Statistics
| Branch: | Revision:

root / target-i386 / kvm.c @ 6c0d7ee8

History | View | Annotate | Download (25.5 kB)

1
/*
2
 * QEMU KVM support
3
 *
4
 * Copyright (C) 2006-2008 Qumranet Technologies
5
 * Copyright IBM, Corp. 2008
6
 *
7
 * Authors:
8
 *  Anthony Liguori   <aliguori@us.ibm.com>
9
 *
10
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11
 * See the COPYING file in the top-level directory.
12
 *
13
 */
14

    
15
#include <sys/types.h>
16
#include <sys/ioctl.h>
17
#include <sys/mman.h>
18

    
19
#include <linux/kvm.h>
20

    
21
#include "qemu-common.h"
22
#include "sysemu.h"
23
#include "kvm.h"
24
#include "cpu.h"
25
#include "gdbstub.h"
26

    
27
//#define DEBUG_KVM
28

    
29
#ifdef DEBUG_KVM
30
#define dprintf(fmt, ...) \
31
    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
32
#else
33
#define dprintf(fmt, ...) \
34
    do { } while (0)
35
#endif
36

    
37
#ifdef KVM_CAP_EXT_CPUID
38

    
39
static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
40
{
41
    struct kvm_cpuid2 *cpuid;
42
    int r, size;
43

    
44
    size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
45
    cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size);
46
    cpuid->nent = max;
47
    r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
48
    if (r == 0 && cpuid->nent >= max) {
49
        r = -E2BIG;
50
    }
51
    if (r < 0) {
52
        if (r == -E2BIG) {
53
            qemu_free(cpuid);
54
            return NULL;
55
        } else {
56
            fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
57
                    strerror(-r));
58
            exit(1);
59
        }
60
    }
61
    return cpuid;
62
}
63

    
64
uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function, int reg)
65
{
66
    struct kvm_cpuid2 *cpuid;
67
    int i, max;
68
    uint32_t ret = 0;
69
    uint32_t cpuid_1_edx;
70

    
71
    if (!kvm_check_extension(env->kvm_state, KVM_CAP_EXT_CPUID)) {
72
        return -1U;
73
    }
74

    
75
    max = 1;
76
    while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) {
77
        max *= 2;
78
    }
79

    
80
    for (i = 0; i < cpuid->nent; ++i) {
81
        if (cpuid->entries[i].function == function) {
82
            switch (reg) {
83
            case R_EAX:
84
                ret = cpuid->entries[i].eax;
85
                break;
86
            case R_EBX:
87
                ret = cpuid->entries[i].ebx;
88
                break;
89
            case R_ECX:
90
                ret = cpuid->entries[i].ecx;
91
                break;
92
            case R_EDX:
93
                ret = cpuid->entries[i].edx;
94
                if (function == 0x80000001) {
95
                    /* On Intel, kvm returns cpuid according to the Intel spec,
96
                     * so add missing bits according to the AMD spec:
97
                     */
98
                    cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, R_EDX);
99
                    ret |= cpuid_1_edx & 0xdfeff7ff;
100
                }
101
                break;
102
            }
103
        }
104
    }
105

    
106
    qemu_free(cpuid);
107

    
108
    return ret;
109
}
110

    
111
#else
112

    
113
uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function, int reg)
114
{
115
    return -1U;
116
}
117

    
118
#endif
119

    
120
static void kvm_trim_features(uint32_t *features, uint32_t supported)
121
{
122
    int i;
123
    uint32_t mask;
124

    
125
    for (i = 0; i < 32; ++i) {
126
        mask = 1U << i;
127
        if ((*features & mask) && !(supported & mask)) {
128
            *features &= ~mask;
129
        }
130
    }
131
}
132

    
133
int kvm_arch_init_vcpu(CPUState *env)
134
{
135
    struct {
136
        struct kvm_cpuid2 cpuid;
137
        struct kvm_cpuid_entry2 entries[100];
138
    } __attribute__((packed)) cpuid_data;
139
    uint32_t limit, i, j, cpuid_i;
140
    uint32_t unused;
141

    
142
    env->mp_state = KVM_MP_STATE_RUNNABLE;
143

    
144
    kvm_trim_features(&env->cpuid_features,
145
        kvm_arch_get_supported_cpuid(env, 1, R_EDX));
146

    
147
    i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
148
    kvm_trim_features(&env->cpuid_ext_features,
149
        kvm_arch_get_supported_cpuid(env, 1, R_ECX));
150
    env->cpuid_ext_features |= i;
151

    
152
    kvm_trim_features(&env->cpuid_ext2_features,
153
        kvm_arch_get_supported_cpuid(env, 0x80000001, R_EDX));
154
    kvm_trim_features(&env->cpuid_ext3_features,
155
        kvm_arch_get_supported_cpuid(env, 0x80000001, R_ECX));
156

    
157
    cpuid_i = 0;
158

    
159
    cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
160

    
161
    for (i = 0; i <= limit; i++) {
162
        struct kvm_cpuid_entry2 *c = &cpuid_data.entries[cpuid_i++];
163

    
164
        switch (i) {
165
        case 2: {
166
            /* Keep reading function 2 till all the input is received */
167
            int times;
168

    
169
            c->function = i;
170
            c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
171
                       KVM_CPUID_FLAG_STATE_READ_NEXT;
172
            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
173
            times = c->eax & 0xff;
174

    
175
            for (j = 1; j < times; ++j) {
176
                c = &cpuid_data.entries[cpuid_i++];
177
                c->function = i;
178
                c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
179
                cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
180
            }
181
            break;
182
        }
183
        case 4:
184
        case 0xb:
185
        case 0xd:
186
            for (j = 0; ; j++) {
187
                c->function = i;
188
                c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
189
                c->index = j;
190
                cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
191

    
192
                if (i == 4 && c->eax == 0)
193
                    break;
194
                if (i == 0xb && !(c->ecx & 0xff00))
195
                    break;
196
                if (i == 0xd && c->eax == 0)
197
                    break;
198

    
199
                c = &cpuid_data.entries[cpuid_i++];
200
            }
201
            break;
202
        default:
203
            c->function = i;
204
            c->flags = 0;
205
            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
206
            break;
207
        }
208
    }
209
    cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
210

    
211
    for (i = 0x80000000; i <= limit; i++) {
212
        struct kvm_cpuid_entry2 *c = &cpuid_data.entries[cpuid_i++];
213

    
214
        c->function = i;
215
        c->flags = 0;
216
        cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
217
    }
218

    
219
    cpuid_data.cpuid.nent = cpuid_i;
220

    
221
    return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
222
}
223

    
224
static int kvm_has_msr_star(CPUState *env)
225
{
226
    static int has_msr_star;
227
    int ret;
228

    
229
    /* first time */
230
    if (has_msr_star == 0) {        
231
        struct kvm_msr_list msr_list, *kvm_msr_list;
232

    
233
        has_msr_star = -1;
234

    
235
        /* Obtain MSR list from KVM.  These are the MSRs that we must
236
         * save/restore */
237
        msr_list.nmsrs = 0;
238
        ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, &msr_list);
239
        if (ret < 0)
240
            return 0;
241

    
242
        kvm_msr_list = qemu_mallocz(sizeof(msr_list) +
243
                                    msr_list.nmsrs * sizeof(msr_list.indices[0]));
244

    
245
        kvm_msr_list->nmsrs = msr_list.nmsrs;
246
        ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
247
        if (ret >= 0) {
248
            int i;
249

    
250
            for (i = 0; i < kvm_msr_list->nmsrs; i++) {
251
                if (kvm_msr_list->indices[i] == MSR_STAR) {
252
                    has_msr_star = 1;
253
                    break;
254
                }
255
            }
256
        }
257

    
258
        free(kvm_msr_list);
259
    }
260

    
261
    if (has_msr_star == 1)
262
        return 1;
263
    return 0;
264
}
265

    
266
int kvm_arch_init(KVMState *s, int smp_cpus)
267
{
268
    int ret;
269

    
270
    /* create vm86 tss.  KVM uses vm86 mode to emulate 16-bit code
271
     * directly.  In order to use vm86 mode, a TSS is needed.  Since this
272
     * must be part of guest physical memory, we need to allocate it.  Older
273
     * versions of KVM just assumed that it would be at the end of physical
274
     * memory but that doesn't work with more than 4GB of memory.  We simply
275
     * refuse to work with those older versions of KVM. */
276
    ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_SET_TSS_ADDR);
277
    if (ret <= 0) {
278
        fprintf(stderr, "kvm does not support KVM_CAP_SET_TSS_ADDR\n");
279
        return ret;
280
    }
281

    
282
    /* this address is 3 pages before the bios, and the bios should present
283
     * as unavaible memory.  FIXME, need to ensure the e820 map deals with
284
     * this?
285
     */
286
    return kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, 0xfffbd000);
287
}
288
                    
289
static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
290
{
291
    lhs->selector = rhs->selector;
292
    lhs->base = rhs->base;
293
    lhs->limit = rhs->limit;
294
    lhs->type = 3;
295
    lhs->present = 1;
296
    lhs->dpl = 3;
297
    lhs->db = 0;
298
    lhs->s = 1;
299
    lhs->l = 0;
300
    lhs->g = 0;
301
    lhs->avl = 0;
302
    lhs->unusable = 0;
303
}
304

    
305
static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
306
{
307
    unsigned flags = rhs->flags;
308
    lhs->selector = rhs->selector;
309
    lhs->base = rhs->base;
310
    lhs->limit = rhs->limit;
311
    lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
312
    lhs->present = (flags & DESC_P_MASK) != 0;
313
    lhs->dpl = rhs->selector & 3;
314
    lhs->db = (flags >> DESC_B_SHIFT) & 1;
315
    lhs->s = (flags & DESC_S_MASK) != 0;
316
    lhs->l = (flags >> DESC_L_SHIFT) & 1;
317
    lhs->g = (flags & DESC_G_MASK) != 0;
318
    lhs->avl = (flags & DESC_AVL_MASK) != 0;
319
    lhs->unusable = 0;
320
}
321

    
322
static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
323
{
324
    lhs->selector = rhs->selector;
325
    lhs->base = rhs->base;
326
    lhs->limit = rhs->limit;
327
    lhs->flags =
328
        (rhs->type << DESC_TYPE_SHIFT)
329
        | (rhs->present * DESC_P_MASK)
330
        | (rhs->dpl << DESC_DPL_SHIFT)
331
        | (rhs->db << DESC_B_SHIFT)
332
        | (rhs->s * DESC_S_MASK)
333
        | (rhs->l << DESC_L_SHIFT)
334
        | (rhs->g * DESC_G_MASK)
335
        | (rhs->avl * DESC_AVL_MASK);
336
}
337

    
338
static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
339
{
340
    if (set)
341
        *kvm_reg = *qemu_reg;
342
    else
343
        *qemu_reg = *kvm_reg;
344
}
345

    
346
static int kvm_getput_regs(CPUState *env, int set)
347
{
348
    struct kvm_regs regs;
349
    int ret = 0;
350

    
351
    if (!set) {
352
        ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
353
        if (ret < 0)
354
            return ret;
355
    }
356

    
357
    kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
358
    kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
359
    kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
360
    kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
361
    kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
362
    kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
363
    kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
364
    kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
365
#ifdef TARGET_X86_64
366
    kvm_getput_reg(&regs.r8, &env->regs[8], set);
367
    kvm_getput_reg(&regs.r9, &env->regs[9], set);
368
    kvm_getput_reg(&regs.r10, &env->regs[10], set);
369
    kvm_getput_reg(&regs.r11, &env->regs[11], set);
370
    kvm_getput_reg(&regs.r12, &env->regs[12], set);
371
    kvm_getput_reg(&regs.r13, &env->regs[13], set);
372
    kvm_getput_reg(&regs.r14, &env->regs[14], set);
373
    kvm_getput_reg(&regs.r15, &env->regs[15], set);
374
#endif
375

    
376
    kvm_getput_reg(&regs.rflags, &env->eflags, set);
377
    kvm_getput_reg(&regs.rip, &env->eip, set);
378

    
379
    if (set)
380
        ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
381

    
382
    return ret;
383
}
384

    
385
static int kvm_put_fpu(CPUState *env)
386
{
387
    struct kvm_fpu fpu;
388
    int i;
389

    
390
    memset(&fpu, 0, sizeof fpu);
391
    fpu.fsw = env->fpus & ~(7 << 11);
392
    fpu.fsw |= (env->fpstt & 7) << 11;
393
    fpu.fcw = env->fpuc;
394
    for (i = 0; i < 8; ++i)
395
        fpu.ftwx |= (!env->fptags[i]) << i;
396
    memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
397
    memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
398
    fpu.mxcsr = env->mxcsr;
399

    
400
    return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
401
}
402

    
403
static int kvm_put_sregs(CPUState *env)
404
{
405
    struct kvm_sregs sregs;
406

    
407
    memcpy(sregs.interrupt_bitmap,
408
           env->interrupt_bitmap,
409
           sizeof(sregs.interrupt_bitmap));
410

    
411
    if ((env->eflags & VM_MASK)) {
412
            set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
413
            set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
414
            set_v8086_seg(&sregs.es, &env->segs[R_ES]);
415
            set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
416
            set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
417
            set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
418
    } else {
419
            set_seg(&sregs.cs, &env->segs[R_CS]);
420
            set_seg(&sregs.ds, &env->segs[R_DS]);
421
            set_seg(&sregs.es, &env->segs[R_ES]);
422
            set_seg(&sregs.fs, &env->segs[R_FS]);
423
            set_seg(&sregs.gs, &env->segs[R_GS]);
424
            set_seg(&sregs.ss, &env->segs[R_SS]);
425

    
426
            if (env->cr[0] & CR0_PE_MASK) {
427
                /* force ss cpl to cs cpl */
428
                sregs.ss.selector = (sregs.ss.selector & ~3) |
429
                        (sregs.cs.selector & 3);
430
                sregs.ss.dpl = sregs.ss.selector & 3;
431
            }
432
    }
433

    
434
    set_seg(&sregs.tr, &env->tr);
435
    set_seg(&sregs.ldt, &env->ldt);
436

    
437
    sregs.idt.limit = env->idt.limit;
438
    sregs.idt.base = env->idt.base;
439
    sregs.gdt.limit = env->gdt.limit;
440
    sregs.gdt.base = env->gdt.base;
441

    
442
    sregs.cr0 = env->cr[0];
443
    sregs.cr2 = env->cr[2];
444
    sregs.cr3 = env->cr[3];
445
    sregs.cr4 = env->cr[4];
446

    
447
    sregs.cr8 = cpu_get_apic_tpr(env);
448
    sregs.apic_base = cpu_get_apic_base(env);
449

    
450
    sregs.efer = env->efer;
451

    
452
    return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
453
}
454

    
455
static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
456
                              uint32_t index, uint64_t value)
457
{
458
    entry->index = index;
459
    entry->data = value;
460
}
461

    
462
static int kvm_put_msrs(CPUState *env)
463
{
464
    struct {
465
        struct kvm_msrs info;
466
        struct kvm_msr_entry entries[100];
467
    } msr_data;
468
    struct kvm_msr_entry *msrs = msr_data.entries;
469
    int n = 0;
470

    
471
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
472
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
473
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
474
    if (kvm_has_msr_star(env))
475
        kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
476
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
477
#ifdef TARGET_X86_64
478
    /* FIXME if lm capable */
479
    kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
480
    kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
481
    kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
482
    kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
483
#endif
484
    msr_data.info.nmsrs = n;
485

    
486
    return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
487

    
488
}
489

    
490

    
491
static int kvm_get_fpu(CPUState *env)
492
{
493
    struct kvm_fpu fpu;
494
    int i, ret;
495

    
496
    ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
497
    if (ret < 0)
498
        return ret;
499

    
500
    env->fpstt = (fpu.fsw >> 11) & 7;
501
    env->fpus = fpu.fsw;
502
    env->fpuc = fpu.fcw;
503
    for (i = 0; i < 8; ++i)
504
        env->fptags[i] = !((fpu.ftwx >> i) & 1);
505
    memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
506
    memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
507
    env->mxcsr = fpu.mxcsr;
508

    
509
    return 0;
510
}
511

    
512
static int kvm_get_sregs(CPUState *env)
513
{
514
    struct kvm_sregs sregs;
515
    uint32_t hflags;
516
    int ret;
517

    
518
    ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
519
    if (ret < 0)
520
        return ret;
521

    
522
    memcpy(env->interrupt_bitmap, 
523
           sregs.interrupt_bitmap,
524
           sizeof(sregs.interrupt_bitmap));
525

    
526
    get_seg(&env->segs[R_CS], &sregs.cs);
527
    get_seg(&env->segs[R_DS], &sregs.ds);
528
    get_seg(&env->segs[R_ES], &sregs.es);
529
    get_seg(&env->segs[R_FS], &sregs.fs);
530
    get_seg(&env->segs[R_GS], &sregs.gs);
531
    get_seg(&env->segs[R_SS], &sregs.ss);
532

    
533
    get_seg(&env->tr, &sregs.tr);
534
    get_seg(&env->ldt, &sregs.ldt);
535

    
536
    env->idt.limit = sregs.idt.limit;
537
    env->idt.base = sregs.idt.base;
538
    env->gdt.limit = sregs.gdt.limit;
539
    env->gdt.base = sregs.gdt.base;
540

    
541
    env->cr[0] = sregs.cr0;
542
    env->cr[2] = sregs.cr2;
543
    env->cr[3] = sregs.cr3;
544
    env->cr[4] = sregs.cr4;
545

    
546
    cpu_set_apic_base(env, sregs.apic_base);
547

    
548
    env->efer = sregs.efer;
549
    //cpu_set_apic_tpr(env, sregs.cr8);
550

    
551
#define HFLAG_COPY_MASK ~( \
552
                        HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
553
                        HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
554
                        HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
555
                        HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
556

    
557

    
558

    
559
    hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
560
    hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
561
    hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
562
            (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
563
    hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
564
    hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
565
            (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
566

    
567
    if (env->efer & MSR_EFER_LMA) {
568
        hflags |= HF_LMA_MASK;
569
    }
570

    
571
    if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
572
        hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
573
    } else {
574
        hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
575
                (DESC_B_SHIFT - HF_CS32_SHIFT);
576
        hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
577
                (DESC_B_SHIFT - HF_SS32_SHIFT);
578
        if (!(env->cr[0] & CR0_PE_MASK) ||
579
                   (env->eflags & VM_MASK) ||
580
                   !(hflags & HF_CS32_MASK)) {
581
                hflags |= HF_ADDSEG_MASK;
582
            } else {
583
                hflags |= ((env->segs[R_DS].base |
584
                                env->segs[R_ES].base |
585
                                env->segs[R_SS].base) != 0) <<
586
                    HF_ADDSEG_SHIFT;
587
            }
588
    }
589
    env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
590

    
591
    return 0;
592
}
593

    
594
static int kvm_get_msrs(CPUState *env)
595
{
596
    struct {
597
        struct kvm_msrs info;
598
        struct kvm_msr_entry entries[100];
599
    } msr_data;
600
    struct kvm_msr_entry *msrs = msr_data.entries;
601
    int ret, i, n;
602

    
603
    n = 0;
604
    msrs[n++].index = MSR_IA32_SYSENTER_CS;
605
    msrs[n++].index = MSR_IA32_SYSENTER_ESP;
606
    msrs[n++].index = MSR_IA32_SYSENTER_EIP;
607
    if (kvm_has_msr_star(env))
608
        msrs[n++].index = MSR_STAR;
609
    msrs[n++].index = MSR_IA32_TSC;
610
#ifdef TARGET_X86_64
611
    /* FIXME lm_capable_kernel */
612
    msrs[n++].index = MSR_CSTAR;
613
    msrs[n++].index = MSR_KERNELGSBASE;
614
    msrs[n++].index = MSR_FMASK;
615
    msrs[n++].index = MSR_LSTAR;
616
#endif
617
    msr_data.info.nmsrs = n;
618
    ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
619
    if (ret < 0)
620
        return ret;
621

    
622
    for (i = 0; i < ret; i++) {
623
        switch (msrs[i].index) {
624
        case MSR_IA32_SYSENTER_CS:
625
            env->sysenter_cs = msrs[i].data;
626
            break;
627
        case MSR_IA32_SYSENTER_ESP:
628
            env->sysenter_esp = msrs[i].data;
629
            break;
630
        case MSR_IA32_SYSENTER_EIP:
631
            env->sysenter_eip = msrs[i].data;
632
            break;
633
        case MSR_STAR:
634
            env->star = msrs[i].data;
635
            break;
636
#ifdef TARGET_X86_64
637
        case MSR_CSTAR:
638
            env->cstar = msrs[i].data;
639
            break;
640
        case MSR_KERNELGSBASE:
641
            env->kernelgsbase = msrs[i].data;
642
            break;
643
        case MSR_FMASK:
644
            env->fmask = msrs[i].data;
645
            break;
646
        case MSR_LSTAR:
647
            env->lstar = msrs[i].data;
648
            break;
649
#endif
650
        case MSR_IA32_TSC:
651
            env->tsc = msrs[i].data;
652
            break;
653
        }
654
    }
655

    
656
    return 0;
657
}
658

    
659
int kvm_arch_put_registers(CPUState *env)
660
{
661
    int ret;
662

    
663
    ret = kvm_getput_regs(env, 1);
664
    if (ret < 0)
665
        return ret;
666

    
667
    ret = kvm_put_fpu(env);
668
    if (ret < 0)
669
        return ret;
670

    
671
    ret = kvm_put_sregs(env);
672
    if (ret < 0)
673
        return ret;
674

    
675
    ret = kvm_put_msrs(env);
676
    if (ret < 0)
677
        return ret;
678

    
679
    ret = kvm_put_mp_state(env);
680
    if (ret < 0)
681
        return ret;
682

    
683
    ret = kvm_get_mp_state(env);
684
    if (ret < 0)
685
        return ret;
686

    
687
    return 0;
688
}
689

    
690
int kvm_arch_get_registers(CPUState *env)
691
{
692
    int ret;
693

    
694
    ret = kvm_getput_regs(env, 0);
695
    if (ret < 0)
696
        return ret;
697

    
698
    ret = kvm_get_fpu(env);
699
    if (ret < 0)
700
        return ret;
701

    
702
    ret = kvm_get_sregs(env);
703
    if (ret < 0)
704
        return ret;
705

    
706
    ret = kvm_get_msrs(env);
707
    if (ret < 0)
708
        return ret;
709

    
710
    return 0;
711
}
712

    
713
int kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
714
{
715
    /* Try to inject an interrupt if the guest can accept it */
716
    if (run->ready_for_interrupt_injection &&
717
        (env->interrupt_request & CPU_INTERRUPT_HARD) &&
718
        (env->eflags & IF_MASK)) {
719
        int irq;
720

    
721
        env->interrupt_request &= ~CPU_INTERRUPT_HARD;
722
        irq = cpu_get_pic_interrupt(env);
723
        if (irq >= 0) {
724
            struct kvm_interrupt intr;
725
            intr.irq = irq;
726
            /* FIXME: errors */
727
            dprintf("injected interrupt %d\n", irq);
728
            kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
729
        }
730
    }
731

    
732
    /* If we have an interrupt but the guest is not ready to receive an
733
     * interrupt, request an interrupt window exit.  This will
734
     * cause a return to userspace as soon as the guest is ready to
735
     * receive interrupts. */
736
    if ((env->interrupt_request & CPU_INTERRUPT_HARD))
737
        run->request_interrupt_window = 1;
738
    else
739
        run->request_interrupt_window = 0;
740

    
741
    dprintf("setting tpr\n");
742
    run->cr8 = cpu_get_apic_tpr(env);
743

    
744
    return 0;
745
}
746

    
747
int kvm_arch_post_run(CPUState *env, struct kvm_run *run)
748
{
749
    if (run->if_flag)
750
        env->eflags |= IF_MASK;
751
    else
752
        env->eflags &= ~IF_MASK;
753
    
754
    cpu_set_apic_tpr(env, run->cr8);
755
    cpu_set_apic_base(env, run->apic_base);
756

    
757
    return 0;
758
}
759

    
760
static int kvm_handle_halt(CPUState *env)
761
{
762
    if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
763
          (env->eflags & IF_MASK)) &&
764
        !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
765
        env->halted = 1;
766
        env->exception_index = EXCP_HLT;
767
        return 0;
768
    }
769

    
770
    return 1;
771
}
772

    
773
int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
774
{
775
    int ret = 0;
776

    
777
    switch (run->exit_reason) {
778
    case KVM_EXIT_HLT:
779
        dprintf("handle_hlt\n");
780
        ret = kvm_handle_halt(env);
781
        break;
782
    }
783

    
784
    return ret;
785
}
786

    
787
#ifdef KVM_CAP_SET_GUEST_DEBUG
788
int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
789
{
790
    const static uint8_t int3 = 0xcc;
791

    
792
    if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
793
        cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1))
794
        return -EINVAL;
795
    return 0;
796
}
797

    
798
int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
799
{
800
    uint8_t int3;
801

    
802
    if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
803
        cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1))
804
        return -EINVAL;
805
    return 0;
806
}
807

    
808
static struct {
809
    target_ulong addr;
810
    int len;
811
    int type;
812
} hw_breakpoint[4];
813

    
814
static int nb_hw_breakpoint;
815

    
816
static int find_hw_breakpoint(target_ulong addr, int len, int type)
817
{
818
    int n;
819

    
820
    for (n = 0; n < nb_hw_breakpoint; n++)
821
        if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
822
            (hw_breakpoint[n].len == len || len == -1))
823
            return n;
824
    return -1;
825
}
826

    
827
int kvm_arch_insert_hw_breakpoint(target_ulong addr,
828
                                  target_ulong len, int type)
829
{
830
    switch (type) {
831
    case GDB_BREAKPOINT_HW:
832
        len = 1;
833
        break;
834
    case GDB_WATCHPOINT_WRITE:
835
    case GDB_WATCHPOINT_ACCESS:
836
        switch (len) {
837
        case 1:
838
            break;
839
        case 2:
840
        case 4:
841
        case 8:
842
            if (addr & (len - 1))
843
                return -EINVAL;
844
            break;
845
        default:
846
            return -EINVAL;
847
        }
848
        break;
849
    default:
850
        return -ENOSYS;
851
    }
852

    
853
    if (nb_hw_breakpoint == 4)
854
        return -ENOBUFS;
855

    
856
    if (find_hw_breakpoint(addr, len, type) >= 0)
857
        return -EEXIST;
858

    
859
    hw_breakpoint[nb_hw_breakpoint].addr = addr;
860
    hw_breakpoint[nb_hw_breakpoint].len = len;
861
    hw_breakpoint[nb_hw_breakpoint].type = type;
862
    nb_hw_breakpoint++;
863

    
864
    return 0;
865
}
866

    
867
int kvm_arch_remove_hw_breakpoint(target_ulong addr,
868
                                  target_ulong len, int type)
869
{
870
    int n;
871

    
872
    n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
873
    if (n < 0)
874
        return -ENOENT;
875

    
876
    nb_hw_breakpoint--;
877
    hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
878

    
879
    return 0;
880
}
881

    
882
void kvm_arch_remove_all_hw_breakpoints(void)
883
{
884
    nb_hw_breakpoint = 0;
885
}
886

    
887
static CPUWatchpoint hw_watchpoint;
888

    
889
int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info)
890
{
891
    int handle = 0;
892
    int n;
893

    
894
    if (arch_info->exception == 1) {
895
        if (arch_info->dr6 & (1 << 14)) {
896
            if (cpu_single_env->singlestep_enabled)
897
                handle = 1;
898
        } else {
899
            for (n = 0; n < 4; n++)
900
                if (arch_info->dr6 & (1 << n))
901
                    switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
902
                    case 0x0:
903
                        handle = 1;
904
                        break;
905
                    case 0x1:
906
                        handle = 1;
907
                        cpu_single_env->watchpoint_hit = &hw_watchpoint;
908
                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
909
                        hw_watchpoint.flags = BP_MEM_WRITE;
910
                        break;
911
                    case 0x3:
912
                        handle = 1;
913
                        cpu_single_env->watchpoint_hit = &hw_watchpoint;
914
                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
915
                        hw_watchpoint.flags = BP_MEM_ACCESS;
916
                        break;
917
                    }
918
        }
919
    } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc))
920
        handle = 1;
921

    
922
    if (!handle)
923
        kvm_update_guest_debug(cpu_single_env,
924
                        (arch_info->exception == 1) ?
925
                        KVM_GUESTDBG_INJECT_DB : KVM_GUESTDBG_INJECT_BP);
926

    
927
    return handle;
928
}
929

    
930
void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
931
{
932
    const uint8_t type_code[] = {
933
        [GDB_BREAKPOINT_HW] = 0x0,
934
        [GDB_WATCHPOINT_WRITE] = 0x1,
935
        [GDB_WATCHPOINT_ACCESS] = 0x3
936
    };
937
    const uint8_t len_code[] = {
938
        [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
939
    };
940
    int n;
941

    
942
    if (kvm_sw_breakpoints_active(env))
943
        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
944

    
945
    if (nb_hw_breakpoint > 0) {
946
        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
947
        dbg->arch.debugreg[7] = 0x0600;
948
        for (n = 0; n < nb_hw_breakpoint; n++) {
949
            dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
950
            dbg->arch.debugreg[7] |= (2 << (n * 2)) |
951
                (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
952
                (len_code[hw_breakpoint[n].len] << (18 + n*4));
953
        }
954
    }
955
}
956
#endif /* KVM_CAP_SET_GUEST_DEBUG */