x00df */
544
#endif
545
    stl_raw(p++, 0xad280068);                                      /* sw t0, 0x0068(t1) */
546

    
547
    stl_raw(p++, 0x3c09bbe0);                                      /* lui t1, 0xbbe0 */
548

    
549
#ifdef TARGET_WORDS_BIGENDIAN
550
    stl_raw(p++, 0x3c08c000);                                      /* lui t0, 0xc000 */
551
#else
552
    stl_raw(p++, 0x340800c0);                                      /* ori t0, r0, 0x00c0 */
553
#endif
554
    stl_raw(p++, 0xad280048);                                      /* sw t0, 0x0048(t1) */
555
#ifdef TARGET_WORDS_BIGENDIAN
556
    stl_raw(p++, 0x3c084000);                                      /* lui t0, 0x4000 */
557
#else
558
    stl_raw(p++, 0x34080040);                                      /* ori t0, r0, 0x0040 */
559
#endif
560
    stl_raw(p++, 0xad280050);                                      /* sw t0, 0x0050(t1) */
561

    
562
#ifdef TARGET_WORDS_BIGENDIAN
563
    stl_raw(p++, 0x3c088000);                                      /* lui t0, 0x8000 */
564
#else
565
    stl_raw(p++, 0x34080080);                                      /* ori t0, r0, 0x0080 */
566
#endif
567
    stl_raw(p++, 0xad280058);                                      /* sw t0, 0x0058(t1) */
568
#ifdef TARGET_WORDS_BIGENDIAN
569
    stl_raw(p++, 0x3c083f00);                                      /* lui t0, 0x3f00 */
570
#else
571
    stl_raw(p++, 0x3408003f);                                      /* ori t0, r0, 0x003f */
572
#endif
573
    stl_raw(p++, 0xad280060);                                      /* sw t0, 0x0060(t1) */
574

    
575
#ifdef TARGET_WORDS_BIGENDIAN
576
    stl_raw(p++, 0x3c08c100);                                      /* lui t0, 0xc100 */
577
#else
578
    stl_raw(p++, 0x340800c1);                                      /* ori t0, r0, 0x00c1 */
579
#endif
580
    stl_raw(p++, 0xad280080);                                      /* sw t0, 0x0080(t1) */
581
#ifdef TARGET_WORDS_BIGENDIAN
582
    stl_raw(p++, 0x3c085e00);                                      /* lui t0, 0x5e00 */
583
#else
584
    stl_raw(p++, 0x3408005e);                                      /* ori t0, r0, 0x005e */
585
#endif
586
    stl_raw(p++, 0xad280088);                                      /* sw t0, 0x0088(t1) */
587

    
588
    /* Jump to kernel code */
589
    stl_raw(p++, 0x3c1f0000 | ((kernel_entry >> 16) & 0xffff));    /* lui ra, high(kernel_entry) */
590
    stl_raw(p++, 0x37ff0000 | (kernel_entry & 0xffff));            /* ori ra, ra, low(kernel_entry) */
591
    stl_raw(p++, 0x03e00008);                                      /* jr ra */
592
    stl_raw(p++, 0x00000000);                                      /* nop */
593

    
594
    /* YAMON subroutines */
595
    p = (uint32_t *) (base + 0x800);
596
    stl_raw(p++, 0x03e00008);                                     /* jr ra */
597
    stl_raw(p++, 0x24020000);                                     /* li v0,0 */
598
   /* 808 YAMON print */
599
    stl_raw(p++, 0x03e06821);                                     /* move t5,ra */
600
    stl_raw(p++, 0x00805821);                                     /* move t3,a0 */
601
    stl_raw(p++, 0x00a05021);                                     /* move t2,a1 */
602
    stl_raw(p++, 0x91440000);                                     /* lbu a0,0(t2) */
603
    stl_raw(p++, 0x254a0001);                                     /* addiu t2,t2,1 */
604
    stl_raw(p++, 0x10800005);                                     /* beqz a0,834 */
605
    stl_raw(p++, 0x00000000);                                     /* nop */
606
    stl_raw(p++, 0x0ff0021c);                                     /* jal 870 */
607
    stl_raw(p++, 0x00000000);                                     /* nop */
608
    stl_raw(p++, 0x08000205);                                     /* j 814 */
609
    stl_raw(p++, 0x00000000);                                     /* nop */
610
    stl_raw(p++, 0x01a00008);                                     /* jr t5 */
611
    stl_raw(p++, 0x01602021);                                     /* move a0,t3 */
612
    /* 0x83c YAMON print_count */
613
    stl_raw(p++, 0x03e06821);                                     /* move t5,ra */
614
    stl_raw(p++, 0x00805821);                                     /* move t3,a0 */
615
    stl_raw(p++, 0x00a05021);                                     /* move t2,a1 */
616
    stl_raw(p++, 0x00c06021);                                     /* move t4,a2 */
617
    stl_raw(p++, 0x91440000);                                     /* lbu a0,0(t2) */
618
    stl_raw(p++, 0x0ff0021c);                                     /* jal 870 */
619
    stl_raw(p++, 0x00000000);                                     /* nop */
620
    stl_raw(p++, 0x254a0001);                                     /* addiu t2,t2,1 */
621
    stl_raw(p++, 0x258cffff);                                     /* addiu t4,t4,-1 */
622
    stl_raw(p++, 0x1580fffa);                                     /* bnez t4,84c */
623
    stl_raw(p++, 0x00000000);                                     /* nop */
624
    stl_raw(p++, 0x01a00008);                                     /* jr t5 */
625
    stl_raw(p++, 0x01602021);                                     /* move a0,t3 */
626
    /* 0x870 */
627
    stl_raw(p++, 0x3c08b800);                                     /* lui t0,0xb400 */
628
    stl_raw(p++, 0x350803f8);                                     /* ori t0,t0,0x3f8 */
629
    stl_raw(p++, 0x91090005);                                     /* lbu t1,5(t0) */
630
    stl_raw(p++, 0x00000000);                                     /* nop */
631
    stl_raw(p++, 0x31290040);                                     /* andi t1,t1,0x40 */
632
    stl_raw(p++, 0x1120fffc);                                     /* beqz t1,878 <outch+0x8> */
633
    stl_raw(p++, 0x00000000);                                     /* nop */
634
    stl_raw(p++, 0x03e00008);                                     /* jr ra */
635
    stl_raw(p++, 0xa1040000);                                     /* sb a0,0(t0) */
636

    
637
}
638

    
639
static void GCC_FMT_ATTR(3, 4) prom_set(uint32_t* prom_buf, int index,
640
                                        const char *string, ...)
641
{
642
    va_list ap;
643
    int32_t table_addr;
644

    
645
    if (index >= ENVP_NB_ENTRIES)
646
        return;
647

    
648
    if (string == NULL) {
649
        prom_buf[index] = 0;
650
        return;
651
    }
652

    
653
    table_addr = sizeof(int32_t) * ENVP_NB_ENTRIES + index * ENVP_ENTRY_SIZE;
654
    prom_buf[index] = tswap32(ENVP_ADDR + table_addr);
655

    
656
    va_start(ap, string);
657
    vsnprintf((char *)prom_buf + table_addr, ENVP_ENTRY_SIZE, string, ap);
658
    va_end(ap);
659
}
660

    
661
/* Kernel */
662
static int64_t load_kernel (void)
663
{
664
    int64_t kernel_entry, kernel_high;
665
    long initrd_size;
666
    ram_addr_t initrd_offset;
667
    int big_endian;
668
    uint32_t *prom_buf;
669
    long prom_size;
670
    int prom_index = 0;
671

    
672
#ifdef TARGET_WORDS_BIGENDIAN
673
    big_endian = 1;
674
#else
675
    big_endian = 0;
676
#endif
677

    
678
    if (load_elf(loaderparams.kernel_filename, cpu_mips_kseg0_to_phys, NULL,
679
                 (uint64_t *)&kernel_entry, NULL, (uint64_t *)&kernel_high,
680
                 big_endian, ELF_MACHINE, 1) < 0) {
681
        fprintf(stderr, "qemu: could not load kernel '%s'\n",
682
                loaderparams.kernel_filename);
683
        exit(1);
684
    }
685

    
686
    /* load initrd */
687
    initrd_size = 0;
688
    initrd_offset = 0;
689
    if (loaderparams.initrd_filename) {
690
        initrd_size = get_image_size (loaderparams.initrd_filename);
691
        if (initrd_size > 0) {
692
            initrd_offset = (kernel_high + ~TARGET_PAGE_MASK) & TARGET_PAGE_MASK;
693
            if (initrd_offset + initrd_size > ram_size) {
694
                fprintf(stderr,
695
                        "qemu: memory too small for initial ram disk '%s'\n",
696
                        loaderparams.initrd_filename);
697
                exit(1);
698
            }
699
            initrd_size = load_image_targphys(loaderparams.initrd_filename,
700
                                              initrd_offset,
701
                                              ram_size - initrd_offset);
702
        }
703
        if (initrd_size == (target_ulong) -1) {
704
            fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
705
                    loaderparams.initrd_filename);
706
            exit(1);
707
        }
708
    }
709

    
710
    /* Setup prom parameters. */
711
    prom_size = ENVP_NB_ENTRIES * (sizeof(int32_t) + ENVP_ENTRY_SIZE);
712
    prom_buf = qemu_malloc(prom_size);
713

    
714
    prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_filename);
715
    if (initrd_size > 0) {
716
        prom_set(prom_buf, prom_index++, "rd_start=0x%" PRIx64 " rd_size=%li %s",
717
                 cpu_mips_phys_to_kseg0(NULL, initrd_offset), initrd_size,
718
                 loaderparams.kernel_cmdline);
719
    } else {
720
        prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_cmdline);
721
    }
722

    
723
    prom_set(prom_buf, prom_index++, "memsize");
724
    prom_set(prom_buf, prom_index++, "%i", loaderparams.ram_size);
725
    prom_set(prom_buf, prom_index++, "modetty0");
726
    prom_set(prom_buf, prom_index++, "38400n8r");
727
    prom_set(prom_buf, prom_index++, NULL);
728

    
729
    rom_add_blob_fixed("prom", prom_buf, prom_size,
730
                       cpu_mips_kseg0_to_phys(NULL, ENVP_ADDR));
731

    
732
    return kernel_entry;
733
}
734

    
735
static void main_cpu_reset(void *opaque)
736
{
737
    CPUState *env = opaque;
738
    cpu_reset(env);
739

    
740
    /* The bootloader does not need to be rewritten as it is located in a
741
       read only location. The kernel location and the arguments table
742
       location does not change. */
743
    if (loaderparams.kernel_filename) {
744
        env->CP0_Status &= ~((1 << CP0St_BEV) | (1 << CP0St_ERL));
745
    }
746
}
747

    
748
static void cpu_request_exit(void *opaque, int irq, int level)
749
{
750
    CPUState *env = cpu_single_env;
751

    
752
    if (env && level) {
753
        cpu_exit(env);
754
    }
755
}
756

    
757
static
758
void mips_malta_init (ram_addr_t ram_size,
759
                      const char *boot_device,
760
                      const char *kernel_filename, const char *kernel_cmdline,
761
                      const char *initrd_filename, const char *cpu_model)
762
{
763
    char *filename;
764
    ram_addr_t ram_offset;
765
    ram_addr_t bios_offset;
766
    target_long bios_size;
767
    int64_t kernel_entry;
768
    PCIBus *pci_bus;
769
    CPUState *env;
770
    qemu_irq *i8259;
771
    qemu_irq *cpu_exit_irq;
772
    int piix4_devfn;
773
    i2c_bus *smbus;
774
    int i;
775
    DriveInfo *dinfo;
776
    DriveInfo *hd[MAX_IDE_BUS * MAX_IDE_DEVS];
777
    DriveInfo *fd[MAX_FD];
778
    int fl_idx = 0;
779
    int fl_sectors = 0;
780
    int be;
781

    
782
    /* Make sure the first 3 serial ports are associated with a device. */
783
    for(i = 0; i < 3; i++) {
784
        if (!serial_hds[i]) {
785
            char label[32];
786
            snprintf(label, sizeof(label), "serial%d", i);
787
            serial_hds[i] = qemu_chr_open(label, "null", NULL);
788
        }
789
    }
790

    
791
    /* init CPUs */
792
    if (cpu_model == NULL) {
793
#ifdef TARGET_MIPS64
794
        cpu_model = "20Kc";
795
#else
796
        cpu_model = "24Kf";
797
#endif
798
    }
799
    env = cpu_init(cpu_model);
800
    if (!env) {
801
        fprintf(stderr, "Unable to find CPU definition\n");
802
        exit(1);
803
    }
804
    qemu_register_reset(main_cpu_reset, env);
805

    
806
    /* allocate RAM */
807
    if (ram_size > (256 << 20)) {
808
        fprintf(stderr,
809
                "qemu: Too much memory for this machine: %d MB, maximum 256 MB\n",
810
                ((unsigned int)ram_size / (1 << 20)));
811
        exit(1);
812
    }
813
    ram_offset = qemu_ram_alloc(NULL, "mips_malta.ram", ram_size);
814
    bios_offset = qemu_ram_alloc(NULL, "mips_malta.bios", BIOS_SIZE);
815

    
816

    
817
    cpu_register_physical_memory(0, ram_size, ram_offset | IO_MEM_RAM);
818

    
819
    /* Map the bios at two physical locations, as on the real board. */
820
    cpu_register_physical_memory(0x1e000000LL,
821
                                 BIOS_SIZE, bios_offset | IO_MEM_ROM);
822
    cpu_register_physical_memory(0x1fc00000LL,
823
                                 BIOS_SIZE, bios_offset | IO_MEM_ROM);
824

    
825
#ifdef TARGET_WORDS_BIGENDIAN
826
    be = 1;
827
#else
828
    be = 0;
829
#endif
830
    /* FPGA */
831
    malta_fpga_init(0x1f000000LL, env->irq[2], serial_hds[2]);
832

    
833
    /* Load firmware in flash / BIOS unless we boot directly into a kernel. */
834
    if (kernel_filename) {
835
        /* Write a small bootloader to the flash location. */
836
        loaderparams.ram_size = ram_size;
837
        loaderparams.kernel_filename = kernel_filename;
838
        loaderparams.kernel_cmdline = kernel_cmdline;
839
        loaderparams.initrd_filename = initrd_filename;
840
        kernel_entry = load_kernel();
841
        write_bootloader(env, qemu_get_ram_ptr(bios_offset), kernel_entry);
842
    } else {
843
        dinfo = drive_get(IF_PFLASH, 0, fl_idx);
844
        if (dinfo) {
845
            /* Load firmware from flash. */
846
            bios_size = 0x400000;
847
            fl_sectors = bios_size >> 16;
848
#ifdef DEBUG_BOARD_INIT
849
            printf("Register parallel flash %d size " TARGET_FMT_lx " at "
850
                   "offset %08lx addr %08llx '%s' %x\n",
851
                   fl_idx, bios_size, bios_offset, 0x1e000000LL,
852
                   bdrv_get_device_name(dinfo->bdrv), fl_sectors);
853
#endif
854
            pflash_cfi01_register(0x1e000000LL, bios_offset,
855
                                  dinfo->bdrv, 65536, fl_sectors,
856
                                  4, 0x0000, 0x0000, 0x0000, 0x0000, be);
857
            fl_idx++;
858
        } else {
859
            /* Load a BIOS image. */
860
            if (bios_name == NULL)
861
                bios_name = BIOS_FILENAME;
862
            filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
863
            if (filename) {
864
                bios_size = load_image_targphys(filename, 0x1fc00000LL,
865
                                                BIOS_SIZE);
866
                qemu_free(filename);
867
            } else {
868
                bios_size = -1;
869
            }
870
            if ((bios_size < 0 || bios_size > BIOS_SIZE) && !kernel_filename) {
871
                fprintf(stderr,
872
                        "qemu: Could not load MIPS bios '%s', and no -kernel argument was specified\n",
873
                        bios_name);
874
                exit(1);
875
            }
876
        }
877
        /* In little endian mode the 32bit words in the bios are swapped,
878
           a neat trick which allows bi-endian firmware. */
879
#ifndef TARGET_WORDS_BIGENDIAN
880
        {
881
            uint32_t *addr = qemu_get_ram_ptr(bios_offset);;
882
            uint32_t *end = addr + bios_size;
883
            while (addr < end) {
884
                bswap32s(addr);
885
            }
886
        }
887
#endif
888
    }
889

    
890
    /* Board ID = 0x420 (Malta Board with CoreLV)
891
       XXX: theoretically 0x1e000010 should map to flash and 0x1fc00010 should
892
       map to the board ID. */
893
    stl_p(qemu_get_ram_ptr(bios_offset) + 0x10, 0x00000420);
894

    
895
    /* Init internal devices */
896
    cpu_mips_irq_init_cpu(env);
897
    cpu_mips_clock_init(env);
898

    
899
    /* Interrupt controller */
900
    /* The 8259 is attached to the MIPS CPU INT0 pin, ie interrupt 2 */
901
    i8259 = i8259_init(env->irq[2]);
902

    
903
    /* Northbridge */
904
    pci_bus = gt64120_register(i8259);
905

    
906
    /* Southbridge */
907
    ide_drive_get(hd, MAX_IDE_BUS);
908

    
909
    piix4_devfn = piix4_init(pci_bus, 80);
910
    isa_bus_irqs(i8259);
911
    pci_piix4_ide_init(pci_bus, hd, piix4_devfn + 1);
912
    usb_uhci_piix4_init(pci_bus, piix4_devfn + 2);
913
    smbus = piix4_pm_init(pci_bus, piix4_devfn + 3, 0x1100, isa_get_irq(9),
914
                          NULL, NULL, 0);
915
    /* TODO: Populate SPD eeprom data.  */
916
    smbus_eeprom_init(smbus, 8, NULL, 0);
917
    pit = pit_init(0x40, 0);
918
    cpu_exit_irq = qemu_allocate_irqs(cpu_request_exit, NULL, 1);
919
    DMA_init(0, cpu_exit_irq);
920

    
921
    /* Super I/O */
922
    isa_create_simple("i8042");
923

    
924
    rtc_init(2000, NULL);
925
    serial_isa_init(0, serial_hds[0]);
926
    serial_isa_init(1, serial_hds[1]);
927
    if (parallel_hds[0])
928
        parallel_init(0, parallel_hds[0]);
929
    for(i = 0; i < MAX_FD; i++) {
930
        fd[i] = drive_get(IF_FLOPPY, 0, i);
931
    }
932
    fdctrl_init_isa(fd);
933

    
934
    /* Sound card */
935
    audio_init(NULL, pci_bus);
936

    
937
    /* Network card */
938
    network_init();
939

    
940
    /* Optional PCI video card */
941
    if (cirrus_vga_enabled) {
942
        pci_cirrus_vga_init(pci_bus);
943
    } else if (vmsvga_enabled) {
944
        if (!pci_vmsvga_init(pci_bus)) {
945
            fprintf(stderr, "Warning: vmware_vga not available,"
946
                    " using standard VGA instead\n");
947
            pci_vga_init(pci_bus);
948
        }
949
    } else if (std_vga_enabled) {
950
        pci_vga_init(pci_bus);
951
    }
952
}
953

    
954
static QEMUMachine mips_malta_machine = {
955
    .name = "malta",
956
    .desc = "MIPS Malta Core LV",
957
    .init = mips_malta_init,
958
    .is_default = 1,
959
};
960

    
961
static void mips_malta_machine_init(void)
962
{
963
    qemu_register_machine(&mips_malta_machine);
964
}
965

    
966
machine_init(mips_malta_machine_init);