Statistics
| Branch: | Revision:

root / fpu / softfloat-native.h @ 6b4c11cd

History | View | Annotate | Download (11.7 kB)

1 158142c2 bellard
/* Native implementation of soft float functions */
2 158142c2 bellard
#include <math.h>
3 38cfa06c bellard
4 38cfa06c bellard
#if (defined(_BSD) && !defined(__APPLE__)) || defined(HOST_SOLARIS)
5 158142c2 bellard
#include <ieeefp.h>
6 38cfa06c bellard
#define fabsf(f) ((float)fabs(f))
7 158142c2 bellard
#else
8 158142c2 bellard
#include <fenv.h>
9 158142c2 bellard
#endif
10 38cfa06c bellard
11 38cfa06c bellard
/*
12 38cfa06c bellard
 * Define some C99-7.12.3 classification macros and
13 38cfa06c bellard
 *        some C99-.12.4 for Solaris systems OS less than 10,
14 38cfa06c bellard
 *        or Solaris 10 systems running GCC 3.x or less.
15 38cfa06c bellard
 *   Solaris 10 with GCC4 does not need these macros as they
16 38cfa06c bellard
 *   are defined in <iso/math_c99.h> with a compiler directive
17 38cfa06c bellard
 */
18 fc81ba53 ths
#if defined(HOST_SOLARIS) && (( HOST_SOLARIS <= 9 ) || ((HOST_SOLARIS >= 10) && (__GNUC__ <= 4)))
19 38cfa06c bellard
/*
20 38cfa06c bellard
 * C99 7.12.3 classification macros
21 38cfa06c bellard
 * and
22 38cfa06c bellard
 * C99 7.12.14 comparison macros
23 38cfa06c bellard
 *
24 38cfa06c bellard
 * ... do not work on Solaris 10 using GNU CC 3.4.x.
25 38cfa06c bellard
 * Try to workaround the missing / broken C99 math macros.
26 38cfa06c bellard
 */
27 38cfa06c bellard
28 38cfa06c bellard
#define isnormal(x)             (fpclass(x) >= FP_NZERO)
29 38cfa06c bellard
#define isgreater(x, y)         ((!unordered(x, y)) && ((x) > (y)))
30 38cfa06c bellard
#define isgreaterequal(x, y)    ((!unordered(x, y)) && ((x) >= (y)))
31 38cfa06c bellard
#define isless(x, y)            ((!unordered(x, y)) && ((x) < (y)))
32 38cfa06c bellard
#define islessequal(x, y)       ((!unordered(x, y)) && ((x) <= (y)))
33 38cfa06c bellard
#define isunordered(x,y)        unordered(x, y)
34 ec530c81 bellard
#endif
35 158142c2 bellard
36 c94655b0 ths
#if defined(__sun__) && !defined(NEED_LIBSUNMATH)
37 c94655b0 ths
38 c94655b0 ths
#ifndef isnan
39 c94655b0 ths
# define isnan(x) \
40 c94655b0 ths
    (sizeof (x) == sizeof (long double) ? isnan_ld (x) \
41 c94655b0 ths
     : sizeof (x) == sizeof (double) ? isnan_d (x) \
42 c94655b0 ths
     : isnan_f (x))
43 c94655b0 ths
static inline int isnan_f  (float       x) { return x != x; }
44 c94655b0 ths
static inline int isnan_d  (double      x) { return x != x; }
45 c94655b0 ths
static inline int isnan_ld (long double x) { return x != x; }
46 c94655b0 ths
#endif
47 c94655b0 ths
48 c94655b0 ths
#ifndef isinf
49 c94655b0 ths
# define isinf(x) \
50 c94655b0 ths
    (sizeof (x) == sizeof (long double) ? isinf_ld (x) \
51 c94655b0 ths
     : sizeof (x) == sizeof (double) ? isinf_d (x) \
52 c94655b0 ths
     : isinf_f (x))
53 c94655b0 ths
static inline int isinf_f  (float       x) { return isnan (x - x); }
54 c94655b0 ths
static inline int isinf_d  (double      x) { return isnan (x - x); }
55 c94655b0 ths
static inline int isinf_ld (long double x) { return isnan (x - x); }
56 c94655b0 ths
#endif
57 c94655b0 ths
#endif
58 c94655b0 ths
59 158142c2 bellard
typedef float float32;
60 158142c2 bellard
typedef double float64;
61 158142c2 bellard
#ifdef FLOATX80
62 158142c2 bellard
typedef long double floatx80;
63 158142c2 bellard
#endif
64 158142c2 bellard
65 158142c2 bellard
typedef union {
66 158142c2 bellard
    float32 f;
67 158142c2 bellard
    uint32_t i;
68 158142c2 bellard
} float32u;
69 158142c2 bellard
typedef union {
70 158142c2 bellard
    float64 f;
71 158142c2 bellard
    uint64_t i;
72 158142c2 bellard
} float64u;
73 158142c2 bellard
#ifdef FLOATX80
74 158142c2 bellard
typedef union {
75 158142c2 bellard
    floatx80 f;
76 158142c2 bellard
    struct {
77 158142c2 bellard
        uint64_t low;
78 158142c2 bellard
        uint16_t high;
79 158142c2 bellard
    } i;
80 158142c2 bellard
} floatx80u;
81 158142c2 bellard
#endif
82 158142c2 bellard
83 158142c2 bellard
/*----------------------------------------------------------------------------
84 158142c2 bellard
| Software IEC/IEEE floating-point rounding mode.
85 158142c2 bellard
*----------------------------------------------------------------------------*/
86 38cfa06c bellard
#if (defined(_BSD) && !defined(__APPLE__)) || defined(HOST_SOLARIS)
87 158142c2 bellard
enum {
88 158142c2 bellard
    float_round_nearest_even = FP_RN,
89 7918bf47 pbrook
    float_round_down         = FP_RM,
90 7918bf47 pbrook
    float_round_up           = FP_RP,
91 7918bf47 pbrook
    float_round_to_zero      = FP_RZ
92 158142c2 bellard
};
93 158142c2 bellard
#elif defined(__arm__)
94 158142c2 bellard
enum {
95 158142c2 bellard
    float_round_nearest_even = 0,
96 158142c2 bellard
    float_round_down         = 1,
97 158142c2 bellard
    float_round_up           = 2,
98 158142c2 bellard
    float_round_to_zero      = 3
99 158142c2 bellard
};
100 158142c2 bellard
#else
101 158142c2 bellard
enum {
102 158142c2 bellard
    float_round_nearest_even = FE_TONEAREST,
103 158142c2 bellard
    float_round_down         = FE_DOWNWARD,
104 158142c2 bellard
    float_round_up           = FE_UPWARD,
105 158142c2 bellard
    float_round_to_zero      = FE_TOWARDZERO
106 158142c2 bellard
};
107 158142c2 bellard
#endif
108 158142c2 bellard
109 158142c2 bellard
typedef struct float_status {
110 158142c2 bellard
    signed char float_rounding_mode;
111 158142c2 bellard
#ifdef FLOATX80
112 158142c2 bellard
    signed char floatx80_rounding_precision;
113 158142c2 bellard
#endif
114 158142c2 bellard
} float_status;
115 158142c2 bellard
116 158142c2 bellard
void set_float_rounding_mode(int val STATUS_PARAM);
117 158142c2 bellard
#ifdef FLOATX80
118 158142c2 bellard
void set_floatx80_rounding_precision(int val STATUS_PARAM);
119 158142c2 bellard
#endif
120 158142c2 bellard
121 158142c2 bellard
/*----------------------------------------------------------------------------
122 158142c2 bellard
| Software IEC/IEEE integer-to-floating-point conversion routines.
123 158142c2 bellard
*----------------------------------------------------------------------------*/
124 158142c2 bellard
float32 int32_to_float32( int STATUS_PARAM);
125 75d62a58 j_mayer
float32 uint32_to_float32( unsigned int STATUS_PARAM);
126 158142c2 bellard
float64 int32_to_float64( int STATUS_PARAM);
127 75d62a58 j_mayer
float64 uint32_to_float64( unsigned int STATUS_PARAM);
128 158142c2 bellard
#ifdef FLOATX80
129 158142c2 bellard
floatx80 int32_to_floatx80( int STATUS_PARAM);
130 158142c2 bellard
#endif
131 158142c2 bellard
#ifdef FLOAT128
132 158142c2 bellard
float128 int32_to_float128( int STATUS_PARAM);
133 158142c2 bellard
#endif
134 158142c2 bellard
float32 int64_to_float32( int64_t STATUS_PARAM);
135 75d62a58 j_mayer
float32 uint64_to_float32( uint64_t STATUS_PARAM);
136 158142c2 bellard
float64 int64_to_float64( int64_t STATUS_PARAM);
137 75d62a58 j_mayer
float64 uint64_to_float64( uint64_t v STATUS_PARAM);
138 158142c2 bellard
#ifdef FLOATX80
139 158142c2 bellard
floatx80 int64_to_floatx80( int64_t STATUS_PARAM);
140 158142c2 bellard
#endif
141 158142c2 bellard
#ifdef FLOAT128
142 158142c2 bellard
float128 int64_to_float128( int64_t STATUS_PARAM);
143 158142c2 bellard
#endif
144 158142c2 bellard
145 158142c2 bellard
/*----------------------------------------------------------------------------
146 158142c2 bellard
| Software IEC/IEEE single-precision conversion routines.
147 158142c2 bellard
*----------------------------------------------------------------------------*/
148 158142c2 bellard
int float32_to_int32( float32  STATUS_PARAM);
149 158142c2 bellard
int float32_to_int32_round_to_zero( float32  STATUS_PARAM);
150 75d62a58 j_mayer
unsigned int float32_to_uint32( float32 a STATUS_PARAM);
151 75d62a58 j_mayer
unsigned int float32_to_uint32_round_to_zero( float32 a STATUS_PARAM);
152 158142c2 bellard
int64_t float32_to_int64( float32  STATUS_PARAM);
153 158142c2 bellard
int64_t float32_to_int64_round_to_zero( float32  STATUS_PARAM);
154 158142c2 bellard
float64 float32_to_float64( float32  STATUS_PARAM);
155 158142c2 bellard
#ifdef FLOATX80
156 158142c2 bellard
floatx80 float32_to_floatx80( float32  STATUS_PARAM);
157 158142c2 bellard
#endif
158 158142c2 bellard
#ifdef FLOAT128
159 158142c2 bellard
float128 float32_to_float128( float32  STATUS_PARAM);
160 158142c2 bellard
#endif
161 158142c2 bellard
162 158142c2 bellard
/*----------------------------------------------------------------------------
163 158142c2 bellard
| Software IEC/IEEE single-precision operations.
164 158142c2 bellard
*----------------------------------------------------------------------------*/
165 158142c2 bellard
float32 float32_round_to_int( float32  STATUS_PARAM);
166 158142c2 bellard
INLINE float32 float32_add( float32 a, float32 b STATUS_PARAM)
167 158142c2 bellard
{
168 158142c2 bellard
    return a + b;
169 158142c2 bellard
}
170 158142c2 bellard
INLINE float32 float32_sub( float32 a, float32 b STATUS_PARAM)
171 158142c2 bellard
{
172 158142c2 bellard
    return a - b;
173 158142c2 bellard
}
174 158142c2 bellard
INLINE float32 float32_mul( float32 a, float32 b STATUS_PARAM)
175 158142c2 bellard
{
176 158142c2 bellard
    return a * b;
177 158142c2 bellard
}
178 158142c2 bellard
INLINE float32 float32_div( float32 a, float32 b STATUS_PARAM)
179 158142c2 bellard
{
180 158142c2 bellard
    return a / b;
181 158142c2 bellard
}
182 158142c2 bellard
float32 float32_rem( float32, float32  STATUS_PARAM);
183 158142c2 bellard
float32 float32_sqrt( float32  STATUS_PARAM);
184 750afe93 bellard
INLINE int float32_eq( float32 a, float32 b STATUS_PARAM)
185 158142c2 bellard
{
186 158142c2 bellard
    return a == b;
187 158142c2 bellard
}
188 750afe93 bellard
INLINE int float32_le( float32 a, float32 b STATUS_PARAM)
189 158142c2 bellard
{
190 158142c2 bellard
    return a <= b;
191 158142c2 bellard
}
192 750afe93 bellard
INLINE int float32_lt( float32 a, float32 b STATUS_PARAM)
193 158142c2 bellard
{
194 158142c2 bellard
    return a < b;
195 158142c2 bellard
}
196 750afe93 bellard
INLINE int float32_eq_signaling( float32 a, float32 b STATUS_PARAM)
197 158142c2 bellard
{
198 b109f9f8 bellard
    return a <= b && a >= b;
199 158142c2 bellard
}
200 750afe93 bellard
INLINE int float32_le_quiet( float32 a, float32 b STATUS_PARAM)
201 158142c2 bellard
{
202 158142c2 bellard
    return islessequal(a, b);
203 158142c2 bellard
}
204 750afe93 bellard
INLINE int float32_lt_quiet( float32 a, float32 b STATUS_PARAM)
205 158142c2 bellard
{
206 158142c2 bellard
    return isless(a, b);
207 158142c2 bellard
}
208 750afe93 bellard
INLINE int float32_unordered( float32 a, float32 b STATUS_PARAM)
209 b109f9f8 bellard
{
210 b109f9f8 bellard
    return isunordered(a, b);
211 b109f9f8 bellard
212 b109f9f8 bellard
}
213 750afe93 bellard
int float32_compare( float32, float32 STATUS_PARAM );
214 750afe93 bellard
int float32_compare_quiet( float32, float32 STATUS_PARAM );
215 750afe93 bellard
int float32_is_signaling_nan( float32 );
216 158142c2 bellard
217 158142c2 bellard
INLINE float32 float32_abs(float32 a)
218 158142c2 bellard
{
219 158142c2 bellard
    return fabsf(a);
220 158142c2 bellard
}
221 158142c2 bellard
222 158142c2 bellard
INLINE float32 float32_chs(float32 a)
223 158142c2 bellard
{
224 158142c2 bellard
    return -a;
225 158142c2 bellard
}
226 158142c2 bellard
227 9ee6e8bb pbrook
INLINE float32 float32_scalbn(float32 a, int n)
228 9ee6e8bb pbrook
{
229 9ee6e8bb pbrook
    return scalbnf(a, n);
230 9ee6e8bb pbrook
}
231 9ee6e8bb pbrook
232 158142c2 bellard
/*----------------------------------------------------------------------------
233 158142c2 bellard
| Software IEC/IEEE double-precision conversion routines.
234 158142c2 bellard
*----------------------------------------------------------------------------*/
235 158142c2 bellard
int float64_to_int32( float64 STATUS_PARAM );
236 158142c2 bellard
int float64_to_int32_round_to_zero( float64 STATUS_PARAM );
237 75d62a58 j_mayer
unsigned int float64_to_uint32( float64 STATUS_PARAM );
238 75d62a58 j_mayer
unsigned int float64_to_uint32_round_to_zero( float64 STATUS_PARAM );
239 158142c2 bellard
int64_t float64_to_int64( float64 STATUS_PARAM );
240 158142c2 bellard
int64_t float64_to_int64_round_to_zero( float64 STATUS_PARAM );
241 75d62a58 j_mayer
uint64_t float64_to_uint64( float64 STATUS_PARAM );
242 75d62a58 j_mayer
uint64_t float64_to_uint64_round_to_zero( float64 STATUS_PARAM );
243 158142c2 bellard
float32 float64_to_float32( float64 STATUS_PARAM );
244 158142c2 bellard
#ifdef FLOATX80
245 158142c2 bellard
floatx80 float64_to_floatx80( float64 STATUS_PARAM );
246 158142c2 bellard
#endif
247 158142c2 bellard
#ifdef FLOAT128
248 158142c2 bellard
float128 float64_to_float128( float64 STATUS_PARAM );
249 158142c2 bellard
#endif
250 158142c2 bellard
251 158142c2 bellard
/*----------------------------------------------------------------------------
252 158142c2 bellard
| Software IEC/IEEE double-precision operations.
253 158142c2 bellard
*----------------------------------------------------------------------------*/
254 158142c2 bellard
float64 float64_round_to_int( float64 STATUS_PARAM );
255 e6e5906b pbrook
float64 float64_trunc_to_int( float64 STATUS_PARAM );
256 158142c2 bellard
INLINE float64 float64_add( float64 a, float64 b STATUS_PARAM)
257 158142c2 bellard
{
258 158142c2 bellard
    return a + b;
259 158142c2 bellard
}
260 158142c2 bellard
INLINE float64 float64_sub( float64 a, float64 b STATUS_PARAM)
261 158142c2 bellard
{
262 158142c2 bellard
    return a - b;
263 158142c2 bellard
}
264 158142c2 bellard
INLINE float64 float64_mul( float64 a, float64 b STATUS_PARAM)
265 158142c2 bellard
{
266 158142c2 bellard
    return a * b;
267 158142c2 bellard
}
268 158142c2 bellard
INLINE float64 float64_div( float64 a, float64 b STATUS_PARAM)
269 158142c2 bellard
{
270 158142c2 bellard
    return a / b;
271 158142c2 bellard
}
272 158142c2 bellard
float64 float64_rem( float64, float64 STATUS_PARAM );
273 158142c2 bellard
float64 float64_sqrt( float64 STATUS_PARAM );
274 750afe93 bellard
INLINE int float64_eq( float64 a, float64 b STATUS_PARAM)
275 158142c2 bellard
{
276 158142c2 bellard
    return a == b;
277 158142c2 bellard
}
278 750afe93 bellard
INLINE int float64_le( float64 a, float64 b STATUS_PARAM)
279 158142c2 bellard
{
280 158142c2 bellard
    return a <= b;
281 158142c2 bellard
}
282 750afe93 bellard
INLINE int float64_lt( float64 a, float64 b STATUS_PARAM)
283 158142c2 bellard
{
284 158142c2 bellard
    return a < b;
285 158142c2 bellard
}
286 750afe93 bellard
INLINE int float64_eq_signaling( float64 a, float64 b STATUS_PARAM)
287 158142c2 bellard
{
288 b109f9f8 bellard
    return a <= b && a >= b;
289 158142c2 bellard
}
290 750afe93 bellard
INLINE int float64_le_quiet( float64 a, float64 b STATUS_PARAM)
291 158142c2 bellard
{
292 158142c2 bellard
    return islessequal(a, b);
293 158142c2 bellard
}
294 750afe93 bellard
INLINE int float64_lt_quiet( float64 a, float64 b STATUS_PARAM)
295 158142c2 bellard
{
296 158142c2 bellard
    return isless(a, b);
297 158142c2 bellard
298 158142c2 bellard
}
299 750afe93 bellard
INLINE int float64_unordered( float64 a, float64 b STATUS_PARAM)
300 b109f9f8 bellard
{
301 b109f9f8 bellard
    return isunordered(a, b);
302 b109f9f8 bellard
303 b109f9f8 bellard
}
304 750afe93 bellard
int float64_compare( float64, float64 STATUS_PARAM );
305 750afe93 bellard
int float64_compare_quiet( float64, float64 STATUS_PARAM );
306 750afe93 bellard
int float64_is_signaling_nan( float64 );
307 750afe93 bellard
int float64_is_nan( float64 );
308 158142c2 bellard
309 158142c2 bellard
INLINE float64 float64_abs(float64 a)
310 158142c2 bellard
{
311 158142c2 bellard
    return fabs(a);
312 158142c2 bellard
}
313 158142c2 bellard
314 158142c2 bellard
INLINE float64 float64_chs(float64 a)
315 158142c2 bellard
{
316 158142c2 bellard
    return -a;
317 158142c2 bellard
}
318 158142c2 bellard
319 9ee6e8bb pbrook
INLINE float64 float64_scalbn(float64 a, int n)
320 9ee6e8bb pbrook
{
321 9ee6e8bb pbrook
    return scalbn(a, n);
322 9ee6e8bb pbrook
}
323 9ee6e8bb pbrook
324 158142c2 bellard
#ifdef FLOATX80
325 158142c2 bellard
326 158142c2 bellard
/*----------------------------------------------------------------------------
327 158142c2 bellard
| Software IEC/IEEE extended double-precision conversion routines.
328 158142c2 bellard
*----------------------------------------------------------------------------*/
329 158142c2 bellard
int floatx80_to_int32( floatx80 STATUS_PARAM );
330 158142c2 bellard
int floatx80_to_int32_round_to_zero( floatx80 STATUS_PARAM );
331 158142c2 bellard
int64_t floatx80_to_int64( floatx80 STATUS_PARAM);
332 158142c2 bellard
int64_t floatx80_to_int64_round_to_zero( floatx80 STATUS_PARAM);
333 158142c2 bellard
float32 floatx80_to_float32( floatx80 STATUS_PARAM );
334 158142c2 bellard
float64 floatx80_to_float64( floatx80 STATUS_PARAM );
335 158142c2 bellard
#ifdef FLOAT128
336 158142c2 bellard
float128 floatx80_to_float128( floatx80 STATUS_PARAM );
337 158142c2 bellard
#endif
338 158142c2 bellard
339 158142c2 bellard
/*----------------------------------------------------------------------------
340 158142c2 bellard
| Software IEC/IEEE extended double-precision operations.
341 158142c2 bellard
*----------------------------------------------------------------------------*/
342 158142c2 bellard
floatx80 floatx80_round_to_int( floatx80 STATUS_PARAM );
343 158142c2 bellard
INLINE floatx80 floatx80_add( floatx80 a, floatx80 b STATUS_PARAM)
344 158142c2 bellard
{
345 158142c2 bellard
    return a + b;
346 158142c2 bellard
}
347 158142c2 bellard
INLINE floatx80 floatx80_sub( floatx80 a, floatx80 b STATUS_PARAM)
348 158142c2 bellard
{
349 158142c2 bellard
    return a - b;
350 158142c2 bellard
}
351 158142c2 bellard
INLINE floatx80 floatx80_mul( floatx80 a, floatx80 b STATUS_PARAM)
352 158142c2 bellard
{
353 158142c2 bellard
    return a * b;
354 158142c2 bellard
}
355 158142c2 bellard
INLINE floatx80 floatx80_div( floatx80 a, floatx80 b STATUS_PARAM)
356 158142c2 bellard
{
357 158142c2 bellard
    return a / b;
358 158142c2 bellard
}
359 158142c2 bellard
floatx80 floatx80_rem( floatx80, floatx80 STATUS_PARAM );
360 158142c2 bellard
floatx80 floatx80_sqrt( floatx80 STATUS_PARAM );
361 750afe93 bellard
INLINE int floatx80_eq( floatx80 a, floatx80 b STATUS_PARAM)
362 158142c2 bellard
{
363 158142c2 bellard
    return a == b;
364 158142c2 bellard
}
365 750afe93 bellard
INLINE int floatx80_le( floatx80 a, floatx80 b STATUS_PARAM)
366 158142c2 bellard
{
367 158142c2 bellard
    return a <= b;
368 158142c2 bellard
}
369 750afe93 bellard
INLINE int floatx80_lt( floatx80 a, floatx80 b STATUS_PARAM)
370 158142c2 bellard
{
371 158142c2 bellard
    return a < b;
372 158142c2 bellard
}
373 750afe93 bellard
INLINE int floatx80_eq_signaling( floatx80 a, floatx80 b STATUS_PARAM)
374 158142c2 bellard
{
375 b109f9f8 bellard
    return a <= b && a >= b;
376 158142c2 bellard
}
377 750afe93 bellard
INLINE int floatx80_le_quiet( floatx80 a, floatx80 b STATUS_PARAM)
378 158142c2 bellard
{
379 158142c2 bellard
    return islessequal(a, b);
380 158142c2 bellard
}
381 750afe93 bellard
INLINE int floatx80_lt_quiet( floatx80 a, floatx80 b STATUS_PARAM)
382 158142c2 bellard
{
383 158142c2 bellard
    return isless(a, b);
384 158142c2 bellard
385 158142c2 bellard
}
386 750afe93 bellard
INLINE int floatx80_unordered( floatx80 a, floatx80 b STATUS_PARAM)
387 b109f9f8 bellard
{
388 b109f9f8 bellard
    return isunordered(a, b);
389 b109f9f8 bellard
390 b109f9f8 bellard
}
391 750afe93 bellard
int floatx80_compare( floatx80, floatx80 STATUS_PARAM );
392 750afe93 bellard
int floatx80_compare_quiet( floatx80, floatx80 STATUS_PARAM );
393 750afe93 bellard
int floatx80_is_signaling_nan( floatx80 );
394 158142c2 bellard
395 158142c2 bellard
INLINE floatx80 floatx80_abs(floatx80 a)
396 158142c2 bellard
{
397 158142c2 bellard
    return fabsl(a);
398 158142c2 bellard
}
399 158142c2 bellard
400 158142c2 bellard
INLINE floatx80 floatx80_chs(floatx80 a)
401 158142c2 bellard
{
402 158142c2 bellard
    return -a;
403 158142c2 bellard
}
404 9ee6e8bb pbrook
405 9ee6e8bb pbrook
INLINE floatx80 floatx80_scalbn(floatx80 a, int n)
406 9ee6e8bb pbrook
{
407 9ee6e8bb pbrook
    return scalbnl(a, n);
408 9ee6e8bb pbrook
}
409 9ee6e8bb pbrook
410 158142c2 bellard
#endif