Statistics
| Branch: | Revision:

root / qemu-doc.texi @ 6b64b624

History | View | Annotate | Download (76.5 kB)

1 386405f7 bellard
\input texinfo @c -*- texinfo -*-
2 debc7065 bellard
@c %**start of header
3 debc7065 bellard
@setfilename qemu-doc.info
4 e080e785 Stefan Weil
5 e080e785 Stefan Weil
@documentlanguage en
6 e080e785 Stefan Weil
@documentencoding UTF-8
7 e080e785 Stefan Weil
8 8f40c388 bellard
@settitle QEMU Emulator User Documentation
9 debc7065 bellard
@exampleindent 0
10 debc7065 bellard
@paragraphindent 0
11 debc7065 bellard
@c %**end of header
12 386405f7 bellard
13 a1a32b05 Stefan Weil
@ifinfo
14 a1a32b05 Stefan Weil
@direntry
15 a1a32b05 Stefan Weil
* QEMU: (qemu-doc).    The QEMU Emulator User Documentation.
16 a1a32b05 Stefan Weil
@end direntry
17 a1a32b05 Stefan Weil
@end ifinfo
18 a1a32b05 Stefan Weil
19 0806e3f6 bellard
@iftex
20 386405f7 bellard
@titlepage
21 386405f7 bellard
@sp 7
22 8f40c388 bellard
@center @titlefont{QEMU Emulator}
23 debc7065 bellard
@sp 1
24 debc7065 bellard
@center @titlefont{User Documentation}
25 386405f7 bellard
@sp 3
26 386405f7 bellard
@end titlepage
27 0806e3f6 bellard
@end iftex
28 386405f7 bellard
29 debc7065 bellard
@ifnottex
30 debc7065 bellard
@node Top
31 debc7065 bellard
@top
32 debc7065 bellard
33 debc7065 bellard
@menu
34 debc7065 bellard
* Introduction::
35 debc7065 bellard
* Installation::
36 debc7065 bellard
* QEMU PC System emulator::
37 debc7065 bellard
* QEMU System emulator for non PC targets::
38 83195237 bellard
* QEMU User space emulator::
39 debc7065 bellard
* compilation:: Compilation from the sources
40 7544a042 Stefan Weil
* License::
41 debc7065 bellard
* Index::
42 debc7065 bellard
@end menu
43 debc7065 bellard
@end ifnottex
44 debc7065 bellard
45 debc7065 bellard
@contents
46 debc7065 bellard
47 debc7065 bellard
@node Introduction
48 386405f7 bellard
@chapter Introduction
49 386405f7 bellard
50 debc7065 bellard
@menu
51 debc7065 bellard
* intro_features:: Features
52 debc7065 bellard
@end menu
53 debc7065 bellard
54 debc7065 bellard
@node intro_features
55 322d0c66 bellard
@section Features
56 386405f7 bellard
57 1f673135 bellard
QEMU is a FAST! processor emulator using dynamic translation to
58 1f673135 bellard
achieve good emulation speed.
59 1eb20527 bellard
60 1eb20527 bellard
QEMU has two operating modes:
61 0806e3f6 bellard
62 d7e5edca Stefan Weil
@itemize
63 7544a042 Stefan Weil
@cindex operating modes
64 0806e3f6 bellard
65 5fafdf24 ths
@item
66 7544a042 Stefan Weil
@cindex system emulation
67 1f673135 bellard
Full system emulation. In this mode, QEMU emulates a full system (for
68 3f9f3aa1 bellard
example a PC), including one or several processors and various
69 3f9f3aa1 bellard
peripherals. It can be used to launch different Operating Systems
70 3f9f3aa1 bellard
without rebooting the PC or to debug system code.
71 1eb20527 bellard
72 5fafdf24 ths
@item
73 7544a042 Stefan Weil
@cindex user mode emulation
74 83195237 bellard
User mode emulation. In this mode, QEMU can launch
75 83195237 bellard
processes compiled for one CPU on another CPU. It can be used to
76 1f673135 bellard
launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
77 1f673135 bellard
to ease cross-compilation and cross-debugging.
78 1eb20527 bellard
79 1eb20527 bellard
@end itemize
80 1eb20527 bellard
81 7c3fc84d bellard
QEMU can run without an host kernel driver and yet gives acceptable
82 5fafdf24 ths
performance.
83 322d0c66 bellard
84 52c00a5f bellard
For system emulation, the following hardware targets are supported:
85 52c00a5f bellard
@itemize
86 7544a042 Stefan Weil
@cindex emulated target systems
87 7544a042 Stefan Weil
@cindex supported target systems
88 9d0a8e6f bellard
@item PC (x86 or x86_64 processor)
89 3f9f3aa1 bellard
@item ISA PC (old style PC without PCI bus)
90 52c00a5f bellard
@item PREP (PowerPC processor)
91 d45952a0 aurel32
@item G3 Beige PowerMac (PowerPC processor)
92 9d0a8e6f bellard
@item Mac99 PowerMac (PowerPC processor, in progress)
93 ee76f82e blueswir1
@item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
94 c7ba218d blueswir1
@item Sun4u/Sun4v (64-bit Sparc processor, in progress)
95 d9aedc32 ths
@item Malta board (32-bit and 64-bit MIPS processors)
96 88cb0a02 aurel32
@item MIPS Magnum (64-bit MIPS processor)
97 9ee6e8bb pbrook
@item ARM Integrator/CP (ARM)
98 9ee6e8bb pbrook
@item ARM Versatile baseboard (ARM)
99 0ef849d7 Paul Brook
@item ARM RealView Emulation/Platform baseboard (ARM)
100 ef4c3856 balrog
@item Spitz, Akita, Borzoi, Terrier and Tosa PDAs (PXA270 processor)
101 9ee6e8bb pbrook
@item Luminary Micro LM3S811EVB (ARM Cortex-M3)
102 9ee6e8bb pbrook
@item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
103 707e011b pbrook
@item Freescale MCF5208EVB (ColdFire V2).
104 209a4e69 pbrook
@item Arnewsh MCF5206 evaluation board (ColdFire V2).
105 02645926 balrog
@item Palm Tungsten|E PDA (OMAP310 processor)
106 c30bb264 balrog
@item N800 and N810 tablets (OMAP2420 processor)
107 57cd6e97 balrog
@item MusicPal (MV88W8618 ARM processor)
108 ef4c3856 balrog
@item Gumstix "Connex" and "Verdex" motherboards (PXA255/270).
109 ef4c3856 balrog
@item Siemens SX1 smartphone (OMAP310 processor)
110 4af39611 Paul Brook
@item Syborg SVP base model (ARM Cortex-A8).
111 48c50a62 Edgar E. Iglesias
@item AXIS-Devboard88 (CRISv32 ETRAX-FS).
112 48c50a62 Edgar E. Iglesias
@item Petalogix Spartan 3aDSP1800 MMU ref design (MicroBlaze).
113 52c00a5f bellard
@end itemize
114 386405f7 bellard
115 7544a042 Stefan Weil
@cindex supported user mode targets
116 7544a042 Stefan Weil
For user emulation, x86 (32 and 64 bit), PowerPC (32 and 64 bit),
117 7544a042 Stefan Weil
ARM, MIPS (32 bit only), Sparc (32 and 64 bit),
118 7544a042 Stefan Weil
Alpha, ColdFire(m68k), CRISv32 and MicroBlaze CPUs are supported.
119 0806e3f6 bellard
120 debc7065 bellard
@node Installation
121 5b9f457a bellard
@chapter Installation
122 5b9f457a bellard
123 15a34c63 bellard
If you want to compile QEMU yourself, see @ref{compilation}.
124 15a34c63 bellard
125 debc7065 bellard
@menu
126 debc7065 bellard
* install_linux::   Linux
127 debc7065 bellard
* install_windows:: Windows
128 debc7065 bellard
* install_mac::     Macintosh
129 debc7065 bellard
@end menu
130 debc7065 bellard
131 debc7065 bellard
@node install_linux
132 1f673135 bellard
@section Linux
133 7544a042 Stefan Weil
@cindex installation (Linux)
134 1f673135 bellard
135 7c3fc84d bellard
If a precompiled package is available for your distribution - you just
136 7c3fc84d bellard
have to install it. Otherwise, see @ref{compilation}.
137 5b9f457a bellard
138 debc7065 bellard
@node install_windows
139 1f673135 bellard
@section Windows
140 7544a042 Stefan Weil
@cindex installation (Windows)
141 8cd0ac2f bellard
142 15a34c63 bellard
Download the experimental binary installer at
143 debc7065 bellard
@url{http://www.free.oszoo.org/@/download.html}.
144 7544a042 Stefan Weil
TODO (no longer available)
145 d691f669 bellard
146 debc7065 bellard
@node install_mac
147 1f673135 bellard
@section Mac OS X
148 d691f669 bellard
149 15a34c63 bellard
Download the experimental binary installer at
150 debc7065 bellard
@url{http://www.free.oszoo.org/@/download.html}.
151 7544a042 Stefan Weil
TODO (no longer available)
152 df0f11a0 bellard
153 debc7065 bellard
@node QEMU PC System emulator
154 3f9f3aa1 bellard
@chapter QEMU PC System emulator
155 7544a042 Stefan Weil
@cindex system emulation (PC)
156 1eb20527 bellard
157 debc7065 bellard
@menu
158 debc7065 bellard
* pcsys_introduction:: Introduction
159 debc7065 bellard
* pcsys_quickstart::   Quick Start
160 debc7065 bellard
* sec_invocation::     Invocation
161 debc7065 bellard
* pcsys_keys::         Keys
162 debc7065 bellard
* pcsys_monitor::      QEMU Monitor
163 debc7065 bellard
* disk_images::        Disk Images
164 debc7065 bellard
* pcsys_network::      Network emulation
165 576fd0a1 Stefan Weil
* pcsys_other_devs::   Other Devices
166 debc7065 bellard
* direct_linux_boot::  Direct Linux Boot
167 debc7065 bellard
* pcsys_usb::          USB emulation
168 f858dcae ths
* vnc_security::       VNC security
169 debc7065 bellard
* gdb_usage::          GDB usage
170 debc7065 bellard
* pcsys_os_specific::  Target OS specific information
171 debc7065 bellard
@end menu
172 debc7065 bellard
173 debc7065 bellard
@node pcsys_introduction
174 0806e3f6 bellard
@section Introduction
175 0806e3f6 bellard
176 0806e3f6 bellard
@c man begin DESCRIPTION
177 0806e3f6 bellard
178 3f9f3aa1 bellard
The QEMU PC System emulator simulates the
179 3f9f3aa1 bellard
following peripherals:
180 0806e3f6 bellard
181 0806e3f6 bellard
@itemize @minus
182 5fafdf24 ths
@item
183 15a34c63 bellard
i440FX host PCI bridge and PIIX3 PCI to ISA bridge
184 0806e3f6 bellard
@item
185 15a34c63 bellard
Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
186 15a34c63 bellard
extensions (hardware level, including all non standard modes).
187 0806e3f6 bellard
@item
188 0806e3f6 bellard
PS/2 mouse and keyboard
189 5fafdf24 ths
@item
190 15a34c63 bellard
2 PCI IDE interfaces with hard disk and CD-ROM support
191 1f673135 bellard
@item
192 1f673135 bellard
Floppy disk
193 5fafdf24 ths
@item
194 3a2eeac0 Stefan Weil
PCI and ISA network adapters
195 0806e3f6 bellard
@item
196 05d5818c bellard
Serial ports
197 05d5818c bellard
@item
198 c0fe3827 bellard
Creative SoundBlaster 16 sound card
199 c0fe3827 bellard
@item
200 c0fe3827 bellard
ENSONIQ AudioPCI ES1370 sound card
201 c0fe3827 bellard
@item
202 e5c9a13e balrog
Intel 82801AA AC97 Audio compatible sound card
203 e5c9a13e balrog
@item
204 7d72e762 Gerd Hoffmann
Intel HD Audio Controller and HDA codec
205 7d72e762 Gerd Hoffmann
@item
206 2d983446 Stefan Weil
Adlib (OPL2) - Yamaha YM3812 compatible chip
207 b389dbfb bellard
@item
208 26463dbc balrog
Gravis Ultrasound GF1 sound card
209 26463dbc balrog
@item
210 cc53d26d malc
CS4231A compatible sound card
211 cc53d26d malc
@item
212 b389dbfb bellard
PCI UHCI USB controller and a virtual USB hub.
213 0806e3f6 bellard
@end itemize
214 0806e3f6 bellard
215 3f9f3aa1 bellard
SMP is supported with up to 255 CPUs.
216 3f9f3aa1 bellard
217 1d1f8c33 malc
Note that adlib, gus and cs4231a are only available when QEMU was
218 1d1f8c33 malc
configured with --audio-card-list option containing the name(s) of
219 e5178e8d malc
required card(s).
220 c0fe3827 bellard
221 15a34c63 bellard
QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
222 15a34c63 bellard
VGA BIOS.
223 15a34c63 bellard
224 c0fe3827 bellard
QEMU uses YM3812 emulation by Tatsuyuki Satoh.
225 c0fe3827 bellard
226 2d983446 Stefan Weil
QEMU uses GUS emulation (GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
227 26463dbc balrog
by Tibor "TS" Schรผtz.
228 423d65f4 balrog
229 720036a5 malc
Not that, by default, GUS shares IRQ(7) with parallel ports and so
230 720036a5 malc
qemu must be told to not have parallel ports to have working GUS
231 720036a5 malc
232 720036a5 malc
@example
233 720036a5 malc
qemu dos.img -soundhw gus -parallel none
234 720036a5 malc
@end example
235 720036a5 malc
236 720036a5 malc
Alternatively:
237 720036a5 malc
@example
238 720036a5 malc
qemu dos.img -device gus,irq=5
239 720036a5 malc
@end example
240 720036a5 malc
241 720036a5 malc
Or some other unclaimed IRQ.
242 720036a5 malc
243 cc53d26d malc
CS4231A is the chip used in Windows Sound System and GUSMAX products
244 cc53d26d malc
245 0806e3f6 bellard
@c man end
246 0806e3f6 bellard
247 debc7065 bellard
@node pcsys_quickstart
248 1eb20527 bellard
@section Quick Start
249 7544a042 Stefan Weil
@cindex quick start
250 1eb20527 bellard
251 285dc330 bellard
Download and uncompress the linux image (@file{linux.img}) and type:
252 0806e3f6 bellard
253 0806e3f6 bellard
@example
254 285dc330 bellard
qemu linux.img
255 0806e3f6 bellard
@end example
256 0806e3f6 bellard
257 0806e3f6 bellard
Linux should boot and give you a prompt.
258 0806e3f6 bellard
259 6cc721cf bellard
@node sec_invocation
260 ec410fc9 bellard
@section Invocation
261 ec410fc9 bellard
262 ec410fc9 bellard
@example
263 0806e3f6 bellard
@c man begin SYNOPSIS
264 89dfe898 ths
usage: qemu [options] [@var{disk_image}]
265 0806e3f6 bellard
@c man end
266 ec410fc9 bellard
@end example
267 ec410fc9 bellard
268 0806e3f6 bellard
@c man begin OPTIONS
269 d2c639d6 blueswir1
@var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
270 d2c639d6 blueswir1
targets do not need a disk image.
271 ec410fc9 bellard
272 5824d651 blueswir1
@include qemu-options.texi
273 ec410fc9 bellard
274 3e11db9a bellard
@c man end
275 3e11db9a bellard
276 debc7065 bellard
@node pcsys_keys
277 3e11db9a bellard
@section Keys
278 3e11db9a bellard
279 3e11db9a bellard
@c man begin OPTIONS
280 3e11db9a bellard
281 de1db2a1 Brad Hards
During the graphical emulation, you can use special key combinations to change
282 de1db2a1 Brad Hards
modes. The default key mappings are shown below, but if you use @code{-alt-grab}
283 de1db2a1 Brad Hards
then the modifier is Ctrl-Alt-Shift (instead of Ctrl-Alt) and if you use
284 de1db2a1 Brad Hards
@code{-ctrl-grab} then the modifier is the right Ctrl key (instead of Ctrl-Alt):
285 de1db2a1 Brad Hards
286 a1b74fe8 bellard
@table @key
287 f9859310 bellard
@item Ctrl-Alt-f
288 7544a042 Stefan Weil
@kindex Ctrl-Alt-f
289 a1b74fe8 bellard
Toggle full screen
290 a0a821a4 bellard
291 c4a735f9 malc
@item Ctrl-Alt-u
292 7544a042 Stefan Weil
@kindex Ctrl-Alt-u
293 c4a735f9 malc
Restore the screen's un-scaled dimensions
294 c4a735f9 malc
295 f9859310 bellard
@item Ctrl-Alt-n
296 7544a042 Stefan Weil
@kindex Ctrl-Alt-n
297 a0a821a4 bellard
Switch to virtual console 'n'. Standard console mappings are:
298 a0a821a4 bellard
@table @emph
299 a0a821a4 bellard
@item 1
300 a0a821a4 bellard
Target system display
301 a0a821a4 bellard
@item 2
302 a0a821a4 bellard
Monitor
303 a0a821a4 bellard
@item 3
304 a0a821a4 bellard
Serial port
305 a1b74fe8 bellard
@end table
306 a1b74fe8 bellard
307 f9859310 bellard
@item Ctrl-Alt
308 7544a042 Stefan Weil
@kindex Ctrl-Alt
309 a0a821a4 bellard
Toggle mouse and keyboard grab.
310 a0a821a4 bellard
@end table
311 a0a821a4 bellard
312 7544a042 Stefan Weil
@kindex Ctrl-Up
313 7544a042 Stefan Weil
@kindex Ctrl-Down
314 7544a042 Stefan Weil
@kindex Ctrl-PageUp
315 7544a042 Stefan Weil
@kindex Ctrl-PageDown
316 3e11db9a bellard
In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
317 3e11db9a bellard
@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
318 3e11db9a bellard
319 7544a042 Stefan Weil
@kindex Ctrl-a h
320 a0a821a4 bellard
During emulation, if you are using the @option{-nographic} option, use
321 a0a821a4 bellard
@key{Ctrl-a h} to get terminal commands:
322 ec410fc9 bellard
323 ec410fc9 bellard
@table @key
324 a1b74fe8 bellard
@item Ctrl-a h
325 7544a042 Stefan Weil
@kindex Ctrl-a h
326 d2c639d6 blueswir1
@item Ctrl-a ?
327 7544a042 Stefan Weil
@kindex Ctrl-a ?
328 ec410fc9 bellard
Print this help
329 3b46e624 ths
@item Ctrl-a x
330 7544a042 Stefan Weil
@kindex Ctrl-a x
331 366dfc52 ths
Exit emulator
332 3b46e624 ths
@item Ctrl-a s
333 7544a042 Stefan Weil
@kindex Ctrl-a s
334 1f47a922 bellard
Save disk data back to file (if -snapshot)
335 20d8a3ed ths
@item Ctrl-a t
336 7544a042 Stefan Weil
@kindex Ctrl-a t
337 d2c639d6 blueswir1
Toggle console timestamps
338 a1b74fe8 bellard
@item Ctrl-a b
339 7544a042 Stefan Weil
@kindex Ctrl-a b
340 1f673135 bellard
Send break (magic sysrq in Linux)
341 a1b74fe8 bellard
@item Ctrl-a c
342 7544a042 Stefan Weil
@kindex Ctrl-a c
343 1f673135 bellard
Switch between console and monitor
344 a1b74fe8 bellard
@item Ctrl-a Ctrl-a
345 7544a042 Stefan Weil
@kindex Ctrl-a a
346 a1b74fe8 bellard
Send Ctrl-a
347 ec410fc9 bellard
@end table
348 0806e3f6 bellard
@c man end
349 0806e3f6 bellard
350 0806e3f6 bellard
@ignore
351 0806e3f6 bellard
352 1f673135 bellard
@c man begin SEEALSO
353 1f673135 bellard
The HTML documentation of QEMU for more precise information and Linux
354 1f673135 bellard
user mode emulator invocation.
355 1f673135 bellard
@c man end
356 1f673135 bellard
357 1f673135 bellard
@c man begin AUTHOR
358 1f673135 bellard
Fabrice Bellard
359 1f673135 bellard
@c man end
360 1f673135 bellard
361 1f673135 bellard
@end ignore
362 1f673135 bellard
363 debc7065 bellard
@node pcsys_monitor
364 1f673135 bellard
@section QEMU Monitor
365 7544a042 Stefan Weil
@cindex QEMU monitor
366 1f673135 bellard
367 1f673135 bellard
The QEMU monitor is used to give complex commands to the QEMU
368 1f673135 bellard
emulator. You can use it to:
369 1f673135 bellard
370 1f673135 bellard
@itemize @minus
371 1f673135 bellard
372 1f673135 bellard
@item
373 e598752a ths
Remove or insert removable media images
374 89dfe898 ths
(such as CD-ROM or floppies).
375 1f673135 bellard
376 5fafdf24 ths
@item
377 1f673135 bellard
Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
378 1f673135 bellard
from a disk file.
379 1f673135 bellard
380 1f673135 bellard
@item Inspect the VM state without an external debugger.
381 1f673135 bellard
382 1f673135 bellard
@end itemize
383 1f673135 bellard
384 1f673135 bellard
@subsection Commands
385 1f673135 bellard
386 1f673135 bellard
The following commands are available:
387 1f673135 bellard
388 2313086a Blue Swirl
@include qemu-monitor.texi
389 0806e3f6 bellard
390 1f673135 bellard
@subsection Integer expressions
391 1f673135 bellard
392 1f673135 bellard
The monitor understands integers expressions for every integer
393 1f673135 bellard
argument. You can use register names to get the value of specifics
394 1f673135 bellard
CPU registers by prefixing them with @emph{$}.
395 ec410fc9 bellard
396 1f47a922 bellard
@node disk_images
397 1f47a922 bellard
@section Disk Images
398 1f47a922 bellard
399 acd935ef bellard
Since version 0.6.1, QEMU supports many disk image formats, including
400 acd935ef bellard
growable disk images (their size increase as non empty sectors are
401 13a2e80f bellard
written), compressed and encrypted disk images. Version 0.8.3 added
402 13a2e80f bellard
the new qcow2 disk image format which is essential to support VM
403 13a2e80f bellard
snapshots.
404 1f47a922 bellard
405 debc7065 bellard
@menu
406 debc7065 bellard
* disk_images_quickstart::    Quick start for disk image creation
407 debc7065 bellard
* disk_images_snapshot_mode:: Snapshot mode
408 13a2e80f bellard
* vm_snapshots::              VM snapshots
409 debc7065 bellard
* qemu_img_invocation::       qemu-img Invocation
410 975b092b ths
* qemu_nbd_invocation::       qemu-nbd Invocation
411 19cb3738 bellard
* host_drives::               Using host drives
412 debc7065 bellard
* disk_images_fat_images::    Virtual FAT disk images
413 75818250 ths
* disk_images_nbd::           NBD access
414 42af9c30 MORITA Kazutaka
* disk_images_sheepdog::      Sheepdog disk images
415 debc7065 bellard
@end menu
416 debc7065 bellard
417 debc7065 bellard
@node disk_images_quickstart
418 acd935ef bellard
@subsection Quick start for disk image creation
419 acd935ef bellard
420 acd935ef bellard
You can create a disk image with the command:
421 1f47a922 bellard
@example
422 acd935ef bellard
qemu-img create myimage.img mysize
423 1f47a922 bellard
@end example
424 acd935ef bellard
where @var{myimage.img} is the disk image filename and @var{mysize} is its
425 acd935ef bellard
size in kilobytes. You can add an @code{M} suffix to give the size in
426 acd935ef bellard
megabytes and a @code{G} suffix for gigabytes.
427 acd935ef bellard
428 debc7065 bellard
See @ref{qemu_img_invocation} for more information.
429 1f47a922 bellard
430 debc7065 bellard
@node disk_images_snapshot_mode
431 1f47a922 bellard
@subsection Snapshot mode
432 1f47a922 bellard
433 1f47a922 bellard
If you use the option @option{-snapshot}, all disk images are
434 1f47a922 bellard
considered as read only. When sectors in written, they are written in
435 1f47a922 bellard
a temporary file created in @file{/tmp}. You can however force the
436 acd935ef bellard
write back to the raw disk images by using the @code{commit} monitor
437 acd935ef bellard
command (or @key{C-a s} in the serial console).
438 1f47a922 bellard
439 13a2e80f bellard
@node vm_snapshots
440 13a2e80f bellard
@subsection VM snapshots
441 13a2e80f bellard
442 13a2e80f bellard
VM snapshots are snapshots of the complete virtual machine including
443 13a2e80f bellard
CPU state, RAM, device state and the content of all the writable
444 13a2e80f bellard
disks. In order to use VM snapshots, you must have at least one non
445 13a2e80f bellard
removable and writable block device using the @code{qcow2} disk image
446 13a2e80f bellard
format. Normally this device is the first virtual hard drive.
447 13a2e80f bellard
448 13a2e80f bellard
Use the monitor command @code{savevm} to create a new VM snapshot or
449 13a2e80f bellard
replace an existing one. A human readable name can be assigned to each
450 19d36792 bellard
snapshot in addition to its numerical ID.
451 13a2e80f bellard
452 13a2e80f bellard
Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
453 13a2e80f bellard
a VM snapshot. @code{info snapshots} lists the available snapshots
454 13a2e80f bellard
with their associated information:
455 13a2e80f bellard
456 13a2e80f bellard
@example
457 13a2e80f bellard
(qemu) info snapshots
458 13a2e80f bellard
Snapshot devices: hda
459 13a2e80f bellard
Snapshot list (from hda):
460 13a2e80f bellard
ID        TAG                 VM SIZE                DATE       VM CLOCK
461 13a2e80f bellard
1         start                   41M 2006-08-06 12:38:02   00:00:14.954
462 13a2e80f bellard
2                                 40M 2006-08-06 12:43:29   00:00:18.633
463 13a2e80f bellard
3         msys                    40M 2006-08-06 12:44:04   00:00:23.514
464 13a2e80f bellard
@end example
465 13a2e80f bellard
466 13a2e80f bellard
A VM snapshot is made of a VM state info (its size is shown in
467 13a2e80f bellard
@code{info snapshots}) and a snapshot of every writable disk image.
468 13a2e80f bellard
The VM state info is stored in the first @code{qcow2} non removable
469 13a2e80f bellard
and writable block device. The disk image snapshots are stored in
470 13a2e80f bellard
every disk image. The size of a snapshot in a disk image is difficult
471 13a2e80f bellard
to evaluate and is not shown by @code{info snapshots} because the
472 13a2e80f bellard
associated disk sectors are shared among all the snapshots to save
473 19d36792 bellard
disk space (otherwise each snapshot would need a full copy of all the
474 19d36792 bellard
disk images).
475 13a2e80f bellard
476 13a2e80f bellard
When using the (unrelated) @code{-snapshot} option
477 13a2e80f bellard
(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
478 13a2e80f bellard
but they are deleted as soon as you exit QEMU.
479 13a2e80f bellard
480 13a2e80f bellard
VM snapshots currently have the following known limitations:
481 13a2e80f bellard
@itemize
482 5fafdf24 ths
@item
483 13a2e80f bellard
They cannot cope with removable devices if they are removed or
484 13a2e80f bellard
inserted after a snapshot is done.
485 5fafdf24 ths
@item
486 13a2e80f bellard
A few device drivers still have incomplete snapshot support so their
487 13a2e80f bellard
state is not saved or restored properly (in particular USB).
488 13a2e80f bellard
@end itemize
489 13a2e80f bellard
490 acd935ef bellard
@node qemu_img_invocation
491 acd935ef bellard
@subsection @code{qemu-img} Invocation
492 1f47a922 bellard
493 acd935ef bellard
@include qemu-img.texi
494 05efe46e bellard
495 975b092b ths
@node qemu_nbd_invocation
496 975b092b ths
@subsection @code{qemu-nbd} Invocation
497 975b092b ths
498 975b092b ths
@include qemu-nbd.texi
499 975b092b ths
500 19cb3738 bellard
@node host_drives
501 19cb3738 bellard
@subsection Using host drives
502 19cb3738 bellard
503 19cb3738 bellard
In addition to disk image files, QEMU can directly access host
504 19cb3738 bellard
devices. We describe here the usage for QEMU version >= 0.8.3.
505 19cb3738 bellard
506 19cb3738 bellard
@subsubsection Linux
507 19cb3738 bellard
508 19cb3738 bellard
On Linux, you can directly use the host device filename instead of a
509 4be456f1 ths
disk image filename provided you have enough privileges to access
510 19cb3738 bellard
it. For example, use @file{/dev/cdrom} to access to the CDROM or
511 19cb3738 bellard
@file{/dev/fd0} for the floppy.
512 19cb3738 bellard
513 f542086d bellard
@table @code
514 19cb3738 bellard
@item CD
515 19cb3738 bellard
You can specify a CDROM device even if no CDROM is loaded. QEMU has
516 19cb3738 bellard
specific code to detect CDROM insertion or removal. CDROM ejection by
517 19cb3738 bellard
the guest OS is supported. Currently only data CDs are supported.
518 19cb3738 bellard
@item Floppy
519 19cb3738 bellard
You can specify a floppy device even if no floppy is loaded. Floppy
520 19cb3738 bellard
removal is currently not detected accurately (if you change floppy
521 19cb3738 bellard
without doing floppy access while the floppy is not loaded, the guest
522 19cb3738 bellard
OS will think that the same floppy is loaded).
523 19cb3738 bellard
@item Hard disks
524 19cb3738 bellard
Hard disks can be used. Normally you must specify the whole disk
525 19cb3738 bellard
(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
526 19cb3738 bellard
see it as a partitioned disk. WARNING: unless you know what you do, it
527 19cb3738 bellard
is better to only make READ-ONLY accesses to the hard disk otherwise
528 19cb3738 bellard
you may corrupt your host data (use the @option{-snapshot} command
529 19cb3738 bellard
line option or modify the device permissions accordingly).
530 19cb3738 bellard
@end table
531 19cb3738 bellard
532 19cb3738 bellard
@subsubsection Windows
533 19cb3738 bellard
534 01781963 bellard
@table @code
535 01781963 bellard
@item CD
536 4be456f1 ths
The preferred syntax is the drive letter (e.g. @file{d:}). The
537 01781963 bellard
alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
538 01781963 bellard
supported as an alias to the first CDROM drive.
539 19cb3738 bellard
540 e598752a ths
Currently there is no specific code to handle removable media, so it
541 19cb3738 bellard
is better to use the @code{change} or @code{eject} monitor commands to
542 19cb3738 bellard
change or eject media.
543 01781963 bellard
@item Hard disks
544 89dfe898 ths
Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
545 01781963 bellard
where @var{N} is the drive number (0 is the first hard disk).
546 01781963 bellard
547 01781963 bellard
WARNING: unless you know what you do, it is better to only make
548 01781963 bellard
READ-ONLY accesses to the hard disk otherwise you may corrupt your
549 01781963 bellard
host data (use the @option{-snapshot} command line so that the
550 01781963 bellard
modifications are written in a temporary file).
551 01781963 bellard
@end table
552 01781963 bellard
553 19cb3738 bellard
554 19cb3738 bellard
@subsubsection Mac OS X
555 19cb3738 bellard
556 5fafdf24 ths
@file{/dev/cdrom} is an alias to the first CDROM.
557 19cb3738 bellard
558 e598752a ths
Currently there is no specific code to handle removable media, so it
559 19cb3738 bellard
is better to use the @code{change} or @code{eject} monitor commands to
560 19cb3738 bellard
change or eject media.
561 19cb3738 bellard
562 debc7065 bellard
@node disk_images_fat_images
563 2c6cadd4 bellard
@subsection Virtual FAT disk images
564 2c6cadd4 bellard
565 2c6cadd4 bellard
QEMU can automatically create a virtual FAT disk image from a
566 2c6cadd4 bellard
directory tree. In order to use it, just type:
567 2c6cadd4 bellard
568 5fafdf24 ths
@example
569 2c6cadd4 bellard
qemu linux.img -hdb fat:/my_directory
570 2c6cadd4 bellard
@end example
571 2c6cadd4 bellard
572 2c6cadd4 bellard
Then you access access to all the files in the @file{/my_directory}
573 2c6cadd4 bellard
directory without having to copy them in a disk image or to export
574 2c6cadd4 bellard
them via SAMBA or NFS. The default access is @emph{read-only}.
575 2c6cadd4 bellard
576 2c6cadd4 bellard
Floppies can be emulated with the @code{:floppy:} option:
577 2c6cadd4 bellard
578 5fafdf24 ths
@example
579 2c6cadd4 bellard
qemu linux.img -fda fat:floppy:/my_directory
580 2c6cadd4 bellard
@end example
581 2c6cadd4 bellard
582 2c6cadd4 bellard
A read/write support is available for testing (beta stage) with the
583 2c6cadd4 bellard
@code{:rw:} option:
584 2c6cadd4 bellard
585 5fafdf24 ths
@example
586 2c6cadd4 bellard
qemu linux.img -fda fat:floppy:rw:/my_directory
587 2c6cadd4 bellard
@end example
588 2c6cadd4 bellard
589 2c6cadd4 bellard
What you should @emph{never} do:
590 2c6cadd4 bellard
@itemize
591 2c6cadd4 bellard
@item use non-ASCII filenames ;
592 2c6cadd4 bellard
@item use "-snapshot" together with ":rw:" ;
593 85b2c688 bellard
@item expect it to work when loadvm'ing ;
594 85b2c688 bellard
@item write to the FAT directory on the host system while accessing it with the guest system.
595 2c6cadd4 bellard
@end itemize
596 2c6cadd4 bellard
597 75818250 ths
@node disk_images_nbd
598 75818250 ths
@subsection NBD access
599 75818250 ths
600 75818250 ths
QEMU can access directly to block device exported using the Network Block Device
601 75818250 ths
protocol.
602 75818250 ths
603 75818250 ths
@example
604 75818250 ths
qemu linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
605 75818250 ths
@end example
606 75818250 ths
607 75818250 ths
If the NBD server is located on the same host, you can use an unix socket instead
608 75818250 ths
of an inet socket:
609 75818250 ths
610 75818250 ths
@example
611 75818250 ths
qemu linux.img -hdb nbd:unix:/tmp/my_socket
612 75818250 ths
@end example
613 75818250 ths
614 75818250 ths
In this case, the block device must be exported using qemu-nbd:
615 75818250 ths
616 75818250 ths
@example
617 75818250 ths
qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
618 75818250 ths
@end example
619 75818250 ths
620 75818250 ths
The use of qemu-nbd allows to share a disk between several guests:
621 75818250 ths
@example
622 75818250 ths
qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
623 75818250 ths
@end example
624 75818250 ths
625 75818250 ths
and then you can use it with two guests:
626 75818250 ths
@example
627 75818250 ths
qemu linux1.img -hdb nbd:unix:/tmp/my_socket
628 75818250 ths
qemu linux2.img -hdb nbd:unix:/tmp/my_socket
629 75818250 ths
@end example
630 75818250 ths
631 1d45f8b5 Laurent Vivier
If the nbd-server uses named exports (since NBD 2.9.18), you must use the
632 1d45f8b5 Laurent Vivier
"exportname" option:
633 1d45f8b5 Laurent Vivier
@example
634 1d45f8b5 Laurent Vivier
qemu -cdrom nbd:localhost:exportname=debian-500-ppc-netinst
635 1d45f8b5 Laurent Vivier
qemu -cdrom nbd:localhost:exportname=openSUSE-11.1-ppc-netinst
636 1d45f8b5 Laurent Vivier
@end example
637 1d45f8b5 Laurent Vivier
638 42af9c30 MORITA Kazutaka
@node disk_images_sheepdog
639 42af9c30 MORITA Kazutaka
@subsection Sheepdog disk images
640 42af9c30 MORITA Kazutaka
641 42af9c30 MORITA Kazutaka
Sheepdog is a distributed storage system for QEMU.  It provides highly
642 42af9c30 MORITA Kazutaka
available block level storage volumes that can be attached to
643 42af9c30 MORITA Kazutaka
QEMU-based virtual machines.
644 42af9c30 MORITA Kazutaka
645 42af9c30 MORITA Kazutaka
You can create a Sheepdog disk image with the command:
646 42af9c30 MORITA Kazutaka
@example
647 42af9c30 MORITA Kazutaka
qemu-img create sheepdog:@var{image} @var{size}
648 42af9c30 MORITA Kazutaka
@end example
649 42af9c30 MORITA Kazutaka
where @var{image} is the Sheepdog image name and @var{size} is its
650 42af9c30 MORITA Kazutaka
size.
651 42af9c30 MORITA Kazutaka
652 42af9c30 MORITA Kazutaka
To import the existing @var{filename} to Sheepdog, you can use a
653 42af9c30 MORITA Kazutaka
convert command.
654 42af9c30 MORITA Kazutaka
@example
655 42af9c30 MORITA Kazutaka
qemu-img convert @var{filename} sheepdog:@var{image}
656 42af9c30 MORITA Kazutaka
@end example
657 42af9c30 MORITA Kazutaka
658 42af9c30 MORITA Kazutaka
You can boot from the Sheepdog disk image with the command:
659 42af9c30 MORITA Kazutaka
@example
660 42af9c30 MORITA Kazutaka
qemu sheepdog:@var{image}
661 42af9c30 MORITA Kazutaka
@end example
662 42af9c30 MORITA Kazutaka
663 42af9c30 MORITA Kazutaka
You can also create a snapshot of the Sheepdog image like qcow2.
664 42af9c30 MORITA Kazutaka
@example
665 42af9c30 MORITA Kazutaka
qemu-img snapshot -c @var{tag} sheepdog:@var{image}
666 42af9c30 MORITA Kazutaka
@end example
667 42af9c30 MORITA Kazutaka
where @var{tag} is a tag name of the newly created snapshot.
668 42af9c30 MORITA Kazutaka
669 42af9c30 MORITA Kazutaka
To boot from the Sheepdog snapshot, specify the tag name of the
670 42af9c30 MORITA Kazutaka
snapshot.
671 42af9c30 MORITA Kazutaka
@example
672 42af9c30 MORITA Kazutaka
qemu sheepdog:@var{image}:@var{tag}
673 42af9c30 MORITA Kazutaka
@end example
674 42af9c30 MORITA Kazutaka
675 42af9c30 MORITA Kazutaka
You can create a cloned image from the existing snapshot.
676 42af9c30 MORITA Kazutaka
@example
677 42af9c30 MORITA Kazutaka
qemu-img create -b sheepdog:@var{base}:@var{tag} sheepdog:@var{image}
678 42af9c30 MORITA Kazutaka
@end example
679 42af9c30 MORITA Kazutaka
where @var{base} is a image name of the source snapshot and @var{tag}
680 42af9c30 MORITA Kazutaka
is its tag name.
681 42af9c30 MORITA Kazutaka
682 42af9c30 MORITA Kazutaka
If the Sheepdog daemon doesn't run on the local host, you need to
683 42af9c30 MORITA Kazutaka
specify one of the Sheepdog servers to connect to.
684 42af9c30 MORITA Kazutaka
@example
685 42af9c30 MORITA Kazutaka
qemu-img create sheepdog:@var{hostname}:@var{port}:@var{image} @var{size}
686 42af9c30 MORITA Kazutaka
qemu sheepdog:@var{hostname}:@var{port}:@var{image}
687 42af9c30 MORITA Kazutaka
@end example
688 42af9c30 MORITA Kazutaka
689 debc7065 bellard
@node pcsys_network
690 9d4fb82e bellard
@section Network emulation
691 9d4fb82e bellard
692 4be456f1 ths
QEMU can simulate several network cards (PCI or ISA cards on the PC
693 41d03949 bellard
target) and can connect them to an arbitrary number of Virtual Local
694 41d03949 bellard
Area Networks (VLANs). Host TAP devices can be connected to any QEMU
695 41d03949 bellard
VLAN. VLAN can be connected between separate instances of QEMU to
696 4be456f1 ths
simulate large networks. For simpler usage, a non privileged user mode
697 41d03949 bellard
network stack can replace the TAP device to have a basic network
698 41d03949 bellard
connection.
699 41d03949 bellard
700 41d03949 bellard
@subsection VLANs
701 9d4fb82e bellard
702 41d03949 bellard
QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
703 41d03949 bellard
connection between several network devices. These devices can be for
704 41d03949 bellard
example QEMU virtual Ethernet cards or virtual Host ethernet devices
705 41d03949 bellard
(TAP devices).
706 9d4fb82e bellard
707 41d03949 bellard
@subsection Using TAP network interfaces
708 41d03949 bellard
709 41d03949 bellard
This is the standard way to connect QEMU to a real network. QEMU adds
710 41d03949 bellard
a virtual network device on your host (called @code{tapN}), and you
711 41d03949 bellard
can then configure it as if it was a real ethernet card.
712 9d4fb82e bellard
713 8f40c388 bellard
@subsubsection Linux host
714 8f40c388 bellard
715 9d4fb82e bellard
As an example, you can download the @file{linux-test-xxx.tar.gz}
716 9d4fb82e bellard
archive and copy the script @file{qemu-ifup} in @file{/etc} and
717 9d4fb82e bellard
configure properly @code{sudo} so that the command @code{ifconfig}
718 9d4fb82e bellard
contained in @file{qemu-ifup} can be executed as root. You must verify
719 41d03949 bellard
that your host kernel supports the TAP network interfaces: the
720 9d4fb82e bellard
device @file{/dev/net/tun} must be present.
721 9d4fb82e bellard
722 ee0f4751 bellard
See @ref{sec_invocation} to have examples of command lines using the
723 ee0f4751 bellard
TAP network interfaces.
724 9d4fb82e bellard
725 8f40c388 bellard
@subsubsection Windows host
726 8f40c388 bellard
727 8f40c388 bellard
There is a virtual ethernet driver for Windows 2000/XP systems, called
728 8f40c388 bellard
TAP-Win32. But it is not included in standard QEMU for Windows,
729 8f40c388 bellard
so you will need to get it separately. It is part of OpenVPN package,
730 8f40c388 bellard
so download OpenVPN from : @url{http://openvpn.net/}.
731 8f40c388 bellard
732 9d4fb82e bellard
@subsection Using the user mode network stack
733 9d4fb82e bellard
734 41d03949 bellard
By using the option @option{-net user} (default configuration if no
735 41d03949 bellard
@option{-net} option is specified), QEMU uses a completely user mode
736 4be456f1 ths
network stack (you don't need root privilege to use the virtual
737 41d03949 bellard
network). The virtual network configuration is the following:
738 9d4fb82e bellard
739 9d4fb82e bellard
@example
740 9d4fb82e bellard
741 41d03949 bellard
         QEMU VLAN      <------>  Firewall/DHCP server <-----> Internet
742 41d03949 bellard
                           |          (10.0.2.2)
743 9d4fb82e bellard
                           |
744 2518bd0d bellard
                           ---->  DNS server (10.0.2.3)
745 3b46e624 ths
                           |
746 2518bd0d bellard
                           ---->  SMB server (10.0.2.4)
747 9d4fb82e bellard
@end example
748 9d4fb82e bellard
749 9d4fb82e bellard
The QEMU VM behaves as if it was behind a firewall which blocks all
750 9d4fb82e bellard
incoming connections. You can use a DHCP client to automatically
751 41d03949 bellard
configure the network in the QEMU VM. The DHCP server assign addresses
752 41d03949 bellard
to the hosts starting from 10.0.2.15.
753 9d4fb82e bellard
754 9d4fb82e bellard
In order to check that the user mode network is working, you can ping
755 9d4fb82e bellard
the address 10.0.2.2 and verify that you got an address in the range
756 9d4fb82e bellard
10.0.2.x from the QEMU virtual DHCP server.
757 9d4fb82e bellard
758 b415a407 bellard
Note that @code{ping} is not supported reliably to the internet as it
759 4be456f1 ths
would require root privileges. It means you can only ping the local
760 b415a407 bellard
router (10.0.2.2).
761 b415a407 bellard
762 9bf05444 bellard
When using the built-in TFTP server, the router is also the TFTP
763 9bf05444 bellard
server.
764 9bf05444 bellard
765 9bf05444 bellard
When using the @option{-redir} option, TCP or UDP connections can be
766 9bf05444 bellard
redirected from the host to the guest. It allows for example to
767 9bf05444 bellard
redirect X11, telnet or SSH connections.
768 443f1376 bellard
769 41d03949 bellard
@subsection Connecting VLANs between QEMU instances
770 41d03949 bellard
771 41d03949 bellard
Using the @option{-net socket} option, it is possible to make VLANs
772 41d03949 bellard
that span several QEMU instances. See @ref{sec_invocation} to have a
773 41d03949 bellard
basic example.
774 41d03949 bellard
775 576fd0a1 Stefan Weil
@node pcsys_other_devs
776 6cbf4c8c Cam Macdonell
@section Other Devices
777 6cbf4c8c Cam Macdonell
778 6cbf4c8c Cam Macdonell
@subsection Inter-VM Shared Memory device
779 6cbf4c8c Cam Macdonell
780 6cbf4c8c Cam Macdonell
With KVM enabled on a Linux host, a shared memory device is available.  Guests
781 6cbf4c8c Cam Macdonell
map a POSIX shared memory region into the guest as a PCI device that enables
782 6cbf4c8c Cam Macdonell
zero-copy communication to the application level of the guests.  The basic
783 6cbf4c8c Cam Macdonell
syntax is:
784 6cbf4c8c Cam Macdonell
785 6cbf4c8c Cam Macdonell
@example
786 6cbf4c8c Cam Macdonell
qemu -device ivshmem,size=<size in format accepted by -m>[,shm=<shm name>]
787 6cbf4c8c Cam Macdonell
@end example
788 6cbf4c8c Cam Macdonell
789 6cbf4c8c Cam Macdonell
If desired, interrupts can be sent between guest VMs accessing the same shared
790 6cbf4c8c Cam Macdonell
memory region.  Interrupt support requires using a shared memory server and
791 6cbf4c8c Cam Macdonell
using a chardev socket to connect to it.  The code for the shared memory server
792 6cbf4c8c Cam Macdonell
is qemu.git/contrib/ivshmem-server.  An example syntax when using the shared
793 6cbf4c8c Cam Macdonell
memory server is:
794 6cbf4c8c Cam Macdonell
795 6cbf4c8c Cam Macdonell
@example
796 6cbf4c8c Cam Macdonell
qemu -device ivshmem,size=<size in format accepted by -m>[,chardev=<id>]
797 6cbf4c8c Cam Macdonell
                        [,msi=on][,ioeventfd=on][,vectors=n][,role=peer|master]
798 6cbf4c8c Cam Macdonell
qemu -chardev socket,path=<path>,id=<id>
799 6cbf4c8c Cam Macdonell
@end example
800 6cbf4c8c Cam Macdonell
801 6cbf4c8c Cam Macdonell
When using the server, the guest will be assigned a VM ID (>=0) that allows guests
802 6cbf4c8c Cam Macdonell
using the same server to communicate via interrupts.  Guests can read their
803 6cbf4c8c Cam Macdonell
VM ID from a device register (see example code).  Since receiving the shared
804 6cbf4c8c Cam Macdonell
memory region from the server is asynchronous, there is a (small) chance the
805 6cbf4c8c Cam Macdonell
guest may boot before the shared memory is attached.  To allow an application
806 6cbf4c8c Cam Macdonell
to ensure shared memory is attached, the VM ID register will return -1 (an
807 6cbf4c8c Cam Macdonell
invalid VM ID) until the memory is attached.  Once the shared memory is
808 6cbf4c8c Cam Macdonell
attached, the VM ID will return the guest's valid VM ID.  With these semantics,
809 6cbf4c8c Cam Macdonell
the guest application can check to ensure the shared memory is attached to the
810 6cbf4c8c Cam Macdonell
guest before proceeding.
811 6cbf4c8c Cam Macdonell
812 6cbf4c8c Cam Macdonell
The @option{role} argument can be set to either master or peer and will affect
813 6cbf4c8c Cam Macdonell
how the shared memory is migrated.  With @option{role=master}, the guest will
814 6cbf4c8c Cam Macdonell
copy the shared memory on migration to the destination host.  With
815 6cbf4c8c Cam Macdonell
@option{role=peer}, the guest will not be able to migrate with the device attached.
816 6cbf4c8c Cam Macdonell
With the @option{peer} case, the device should be detached and then reattached
817 6cbf4c8c Cam Macdonell
after migration using the PCI hotplug support.
818 6cbf4c8c Cam Macdonell
819 9d4fb82e bellard
@node direct_linux_boot
820 9d4fb82e bellard
@section Direct Linux Boot
821 1f673135 bellard
822 1f673135 bellard
This section explains how to launch a Linux kernel inside QEMU without
823 1f673135 bellard
having to make a full bootable image. It is very useful for fast Linux
824 ee0f4751 bellard
kernel testing.
825 1f673135 bellard
826 ee0f4751 bellard
The syntax is:
827 1f673135 bellard
@example
828 ee0f4751 bellard
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
829 1f673135 bellard
@end example
830 1f673135 bellard
831 ee0f4751 bellard
Use @option{-kernel} to provide the Linux kernel image and
832 ee0f4751 bellard
@option{-append} to give the kernel command line arguments. The
833 ee0f4751 bellard
@option{-initrd} option can be used to provide an INITRD image.
834 1f673135 bellard
835 ee0f4751 bellard
When using the direct Linux boot, a disk image for the first hard disk
836 ee0f4751 bellard
@file{hda} is required because its boot sector is used to launch the
837 ee0f4751 bellard
Linux kernel.
838 1f673135 bellard
839 ee0f4751 bellard
If you do not need graphical output, you can disable it and redirect
840 ee0f4751 bellard
the virtual serial port and the QEMU monitor to the console with the
841 ee0f4751 bellard
@option{-nographic} option. The typical command line is:
842 1f673135 bellard
@example
843 ee0f4751 bellard
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
844 ee0f4751 bellard
     -append "root=/dev/hda console=ttyS0" -nographic
845 1f673135 bellard
@end example
846 1f673135 bellard
847 ee0f4751 bellard
Use @key{Ctrl-a c} to switch between the serial console and the
848 ee0f4751 bellard
monitor (@pxref{pcsys_keys}).
849 1f673135 bellard
850 debc7065 bellard
@node pcsys_usb
851 b389dbfb bellard
@section USB emulation
852 b389dbfb bellard
853 0aff66b5 pbrook
QEMU emulates a PCI UHCI USB controller. You can virtually plug
854 0aff66b5 pbrook
virtual USB devices or real host USB devices (experimental, works only
855 0aff66b5 pbrook
on Linux hosts).  Qemu will automatically create and connect virtual USB hubs
856 f542086d bellard
as necessary to connect multiple USB devices.
857 b389dbfb bellard
858 0aff66b5 pbrook
@menu
859 0aff66b5 pbrook
* usb_devices::
860 0aff66b5 pbrook
* host_usb_devices::
861 0aff66b5 pbrook
@end menu
862 0aff66b5 pbrook
@node usb_devices
863 0aff66b5 pbrook
@subsection Connecting USB devices
864 b389dbfb bellard
865 0aff66b5 pbrook
USB devices can be connected with the @option{-usbdevice} commandline option
866 0aff66b5 pbrook
or the @code{usb_add} monitor command.  Available devices are:
867 b389dbfb bellard
868 db380c06 balrog
@table @code
869 db380c06 balrog
@item mouse
870 0aff66b5 pbrook
Virtual Mouse.  This will override the PS/2 mouse emulation when activated.
871 db380c06 balrog
@item tablet
872 c6d46c20 bellard
Pointer device that uses absolute coordinates (like a touchscreen).
873 0aff66b5 pbrook
This means qemu is able to report the mouse position without having
874 0aff66b5 pbrook
to grab the mouse.  Also overrides the PS/2 mouse emulation when activated.
875 db380c06 balrog
@item disk:@var{file}
876 0aff66b5 pbrook
Mass storage device based on @var{file} (@pxref{disk_images})
877 db380c06 balrog
@item host:@var{bus.addr}
878 0aff66b5 pbrook
Pass through the host device identified by @var{bus.addr}
879 0aff66b5 pbrook
(Linux only)
880 db380c06 balrog
@item host:@var{vendor_id:product_id}
881 0aff66b5 pbrook
Pass through the host device identified by @var{vendor_id:product_id}
882 0aff66b5 pbrook
(Linux only)
883 db380c06 balrog
@item wacom-tablet
884 f6d2a316 balrog
Virtual Wacom PenPartner tablet.  This device is similar to the @code{tablet}
885 f6d2a316 balrog
above but it can be used with the tslib library because in addition to touch
886 f6d2a316 balrog
coordinates it reports touch pressure.
887 db380c06 balrog
@item keyboard
888 47b2d338 balrog
Standard USB keyboard.  Will override the PS/2 keyboard (if present).
889 db380c06 balrog
@item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
890 db380c06 balrog
Serial converter. This emulates an FTDI FT232BM chip connected to host character
891 db380c06 balrog
device @var{dev}. The available character devices are the same as for the
892 db380c06 balrog
@code{-serial} option. The @code{vendorid} and @code{productid} options can be
893 0d6753e5 Stefan Weil
used to override the default 0403:6001. For instance,
894 db380c06 balrog
@example
895 db380c06 balrog
usb_add serial:productid=FA00:tcp:192.168.0.2:4444
896 db380c06 balrog
@end example
897 db380c06 balrog
will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
898 db380c06 balrog
serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
899 2e4d9fb1 aurel32
@item braille
900 2e4d9fb1 aurel32
Braille device.  This will use BrlAPI to display the braille output on a real
901 2e4d9fb1 aurel32
or fake device.
902 9ad97e65 balrog
@item net:@var{options}
903 9ad97e65 balrog
Network adapter that supports CDC ethernet and RNDIS protocols.  @var{options}
904 9ad97e65 balrog
specifies NIC options as with @code{-net nic,}@var{options} (see description).
905 9ad97e65 balrog
For instance, user-mode networking can be used with
906 6c9f886c balrog
@example
907 9ad97e65 balrog
qemu [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0
908 6c9f886c balrog
@end example
909 6c9f886c balrog
Currently this cannot be used in machines that support PCI NICs.
910 2d564691 balrog
@item bt[:@var{hci-type}]
911 2d564691 balrog
Bluetooth dongle whose type is specified in the same format as with
912 2d564691 balrog
the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}.  If
913 2d564691 balrog
no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
914 2d564691 balrog
This USB device implements the USB Transport Layer of HCI.  Example
915 2d564691 balrog
usage:
916 2d564691 balrog
@example
917 2d564691 balrog
qemu [...OPTIONS...] -usbdevice bt:hci,vlan=3 -bt device:keyboard,vlan=3
918 2d564691 balrog
@end example
919 0aff66b5 pbrook
@end table
920 b389dbfb bellard
921 0aff66b5 pbrook
@node host_usb_devices
922 b389dbfb bellard
@subsection Using host USB devices on a Linux host
923 b389dbfb bellard
924 b389dbfb bellard
WARNING: this is an experimental feature. QEMU will slow down when
925 b389dbfb bellard
using it. USB devices requiring real time streaming (i.e. USB Video
926 b389dbfb bellard
Cameras) are not supported yet.
927 b389dbfb bellard
928 b389dbfb bellard
@enumerate
929 5fafdf24 ths
@item If you use an early Linux 2.4 kernel, verify that no Linux driver
930 b389dbfb bellard
is actually using the USB device. A simple way to do that is simply to
931 b389dbfb bellard
disable the corresponding kernel module by renaming it from @file{mydriver.o}
932 b389dbfb bellard
to @file{mydriver.o.disabled}.
933 b389dbfb bellard
934 b389dbfb bellard
@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
935 b389dbfb bellard
@example
936 b389dbfb bellard
ls /proc/bus/usb
937 b389dbfb bellard
001  devices  drivers
938 b389dbfb bellard
@end example
939 b389dbfb bellard
940 b389dbfb bellard
@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
941 b389dbfb bellard
@example
942 b389dbfb bellard
chown -R myuid /proc/bus/usb
943 b389dbfb bellard
@end example
944 b389dbfb bellard
945 b389dbfb bellard
@item Launch QEMU and do in the monitor:
946 5fafdf24 ths
@example
947 b389dbfb bellard
info usbhost
948 b389dbfb bellard
  Device 1.2, speed 480 Mb/s
949 b389dbfb bellard
    Class 00: USB device 1234:5678, USB DISK
950 b389dbfb bellard
@end example
951 b389dbfb bellard
You should see the list of the devices you can use (Never try to use
952 b389dbfb bellard
hubs, it won't work).
953 b389dbfb bellard
954 b389dbfb bellard
@item Add the device in QEMU by using:
955 5fafdf24 ths
@example
956 b389dbfb bellard
usb_add host:1234:5678
957 b389dbfb bellard
@end example
958 b389dbfb bellard
959 b389dbfb bellard
Normally the guest OS should report that a new USB device is
960 b389dbfb bellard
plugged. You can use the option @option{-usbdevice} to do the same.
961 b389dbfb bellard
962 b389dbfb bellard
@item Now you can try to use the host USB device in QEMU.
963 b389dbfb bellard
964 b389dbfb bellard
@end enumerate
965 b389dbfb bellard
966 b389dbfb bellard
When relaunching QEMU, you may have to unplug and plug again the USB
967 b389dbfb bellard
device to make it work again (this is a bug).
968 b389dbfb bellard
969 f858dcae ths
@node vnc_security
970 f858dcae ths
@section VNC security
971 f858dcae ths
972 f858dcae ths
The VNC server capability provides access to the graphical console
973 f858dcae ths
of the guest VM across the network. This has a number of security
974 f858dcae ths
considerations depending on the deployment scenarios.
975 f858dcae ths
976 f858dcae ths
@menu
977 f858dcae ths
* vnc_sec_none::
978 f858dcae ths
* vnc_sec_password::
979 f858dcae ths
* vnc_sec_certificate::
980 f858dcae ths
* vnc_sec_certificate_verify::
981 f858dcae ths
* vnc_sec_certificate_pw::
982 2f9606b3 aliguori
* vnc_sec_sasl::
983 2f9606b3 aliguori
* vnc_sec_certificate_sasl::
984 f858dcae ths
* vnc_generate_cert::
985 2f9606b3 aliguori
* vnc_setup_sasl::
986 f858dcae ths
@end menu
987 f858dcae ths
@node vnc_sec_none
988 f858dcae ths
@subsection Without passwords
989 f858dcae ths
990 f858dcae ths
The simplest VNC server setup does not include any form of authentication.
991 f858dcae ths
For this setup it is recommended to restrict it to listen on a UNIX domain
992 f858dcae ths
socket only. For example
993 f858dcae ths
994 f858dcae ths
@example
995 f858dcae ths
qemu [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
996 f858dcae ths
@end example
997 f858dcae ths
998 f858dcae ths
This ensures that only users on local box with read/write access to that
999 f858dcae ths
path can access the VNC server. To securely access the VNC server from a
1000 f858dcae ths
remote machine, a combination of netcat+ssh can be used to provide a secure
1001 f858dcae ths
tunnel.
1002 f858dcae ths
1003 f858dcae ths
@node vnc_sec_password
1004 f858dcae ths
@subsection With passwords
1005 f858dcae ths
1006 f858dcae ths
The VNC protocol has limited support for password based authentication. Since
1007 f858dcae ths
the protocol limits passwords to 8 characters it should not be considered
1008 f858dcae ths
to provide high security. The password can be fairly easily brute-forced by
1009 f858dcae ths
a client making repeat connections. For this reason, a VNC server using password
1010 f858dcae ths
authentication should be restricted to only listen on the loopback interface
1011 34a3d239 blueswir1
or UNIX domain sockets. Password authentication is requested with the @code{password}
1012 f858dcae ths
option, and then once QEMU is running the password is set with the monitor. Until
1013 f858dcae ths
the monitor is used to set the password all clients will be rejected.
1014 f858dcae ths
1015 f858dcae ths
@example
1016 f858dcae ths
qemu [...OPTIONS...] -vnc :1,password -monitor stdio
1017 f858dcae ths
(qemu) change vnc password
1018 f858dcae ths
Password: ********
1019 f858dcae ths
(qemu)
1020 f858dcae ths
@end example
1021 f858dcae ths
1022 f858dcae ths
@node vnc_sec_certificate
1023 f858dcae ths
@subsection With x509 certificates
1024 f858dcae ths
1025 f858dcae ths
The QEMU VNC server also implements the VeNCrypt extension allowing use of
1026 f858dcae ths
TLS for encryption of the session, and x509 certificates for authentication.
1027 f858dcae ths
The use of x509 certificates is strongly recommended, because TLS on its
1028 f858dcae ths
own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1029 f858dcae ths
support provides a secure session, but no authentication. This allows any
1030 f858dcae ths
client to connect, and provides an encrypted session.
1031 f858dcae ths
1032 f858dcae ths
@example
1033 f858dcae ths
qemu [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
1034 f858dcae ths
@end example
1035 f858dcae ths
1036 f858dcae ths
In the above example @code{/etc/pki/qemu} should contain at least three files,
1037 f858dcae ths
@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1038 f858dcae ths
users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1039 f858dcae ths
NB the @code{server-key.pem} file should be protected with file mode 0600 to
1040 f858dcae ths
only be readable by the user owning it.
1041 f858dcae ths
1042 f858dcae ths
@node vnc_sec_certificate_verify
1043 f858dcae ths
@subsection With x509 certificates and client verification
1044 f858dcae ths
1045 f858dcae ths
Certificates can also provide a means to authenticate the client connecting.
1046 f858dcae ths
The server will request that the client provide a certificate, which it will
1047 f858dcae ths
then validate against the CA certificate. This is a good choice if deploying
1048 f858dcae ths
in an environment with a private internal certificate authority.
1049 f858dcae ths
1050 f858dcae ths
@example
1051 f858dcae ths
qemu [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
1052 f858dcae ths
@end example
1053 f858dcae ths
1054 f858dcae ths
1055 f858dcae ths
@node vnc_sec_certificate_pw
1056 f858dcae ths
@subsection With x509 certificates, client verification and passwords
1057 f858dcae ths
1058 f858dcae ths
Finally, the previous method can be combined with VNC password authentication
1059 f858dcae ths
to provide two layers of authentication for clients.
1060 f858dcae ths
1061 f858dcae ths
@example
1062 f858dcae ths
qemu [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
1063 f858dcae ths
(qemu) change vnc password
1064 f858dcae ths
Password: ********
1065 f858dcae ths
(qemu)
1066 f858dcae ths
@end example
1067 f858dcae ths
1068 2f9606b3 aliguori
1069 2f9606b3 aliguori
@node vnc_sec_sasl
1070 2f9606b3 aliguori
@subsection With SASL authentication
1071 2f9606b3 aliguori
1072 2f9606b3 aliguori
The SASL authentication method is a VNC extension, that provides an
1073 2f9606b3 aliguori
easily extendable, pluggable authentication method. This allows for
1074 2f9606b3 aliguori
integration with a wide range of authentication mechanisms, such as
1075 2f9606b3 aliguori
PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more.
1076 2f9606b3 aliguori
The strength of the authentication depends on the exact mechanism
1077 2f9606b3 aliguori
configured. If the chosen mechanism also provides a SSF layer, then
1078 2f9606b3 aliguori
it will encrypt the datastream as well.
1079 2f9606b3 aliguori
1080 2f9606b3 aliguori
Refer to the later docs on how to choose the exact SASL mechanism
1081 2f9606b3 aliguori
used for authentication, but assuming use of one supporting SSF,
1082 2f9606b3 aliguori
then QEMU can be launched with:
1083 2f9606b3 aliguori
1084 2f9606b3 aliguori
@example
1085 2f9606b3 aliguori
qemu [...OPTIONS...] -vnc :1,sasl -monitor stdio
1086 2f9606b3 aliguori
@end example
1087 2f9606b3 aliguori
1088 2f9606b3 aliguori
@node vnc_sec_certificate_sasl
1089 2f9606b3 aliguori
@subsection With x509 certificates and SASL authentication
1090 2f9606b3 aliguori
1091 2f9606b3 aliguori
If the desired SASL authentication mechanism does not supported
1092 2f9606b3 aliguori
SSF layers, then it is strongly advised to run it in combination
1093 2f9606b3 aliguori
with TLS and x509 certificates. This provides securely encrypted
1094 2f9606b3 aliguori
data stream, avoiding risk of compromising of the security
1095 2f9606b3 aliguori
credentials. This can be enabled, by combining the 'sasl' option
1096 2f9606b3 aliguori
with the aforementioned TLS + x509 options:
1097 2f9606b3 aliguori
1098 2f9606b3 aliguori
@example
1099 2f9606b3 aliguori
qemu [...OPTIONS...] -vnc :1,tls,x509,sasl -monitor stdio
1100 2f9606b3 aliguori
@end example
1101 2f9606b3 aliguori
1102 2f9606b3 aliguori
1103 f858dcae ths
@node vnc_generate_cert
1104 f858dcae ths
@subsection Generating certificates for VNC
1105 f858dcae ths
1106 f858dcae ths
The GNU TLS packages provides a command called @code{certtool} which can
1107 f858dcae ths
be used to generate certificates and keys in PEM format. At a minimum it
1108 40c5c6cd Stefan Weil
is necessary to setup a certificate authority, and issue certificates to
1109 f858dcae ths
each server. If using certificates for authentication, then each client
1110 f858dcae ths
will also need to be issued a certificate. The recommendation is for the
1111 f858dcae ths
server to keep its certificates in either @code{/etc/pki/qemu} or for
1112 f858dcae ths
unprivileged users in @code{$HOME/.pki/qemu}.
1113 f858dcae ths
1114 f858dcae ths
@menu
1115 f858dcae ths
* vnc_generate_ca::
1116 f858dcae ths
* vnc_generate_server::
1117 f858dcae ths
* vnc_generate_client::
1118 f858dcae ths
@end menu
1119 f858dcae ths
@node vnc_generate_ca
1120 f858dcae ths
@subsubsection Setup the Certificate Authority
1121 f858dcae ths
1122 f858dcae ths
This step only needs to be performed once per organization / organizational
1123 f858dcae ths
unit. First the CA needs a private key. This key must be kept VERY secret
1124 f858dcae ths
and secure. If this key is compromised the entire trust chain of the certificates
1125 f858dcae ths
issued with it is lost.
1126 f858dcae ths
1127 f858dcae ths
@example
1128 f858dcae ths
# certtool --generate-privkey > ca-key.pem
1129 f858dcae ths
@end example
1130 f858dcae ths
1131 f858dcae ths
A CA needs to have a public certificate. For simplicity it can be a self-signed
1132 f858dcae ths
certificate, or one issue by a commercial certificate issuing authority. To
1133 f858dcae ths
generate a self-signed certificate requires one core piece of information, the
1134 f858dcae ths
name of the organization.
1135 f858dcae ths
1136 f858dcae ths
@example
1137 f858dcae ths
# cat > ca.info <<EOF
1138 f858dcae ths
cn = Name of your organization
1139 f858dcae ths
ca
1140 f858dcae ths
cert_signing_key
1141 f858dcae ths
EOF
1142 f858dcae ths
# certtool --generate-self-signed \
1143 f858dcae ths
           --load-privkey ca-key.pem
1144 f858dcae ths
           --template ca.info \
1145 f858dcae ths
           --outfile ca-cert.pem
1146 f858dcae ths
@end example
1147 f858dcae ths
1148 f858dcae ths
The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1149 f858dcae ths
TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1150 f858dcae ths
1151 f858dcae ths
@node vnc_generate_server
1152 f858dcae ths
@subsubsection Issuing server certificates
1153 f858dcae ths
1154 f858dcae ths
Each server (or host) needs to be issued with a key and certificate. When connecting
1155 f858dcae ths
the certificate is sent to the client which validates it against the CA certificate.
1156 f858dcae ths
The core piece of information for a server certificate is the hostname. This should
1157 f858dcae ths
be the fully qualified hostname that the client will connect with, since the client
1158 f858dcae ths
will typically also verify the hostname in the certificate. On the host holding the
1159 f858dcae ths
secure CA private key:
1160 f858dcae ths
1161 f858dcae ths
@example
1162 f858dcae ths
# cat > server.info <<EOF
1163 f858dcae ths
organization = Name  of your organization
1164 f858dcae ths
cn = server.foo.example.com
1165 f858dcae ths
tls_www_server
1166 f858dcae ths
encryption_key
1167 f858dcae ths
signing_key
1168 f858dcae ths
EOF
1169 f858dcae ths
# certtool --generate-privkey > server-key.pem
1170 f858dcae ths
# certtool --generate-certificate \
1171 f858dcae ths
           --load-ca-certificate ca-cert.pem \
1172 f858dcae ths
           --load-ca-privkey ca-key.pem \
1173 f858dcae ths
           --load-privkey server server-key.pem \
1174 f858dcae ths
           --template server.info \
1175 f858dcae ths
           --outfile server-cert.pem
1176 f858dcae ths
@end example
1177 f858dcae ths
1178 f858dcae ths
The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1179 f858dcae ths
to the server for which they were generated. The @code{server-key.pem} is security
1180 f858dcae ths
sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1181 f858dcae ths
1182 f858dcae ths
@node vnc_generate_client
1183 f858dcae ths
@subsubsection Issuing client certificates
1184 f858dcae ths
1185 f858dcae ths
If the QEMU VNC server is to use the @code{x509verify} option to validate client
1186 f858dcae ths
certificates as its authentication mechanism, each client also needs to be issued
1187 f858dcae ths
a certificate. The client certificate contains enough metadata to uniquely identify
1188 f858dcae ths
the client, typically organization, state, city, building, etc. On the host holding
1189 f858dcae ths
the secure CA private key:
1190 f858dcae ths
1191 f858dcae ths
@example
1192 f858dcae ths
# cat > client.info <<EOF
1193 f858dcae ths
country = GB
1194 f858dcae ths
state = London
1195 f858dcae ths
locality = London
1196 f858dcae ths
organiazation = Name of your organization
1197 f858dcae ths
cn = client.foo.example.com
1198 f858dcae ths
tls_www_client
1199 f858dcae ths
encryption_key
1200 f858dcae ths
signing_key
1201 f858dcae ths
EOF
1202 f858dcae ths
# certtool --generate-privkey > client-key.pem
1203 f858dcae ths
# certtool --generate-certificate \
1204 f858dcae ths
           --load-ca-certificate ca-cert.pem \
1205 f858dcae ths
           --load-ca-privkey ca-key.pem \
1206 f858dcae ths
           --load-privkey client-key.pem \
1207 f858dcae ths
           --template client.info \
1208 f858dcae ths
           --outfile client-cert.pem
1209 f858dcae ths
@end example
1210 f858dcae ths
1211 f858dcae ths
The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1212 f858dcae ths
copied to the client for which they were generated.
1213 f858dcae ths
1214 2f9606b3 aliguori
1215 2f9606b3 aliguori
@node vnc_setup_sasl
1216 2f9606b3 aliguori
1217 2f9606b3 aliguori
@subsection Configuring SASL mechanisms
1218 2f9606b3 aliguori
1219 2f9606b3 aliguori
The following documentation assumes use of the Cyrus SASL implementation on a
1220 2f9606b3 aliguori
Linux host, but the principals should apply to any other SASL impl. When SASL
1221 2f9606b3 aliguori
is enabled, the mechanism configuration will be loaded from system default
1222 2f9606b3 aliguori
SASL service config /etc/sasl2/qemu.conf. If running QEMU as an
1223 2f9606b3 aliguori
unprivileged user, an environment variable SASL_CONF_PATH can be used
1224 2f9606b3 aliguori
to make it search alternate locations for the service config.
1225 2f9606b3 aliguori
1226 2f9606b3 aliguori
The default configuration might contain
1227 2f9606b3 aliguori
1228 2f9606b3 aliguori
@example
1229 2f9606b3 aliguori
mech_list: digest-md5
1230 2f9606b3 aliguori
sasldb_path: /etc/qemu/passwd.db
1231 2f9606b3 aliguori
@end example
1232 2f9606b3 aliguori
1233 2f9606b3 aliguori
This says to use the 'Digest MD5' mechanism, which is similar to the HTTP
1234 2f9606b3 aliguori
Digest-MD5 mechanism. The list of valid usernames & passwords is maintained
1235 2f9606b3 aliguori
in the /etc/qemu/passwd.db file, and can be updated using the saslpasswd2
1236 2f9606b3 aliguori
command. While this mechanism is easy to configure and use, it is not
1237 2f9606b3 aliguori
considered secure by modern standards, so only suitable for developers /
1238 2f9606b3 aliguori
ad-hoc testing.
1239 2f9606b3 aliguori
1240 2f9606b3 aliguori
A more serious deployment might use Kerberos, which is done with the 'gssapi'
1241 2f9606b3 aliguori
mechanism
1242 2f9606b3 aliguori
1243 2f9606b3 aliguori
@example
1244 2f9606b3 aliguori
mech_list: gssapi
1245 2f9606b3 aliguori
keytab: /etc/qemu/krb5.tab
1246 2f9606b3 aliguori
@end example
1247 2f9606b3 aliguori
1248 2f9606b3 aliguori
For this to work the administrator of your KDC must generate a Kerberos
1249 2f9606b3 aliguori
principal for the server, with a name of  'qemu/somehost.example.com@@EXAMPLE.COM'
1250 2f9606b3 aliguori
replacing 'somehost.example.com' with the fully qualified host name of the
1251 40c5c6cd Stefan Weil
machine running QEMU, and 'EXAMPLE.COM' with the Kerberos Realm.
1252 2f9606b3 aliguori
1253 2f9606b3 aliguori
Other configurations will be left as an exercise for the reader. It should
1254 2f9606b3 aliguori
be noted that only Digest-MD5 and GSSAPI provides a SSF layer for data
1255 2f9606b3 aliguori
encryption. For all other mechanisms, VNC should always be configured to
1256 2f9606b3 aliguori
use TLS and x509 certificates to protect security credentials from snooping.
1257 2f9606b3 aliguori
1258 0806e3f6 bellard
@node gdb_usage
1259 da415d54 bellard
@section GDB usage
1260 da415d54 bellard
1261 da415d54 bellard
QEMU has a primitive support to work with gdb, so that you can do
1262 0806e3f6 bellard
'Ctrl-C' while the virtual machine is running and inspect its state.
1263 da415d54 bellard
1264 9d4520d0 bellard
In order to use gdb, launch qemu with the '-s' option. It will wait for a
1265 da415d54 bellard
gdb connection:
1266 da415d54 bellard
@example
1267 debc7065 bellard
> qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1268 debc7065 bellard
       -append "root=/dev/hda"
1269 da415d54 bellard
Connected to host network interface: tun0
1270 da415d54 bellard
Waiting gdb connection on port 1234
1271 da415d54 bellard
@end example
1272 da415d54 bellard
1273 da415d54 bellard
Then launch gdb on the 'vmlinux' executable:
1274 da415d54 bellard
@example
1275 da415d54 bellard
> gdb vmlinux
1276 da415d54 bellard
@end example
1277 da415d54 bellard
1278 da415d54 bellard
In gdb, connect to QEMU:
1279 da415d54 bellard
@example
1280 6c9bf893 bellard
(gdb) target remote localhost:1234
1281 da415d54 bellard
@end example
1282 da415d54 bellard
1283 da415d54 bellard
Then you can use gdb normally. For example, type 'c' to launch the kernel:
1284 da415d54 bellard
@example
1285 da415d54 bellard
(gdb) c
1286 da415d54 bellard
@end example
1287 da415d54 bellard
1288 0806e3f6 bellard
Here are some useful tips in order to use gdb on system code:
1289 0806e3f6 bellard
1290 0806e3f6 bellard
@enumerate
1291 0806e3f6 bellard
@item
1292 0806e3f6 bellard
Use @code{info reg} to display all the CPU registers.
1293 0806e3f6 bellard
@item
1294 0806e3f6 bellard
Use @code{x/10i $eip} to display the code at the PC position.
1295 0806e3f6 bellard
@item
1296 0806e3f6 bellard
Use @code{set architecture i8086} to dump 16 bit code. Then use
1297 294e8637 bellard
@code{x/10i $cs*16+$eip} to dump the code at the PC position.
1298 0806e3f6 bellard
@end enumerate
1299 0806e3f6 bellard
1300 60897d36 edgar_igl
Advanced debugging options:
1301 60897d36 edgar_igl
1302 60897d36 edgar_igl
The default single stepping behavior is step with the IRQs and timer service routines off.  It is set this way because when gdb executes a single step it expects to advance beyond the current instruction.  With the IRQs and and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed.  Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB.  There are three commands you can query and set the single step behavior:
1303 94d45e44 edgar_igl
@table @code
1304 60897d36 edgar_igl
@item maintenance packet qqemu.sstepbits
1305 60897d36 edgar_igl
1306 60897d36 edgar_igl
This will display the MASK bits used to control the single stepping IE:
1307 60897d36 edgar_igl
@example
1308 60897d36 edgar_igl
(gdb) maintenance packet qqemu.sstepbits
1309 60897d36 edgar_igl
sending: "qqemu.sstepbits"
1310 60897d36 edgar_igl
received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
1311 60897d36 edgar_igl
@end example
1312 60897d36 edgar_igl
@item maintenance packet qqemu.sstep
1313 60897d36 edgar_igl
1314 60897d36 edgar_igl
This will display the current value of the mask used when single stepping IE:
1315 60897d36 edgar_igl
@example
1316 60897d36 edgar_igl
(gdb) maintenance packet qqemu.sstep
1317 60897d36 edgar_igl
sending: "qqemu.sstep"
1318 60897d36 edgar_igl
received: "0x7"
1319 60897d36 edgar_igl
@end example
1320 60897d36 edgar_igl
@item maintenance packet Qqemu.sstep=HEX_VALUE
1321 60897d36 edgar_igl
1322 60897d36 edgar_igl
This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
1323 60897d36 edgar_igl
@example
1324 60897d36 edgar_igl
(gdb) maintenance packet Qqemu.sstep=0x5
1325 60897d36 edgar_igl
sending: "qemu.sstep=0x5"
1326 60897d36 edgar_igl
received: "OK"
1327 60897d36 edgar_igl
@end example
1328 94d45e44 edgar_igl
@end table
1329 60897d36 edgar_igl
1330 debc7065 bellard
@node pcsys_os_specific
1331 1a084f3d bellard
@section Target OS specific information
1332 1a084f3d bellard
1333 1a084f3d bellard
@subsection Linux
1334 1a084f3d bellard
1335 15a34c63 bellard
To have access to SVGA graphic modes under X11, use the @code{vesa} or
1336 15a34c63 bellard
the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1337 15a34c63 bellard
color depth in the guest and the host OS.
1338 1a084f3d bellard
1339 e3371e62 bellard
When using a 2.6 guest Linux kernel, you should add the option
1340 e3371e62 bellard
@code{clock=pit} on the kernel command line because the 2.6 Linux
1341 e3371e62 bellard
kernels make very strict real time clock checks by default that QEMU
1342 e3371e62 bellard
cannot simulate exactly.
1343 e3371e62 bellard
1344 7c3fc84d bellard
When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1345 7c3fc84d bellard
not activated because QEMU is slower with this patch. The QEMU
1346 7c3fc84d bellard
Accelerator Module is also much slower in this case. Earlier Fedora
1347 4be456f1 ths
Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
1348 7c3fc84d bellard
patch by default. Newer kernels don't have it.
1349 7c3fc84d bellard
1350 1a084f3d bellard
@subsection Windows
1351 1a084f3d bellard
1352 1a084f3d bellard
If you have a slow host, using Windows 95 is better as it gives the
1353 1a084f3d bellard
best speed. Windows 2000 is also a good choice.
1354 1a084f3d bellard
1355 e3371e62 bellard
@subsubsection SVGA graphic modes support
1356 e3371e62 bellard
1357 e3371e62 bellard
QEMU emulates a Cirrus Logic GD5446 Video
1358 15a34c63 bellard
card. All Windows versions starting from Windows 95 should recognize
1359 15a34c63 bellard
and use this graphic card. For optimal performances, use 16 bit color
1360 15a34c63 bellard
depth in the guest and the host OS.
1361 1a084f3d bellard
1362 3cb0853a bellard
If you are using Windows XP as guest OS and if you want to use high
1363 3cb0853a bellard
resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
1364 3cb0853a bellard
1280x1024x16), then you should use the VESA VBE virtual graphic card
1365 3cb0853a bellard
(option @option{-std-vga}).
1366 3cb0853a bellard
1367 e3371e62 bellard
@subsubsection CPU usage reduction
1368 e3371e62 bellard
1369 e3371e62 bellard
Windows 9x does not correctly use the CPU HLT
1370 15a34c63 bellard
instruction. The result is that it takes host CPU cycles even when
1371 15a34c63 bellard
idle. You can install the utility from
1372 15a34c63 bellard
@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1373 15a34c63 bellard
problem. Note that no such tool is needed for NT, 2000 or XP.
1374 1a084f3d bellard
1375 9d0a8e6f bellard
@subsubsection Windows 2000 disk full problem
1376 e3371e62 bellard
1377 9d0a8e6f bellard
Windows 2000 has a bug which gives a disk full problem during its
1378 9d0a8e6f bellard
installation. When installing it, use the @option{-win2k-hack} QEMU
1379 9d0a8e6f bellard
option to enable a specific workaround. After Windows 2000 is
1380 9d0a8e6f bellard
installed, you no longer need this option (this option slows down the
1381 9d0a8e6f bellard
IDE transfers).
1382 e3371e62 bellard
1383 6cc721cf bellard
@subsubsection Windows 2000 shutdown
1384 6cc721cf bellard
1385 6cc721cf bellard
Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1386 6cc721cf bellard
can. It comes from the fact that Windows 2000 does not automatically
1387 6cc721cf bellard
use the APM driver provided by the BIOS.
1388 6cc721cf bellard
1389 6cc721cf bellard
In order to correct that, do the following (thanks to Struan
1390 6cc721cf bellard
Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1391 6cc721cf bellard
Add/Troubleshoot a device => Add a new device & Next => No, select the
1392 6cc721cf bellard
hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1393 6cc721cf bellard
(again) a few times. Now the driver is installed and Windows 2000 now
1394 5fafdf24 ths
correctly instructs QEMU to shutdown at the appropriate moment.
1395 6cc721cf bellard
1396 6cc721cf bellard
@subsubsection Share a directory between Unix and Windows
1397 6cc721cf bellard
1398 6cc721cf bellard
See @ref{sec_invocation} about the help of the option @option{-smb}.
1399 6cc721cf bellard
1400 2192c332 bellard
@subsubsection Windows XP security problem
1401 e3371e62 bellard
1402 e3371e62 bellard
Some releases of Windows XP install correctly but give a security
1403 e3371e62 bellard
error when booting:
1404 e3371e62 bellard
@example
1405 e3371e62 bellard
A problem is preventing Windows from accurately checking the
1406 e3371e62 bellard
license for this computer. Error code: 0x800703e6.
1407 e3371e62 bellard
@end example
1408 e3371e62 bellard
1409 2192c332 bellard
The workaround is to install a service pack for XP after a boot in safe
1410 2192c332 bellard
mode. Then reboot, and the problem should go away. Since there is no
1411 2192c332 bellard
network while in safe mode, its recommended to download the full
1412 2192c332 bellard
installation of SP1 or SP2 and transfer that via an ISO or using the
1413 2192c332 bellard
vvfat block device ("-hdb fat:directory_which_holds_the_SP").
1414 e3371e62 bellard
1415 a0a821a4 bellard
@subsection MS-DOS and FreeDOS
1416 a0a821a4 bellard
1417 a0a821a4 bellard
@subsubsection CPU usage reduction
1418 a0a821a4 bellard
1419 a0a821a4 bellard
DOS does not correctly use the CPU HLT instruction. The result is that
1420 a0a821a4 bellard
it takes host CPU cycles even when idle. You can install the utility
1421 a0a821a4 bellard
from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1422 a0a821a4 bellard
problem.
1423 a0a821a4 bellard
1424 debc7065 bellard
@node QEMU System emulator for non PC targets
1425 3f9f3aa1 bellard
@chapter QEMU System emulator for non PC targets
1426 3f9f3aa1 bellard
1427 3f9f3aa1 bellard
QEMU is a generic emulator and it emulates many non PC
1428 3f9f3aa1 bellard
machines. Most of the options are similar to the PC emulator. The
1429 4be456f1 ths
differences are mentioned in the following sections.
1430 3f9f3aa1 bellard
1431 debc7065 bellard
@menu
1432 7544a042 Stefan Weil
* PowerPC System emulator::
1433 24d4de45 ths
* Sparc32 System emulator::
1434 24d4de45 ths
* Sparc64 System emulator::
1435 24d4de45 ths
* MIPS System emulator::
1436 24d4de45 ths
* ARM System emulator::
1437 24d4de45 ths
* ColdFire System emulator::
1438 7544a042 Stefan Weil
* Cris System emulator::
1439 7544a042 Stefan Weil
* Microblaze System emulator::
1440 7544a042 Stefan Weil
* SH4 System emulator::
1441 debc7065 bellard
@end menu
1442 debc7065 bellard
1443 7544a042 Stefan Weil
@node PowerPC System emulator
1444 7544a042 Stefan Weil
@section PowerPC System emulator
1445 7544a042 Stefan Weil
@cindex system emulation (PowerPC)
1446 1a084f3d bellard
1447 15a34c63 bellard
Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1448 15a34c63 bellard
or PowerMac PowerPC system.
1449 1a084f3d bellard
1450 b671f9ed bellard
QEMU emulates the following PowerMac peripherals:
1451 1a084f3d bellard
1452 15a34c63 bellard
@itemize @minus
1453 5fafdf24 ths
@item
1454 006f3a48 blueswir1
UniNorth or Grackle PCI Bridge
1455 15a34c63 bellard
@item
1456 15a34c63 bellard
PCI VGA compatible card with VESA Bochs Extensions
1457 5fafdf24 ths
@item
1458 15a34c63 bellard
2 PMAC IDE interfaces with hard disk and CD-ROM support
1459 5fafdf24 ths
@item
1460 15a34c63 bellard
NE2000 PCI adapters
1461 15a34c63 bellard
@item
1462 15a34c63 bellard
Non Volatile RAM
1463 15a34c63 bellard
@item
1464 15a34c63 bellard
VIA-CUDA with ADB keyboard and mouse.
1465 1a084f3d bellard
@end itemize
1466 1a084f3d bellard
1467 b671f9ed bellard
QEMU emulates the following PREP peripherals:
1468 52c00a5f bellard
1469 52c00a5f bellard
@itemize @minus
1470 5fafdf24 ths
@item
1471 15a34c63 bellard
PCI Bridge
1472 15a34c63 bellard
@item
1473 15a34c63 bellard
PCI VGA compatible card with VESA Bochs Extensions
1474 5fafdf24 ths
@item
1475 52c00a5f bellard
2 IDE interfaces with hard disk and CD-ROM support
1476 52c00a5f bellard
@item
1477 52c00a5f bellard
Floppy disk
1478 5fafdf24 ths
@item
1479 15a34c63 bellard
NE2000 network adapters
1480 52c00a5f bellard
@item
1481 52c00a5f bellard
Serial port
1482 52c00a5f bellard
@item
1483 52c00a5f bellard
PREP Non Volatile RAM
1484 15a34c63 bellard
@item
1485 15a34c63 bellard
PC compatible keyboard and mouse.
1486 52c00a5f bellard
@end itemize
1487 52c00a5f bellard
1488 15a34c63 bellard
QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
1489 3f9f3aa1 bellard
@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
1490 52c00a5f bellard
1491 992e5acd blueswir1
Since version 0.9.1, QEMU uses OpenBIOS @url{http://www.openbios.org/}
1492 006f3a48 blueswir1
for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
1493 006f3a48 blueswir1
v2) portable firmware implementation. The goal is to implement a 100%
1494 006f3a48 blueswir1
IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
1495 992e5acd blueswir1
1496 15a34c63 bellard
@c man begin OPTIONS
1497 15a34c63 bellard
1498 15a34c63 bellard
The following options are specific to the PowerPC emulation:
1499 15a34c63 bellard
1500 15a34c63 bellard
@table @option
1501 15a34c63 bellard
1502 4e257e5e Kevin Wolf
@item -g @var{W}x@var{H}[x@var{DEPTH}]
1503 15a34c63 bellard
1504 15a34c63 bellard
Set the initial VGA graphic mode. The default is 800x600x15.
1505 15a34c63 bellard
1506 4e257e5e Kevin Wolf
@item -prom-env @var{string}
1507 95efd11c blueswir1
1508 95efd11c blueswir1
Set OpenBIOS variables in NVRAM, for example:
1509 95efd11c blueswir1
1510 95efd11c blueswir1
@example
1511 95efd11c blueswir1
qemu-system-ppc -prom-env 'auto-boot?=false' \
1512 95efd11c blueswir1
 -prom-env 'boot-device=hd:2,\yaboot' \
1513 95efd11c blueswir1
 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
1514 95efd11c blueswir1
@end example
1515 95efd11c blueswir1
1516 95efd11c blueswir1
These variables are not used by Open Hack'Ware.
1517 95efd11c blueswir1
1518 15a34c63 bellard
@end table
1519 15a34c63 bellard
1520 5fafdf24 ths
@c man end
1521 15a34c63 bellard
1522 15a34c63 bellard
1523 52c00a5f bellard
More information is available at
1524 3f9f3aa1 bellard
@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
1525 52c00a5f bellard
1526 24d4de45 ths
@node Sparc32 System emulator
1527 24d4de45 ths
@section Sparc32 System emulator
1528 7544a042 Stefan Weil
@cindex system emulation (Sparc32)
1529 e80cfcfc bellard
1530 34a3d239 blueswir1
Use the executable @file{qemu-system-sparc} to simulate the following
1531 34a3d239 blueswir1
Sun4m architecture machines:
1532 34a3d239 blueswir1
@itemize @minus
1533 34a3d239 blueswir1
@item
1534 34a3d239 blueswir1
SPARCstation 4
1535 34a3d239 blueswir1
@item
1536 34a3d239 blueswir1
SPARCstation 5
1537 34a3d239 blueswir1
@item
1538 34a3d239 blueswir1
SPARCstation 10
1539 34a3d239 blueswir1
@item
1540 34a3d239 blueswir1
SPARCstation 20
1541 34a3d239 blueswir1
@item
1542 34a3d239 blueswir1
SPARCserver 600MP
1543 34a3d239 blueswir1
@item
1544 34a3d239 blueswir1
SPARCstation LX
1545 34a3d239 blueswir1
@item
1546 34a3d239 blueswir1
SPARCstation Voyager
1547 34a3d239 blueswir1
@item
1548 34a3d239 blueswir1
SPARCclassic
1549 34a3d239 blueswir1
@item
1550 34a3d239 blueswir1
SPARCbook
1551 34a3d239 blueswir1
@end itemize
1552 34a3d239 blueswir1
1553 34a3d239 blueswir1
The emulation is somewhat complete. SMP up to 16 CPUs is supported,
1554 34a3d239 blueswir1
but Linux limits the number of usable CPUs to 4.
1555 e80cfcfc bellard
1556 34a3d239 blueswir1
It's also possible to simulate a SPARCstation 2 (sun4c architecture),
1557 34a3d239 blueswir1
SPARCserver 1000, or SPARCcenter 2000 (sun4d architecture), but these
1558 34a3d239 blueswir1
emulators are not usable yet.
1559 34a3d239 blueswir1
1560 34a3d239 blueswir1
QEMU emulates the following sun4m/sun4c/sun4d peripherals:
1561 e80cfcfc bellard
1562 e80cfcfc bellard
@itemize @minus
1563 3475187d bellard
@item
1564 7d85892b blueswir1
IOMMU or IO-UNITs
1565 e80cfcfc bellard
@item
1566 e80cfcfc bellard
TCX Frame buffer
1567 5fafdf24 ths
@item
1568 e80cfcfc bellard
Lance (Am7990) Ethernet
1569 e80cfcfc bellard
@item
1570 34a3d239 blueswir1
Non Volatile RAM M48T02/M48T08
1571 e80cfcfc bellard
@item
1572 3475187d bellard
Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
1573 3475187d bellard
and power/reset logic
1574 3475187d bellard
@item
1575 3475187d bellard
ESP SCSI controller with hard disk and CD-ROM support
1576 3475187d bellard
@item
1577 6a3b9cc9 blueswir1
Floppy drive (not on SS-600MP)
1578 a2502b58 blueswir1
@item
1579 a2502b58 blueswir1
CS4231 sound device (only on SS-5, not working yet)
1580 e80cfcfc bellard
@end itemize
1581 e80cfcfc bellard
1582 6a3b9cc9 blueswir1
The number of peripherals is fixed in the architecture.  Maximum
1583 6a3b9cc9 blueswir1
memory size depends on the machine type, for SS-5 it is 256MB and for
1584 7d85892b blueswir1
others 2047MB.
1585 3475187d bellard
1586 30a604f3 bellard
Since version 0.8.2, QEMU uses OpenBIOS
1587 0986ac3b bellard
@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
1588 0986ac3b bellard
firmware implementation. The goal is to implement a 100% IEEE
1589 0986ac3b bellard
1275-1994 (referred to as Open Firmware) compliant firmware.
1590 3475187d bellard
1591 3475187d bellard
A sample Linux 2.6 series kernel and ram disk image are available on
1592 34a3d239 blueswir1
the QEMU web site. There are still issues with NetBSD and OpenBSD, but
1593 34a3d239 blueswir1
some kernel versions work. Please note that currently Solaris kernels
1594 34a3d239 blueswir1
don't work probably due to interface issues between OpenBIOS and
1595 34a3d239 blueswir1
Solaris.
1596 3475187d bellard
1597 3475187d bellard
@c man begin OPTIONS
1598 3475187d bellard
1599 a2502b58 blueswir1
The following options are specific to the Sparc32 emulation:
1600 3475187d bellard
1601 3475187d bellard
@table @option
1602 3475187d bellard
1603 4e257e5e Kevin Wolf
@item -g @var{W}x@var{H}x[x@var{DEPTH}]
1604 3475187d bellard
1605 a2502b58 blueswir1
Set the initial TCX graphic mode. The default is 1024x768x8, currently
1606 a2502b58 blueswir1
the only other possible mode is 1024x768x24.
1607 3475187d bellard
1608 4e257e5e Kevin Wolf
@item -prom-env @var{string}
1609 66508601 blueswir1
1610 66508601 blueswir1
Set OpenBIOS variables in NVRAM, for example:
1611 66508601 blueswir1
1612 66508601 blueswir1
@example
1613 66508601 blueswir1
qemu-system-sparc -prom-env 'auto-boot?=false' \
1614 66508601 blueswir1
 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
1615 66508601 blueswir1
@end example
1616 66508601 blueswir1
1617 609c1dac Blue Swirl
@item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic] [|SPARCbook|SS-2|SS-1000|SS-2000]
1618 a2502b58 blueswir1
1619 a2502b58 blueswir1
Set the emulated machine type. Default is SS-5.
1620 a2502b58 blueswir1
1621 3475187d bellard
@end table
1622 3475187d bellard
1623 5fafdf24 ths
@c man end
1624 3475187d bellard
1625 24d4de45 ths
@node Sparc64 System emulator
1626 24d4de45 ths
@section Sparc64 System emulator
1627 7544a042 Stefan Weil
@cindex system emulation (Sparc64)
1628 e80cfcfc bellard
1629 34a3d239 blueswir1
Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
1630 34a3d239 blueswir1
(UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
1631 34a3d239 blueswir1
Niagara (T1) machine. The emulator is not usable for anything yet, but
1632 34a3d239 blueswir1
it can launch some kernels.
1633 b756921a bellard
1634 c7ba218d blueswir1
QEMU emulates the following peripherals:
1635 83469015 bellard
1636 83469015 bellard
@itemize @minus
1637 83469015 bellard
@item
1638 5fafdf24 ths
UltraSparc IIi APB PCI Bridge
1639 83469015 bellard
@item
1640 83469015 bellard
PCI VGA compatible card with VESA Bochs Extensions
1641 83469015 bellard
@item
1642 34a3d239 blueswir1
PS/2 mouse and keyboard
1643 34a3d239 blueswir1
@item
1644 83469015 bellard
Non Volatile RAM M48T59
1645 83469015 bellard
@item
1646 83469015 bellard
PC-compatible serial ports
1647 c7ba218d blueswir1
@item
1648 c7ba218d blueswir1
2 PCI IDE interfaces with hard disk and CD-ROM support
1649 34a3d239 blueswir1
@item
1650 34a3d239 blueswir1
Floppy disk
1651 83469015 bellard
@end itemize
1652 83469015 bellard
1653 c7ba218d blueswir1
@c man begin OPTIONS
1654 c7ba218d blueswir1
1655 c7ba218d blueswir1
The following options are specific to the Sparc64 emulation:
1656 c7ba218d blueswir1
1657 c7ba218d blueswir1
@table @option
1658 c7ba218d blueswir1
1659 4e257e5e Kevin Wolf
@item -prom-env @var{string}
1660 34a3d239 blueswir1
1661 34a3d239 blueswir1
Set OpenBIOS variables in NVRAM, for example:
1662 34a3d239 blueswir1
1663 34a3d239 blueswir1
@example
1664 34a3d239 blueswir1
qemu-system-sparc64 -prom-env 'auto-boot?=false'
1665 34a3d239 blueswir1
@end example
1666 34a3d239 blueswir1
1667 34a3d239 blueswir1
@item -M [sun4u|sun4v|Niagara]
1668 c7ba218d blueswir1
1669 c7ba218d blueswir1
Set the emulated machine type. The default is sun4u.
1670 c7ba218d blueswir1
1671 c7ba218d blueswir1
@end table
1672 c7ba218d blueswir1
1673 c7ba218d blueswir1
@c man end
1674 c7ba218d blueswir1
1675 24d4de45 ths
@node MIPS System emulator
1676 24d4de45 ths
@section MIPS System emulator
1677 7544a042 Stefan Weil
@cindex system emulation (MIPS)
1678 9d0a8e6f bellard
1679 d9aedc32 ths
Four executables cover simulation of 32 and 64-bit MIPS systems in
1680 d9aedc32 ths
both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
1681 d9aedc32 ths
@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
1682 88cb0a02 aurel32
Five different machine types are emulated:
1683 24d4de45 ths
1684 24d4de45 ths
@itemize @minus
1685 24d4de45 ths
@item
1686 24d4de45 ths
A generic ISA PC-like machine "mips"
1687 24d4de45 ths
@item
1688 24d4de45 ths
The MIPS Malta prototype board "malta"
1689 24d4de45 ths
@item
1690 d9aedc32 ths
An ACER Pica "pica61". This machine needs the 64-bit emulator.
1691 6bf5b4e8 ths
@item
1692 f0fc6f8f ths
MIPS emulator pseudo board "mipssim"
1693 88cb0a02 aurel32
@item
1694 88cb0a02 aurel32
A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
1695 24d4de45 ths
@end itemize
1696 24d4de45 ths
1697 24d4de45 ths
The generic emulation is supported by Debian 'Etch' and is able to
1698 24d4de45 ths
install Debian into a virtual disk image. The following devices are
1699 24d4de45 ths
emulated:
1700 3f9f3aa1 bellard
1701 3f9f3aa1 bellard
@itemize @minus
1702 5fafdf24 ths
@item
1703 6bf5b4e8 ths
A range of MIPS CPUs, default is the 24Kf
1704 3f9f3aa1 bellard
@item
1705 3f9f3aa1 bellard
PC style serial port
1706 3f9f3aa1 bellard
@item
1707 24d4de45 ths
PC style IDE disk
1708 24d4de45 ths
@item
1709 3f9f3aa1 bellard
NE2000 network card
1710 3f9f3aa1 bellard
@end itemize
1711 3f9f3aa1 bellard
1712 24d4de45 ths
The Malta emulation supports the following devices:
1713 24d4de45 ths
1714 24d4de45 ths
@itemize @minus
1715 24d4de45 ths
@item
1716 0b64d008 ths
Core board with MIPS 24Kf CPU and Galileo system controller
1717 24d4de45 ths
@item
1718 24d4de45 ths
PIIX4 PCI/USB/SMbus controller
1719 24d4de45 ths
@item
1720 24d4de45 ths
The Multi-I/O chip's serial device
1721 24d4de45 ths
@item
1722 3a2eeac0 Stefan Weil
PCI network cards (PCnet32 and others)
1723 24d4de45 ths
@item
1724 24d4de45 ths
Malta FPGA serial device
1725 24d4de45 ths
@item
1726 1f605a76 aurel32
Cirrus (default) or any other PCI VGA graphics card
1727 24d4de45 ths
@end itemize
1728 24d4de45 ths
1729 24d4de45 ths
The ACER Pica emulation supports:
1730 24d4de45 ths
1731 24d4de45 ths
@itemize @minus
1732 24d4de45 ths
@item
1733 24d4de45 ths
MIPS R4000 CPU
1734 24d4de45 ths
@item
1735 24d4de45 ths
PC-style IRQ and DMA controllers
1736 24d4de45 ths
@item
1737 24d4de45 ths
PC Keyboard
1738 24d4de45 ths
@item
1739 24d4de45 ths
IDE controller
1740 24d4de45 ths
@end itemize
1741 3f9f3aa1 bellard
1742 f0fc6f8f ths
The mipssim pseudo board emulation provides an environment similiar
1743 f0fc6f8f ths
to what the proprietary MIPS emulator uses for running Linux.
1744 f0fc6f8f ths
It supports:
1745 6bf5b4e8 ths
1746 6bf5b4e8 ths
@itemize @minus
1747 6bf5b4e8 ths
@item
1748 6bf5b4e8 ths
A range of MIPS CPUs, default is the 24Kf
1749 6bf5b4e8 ths
@item
1750 6bf5b4e8 ths
PC style serial port
1751 6bf5b4e8 ths
@item
1752 6bf5b4e8 ths
MIPSnet network emulation
1753 6bf5b4e8 ths
@end itemize
1754 6bf5b4e8 ths
1755 88cb0a02 aurel32
The MIPS Magnum R4000 emulation supports:
1756 88cb0a02 aurel32
1757 88cb0a02 aurel32
@itemize @minus
1758 88cb0a02 aurel32
@item
1759 88cb0a02 aurel32
MIPS R4000 CPU
1760 88cb0a02 aurel32
@item
1761 88cb0a02 aurel32
PC-style IRQ controller
1762 88cb0a02 aurel32
@item
1763 88cb0a02 aurel32
PC Keyboard
1764 88cb0a02 aurel32
@item
1765 88cb0a02 aurel32
SCSI controller
1766 88cb0a02 aurel32
@item
1767 88cb0a02 aurel32
G364 framebuffer
1768 88cb0a02 aurel32
@end itemize
1769 88cb0a02 aurel32
1770 88cb0a02 aurel32
1771 24d4de45 ths
@node ARM System emulator
1772 24d4de45 ths
@section ARM System emulator
1773 7544a042 Stefan Weil
@cindex system emulation (ARM)
1774 3f9f3aa1 bellard
1775 3f9f3aa1 bellard
Use the executable @file{qemu-system-arm} to simulate a ARM
1776 3f9f3aa1 bellard
machine. The ARM Integrator/CP board is emulated with the following
1777 3f9f3aa1 bellard
devices:
1778 3f9f3aa1 bellard
1779 3f9f3aa1 bellard
@itemize @minus
1780 3f9f3aa1 bellard
@item
1781 9ee6e8bb pbrook
ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
1782 3f9f3aa1 bellard
@item
1783 3f9f3aa1 bellard
Two PL011 UARTs
1784 5fafdf24 ths
@item
1785 3f9f3aa1 bellard
SMC 91c111 Ethernet adapter
1786 00a9bf19 pbrook
@item
1787 00a9bf19 pbrook
PL110 LCD controller
1788 00a9bf19 pbrook
@item
1789 00a9bf19 pbrook
PL050 KMI with PS/2 keyboard and mouse.
1790 a1bb27b1 pbrook
@item
1791 a1bb27b1 pbrook
PL181 MultiMedia Card Interface with SD card.
1792 00a9bf19 pbrook
@end itemize
1793 00a9bf19 pbrook
1794 00a9bf19 pbrook
The ARM Versatile baseboard is emulated with the following devices:
1795 00a9bf19 pbrook
1796 00a9bf19 pbrook
@itemize @minus
1797 00a9bf19 pbrook
@item
1798 9ee6e8bb pbrook
ARM926E, ARM1136 or Cortex-A8 CPU
1799 00a9bf19 pbrook
@item
1800 00a9bf19 pbrook
PL190 Vectored Interrupt Controller
1801 00a9bf19 pbrook
@item
1802 00a9bf19 pbrook
Four PL011 UARTs
1803 5fafdf24 ths
@item
1804 00a9bf19 pbrook
SMC 91c111 Ethernet adapter
1805 00a9bf19 pbrook
@item
1806 00a9bf19 pbrook
PL110 LCD controller
1807 00a9bf19 pbrook
@item
1808 00a9bf19 pbrook
PL050 KMI with PS/2 keyboard and mouse.
1809 00a9bf19 pbrook
@item
1810 00a9bf19 pbrook
PCI host bridge.  Note the emulated PCI bridge only provides access to
1811 00a9bf19 pbrook
PCI memory space.  It does not provide access to PCI IO space.
1812 4be456f1 ths
This means some devices (eg. ne2k_pci NIC) are not usable, and others
1813 4be456f1 ths
(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
1814 00a9bf19 pbrook
mapped control registers.
1815 e6de1bad pbrook
@item
1816 e6de1bad pbrook
PCI OHCI USB controller.
1817 e6de1bad pbrook
@item
1818 e6de1bad pbrook
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
1819 a1bb27b1 pbrook
@item
1820 a1bb27b1 pbrook
PL181 MultiMedia Card Interface with SD card.
1821 3f9f3aa1 bellard
@end itemize
1822 3f9f3aa1 bellard
1823 21a88941 Paul Brook
Several variants of the ARM RealView baseboard are emulated,
1824 21a88941 Paul Brook
including the EB, PB-A8 and PBX-A9.  Due to interactions with the
1825 21a88941 Paul Brook
bootloader, only certain Linux kernel configurations work out
1826 21a88941 Paul Brook
of the box on these boards.
1827 21a88941 Paul Brook
1828 21a88941 Paul Brook
Kernels for the PB-A8 board should have CONFIG_REALVIEW_HIGH_PHYS_OFFSET
1829 21a88941 Paul Brook
enabled in the kernel, and expect 512M RAM.  Kernels for The PBX-A9 board
1830 21a88941 Paul Brook
should have CONFIG_SPARSEMEM enabled, CONFIG_REALVIEW_HIGH_PHYS_OFFSET
1831 21a88941 Paul Brook
disabled and expect 1024M RAM.
1832 21a88941 Paul Brook
1833 40c5c6cd Stefan Weil
The following devices are emulated:
1834 d7739d75 pbrook
1835 d7739d75 pbrook
@itemize @minus
1836 d7739d75 pbrook
@item
1837 f7c70325 Paul Brook
ARM926E, ARM1136, ARM11MPCore, Cortex-A8 or Cortex-A9 MPCore CPU
1838 d7739d75 pbrook
@item
1839 d7739d75 pbrook
ARM AMBA Generic/Distributed Interrupt Controller
1840 d7739d75 pbrook
@item
1841 d7739d75 pbrook
Four PL011 UARTs
1842 5fafdf24 ths
@item
1843 0ef849d7 Paul Brook
SMC 91c111 or SMSC LAN9118 Ethernet adapter
1844 d7739d75 pbrook
@item
1845 d7739d75 pbrook
PL110 LCD controller
1846 d7739d75 pbrook
@item
1847 d7739d75 pbrook
PL050 KMI with PS/2 keyboard and mouse
1848 d7739d75 pbrook
@item
1849 d7739d75 pbrook
PCI host bridge
1850 d7739d75 pbrook
@item
1851 d7739d75 pbrook
PCI OHCI USB controller
1852 d7739d75 pbrook
@item
1853 d7739d75 pbrook
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
1854 a1bb27b1 pbrook
@item
1855 a1bb27b1 pbrook
PL181 MultiMedia Card Interface with SD card.
1856 d7739d75 pbrook
@end itemize
1857 d7739d75 pbrook
1858 b00052e4 balrog
The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
1859 b00052e4 balrog
and "Terrier") emulation includes the following peripherals:
1860 b00052e4 balrog
1861 b00052e4 balrog
@itemize @minus
1862 b00052e4 balrog
@item
1863 b00052e4 balrog
Intel PXA270 System-on-chip (ARM V5TE core)
1864 b00052e4 balrog
@item
1865 b00052e4 balrog
NAND Flash memory
1866 b00052e4 balrog
@item
1867 b00052e4 balrog
IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
1868 b00052e4 balrog
@item
1869 b00052e4 balrog
On-chip OHCI USB controller
1870 b00052e4 balrog
@item
1871 b00052e4 balrog
On-chip LCD controller
1872 b00052e4 balrog
@item
1873 b00052e4 balrog
On-chip Real Time Clock
1874 b00052e4 balrog
@item
1875 b00052e4 balrog
TI ADS7846 touchscreen controller on SSP bus
1876 b00052e4 balrog
@item
1877 b00052e4 balrog
Maxim MAX1111 analog-digital converter on I@math{^2}C bus
1878 b00052e4 balrog
@item
1879 b00052e4 balrog
GPIO-connected keyboard controller and LEDs
1880 b00052e4 balrog
@item
1881 549444e1 balrog
Secure Digital card connected to PXA MMC/SD host
1882 b00052e4 balrog
@item
1883 b00052e4 balrog
Three on-chip UARTs
1884 b00052e4 balrog
@item
1885 b00052e4 balrog
WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
1886 b00052e4 balrog
@end itemize
1887 b00052e4 balrog
1888 02645926 balrog
The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
1889 02645926 balrog
following elements:
1890 02645926 balrog
1891 02645926 balrog
@itemize @minus
1892 02645926 balrog
@item
1893 02645926 balrog
Texas Instruments OMAP310 System-on-chip (ARM 925T core)
1894 02645926 balrog
@item
1895 02645926 balrog
ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
1896 02645926 balrog
@item
1897 02645926 balrog
On-chip LCD controller
1898 02645926 balrog
@item
1899 02645926 balrog
On-chip Real Time Clock
1900 02645926 balrog
@item
1901 02645926 balrog
TI TSC2102i touchscreen controller / analog-digital converter / Audio
1902 02645926 balrog
CODEC, connected through MicroWire and I@math{^2}S busses
1903 02645926 balrog
@item
1904 02645926 balrog
GPIO-connected matrix keypad
1905 02645926 balrog
@item
1906 02645926 balrog
Secure Digital card connected to OMAP MMC/SD host
1907 02645926 balrog
@item
1908 02645926 balrog
Three on-chip UARTs
1909 02645926 balrog
@end itemize
1910 02645926 balrog
1911 c30bb264 balrog
Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
1912 c30bb264 balrog
emulation supports the following elements:
1913 c30bb264 balrog
1914 c30bb264 balrog
@itemize @minus
1915 c30bb264 balrog
@item
1916 c30bb264 balrog
Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
1917 c30bb264 balrog
@item
1918 c30bb264 balrog
RAM and non-volatile OneNAND Flash memories
1919 c30bb264 balrog
@item
1920 c30bb264 balrog
Display connected to EPSON remote framebuffer chip and OMAP on-chip
1921 c30bb264 balrog
display controller and a LS041y3 MIPI DBI-C controller
1922 c30bb264 balrog
@item
1923 c30bb264 balrog
TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
1924 c30bb264 balrog
driven through SPI bus
1925 c30bb264 balrog
@item
1926 c30bb264 balrog
National Semiconductor LM8323-controlled qwerty keyboard driven
1927 c30bb264 balrog
through I@math{^2}C bus
1928 c30bb264 balrog
@item
1929 c30bb264 balrog
Secure Digital card connected to OMAP MMC/SD host
1930 c30bb264 balrog
@item
1931 c30bb264 balrog
Three OMAP on-chip UARTs and on-chip STI debugging console
1932 c30bb264 balrog
@item
1933 40c5c6cd Stefan Weil
A Bluetooth(R) transceiver and HCI connected to an UART
1934 2d564691 balrog
@item
1935 c30bb264 balrog
Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
1936 c30bb264 balrog
TUSB6010 chip - only USB host mode is supported
1937 c30bb264 balrog
@item
1938 c30bb264 balrog
TI TMP105 temperature sensor driven through I@math{^2}C bus
1939 c30bb264 balrog
@item
1940 c30bb264 balrog
TI TWL92230C power management companion with an RTC on I@math{^2}C bus
1941 c30bb264 balrog
@item
1942 c30bb264 balrog
Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
1943 c30bb264 balrog
through CBUS
1944 c30bb264 balrog
@end itemize
1945 c30bb264 balrog
1946 9ee6e8bb pbrook
The Luminary Micro Stellaris LM3S811EVB emulation includes the following
1947 9ee6e8bb pbrook
devices:
1948 9ee6e8bb pbrook
1949 9ee6e8bb pbrook
@itemize @minus
1950 9ee6e8bb pbrook
@item
1951 9ee6e8bb pbrook
Cortex-M3 CPU core.
1952 9ee6e8bb pbrook
@item
1953 9ee6e8bb pbrook
64k Flash and 8k SRAM.
1954 9ee6e8bb pbrook
@item
1955 9ee6e8bb pbrook
Timers, UARTs, ADC and I@math{^2}C interface.
1956 9ee6e8bb pbrook
@item
1957 9ee6e8bb pbrook
OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
1958 9ee6e8bb pbrook
@end itemize
1959 9ee6e8bb pbrook
1960 9ee6e8bb pbrook
The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
1961 9ee6e8bb pbrook
devices:
1962 9ee6e8bb pbrook
1963 9ee6e8bb pbrook
@itemize @minus
1964 9ee6e8bb pbrook
@item
1965 9ee6e8bb pbrook
Cortex-M3 CPU core.
1966 9ee6e8bb pbrook
@item
1967 9ee6e8bb pbrook
256k Flash and 64k SRAM.
1968 9ee6e8bb pbrook
@item
1969 9ee6e8bb pbrook
Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
1970 9ee6e8bb pbrook
@item
1971 9ee6e8bb pbrook
OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
1972 9ee6e8bb pbrook
@end itemize
1973 9ee6e8bb pbrook
1974 57cd6e97 balrog
The Freecom MusicPal internet radio emulation includes the following
1975 57cd6e97 balrog
elements:
1976 57cd6e97 balrog
1977 57cd6e97 balrog
@itemize @minus
1978 57cd6e97 balrog
@item
1979 57cd6e97 balrog
Marvell MV88W8618 ARM core.
1980 57cd6e97 balrog
@item
1981 57cd6e97 balrog
32 MB RAM, 256 KB SRAM, 8 MB flash.
1982 57cd6e97 balrog
@item
1983 57cd6e97 balrog
Up to 2 16550 UARTs
1984 57cd6e97 balrog
@item
1985 57cd6e97 balrog
MV88W8xx8 Ethernet controller
1986 57cd6e97 balrog
@item
1987 57cd6e97 balrog
MV88W8618 audio controller, WM8750 CODEC and mixer
1988 57cd6e97 balrog
@item
1989 e080e785 Stefan Weil
128ร—64 display with brightness control
1990 57cd6e97 balrog
@item
1991 57cd6e97 balrog
2 buttons, 2 navigation wheels with button function
1992 57cd6e97 balrog
@end itemize
1993 57cd6e97 balrog
1994 997641a8 balrog
The Siemens SX1 models v1 and v2 (default) basic emulation.
1995 40c5c6cd Stefan Weil
The emulation includes the following elements:
1996 997641a8 balrog
1997 997641a8 balrog
@itemize @minus
1998 997641a8 balrog
@item
1999 997641a8 balrog
Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2000 997641a8 balrog
@item
2001 997641a8 balrog
ROM and RAM memories (ROM firmware image can be loaded with -pflash)
2002 997641a8 balrog
V1
2003 997641a8 balrog
1 Flash of 16MB and 1 Flash of 8MB
2004 997641a8 balrog
V2
2005 997641a8 balrog
1 Flash of 32MB
2006 997641a8 balrog
@item
2007 997641a8 balrog
On-chip LCD controller
2008 997641a8 balrog
@item
2009 997641a8 balrog
On-chip Real Time Clock
2010 997641a8 balrog
@item
2011 997641a8 balrog
Secure Digital card connected to OMAP MMC/SD host
2012 997641a8 balrog
@item
2013 997641a8 balrog
Three on-chip UARTs
2014 997641a8 balrog
@end itemize
2015 997641a8 balrog
2016 4af39611 Paul Brook
The "Syborg" Symbian Virtual Platform base model includes the following
2017 4af39611 Paul Brook
elements:
2018 4af39611 Paul Brook
2019 4af39611 Paul Brook
@itemize @minus
2020 4af39611 Paul Brook
@item
2021 4af39611 Paul Brook
ARM Cortex-A8 CPU
2022 4af39611 Paul Brook
@item
2023 4af39611 Paul Brook
Interrupt controller
2024 4af39611 Paul Brook
@item
2025 4af39611 Paul Brook
Timer
2026 4af39611 Paul Brook
@item
2027 4af39611 Paul Brook
Real Time Clock
2028 4af39611 Paul Brook
@item
2029 4af39611 Paul Brook
Keyboard
2030 4af39611 Paul Brook
@item
2031 4af39611 Paul Brook
Framebuffer
2032 4af39611 Paul Brook
@item
2033 4af39611 Paul Brook
Touchscreen
2034 4af39611 Paul Brook
@item
2035 4af39611 Paul Brook
UARTs
2036 4af39611 Paul Brook
@end itemize
2037 4af39611 Paul Brook
2038 3f9f3aa1 bellard
A Linux 2.6 test image is available on the QEMU web site. More
2039 3f9f3aa1 bellard
information is available in the QEMU mailing-list archive.
2040 9d0a8e6f bellard
2041 d2c639d6 blueswir1
@c man begin OPTIONS
2042 d2c639d6 blueswir1
2043 d2c639d6 blueswir1
The following options are specific to the ARM emulation:
2044 d2c639d6 blueswir1
2045 d2c639d6 blueswir1
@table @option
2046 d2c639d6 blueswir1
2047 d2c639d6 blueswir1
@item -semihosting
2048 d2c639d6 blueswir1
Enable semihosting syscall emulation.
2049 d2c639d6 blueswir1
2050 d2c639d6 blueswir1
On ARM this implements the "Angel" interface.
2051 d2c639d6 blueswir1
2052 d2c639d6 blueswir1
Note that this allows guest direct access to the host filesystem,
2053 d2c639d6 blueswir1
so should only be used with trusted guest OS.
2054 d2c639d6 blueswir1
2055 d2c639d6 blueswir1
@end table
2056 d2c639d6 blueswir1
2057 24d4de45 ths
@node ColdFire System emulator
2058 24d4de45 ths
@section ColdFire System emulator
2059 7544a042 Stefan Weil
@cindex system emulation (ColdFire)
2060 7544a042 Stefan Weil
@cindex system emulation (M68K)
2061 209a4e69 pbrook
2062 209a4e69 pbrook
Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2063 209a4e69 pbrook
The emulator is able to boot a uClinux kernel.
2064 707e011b pbrook
2065 707e011b pbrook
The M5208EVB emulation includes the following devices:
2066 707e011b pbrook
2067 707e011b pbrook
@itemize @minus
2068 5fafdf24 ths
@item
2069 707e011b pbrook
MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2070 707e011b pbrook
@item
2071 707e011b pbrook
Three Two on-chip UARTs.
2072 707e011b pbrook
@item
2073 707e011b pbrook
Fast Ethernet Controller (FEC)
2074 707e011b pbrook
@end itemize
2075 707e011b pbrook
2076 707e011b pbrook
The AN5206 emulation includes the following devices:
2077 209a4e69 pbrook
2078 209a4e69 pbrook
@itemize @minus
2079 5fafdf24 ths
@item
2080 209a4e69 pbrook
MCF5206 ColdFire V2 Microprocessor.
2081 209a4e69 pbrook
@item
2082 209a4e69 pbrook
Two on-chip UARTs.
2083 209a4e69 pbrook
@end itemize
2084 209a4e69 pbrook
2085 d2c639d6 blueswir1
@c man begin OPTIONS
2086 d2c639d6 blueswir1
2087 7544a042 Stefan Weil
The following options are specific to the ColdFire emulation:
2088 d2c639d6 blueswir1
2089 d2c639d6 blueswir1
@table @option
2090 d2c639d6 blueswir1
2091 d2c639d6 blueswir1
@item -semihosting
2092 d2c639d6 blueswir1
Enable semihosting syscall emulation.
2093 d2c639d6 blueswir1
2094 d2c639d6 blueswir1
On M68K this implements the "ColdFire GDB" interface used by libgloss.
2095 d2c639d6 blueswir1
2096 d2c639d6 blueswir1
Note that this allows guest direct access to the host filesystem,
2097 d2c639d6 blueswir1
so should only be used with trusted guest OS.
2098 d2c639d6 blueswir1
2099 d2c639d6 blueswir1
@end table
2100 d2c639d6 blueswir1
2101 7544a042 Stefan Weil
@node Cris System emulator
2102 7544a042 Stefan Weil
@section Cris System emulator
2103 7544a042 Stefan Weil
@cindex system emulation (Cris)
2104 7544a042 Stefan Weil
2105 7544a042 Stefan Weil
TODO
2106 7544a042 Stefan Weil
2107 7544a042 Stefan Weil
@node Microblaze System emulator
2108 7544a042 Stefan Weil
@section Microblaze System emulator
2109 7544a042 Stefan Weil
@cindex system emulation (Microblaze)
2110 7544a042 Stefan Weil
2111 7544a042 Stefan Weil
TODO
2112 7544a042 Stefan Weil
2113 7544a042 Stefan Weil
@node SH4 System emulator
2114 7544a042 Stefan Weil
@section SH4 System emulator
2115 7544a042 Stefan Weil
@cindex system emulation (SH4)
2116 7544a042 Stefan Weil
2117 7544a042 Stefan Weil
TODO
2118 7544a042 Stefan Weil
2119 5fafdf24 ths
@node QEMU User space emulator
2120 5fafdf24 ths
@chapter QEMU User space emulator
2121 83195237 bellard
2122 83195237 bellard
@menu
2123 83195237 bellard
* Supported Operating Systems ::
2124 83195237 bellard
* Linux User space emulator::
2125 83195237 bellard
* Mac OS X/Darwin User space emulator ::
2126 84778508 blueswir1
* BSD User space emulator ::
2127 83195237 bellard
@end menu
2128 83195237 bellard
2129 83195237 bellard
@node Supported Operating Systems
2130 83195237 bellard
@section Supported Operating Systems
2131 83195237 bellard
2132 83195237 bellard
The following OS are supported in user space emulation:
2133 83195237 bellard
2134 83195237 bellard
@itemize @minus
2135 83195237 bellard
@item
2136 4be456f1 ths
Linux (referred as qemu-linux-user)
2137 83195237 bellard
@item
2138 4be456f1 ths
Mac OS X/Darwin (referred as qemu-darwin-user)
2139 84778508 blueswir1
@item
2140 84778508 blueswir1
BSD (referred as qemu-bsd-user)
2141 83195237 bellard
@end itemize
2142 83195237 bellard
2143 83195237 bellard
@node Linux User space emulator
2144 83195237 bellard
@section Linux User space emulator
2145 386405f7 bellard
2146 debc7065 bellard
@menu
2147 debc7065 bellard
* Quick Start::
2148 debc7065 bellard
* Wine launch::
2149 debc7065 bellard
* Command line options::
2150 79737e4a pbrook
* Other binaries::
2151 debc7065 bellard
@end menu
2152 debc7065 bellard
2153 debc7065 bellard
@node Quick Start
2154 83195237 bellard
@subsection Quick Start
2155 df0f11a0 bellard
2156 1f673135 bellard
In order to launch a Linux process, QEMU needs the process executable
2157 5fafdf24 ths
itself and all the target (x86) dynamic libraries used by it.
2158 386405f7 bellard
2159 1f673135 bellard
@itemize
2160 386405f7 bellard
2161 1f673135 bellard
@item On x86, you can just try to launch any process by using the native
2162 1f673135 bellard
libraries:
2163 386405f7 bellard
2164 5fafdf24 ths
@example
2165 1f673135 bellard
qemu-i386 -L / /bin/ls
2166 1f673135 bellard
@end example
2167 386405f7 bellard
2168 1f673135 bellard
@code{-L /} tells that the x86 dynamic linker must be searched with a
2169 1f673135 bellard
@file{/} prefix.
2170 386405f7 bellard
2171 dbcf5e82 ths
@item Since QEMU is also a linux process, you can launch qemu with
2172 dbcf5e82 ths
qemu (NOTE: you can only do that if you compiled QEMU from the sources):
2173 386405f7 bellard
2174 5fafdf24 ths
@example
2175 1f673135 bellard
qemu-i386 -L / qemu-i386 -L / /bin/ls
2176 1f673135 bellard
@end example
2177 386405f7 bellard
2178 1f673135 bellard
@item On non x86 CPUs, you need first to download at least an x86 glibc
2179 1f673135 bellard
(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2180 1f673135 bellard
@code{LD_LIBRARY_PATH} is not set:
2181 df0f11a0 bellard
2182 1f673135 bellard
@example
2183 5fafdf24 ths
unset LD_LIBRARY_PATH
2184 1f673135 bellard
@end example
2185 1eb87257 bellard
2186 1f673135 bellard
Then you can launch the precompiled @file{ls} x86 executable:
2187 1eb87257 bellard
2188 1f673135 bellard
@example
2189 1f673135 bellard
qemu-i386 tests/i386/ls
2190 1f673135 bellard
@end example
2191 4c3b5a48 Blue Swirl
You can look at @file{scripts/qemu-binfmt-conf.sh} so that
2192 1f673135 bellard
QEMU is automatically launched by the Linux kernel when you try to
2193 1f673135 bellard
launch x86 executables. It requires the @code{binfmt_misc} module in the
2194 1f673135 bellard
Linux kernel.
2195 1eb87257 bellard
2196 1f673135 bellard
@item The x86 version of QEMU is also included. You can try weird things such as:
2197 1f673135 bellard
@example
2198 debc7065 bellard
qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2199 debc7065 bellard
          /usr/local/qemu-i386/bin/ls-i386
2200 1f673135 bellard
@end example
2201 1eb20527 bellard
2202 1f673135 bellard
@end itemize
2203 1eb20527 bellard
2204 debc7065 bellard
@node Wine launch
2205 83195237 bellard
@subsection Wine launch
2206 1eb20527 bellard
2207 1f673135 bellard
@itemize
2208 386405f7 bellard
2209 1f673135 bellard
@item Ensure that you have a working QEMU with the x86 glibc
2210 1f673135 bellard
distribution (see previous section). In order to verify it, you must be
2211 1f673135 bellard
able to do:
2212 386405f7 bellard
2213 1f673135 bellard
@example
2214 1f673135 bellard
qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2215 1f673135 bellard
@end example
2216 386405f7 bellard
2217 1f673135 bellard
@item Download the binary x86 Wine install
2218 5fafdf24 ths
(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
2219 386405f7 bellard
2220 1f673135 bellard
@item Configure Wine on your account. Look at the provided script
2221 debc7065 bellard
@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
2222 1f673135 bellard
@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
2223 386405f7 bellard
2224 1f673135 bellard
@item Then you can try the example @file{putty.exe}:
2225 386405f7 bellard
2226 1f673135 bellard
@example
2227 debc7065 bellard
qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2228 debc7065 bellard
          /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
2229 1f673135 bellard
@end example
2230 386405f7 bellard
2231 1f673135 bellard
@end itemize
2232 fd429f2f bellard
2233 debc7065 bellard
@node Command line options
2234 83195237 bellard
@subsection Command line options
2235 1eb20527 bellard
2236 1f673135 bellard
@example
2237 68a1c816 Paul Brook
usage: qemu-i386 [-h] [-d] [-L path] [-s size] [-cpu model] [-g port] [-B offset] [-R size] program [arguments...]
2238 1f673135 bellard
@end example
2239 1eb20527 bellard
2240 1f673135 bellard
@table @option
2241 1f673135 bellard
@item -h
2242 1f673135 bellard
Print the help
2243 3b46e624 ths
@item -L path
2244 1f673135 bellard
Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2245 1f673135 bellard
@item -s size
2246 1f673135 bellard
Set the x86 stack size in bytes (default=524288)
2247 34a3d239 blueswir1
@item -cpu model
2248 34a3d239 blueswir1
Select CPU model (-cpu ? for list and additional feature selection)
2249 f66724c9 Stefan Weil
@item -ignore-environment
2250 f66724c9 Stefan Weil
Start with an empty environment. Without this option,
2251 40c5c6cd Stefan Weil
the initial environment is a copy of the caller's environment.
2252 f66724c9 Stefan Weil
@item -E @var{var}=@var{value}
2253 f66724c9 Stefan Weil
Set environment @var{var} to @var{value}.
2254 f66724c9 Stefan Weil
@item -U @var{var}
2255 f66724c9 Stefan Weil
Remove @var{var} from the environment.
2256 379f6698 Paul Brook
@item -B offset
2257 379f6698 Paul Brook
Offset guest address by the specified number of bytes.  This is useful when
2258 1f5c3f8c Stefan Weil
the address region required by guest applications is reserved on the host.
2259 1f5c3f8c Stefan Weil
This option is currently only supported on some hosts.
2260 68a1c816 Paul Brook
@item -R size
2261 68a1c816 Paul Brook
Pre-allocate a guest virtual address space of the given size (in bytes).
2262 0d6753e5 Stefan Weil
"G", "M", and "k" suffixes may be used when specifying the size.
2263 386405f7 bellard
@end table
2264 386405f7 bellard
2265 1f673135 bellard
Debug options:
2266 386405f7 bellard
2267 1f673135 bellard
@table @option
2268 1f673135 bellard
@item -d
2269 1f673135 bellard
Activate log (logfile=/tmp/qemu.log)
2270 1f673135 bellard
@item -p pagesize
2271 1f673135 bellard
Act as if the host page size was 'pagesize' bytes
2272 34a3d239 blueswir1
@item -g port
2273 34a3d239 blueswir1
Wait gdb connection to port
2274 1b530a6d aurel32
@item -singlestep
2275 1b530a6d aurel32
Run the emulation in single step mode.
2276 1f673135 bellard
@end table
2277 386405f7 bellard
2278 b01bcae6 balrog
Environment variables:
2279 b01bcae6 balrog
2280 b01bcae6 balrog
@table @env
2281 b01bcae6 balrog
@item QEMU_STRACE
2282 b01bcae6 balrog
Print system calls and arguments similar to the 'strace' program
2283 b01bcae6 balrog
(NOTE: the actual 'strace' program will not work because the user
2284 b01bcae6 balrog
space emulator hasn't implemented ptrace).  At the moment this is
2285 b01bcae6 balrog
incomplete.  All system calls that don't have a specific argument
2286 b01bcae6 balrog
format are printed with information for six arguments.  Many
2287 b01bcae6 balrog
flag-style arguments don't have decoders and will show up as numbers.
2288 5cfdf930 ths
@end table
2289 b01bcae6 balrog
2290 79737e4a pbrook
@node Other binaries
2291 83195237 bellard
@subsection Other binaries
2292 79737e4a pbrook
2293 7544a042 Stefan Weil
@cindex user mode (Alpha)
2294 7544a042 Stefan Weil
@command{qemu-alpha} TODO.
2295 7544a042 Stefan Weil
2296 7544a042 Stefan Weil
@cindex user mode (ARM)
2297 7544a042 Stefan Weil
@command{qemu-armeb} TODO.
2298 7544a042 Stefan Weil
2299 7544a042 Stefan Weil
@cindex user mode (ARM)
2300 79737e4a pbrook
@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2301 79737e4a pbrook
binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2302 79737e4a pbrook
configurations), and arm-uclinux bFLT format binaries.
2303 79737e4a pbrook
2304 7544a042 Stefan Weil
@cindex user mode (ColdFire)
2305 7544a042 Stefan Weil
@cindex user mode (M68K)
2306 e6e5906b pbrook
@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2307 e6e5906b pbrook
(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2308 e6e5906b pbrook
coldfire uClinux bFLT format binaries.
2309 e6e5906b pbrook
2310 79737e4a pbrook
The binary format is detected automatically.
2311 79737e4a pbrook
2312 7544a042 Stefan Weil
@cindex user mode (Cris)
2313 7544a042 Stefan Weil
@command{qemu-cris} TODO.
2314 7544a042 Stefan Weil
2315 7544a042 Stefan Weil
@cindex user mode (i386)
2316 7544a042 Stefan Weil
@command{qemu-i386} TODO.
2317 7544a042 Stefan Weil
@command{qemu-x86_64} TODO.
2318 7544a042 Stefan Weil
2319 7544a042 Stefan Weil
@cindex user mode (Microblaze)
2320 7544a042 Stefan Weil
@command{qemu-microblaze} TODO.
2321 7544a042 Stefan Weil
2322 7544a042 Stefan Weil
@cindex user mode (MIPS)
2323 7544a042 Stefan Weil
@command{qemu-mips} TODO.
2324 7544a042 Stefan Weil
@command{qemu-mipsel} TODO.
2325 7544a042 Stefan Weil
2326 7544a042 Stefan Weil
@cindex user mode (PowerPC)
2327 7544a042 Stefan Weil
@command{qemu-ppc64abi32} TODO.
2328 7544a042 Stefan Weil
@command{qemu-ppc64} TODO.
2329 7544a042 Stefan Weil
@command{qemu-ppc} TODO.
2330 7544a042 Stefan Weil
2331 7544a042 Stefan Weil
@cindex user mode (SH4)
2332 7544a042 Stefan Weil
@command{qemu-sh4eb} TODO.
2333 7544a042 Stefan Weil
@command{qemu-sh4} TODO.
2334 7544a042 Stefan Weil
2335 7544a042 Stefan Weil
@cindex user mode (SPARC)
2336 34a3d239 blueswir1
@command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
2337 34a3d239 blueswir1
2338 a785e42e blueswir1
@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2339 a785e42e blueswir1
(Sparc64 CPU, 32 bit ABI).
2340 a785e42e blueswir1
2341 a785e42e blueswir1
@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2342 a785e42e blueswir1
SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2343 a785e42e blueswir1
2344 83195237 bellard
@node Mac OS X/Darwin User space emulator
2345 83195237 bellard
@section Mac OS X/Darwin User space emulator
2346 83195237 bellard
2347 83195237 bellard
@menu
2348 83195237 bellard
* Mac OS X/Darwin Status::
2349 83195237 bellard
* Mac OS X/Darwin Quick Start::
2350 83195237 bellard
* Mac OS X/Darwin Command line options::
2351 83195237 bellard
@end menu
2352 83195237 bellard
2353 83195237 bellard
@node Mac OS X/Darwin Status
2354 83195237 bellard
@subsection Mac OS X/Darwin Status
2355 83195237 bellard
2356 83195237 bellard
@itemize @minus
2357 83195237 bellard
@item
2358 83195237 bellard
target x86 on x86: Most apps (Cocoa and Carbon too) works. [1]
2359 83195237 bellard
@item
2360 83195237 bellard
target PowerPC on x86: Not working as the ppc commpage can't be mapped (yet!)
2361 83195237 bellard
@item
2362 dbcf5e82 ths
target PowerPC on PowerPC: Most apps (Cocoa and Carbon too) works. [1]
2363 83195237 bellard
@item
2364 83195237 bellard
target x86 on PowerPC: most utilities work. Cocoa and Carbon apps are not yet supported.
2365 83195237 bellard
@end itemize
2366 83195237 bellard
2367 83195237 bellard
[1] If you're host commpage can be executed by qemu.
2368 83195237 bellard
2369 83195237 bellard
@node Mac OS X/Darwin Quick Start
2370 83195237 bellard
@subsection Quick Start
2371 83195237 bellard
2372 83195237 bellard
In order to launch a Mac OS X/Darwin process, QEMU needs the process executable
2373 83195237 bellard
itself and all the target dynamic libraries used by it. If you don't have the FAT
2374 83195237 bellard
libraries (you're running Mac OS X/ppc) you'll need to obtain it from a Mac OS X
2375 83195237 bellard
CD or compile them by hand.
2376 83195237 bellard
2377 83195237 bellard
@itemize
2378 83195237 bellard
2379 83195237 bellard
@item On x86, you can just try to launch any process by using the native
2380 83195237 bellard
libraries:
2381 83195237 bellard
2382 5fafdf24 ths
@example
2383 dbcf5e82 ths
qemu-i386 /bin/ls
2384 83195237 bellard
@end example
2385 83195237 bellard
2386 83195237 bellard
or to run the ppc version of the executable:
2387 83195237 bellard
2388 5fafdf24 ths
@example
2389 dbcf5e82 ths
qemu-ppc /bin/ls
2390 83195237 bellard
@end example
2391 83195237 bellard
2392 83195237 bellard
@item On ppc, you'll have to tell qemu where your x86 libraries (and dynamic linker)
2393 83195237 bellard
are installed:
2394 83195237 bellard
2395 5fafdf24 ths
@example
2396 dbcf5e82 ths
qemu-i386 -L /opt/x86_root/ /bin/ls
2397 83195237 bellard
@end example
2398 83195237 bellard
2399 83195237 bellard
@code{-L /opt/x86_root/} tells that the dynamic linker (dyld) path is in
2400 83195237 bellard
@file{/opt/x86_root/usr/bin/dyld}.
2401 83195237 bellard
2402 83195237 bellard
@end itemize
2403 83195237 bellard
2404 83195237 bellard
@node Mac OS X/Darwin Command line options
2405 83195237 bellard
@subsection Command line options
2406 83195237 bellard
2407 83195237 bellard
@example
2408 dbcf5e82 ths
usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
2409 83195237 bellard
@end example
2410 83195237 bellard
2411 83195237 bellard
@table @option
2412 83195237 bellard
@item -h
2413 83195237 bellard
Print the help
2414 3b46e624 ths
@item -L path
2415 83195237 bellard
Set the library root path (default=/)
2416 83195237 bellard
@item -s size
2417 83195237 bellard
Set the stack size in bytes (default=524288)
2418 83195237 bellard
@end table
2419 83195237 bellard
2420 83195237 bellard
Debug options:
2421 83195237 bellard
2422 83195237 bellard
@table @option
2423 83195237 bellard
@item -d
2424 83195237 bellard
Activate log (logfile=/tmp/qemu.log)
2425 83195237 bellard
@item -p pagesize
2426 83195237 bellard
Act as if the host page size was 'pagesize' bytes
2427 1b530a6d aurel32
@item -singlestep
2428 1b530a6d aurel32
Run the emulation in single step mode.
2429 83195237 bellard
@end table
2430 83195237 bellard
2431 84778508 blueswir1
@node BSD User space emulator
2432 84778508 blueswir1
@section BSD User space emulator
2433 84778508 blueswir1
2434 84778508 blueswir1
@menu
2435 84778508 blueswir1
* BSD Status::
2436 84778508 blueswir1
* BSD Quick Start::
2437 84778508 blueswir1
* BSD Command line options::
2438 84778508 blueswir1
@end menu
2439 84778508 blueswir1
2440 84778508 blueswir1
@node BSD Status
2441 84778508 blueswir1
@subsection BSD Status
2442 84778508 blueswir1
2443 84778508 blueswir1
@itemize @minus
2444 84778508 blueswir1
@item
2445 84778508 blueswir1
target Sparc64 on Sparc64: Some trivial programs work.
2446 84778508 blueswir1
@end itemize
2447 84778508 blueswir1
2448 84778508 blueswir1
@node BSD Quick Start
2449 84778508 blueswir1
@subsection Quick Start
2450 84778508 blueswir1
2451 84778508 blueswir1
In order to launch a BSD process, QEMU needs the process executable
2452 84778508 blueswir1
itself and all the target dynamic libraries used by it.
2453 84778508 blueswir1
2454 84778508 blueswir1
@itemize
2455 84778508 blueswir1
2456 84778508 blueswir1
@item On Sparc64, you can just try to launch any process by using the native
2457 84778508 blueswir1
libraries:
2458 84778508 blueswir1
2459 84778508 blueswir1
@example
2460 84778508 blueswir1
qemu-sparc64 /bin/ls
2461 84778508 blueswir1
@end example
2462 84778508 blueswir1
2463 84778508 blueswir1
@end itemize
2464 84778508 blueswir1
2465 84778508 blueswir1
@node BSD Command line options
2466 84778508 blueswir1
@subsection Command line options
2467 84778508 blueswir1
2468 84778508 blueswir1
@example
2469 84778508 blueswir1
usage: qemu-sparc64 [-h] [-d] [-L path] [-s size] [-bsd type] program [arguments...]
2470 84778508 blueswir1
@end example
2471 84778508 blueswir1
2472 84778508 blueswir1
@table @option
2473 84778508 blueswir1
@item -h
2474 84778508 blueswir1
Print the help
2475 84778508 blueswir1
@item -L path
2476 84778508 blueswir1
Set the library root path (default=/)
2477 84778508 blueswir1
@item -s size
2478 84778508 blueswir1
Set the stack size in bytes (default=524288)
2479 f66724c9 Stefan Weil
@item -ignore-environment
2480 f66724c9 Stefan Weil
Start with an empty environment. Without this option,
2481 40c5c6cd Stefan Weil
the initial environment is a copy of the caller's environment.
2482 f66724c9 Stefan Weil
@item -E @var{var}=@var{value}
2483 f66724c9 Stefan Weil
Set environment @var{var} to @var{value}.
2484 f66724c9 Stefan Weil
@item -U @var{var}
2485 f66724c9 Stefan Weil
Remove @var{var} from the environment.
2486 84778508 blueswir1
@item -bsd type
2487 84778508 blueswir1
Set the type of the emulated BSD Operating system. Valid values are
2488 84778508 blueswir1
FreeBSD, NetBSD and OpenBSD (default).
2489 84778508 blueswir1
@end table
2490 84778508 blueswir1
2491 84778508 blueswir1
Debug options:
2492 84778508 blueswir1
2493 84778508 blueswir1
@table @option
2494 84778508 blueswir1
@item -d
2495 84778508 blueswir1
Activate log (logfile=/tmp/qemu.log)
2496 84778508 blueswir1
@item -p pagesize
2497 84778508 blueswir1
Act as if the host page size was 'pagesize' bytes
2498 1b530a6d aurel32
@item -singlestep
2499 1b530a6d aurel32
Run the emulation in single step mode.
2500 84778508 blueswir1
@end table
2501 84778508 blueswir1
2502 15a34c63 bellard
@node compilation
2503 15a34c63 bellard
@chapter Compilation from the sources
2504 15a34c63 bellard
2505 debc7065 bellard
@menu
2506 debc7065 bellard
* Linux/Unix::
2507 debc7065 bellard
* Windows::
2508 debc7065 bellard
* Cross compilation for Windows with Linux::
2509 debc7065 bellard
* Mac OS X::
2510 47eacb4f Stefan Weil
* Make targets::
2511 debc7065 bellard
@end menu
2512 debc7065 bellard
2513 debc7065 bellard
@node Linux/Unix
2514 7c3fc84d bellard
@section Linux/Unix
2515 7c3fc84d bellard
2516 7c3fc84d bellard
@subsection Compilation
2517 7c3fc84d bellard
2518 7c3fc84d bellard
First you must decompress the sources:
2519 7c3fc84d bellard
@example
2520 7c3fc84d bellard
cd /tmp
2521 7c3fc84d bellard
tar zxvf qemu-x.y.z.tar.gz
2522 7c3fc84d bellard
cd qemu-x.y.z
2523 7c3fc84d bellard
@end example
2524 7c3fc84d bellard
2525 7c3fc84d bellard
Then you configure QEMU and build it (usually no options are needed):
2526 7c3fc84d bellard
@example
2527 7c3fc84d bellard
./configure
2528 7c3fc84d bellard
make
2529 7c3fc84d bellard
@end example
2530 7c3fc84d bellard
2531 7c3fc84d bellard
Then type as root user:
2532 7c3fc84d bellard
@example
2533 7c3fc84d bellard
make install
2534 7c3fc84d bellard
@end example
2535 7c3fc84d bellard
to install QEMU in @file{/usr/local}.
2536 7c3fc84d bellard
2537 debc7065 bellard
@node Windows
2538 15a34c63 bellard
@section Windows
2539 15a34c63 bellard
2540 15a34c63 bellard
@itemize
2541 15a34c63 bellard
@item Install the current versions of MSYS and MinGW from
2542 15a34c63 bellard
@url{http://www.mingw.org/}. You can find detailed installation
2543 15a34c63 bellard
instructions in the download section and the FAQ.
2544 15a34c63 bellard
2545 5fafdf24 ths
@item Download
2546 15a34c63 bellard
the MinGW development library of SDL 1.2.x
2547 debc7065 bellard
(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2548 d0a96f3d Scott Tsai
@url{http://www.libsdl.org}. Unpack it in a temporary place and
2549 d0a96f3d Scott Tsai
edit the @file{sdl-config} script so that it gives the
2550 15a34c63 bellard
correct SDL directory when invoked.
2551 15a34c63 bellard
2552 d0a96f3d Scott Tsai
@item Install the MinGW version of zlib and make sure
2553 d0a96f3d Scott Tsai
@file{zlib.h} and @file{libz.dll.a} are in
2554 40c5c6cd Stefan Weil
MinGW's default header and linker search paths.
2555 d0a96f3d Scott Tsai
2556 15a34c63 bellard
@item Extract the current version of QEMU.
2557 5fafdf24 ths
2558 15a34c63 bellard
@item Start the MSYS shell (file @file{msys.bat}).
2559 15a34c63 bellard
2560 5fafdf24 ths
@item Change to the QEMU directory. Launch @file{./configure} and
2561 15a34c63 bellard
@file{make}.  If you have problems using SDL, verify that
2562 15a34c63 bellard
@file{sdl-config} can be launched from the MSYS command line.
2563 15a34c63 bellard
2564 5fafdf24 ths
@item You can install QEMU in @file{Program Files/Qemu} by typing
2565 15a34c63 bellard
@file{make install}. Don't forget to copy @file{SDL.dll} in
2566 15a34c63 bellard
@file{Program Files/Qemu}.
2567 15a34c63 bellard
2568 15a34c63 bellard
@end itemize
2569 15a34c63 bellard
2570 debc7065 bellard
@node Cross compilation for Windows with Linux
2571 15a34c63 bellard
@section Cross compilation for Windows with Linux
2572 15a34c63 bellard
2573 15a34c63 bellard
@itemize
2574 15a34c63 bellard
@item
2575 15a34c63 bellard
Install the MinGW cross compilation tools available at
2576 15a34c63 bellard
@url{http://www.mingw.org/}.
2577 15a34c63 bellard
2578 d0a96f3d Scott Tsai
@item Download
2579 d0a96f3d Scott Tsai
the MinGW development library of SDL 1.2.x
2580 d0a96f3d Scott Tsai
(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2581 d0a96f3d Scott Tsai
@url{http://www.libsdl.org}. Unpack it in a temporary place and
2582 d0a96f3d Scott Tsai
edit the @file{sdl-config} script so that it gives the
2583 d0a96f3d Scott Tsai
correct SDL directory when invoked.  Set up the @code{PATH} environment
2584 d0a96f3d Scott Tsai
variable so that @file{sdl-config} can be launched by
2585 15a34c63 bellard
the QEMU configuration script.
2586 15a34c63 bellard
2587 d0a96f3d Scott Tsai
@item Install the MinGW version of zlib and make sure
2588 d0a96f3d Scott Tsai
@file{zlib.h} and @file{libz.dll.a} are in
2589 40c5c6cd Stefan Weil
MinGW's default header and linker search paths.
2590 d0a96f3d Scott Tsai
2591 5fafdf24 ths
@item
2592 15a34c63 bellard
Configure QEMU for Windows cross compilation:
2593 15a34c63 bellard
@example
2594 d0a96f3d Scott Tsai
PATH=/usr/i686-pc-mingw32/sys-root/mingw/bin:$PATH ./configure --cross-prefix='i686-pc-mingw32-'
2595 d0a96f3d Scott Tsai
@end example
2596 d0a96f3d Scott Tsai
The example assumes @file{sdl-config} is installed under @file{/usr/i686-pc-mingw32/sys-root/mingw/bin} and
2597 d0a96f3d Scott Tsai
MinGW cross compilation tools have names like @file{i686-pc-mingw32-gcc} and @file{i686-pc-mingw32-strip}.
2598 40c5c6cd Stefan Weil
We set the @code{PATH} environment variable to ensure the MinGW version of @file{sdl-config} is used and
2599 d0a96f3d Scott Tsai
use --cross-prefix to specify the name of the cross compiler.
2600 d0a96f3d Scott Tsai
You can also use --prefix to set the Win32 install path which defaults to @file{c:/Program Files/Qemu}.
2601 d0a96f3d Scott Tsai
2602 d0a96f3d Scott Tsai
Under Fedora Linux, you can run:
2603 d0a96f3d Scott Tsai
@example
2604 d0a96f3d Scott Tsai
yum -y install mingw32-gcc mingw32-SDL mingw32-zlib
2605 15a34c63 bellard
@end example
2606 d0a96f3d Scott Tsai
to get a suitable cross compilation environment.
2607 15a34c63 bellard
2608 5fafdf24 ths
@item You can install QEMU in the installation directory by typing
2609 d0a96f3d Scott Tsai
@code{make install}. Don't forget to copy @file{SDL.dll} and @file{zlib1.dll} into the
2610 5fafdf24 ths
installation directory.
2611 15a34c63 bellard
2612 15a34c63 bellard
@end itemize
2613 15a34c63 bellard
2614 d0a96f3d Scott Tsai
Wine can be used to launch the resulting qemu.exe compiled for Win32.
2615 15a34c63 bellard
2616 debc7065 bellard
@node Mac OS X
2617 15a34c63 bellard
@section Mac OS X
2618 15a34c63 bellard
2619 15a34c63 bellard
The Mac OS X patches are not fully merged in QEMU, so you should look
2620 15a34c63 bellard
at the QEMU mailing list archive to have all the necessary
2621 15a34c63 bellard
information.
2622 15a34c63 bellard
2623 47eacb4f Stefan Weil
@node Make targets
2624 47eacb4f Stefan Weil
@section Make targets
2625 47eacb4f Stefan Weil
2626 47eacb4f Stefan Weil
@table @code
2627 47eacb4f Stefan Weil
2628 47eacb4f Stefan Weil
@item make
2629 47eacb4f Stefan Weil
@item make all
2630 47eacb4f Stefan Weil
Make everything which is typically needed.
2631 47eacb4f Stefan Weil
2632 47eacb4f Stefan Weil
@item install
2633 47eacb4f Stefan Weil
TODO
2634 47eacb4f Stefan Weil
2635 47eacb4f Stefan Weil
@item install-doc
2636 47eacb4f Stefan Weil
TODO
2637 47eacb4f Stefan Weil
2638 47eacb4f Stefan Weil
@item make clean
2639 47eacb4f Stefan Weil
Remove most files which were built during make.
2640 47eacb4f Stefan Weil
2641 47eacb4f Stefan Weil
@item make distclean
2642 47eacb4f Stefan Weil
Remove everything which was built during make.
2643 47eacb4f Stefan Weil
2644 47eacb4f Stefan Weil
@item make dvi
2645 47eacb4f Stefan Weil
@item make html
2646 47eacb4f Stefan Weil
@item make info
2647 47eacb4f Stefan Weil
@item make pdf
2648 47eacb4f Stefan Weil
Create documentation in dvi, html, info or pdf format.
2649 47eacb4f Stefan Weil
2650 47eacb4f Stefan Weil
@item make cscope
2651 47eacb4f Stefan Weil
TODO
2652 47eacb4f Stefan Weil
2653 47eacb4f Stefan Weil
@item make defconfig
2654 47eacb4f Stefan Weil
(Re-)create some build configuration files.
2655 47eacb4f Stefan Weil
User made changes will be overwritten.
2656 47eacb4f Stefan Weil
2657 47eacb4f Stefan Weil
@item tar
2658 47eacb4f Stefan Weil
@item tarbin
2659 47eacb4f Stefan Weil
TODO
2660 47eacb4f Stefan Weil
2661 47eacb4f Stefan Weil
@end table
2662 47eacb4f Stefan Weil
2663 7544a042 Stefan Weil
@node License
2664 7544a042 Stefan Weil
@appendix License
2665 7544a042 Stefan Weil
2666 7544a042 Stefan Weil
QEMU is a trademark of Fabrice Bellard.
2667 7544a042 Stefan Weil
2668 7544a042 Stefan Weil
QEMU is released under the GNU General Public License (TODO: add link).
2669 7544a042 Stefan Weil
Parts of QEMU have specific licenses, see file LICENSE.
2670 7544a042 Stefan Weil
2671 7544a042 Stefan Weil
TODO (refer to file LICENSE, include it, include the GPL?)
2672 7544a042 Stefan Weil
2673 debc7065 bellard
@node Index
2674 7544a042 Stefan Weil
@appendix Index
2675 7544a042 Stefan Weil
@menu
2676 7544a042 Stefan Weil
* Concept Index::
2677 7544a042 Stefan Weil
* Function Index::
2678 7544a042 Stefan Weil
* Keystroke Index::
2679 7544a042 Stefan Weil
* Program Index::
2680 7544a042 Stefan Weil
* Data Type Index::
2681 7544a042 Stefan Weil
* Variable Index::
2682 7544a042 Stefan Weil
@end menu
2683 7544a042 Stefan Weil
2684 7544a042 Stefan Weil
@node Concept Index
2685 7544a042 Stefan Weil
@section Concept Index
2686 7544a042 Stefan Weil
This is the main index. Should we combine all keywords in one index? TODO
2687 debc7065 bellard
@printindex cp
2688 debc7065 bellard
2689 7544a042 Stefan Weil
@node Function Index
2690 7544a042 Stefan Weil
@section Function Index
2691 7544a042 Stefan Weil
This index could be used for command line options and monitor functions.
2692 7544a042 Stefan Weil
@printindex fn
2693 7544a042 Stefan Weil
2694 7544a042 Stefan Weil
@node Keystroke Index
2695 7544a042 Stefan Weil
@section Keystroke Index
2696 7544a042 Stefan Weil
2697 7544a042 Stefan Weil
This is a list of all keystrokes which have a special function
2698 7544a042 Stefan Weil
in system emulation.
2699 7544a042 Stefan Weil
2700 7544a042 Stefan Weil
@printindex ky
2701 7544a042 Stefan Weil
2702 7544a042 Stefan Weil
@node Program Index
2703 7544a042 Stefan Weil
@section Program Index
2704 7544a042 Stefan Weil
@printindex pg
2705 7544a042 Stefan Weil
2706 7544a042 Stefan Weil
@node Data Type Index
2707 7544a042 Stefan Weil
@section Data Type Index
2708 7544a042 Stefan Weil
2709 7544a042 Stefan Weil
This index could be used for qdev device names and options.
2710 7544a042 Stefan Weil
2711 7544a042 Stefan Weil
@printindex tp
2712 7544a042 Stefan Weil
2713 7544a042 Stefan Weil
@node Variable Index
2714 7544a042 Stefan Weil
@section Variable Index
2715 7544a042 Stefan Weil
@printindex vr
2716 7544a042 Stefan Weil
2717 debc7065 bellard
@bye