Statistics
| Branch: | Revision:

root / qemu-doc.texi @ 6c9f886c

History | View | Annotate | Download (90.5 kB)

1
\input texinfo @c -*- texinfo -*-
2
@c %**start of header
3
@setfilename qemu-doc.info
4
@settitle QEMU Emulator User Documentation
5
@exampleindent 0
6
@paragraphindent 0
7
@c %**end of header
8

    
9
@iftex
10
@titlepage
11
@sp 7
12
@center @titlefont{QEMU Emulator}
13
@sp 1
14
@center @titlefont{User Documentation}
15
@sp 3
16
@end titlepage
17
@end iftex
18

    
19
@ifnottex
20
@node Top
21
@top
22

    
23
@menu
24
* Introduction::
25
* Installation::
26
* QEMU PC System emulator::
27
* QEMU System emulator for non PC targets::
28
* QEMU User space emulator::
29
* compilation:: Compilation from the sources
30
* Index::
31
@end menu
32
@end ifnottex
33

    
34
@contents
35

    
36
@node Introduction
37
@chapter Introduction
38

    
39
@menu
40
* intro_features:: Features
41
@end menu
42

    
43
@node intro_features
44
@section Features
45

    
46
QEMU is a FAST! processor emulator using dynamic translation to
47
achieve good emulation speed.
48

    
49
QEMU has two operating modes:
50

    
51
@itemize @minus
52

    
53
@item
54
Full system emulation. In this mode, QEMU emulates a full system (for
55
example a PC), including one or several processors and various
56
peripherals. It can be used to launch different Operating Systems
57
without rebooting the PC or to debug system code.
58

    
59
@item
60
User mode emulation. In this mode, QEMU can launch
61
processes compiled for one CPU on another CPU. It can be used to
62
launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
63
to ease cross-compilation and cross-debugging.
64

    
65
@end itemize
66

    
67
QEMU can run without an host kernel driver and yet gives acceptable
68
performance.
69

    
70
For system emulation, the following hardware targets are supported:
71
@itemize
72
@item PC (x86 or x86_64 processor)
73
@item ISA PC (old style PC without PCI bus)
74
@item PREP (PowerPC processor)
75
@item G3 BW PowerMac (PowerPC processor)
76
@item Mac99 PowerMac (PowerPC processor, in progress)
77
@item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
78
@item Sun4u (64-bit Sparc processor, in progress)
79
@item Malta board (32-bit and 64-bit MIPS processors)
80
@item MIPS Magnum (64-bit MIPS processor)
81
@item ARM Integrator/CP (ARM)
82
@item ARM Versatile baseboard (ARM)
83
@item ARM RealView Emulation baseboard (ARM)
84
@item Spitz, Akita, Borzoi and Terrier PDAs (PXA270 processor)
85
@item Luminary Micro LM3S811EVB (ARM Cortex-M3)
86
@item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
87
@item Freescale MCF5208EVB (ColdFire V2).
88
@item Arnewsh MCF5206 evaluation board (ColdFire V2).
89
@item Palm Tungsten|E PDA (OMAP310 processor)
90
@item N800 and N810 tablets (OMAP2420 processor)
91
@item MusicPal (MV88W8618 ARM processor)
92
@end itemize
93

    
94
For user emulation, x86, PowerPC, ARM, 32-bit MIPS, Sparc32/64 and ColdFire(m68k) CPUs are supported.
95

    
96
@node Installation
97
@chapter Installation
98

    
99
If you want to compile QEMU yourself, see @ref{compilation}.
100

    
101
@menu
102
* install_linux::   Linux
103
* install_windows:: Windows
104
* install_mac::     Macintosh
105
@end menu
106

    
107
@node install_linux
108
@section Linux
109

    
110
If a precompiled package is available for your distribution - you just
111
have to install it. Otherwise, see @ref{compilation}.
112

    
113
@node install_windows
114
@section Windows
115

    
116
Download the experimental binary installer at
117
@url{http://www.free.oszoo.org/@/download.html}.
118

    
119
@node install_mac
120
@section Mac OS X
121

    
122
Download the experimental binary installer at
123
@url{http://www.free.oszoo.org/@/download.html}.
124

    
125
@node QEMU PC System emulator
126
@chapter QEMU PC System emulator
127

    
128
@menu
129
* pcsys_introduction:: Introduction
130
* pcsys_quickstart::   Quick Start
131
* sec_invocation::     Invocation
132
* pcsys_keys::         Keys
133
* pcsys_monitor::      QEMU Monitor
134
* disk_images::        Disk Images
135
* pcsys_network::      Network emulation
136
* direct_linux_boot::  Direct Linux Boot
137
* pcsys_usb::          USB emulation
138
* vnc_security::       VNC security
139
* gdb_usage::          GDB usage
140
* pcsys_os_specific::  Target OS specific information
141
@end menu
142

    
143
@node pcsys_introduction
144
@section Introduction
145

    
146
@c man begin DESCRIPTION
147

    
148
The QEMU PC System emulator simulates the
149
following peripherals:
150

    
151
@itemize @minus
152
@item
153
i440FX host PCI bridge and PIIX3 PCI to ISA bridge
154
@item
155
Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
156
extensions (hardware level, including all non standard modes).
157
@item
158
PS/2 mouse and keyboard
159
@item
160
2 PCI IDE interfaces with hard disk and CD-ROM support
161
@item
162
Floppy disk
163
@item
164
PCI/ISA PCI network adapters
165
@item
166
Serial ports
167
@item
168
Creative SoundBlaster 16 sound card
169
@item
170
ENSONIQ AudioPCI ES1370 sound card
171
@item
172
Intel 82801AA AC97 Audio compatible sound card
173
@item
174
Adlib(OPL2) - Yamaha YM3812 compatible chip
175
@item
176
Gravis Ultrasound GF1 sound card
177
@item
178
CS4231A compatible sound card
179
@item
180
PCI UHCI USB controller and a virtual USB hub.
181
@end itemize
182

    
183
SMP is supported with up to 255 CPUs.
184

    
185
Note that adlib, ac97, gus and cs4231a are only available when QEMU
186
was configured with --audio-card-list option containing the name(s) of
187
required card(s).
188

    
189
QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
190
VGA BIOS.
191

    
192
QEMU uses YM3812 emulation by Tatsuyuki Satoh.
193

    
194
QEMU uses GUS emulation(GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
195
by Tibor "TS" Sch?tz.
196

    
197
CS4231A is the chip used in Windows Sound System and GUSMAX products
198

    
199
@c man end
200

    
201
@node pcsys_quickstart
202
@section Quick Start
203

    
204
Download and uncompress the linux image (@file{linux.img}) and type:
205

    
206
@example
207
qemu linux.img
208
@end example
209

    
210
Linux should boot and give you a prompt.
211

    
212
@node sec_invocation
213
@section Invocation
214

    
215
@example
216
@c man begin SYNOPSIS
217
usage: qemu [options] [@var{disk_image}]
218
@c man end
219
@end example
220

    
221
@c man begin OPTIONS
222
@var{disk_image} is a raw hard disk image for IDE hard disk 0.
223

    
224
General options:
225
@table @option
226
@item -M @var{machine}
227
Select the emulated @var{machine} (@code{-M ?} for list)
228

    
229
@item -fda @var{file}
230
@item -fdb @var{file}
231
Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}). You can
232
use the host floppy by using @file{/dev/fd0} as filename (@pxref{host_drives}).
233

    
234
@item -hda @var{file}
235
@item -hdb @var{file}
236
@item -hdc @var{file}
237
@item -hdd @var{file}
238
Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
239

    
240
@item -cdrom @var{file}
241
Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and
242
@option{-cdrom} at the same time). You can use the host CD-ROM by
243
using @file{/dev/cdrom} as filename (@pxref{host_drives}).
244

    
245
@item -drive @var{option}[,@var{option}[,@var{option}[,...]]]
246

    
247
Define a new drive. Valid options are:
248

    
249
@table @code
250
@item file=@var{file}
251
This option defines which disk image (@pxref{disk_images}) to use with
252
this drive. If the filename contains comma, you must double it
253
(for instance, "file=my,,file" to use file "my,file").
254
@item if=@var{interface}
255
This option defines on which type on interface the drive is connected.
256
Available types are: ide, scsi, sd, mtd, floppy, pflash.
257
@item bus=@var{bus},unit=@var{unit}
258
These options define where is connected the drive by defining the bus number and
259
the unit id.
260
@item index=@var{index}
261
This option defines where is connected the drive by using an index in the list
262
of available connectors of a given interface type.
263
@item media=@var{media}
264
This option defines the type of the media: disk or cdrom.
265
@item cyls=@var{c},heads=@var{h},secs=@var{s}[,trans=@var{t}]
266
These options have the same definition as they have in @option{-hdachs}.
267
@item snapshot=@var{snapshot}
268
@var{snapshot} is "on" or "off" and allows to enable snapshot for given drive (see @option{-snapshot}).
269
@item cache=@var{cache}
270
@var{cache} is "on" or "off" and allows to disable host cache to access data.
271
@item format=@var{format}
272
Specify which disk @var{format} will be used rather than detecting
273
the format.  Can be used to specifiy format=raw to avoid interpreting
274
an untrusted format header.
275
@end table
276

    
277
Instead of @option{-cdrom} you can use:
278
@example
279
qemu -drive file=file,index=2,media=cdrom
280
@end example
281

    
282
Instead of @option{-hda}, @option{-hdb}, @option{-hdc}, @option{-hdd}, you can
283
use:
284
@example
285
qemu -drive file=file,index=0,media=disk
286
qemu -drive file=file,index=1,media=disk
287
qemu -drive file=file,index=2,media=disk
288
qemu -drive file=file,index=3,media=disk
289
@end example
290

    
291
You can connect a CDROM to the slave of ide0:
292
@example
293
qemu -drive file=file,if=ide,index=1,media=cdrom
294
@end example
295

    
296
If you don't specify the "file=" argument, you define an empty drive:
297
@example
298
qemu -drive if=ide,index=1,media=cdrom
299
@end example
300

    
301
You can connect a SCSI disk with unit ID 6 on the bus #0:
302
@example
303
qemu -drive file=file,if=scsi,bus=0,unit=6
304
@end example
305

    
306
Instead of @option{-fda}, @option{-fdb}, you can use:
307
@example
308
qemu -drive file=file,index=0,if=floppy
309
qemu -drive file=file,index=1,if=floppy
310
@end example
311

    
312
By default, @var{interface} is "ide" and @var{index} is automatically
313
incremented:
314
@example
315
qemu -drive file=a -drive file=b"
316
@end example
317
is interpreted like:
318
@example
319
qemu -hda a -hdb b
320
@end example
321

    
322
@item -boot [a|c|d|n]
323
Boot on floppy (a), hard disk (c), CD-ROM (d), or Etherboot (n). Hard disk boot
324
is the default.
325

    
326
@item -snapshot
327
Write to temporary files instead of disk image files. In this case,
328
the raw disk image you use is not written back. You can however force
329
the write back by pressing @key{C-a s} (@pxref{disk_images}).
330

    
331
@item -no-fd-bootchk
332
Disable boot signature checking for floppy disks in Bochs BIOS. It may
333
be needed to boot from old floppy disks.
334

    
335
@item -m @var{megs}
336
Set virtual RAM size to @var{megs} megabytes. Default is 128 MiB.  Optionally,
337
a suffix of ``M'' or ``G'' can be used to signify a value in megabytes or
338
gigabytes respectively.
339

    
340
@item -smp @var{n}
341
Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
342
CPUs are supported. On Sparc32 target, Linux limits the number of usable CPUs
343
to 4.
344

    
345
@item -audio-help
346

    
347
Will show the audio subsystem help: list of drivers, tunable
348
parameters.
349

    
350
@item -soundhw @var{card1}[,@var{card2},...] or -soundhw all
351

    
352
Enable audio and selected sound hardware. Use ? to print all
353
available sound hardware.
354

    
355
@example
356
qemu -soundhw sb16,adlib hda
357
qemu -soundhw es1370 hda
358
qemu -soundhw ac97 hda
359
qemu -soundhw all hda
360
qemu -soundhw ?
361
@end example
362

    
363
Note that Linux's i810_audio OSS kernel (for AC97) module might
364
require manually specifying clocking.
365

    
366
@example
367
modprobe i810_audio clocking=48000
368
@end example
369

    
370
@item -localtime
371
Set the real time clock to local time (the default is to UTC
372
time). This option is needed to have correct date in MS-DOS or
373
Windows.
374

    
375
@item -startdate @var{date}
376
Set the initial date of the real time clock. Valid format for
377
@var{date} are: @code{now} or @code{2006-06-17T16:01:21} or
378
@code{2006-06-17}. The default value is @code{now}.
379

    
380
@item -pidfile @var{file}
381
Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
382
from a script.
383

    
384
@item -daemonize
385
Daemonize the QEMU process after initialization.  QEMU will not detach from
386
standard IO until it is ready to receive connections on any of its devices.
387
This option is a useful way for external programs to launch QEMU without having
388
to cope with initialization race conditions.
389

    
390
@item -win2k-hack
391
Use it when installing Windows 2000 to avoid a disk full bug. After
392
Windows 2000 is installed, you no longer need this option (this option
393
slows down the IDE transfers).
394

    
395
@item -option-rom @var{file}
396
Load the contents of @var{file} as an option ROM.
397
This option is useful to load things like EtherBoot.
398

    
399
@item -name @var{name}
400
Sets the @var{name} of the guest.
401
This name will be display in the SDL window caption.
402
The @var{name} will also be used for the VNC server.
403

    
404
@end table
405

    
406
Display options:
407
@table @option
408

    
409
@item -nographic
410

    
411
Normally, QEMU uses SDL to display the VGA output. With this option,
412
you can totally disable graphical output so that QEMU is a simple
413
command line application. The emulated serial port is redirected on
414
the console. Therefore, you can still use QEMU to debug a Linux kernel
415
with a serial console.
416

    
417
@item -curses
418

    
419
Normally, QEMU uses SDL to display the VGA output.  With this option,
420
QEMU can display the VGA output when in text mode using a 
421
curses/ncurses interface.  Nothing is displayed in graphical mode.
422

    
423
@item -no-frame
424

    
425
Do not use decorations for SDL windows and start them using the whole
426
available screen space. This makes the using QEMU in a dedicated desktop
427
workspace more convenient.
428

    
429
@item -no-quit
430

    
431
Disable SDL window close capability.
432

    
433
@item -full-screen
434
Start in full screen.
435

    
436
@item -vnc @var{display}[,@var{option}[,@var{option}[,...]]]
437

    
438
Normally, QEMU uses SDL to display the VGA output.  With this option,
439
you can have QEMU listen on VNC display @var{display} and redirect the VGA
440
display over the VNC session.  It is very useful to enable the usb
441
tablet device when using this option (option @option{-usbdevice
442
tablet}). When using the VNC display, you must use the @option{-k}
443
parameter to set the keyboard layout if you are not using en-us. Valid
444
syntax for the @var{display} is
445

    
446
@table @code
447

    
448
@item @var{host}:@var{d}
449

    
450
TCP connections will only be allowed from @var{host} on display @var{d}.
451
By convention the TCP port is 5900+@var{d}. Optionally, @var{host} can
452
be omitted in which case the server will accept connections from any host.
453

    
454
@item @code{unix}:@var{path}
455

    
456
Connections will be allowed over UNIX domain sockets where @var{path} is the
457
location of a unix socket to listen for connections on.
458

    
459
@item none
460

    
461
VNC is initialized but not started. The monitor @code{change} command
462
can be used to later start the VNC server.
463

    
464
@end table
465

    
466
Following the @var{display} value there may be one or more @var{option} flags
467
separated by commas. Valid options are
468

    
469
@table @code
470

    
471
@item reverse
472

    
473
Connect to a listening VNC client via a ``reverse'' connection. The
474
client is specified by the @var{display}. For reverse network
475
connections (@var{host}:@var{d},@code{reverse}), the @var{d} argument
476
is a TCP port number, not a display number.
477

    
478
@item password
479

    
480
Require that password based authentication is used for client connections.
481
The password must be set separately using the @code{change} command in the
482
@ref{pcsys_monitor}
483

    
484
@item tls
485

    
486
Require that client use TLS when communicating with the VNC server. This
487
uses anonymous TLS credentials so is susceptible to a man-in-the-middle
488
attack. It is recommended that this option be combined with either the
489
@var{x509} or @var{x509verify} options.
490

    
491
@item x509=@var{/path/to/certificate/dir}
492

    
493
Valid if @option{tls} is specified. Require that x509 credentials are used
494
for negotiating the TLS session. The server will send its x509 certificate
495
to the client. It is recommended that a password be set on the VNC server
496
to provide authentication of the client when this is used. The path following
497
this option specifies where the x509 certificates are to be loaded from.
498
See the @ref{vnc_security} section for details on generating certificates.
499

    
500
@item x509verify=@var{/path/to/certificate/dir}
501

    
502
Valid if @option{tls} is specified. Require that x509 credentials are used
503
for negotiating the TLS session. The server will send its x509 certificate
504
to the client, and request that the client send its own x509 certificate.
505
The server will validate the client's certificate against the CA certificate,
506
and reject clients when validation fails. If the certificate authority is
507
trusted, this is a sufficient authentication mechanism. You may still wish
508
to set a password on the VNC server as a second authentication layer. The
509
path following this option specifies where the x509 certificates are to
510
be loaded from. See the @ref{vnc_security} section for details on generating
511
certificates.
512

    
513
@end table
514

    
515
@item -k @var{language}
516

    
517
Use keyboard layout @var{language} (for example @code{fr} for
518
French). This option is only needed where it is not easy to get raw PC
519
keycodes (e.g. on Macs, with some X11 servers or with a VNC
520
display). You don't normally need to use it on PC/Linux or PC/Windows
521
hosts.
522

    
523
The available layouts are:
524
@example
525
ar  de-ch  es  fo     fr-ca  hu  ja  mk     no  pt-br  sv
526
da  en-gb  et  fr     fr-ch  is  lt  nl     pl  ru     th
527
de  en-us  fi  fr-be  hr     it  lv  nl-be  pt  sl     tr
528
@end example
529

    
530
The default is @code{en-us}.
531

    
532
@end table
533

    
534
USB options:
535
@table @option
536

    
537
@item -usb
538
Enable the USB driver (will be the default soon)
539

    
540
@item -usbdevice @var{devname}
541
Add the USB device @var{devname}. @xref{usb_devices}.
542

    
543
@table @code
544

    
545
@item mouse
546
Virtual Mouse. This will override the PS/2 mouse emulation when activated.
547

    
548
@item tablet
549
Pointer device that uses absolute coordinates (like a touchscreen). This
550
means qemu is able to report the mouse position without having to grab the
551
mouse. Also overrides the PS/2 mouse emulation when activated.
552

    
553
@item disk:file
554
Mass storage device based on file
555

    
556
@item host:bus.addr
557
Pass through the host device identified by bus.addr (Linux only).
558

    
559
@item host:vendor_id:product_id
560
Pass through the host device identified by vendor_id:product_id (Linux only).
561

    
562
@item serial:[vendorid=@var{vendor_id}][,productid=@var{product_id}]:@var{dev}
563
Serial converter to host character device @var{dev}, see @code{-serial} for the
564
available devices.
565

    
566
@item braille
567
Braille device.  This will use BrlAPI to display the braille output on a real
568
or fake device.
569

    
570
@item net:nic_num
571
Network adapter that supports CDC ethernet and RNDIS protocols.
572

    
573
@end table
574

    
575
@end table
576

    
577
Network options:
578

    
579
@table @option
580

    
581
@item -net nic[,vlan=@var{n}][,macaddr=@var{addr}][,model=@var{type}]
582
Create a new Network Interface Card and connect it to VLAN @var{n} (@var{n}
583
= 0 is the default). The NIC is an ne2k_pci by default on the PC
584
target. Optionally, the MAC address can be changed. If no
585
@option{-net} option is specified, a single NIC is created.
586
Qemu can emulate several different models of network card.
587
Valid values for @var{type} are
588
@code{i82551}, @code{i82557b}, @code{i82559er},
589
@code{ne2k_pci}, @code{ne2k_isa}, @code{pcnet}, @code{rtl8139},
590
@code{e1000}, @code{smc91c111}, @code{lance}, @code{mcf_fec} and @code{usb}.
591
Not all devices are supported on all targets.  Use -net nic,model=?
592
for a list of available devices for your target.
593

    
594
@item -net user[,vlan=@var{n}][,hostname=@var{name}]
595
Use the user mode network stack which requires no administrator
596
privilege to run.  @option{hostname=name} can be used to specify the client
597
hostname reported by the builtin DHCP server.
598

    
599
@item -net tap[,vlan=@var{n}][,fd=@var{h}][,ifname=@var{name}][,script=@var{file}]
600
Connect the host TAP network interface @var{name} to VLAN @var{n} and
601
use the network script @var{file} to configure it. The default
602
network script is @file{/etc/qemu-ifup}. Use @option{script=no} to
603
disable script execution. If @var{name} is not
604
provided, the OS automatically provides one. @option{fd}=@var{h} can be
605
used to specify the handle of an already opened host TAP interface. Example:
606

    
607
@example
608
qemu linux.img -net nic -net tap
609
@end example
610

    
611
More complicated example (two NICs, each one connected to a TAP device)
612
@example
613
qemu linux.img -net nic,vlan=0 -net tap,vlan=0,ifname=tap0 \
614
               -net nic,vlan=1 -net tap,vlan=1,ifname=tap1
615
@end example
616

    
617

    
618
@item -net socket[,vlan=@var{n}][,fd=@var{h}][,listen=[@var{host}]:@var{port}][,connect=@var{host}:@var{port}]
619

    
620
Connect the VLAN @var{n} to a remote VLAN in another QEMU virtual
621
machine using a TCP socket connection. If @option{listen} is
622
specified, QEMU waits for incoming connections on @var{port}
623
(@var{host} is optional). @option{connect} is used to connect to
624
another QEMU instance using the @option{listen} option. @option{fd}=@var{h}
625
specifies an already opened TCP socket.
626

    
627
Example:
628
@example
629
# launch a first QEMU instance
630
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
631
               -net socket,listen=:1234
632
# connect the VLAN 0 of this instance to the VLAN 0
633
# of the first instance
634
qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
635
               -net socket,connect=127.0.0.1:1234
636
@end example
637

    
638
@item -net socket[,vlan=@var{n}][,fd=@var{h}][,mcast=@var{maddr}:@var{port}]
639

    
640
Create a VLAN @var{n} shared with another QEMU virtual
641
machines using a UDP multicast socket, effectively making a bus for
642
every QEMU with same multicast address @var{maddr} and @var{port}.
643
NOTES:
644
@enumerate
645
@item
646
Several QEMU can be running on different hosts and share same bus (assuming
647
correct multicast setup for these hosts).
648
@item
649
mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
650
@url{http://user-mode-linux.sf.net}.
651
@item
652
Use @option{fd=h} to specify an already opened UDP multicast socket.
653
@end enumerate
654

    
655
Example:
656
@example
657
# launch one QEMU instance
658
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
659
               -net socket,mcast=230.0.0.1:1234
660
# launch another QEMU instance on same "bus"
661
qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
662
               -net socket,mcast=230.0.0.1:1234
663
# launch yet another QEMU instance on same "bus"
664
qemu linux.img -net nic,macaddr=52:54:00:12:34:58 \
665
               -net socket,mcast=230.0.0.1:1234
666
@end example
667

    
668
Example (User Mode Linux compat.):
669
@example
670
# launch QEMU instance (note mcast address selected
671
# is UML's default)
672
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
673
               -net socket,mcast=239.192.168.1:1102
674
# launch UML
675
/path/to/linux ubd0=/path/to/root_fs eth0=mcast
676
@end example
677

    
678
@item -net none
679
Indicate that no network devices should be configured. It is used to
680
override the default configuration (@option{-net nic -net user}) which
681
is activated if no @option{-net} options are provided.
682

    
683
@item -tftp @var{dir}
684
When using the user mode network stack, activate a built-in TFTP
685
server. The files in @var{dir} will be exposed as the root of a TFTP server.
686
The TFTP client on the guest must be configured in binary mode (use the command
687
@code{bin} of the Unix TFTP client). The host IP address on the guest is as
688
usual 10.0.2.2.
689

    
690
@item -bootp @var{file}
691
When using the user mode network stack, broadcast @var{file} as the BOOTP
692
filename.  In conjunction with @option{-tftp}, this can be used to network boot
693
a guest from a local directory.
694

    
695
Example (using pxelinux):
696
@example
697
qemu -hda linux.img -boot n -tftp /path/to/tftp/files -bootp /pxelinux.0
698
@end example
699

    
700
@item -smb @var{dir}
701
When using the user mode network stack, activate a built-in SMB
702
server so that Windows OSes can access to the host files in @file{@var{dir}}
703
transparently.
704

    
705
In the guest Windows OS, the line:
706
@example
707
10.0.2.4 smbserver
708
@end example
709
must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
710
or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
711

    
712
Then @file{@var{dir}} can be accessed in @file{\\smbserver\qemu}.
713

    
714
Note that a SAMBA server must be installed on the host OS in
715
@file{/usr/sbin/smbd}. QEMU was tested successfully with smbd version
716
2.2.7a from the Red Hat 9 and version 3.0.10-1.fc3 from Fedora Core 3.
717

    
718
@item -redir [tcp|udp]:@var{host-port}:[@var{guest-host}]:@var{guest-port}
719

    
720
When using the user mode network stack, redirect incoming TCP or UDP
721
connections to the host port @var{host-port} to the guest
722
@var{guest-host} on guest port @var{guest-port}. If @var{guest-host}
723
is not specified, its value is 10.0.2.15 (default address given by the
724
built-in DHCP server).
725

    
726
For example, to redirect host X11 connection from screen 1 to guest
727
screen 0, use the following:
728

    
729
@example
730
# on the host
731
qemu -redir tcp:6001::6000 [...]
732
# this host xterm should open in the guest X11 server
733
xterm -display :1
734
@end example
735

    
736
To redirect telnet connections from host port 5555 to telnet port on
737
the guest, use the following:
738

    
739
@example
740
# on the host
741
qemu -redir tcp:5555::23 [...]
742
telnet localhost 5555
743
@end example
744

    
745
Then when you use on the host @code{telnet localhost 5555}, you
746
connect to the guest telnet server.
747

    
748
@end table
749

    
750
Linux boot specific: When using these options, you can use a given
751
Linux kernel without installing it in the disk image. It can be useful
752
for easier testing of various kernels.
753

    
754
@table @option
755

    
756
@item -kernel @var{bzImage}
757
Use @var{bzImage} as kernel image.
758

    
759
@item -append @var{cmdline}
760
Use @var{cmdline} as kernel command line
761

    
762
@item -initrd @var{file}
763
Use @var{file} as initial ram disk.
764

    
765
@end table
766

    
767
Debug/Expert options:
768
@table @option
769

    
770
@item -serial @var{dev}
771
Redirect the virtual serial port to host character device
772
@var{dev}. The default device is @code{vc} in graphical mode and
773
@code{stdio} in non graphical mode.
774

    
775
This option can be used several times to simulate up to 4 serials
776
ports.
777

    
778
Use @code{-serial none} to disable all serial ports.
779

    
780
Available character devices are:
781
@table @code
782
@item vc[:WxH]
783
Virtual console. Optionally, a width and height can be given in pixel with
784
@example
785
vc:800x600
786
@end example
787
It is also possible to specify width or height in characters:
788
@example
789
vc:80Cx24C
790
@end example
791
@item pty
792
[Linux only] Pseudo TTY (a new PTY is automatically allocated)
793
@item none
794
No device is allocated.
795
@item null
796
void device
797
@item /dev/XXX
798
[Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
799
parameters are set according to the emulated ones.
800
@item /dev/parport@var{N}
801
[Linux only, parallel port only] Use host parallel port
802
@var{N}. Currently SPP and EPP parallel port features can be used.
803
@item file:@var{filename}
804
Write output to @var{filename}. No character can be read.
805
@item stdio
806
[Unix only] standard input/output
807
@item pipe:@var{filename}
808
name pipe @var{filename}
809
@item COM@var{n}
810
[Windows only] Use host serial port @var{n}
811
@item udp:[@var{remote_host}]:@var{remote_port}[@@[@var{src_ip}]:@var{src_port}]
812
This implements UDP Net Console.
813
When @var{remote_host} or @var{src_ip} are not specified
814
they default to @code{0.0.0.0}.
815
When not using a specified @var{src_port} a random port is automatically chosen.
816

    
817
If you just want a simple readonly console you can use @code{netcat} or
818
@code{nc}, by starting qemu with: @code{-serial udp::4555} and nc as:
819
@code{nc -u -l -p 4555}. Any time qemu writes something to that port it
820
will appear in the netconsole session.
821

    
822
If you plan to send characters back via netconsole or you want to stop
823
and start qemu a lot of times, you should have qemu use the same
824
source port each time by using something like @code{-serial
825
udp::4555@@:4556} to qemu. Another approach is to use a patched
826
version of netcat which can listen to a TCP port and send and receive
827
characters via udp.  If you have a patched version of netcat which
828
activates telnet remote echo and single char transfer, then you can
829
use the following options to step up a netcat redirector to allow
830
telnet on port 5555 to access the qemu port.
831
@table @code
832
@item Qemu Options:
833
-serial udp::4555@@:4556
834
@item netcat options:
835
-u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
836
@item telnet options:
837
localhost 5555
838
@end table
839

    
840

    
841
@item tcp:[@var{host}]:@var{port}[,@var{server}][,nowait][,nodelay]
842
The TCP Net Console has two modes of operation.  It can send the serial
843
I/O to a location or wait for a connection from a location.  By default
844
the TCP Net Console is sent to @var{host} at the @var{port}.  If you use
845
the @var{server} option QEMU will wait for a client socket application
846
to connect to the port before continuing, unless the @code{nowait}
847
option was specified.  The @code{nodelay} option disables the Nagle buffering
848
algorithm.  If @var{host} is omitted, 0.0.0.0 is assumed. Only
849
one TCP connection at a time is accepted. You can use @code{telnet} to
850
connect to the corresponding character device.
851
@table @code
852
@item Example to send tcp console to 192.168.0.2 port 4444
853
-serial tcp:192.168.0.2:4444
854
@item Example to listen and wait on port 4444 for connection
855
-serial tcp::4444,server
856
@item Example to not wait and listen on ip 192.168.0.100 port 4444
857
-serial tcp:192.168.0.100:4444,server,nowait
858
@end table
859

    
860
@item telnet:@var{host}:@var{port}[,server][,nowait][,nodelay]
861
The telnet protocol is used instead of raw tcp sockets.  The options
862
work the same as if you had specified @code{-serial tcp}.  The
863
difference is that the port acts like a telnet server or client using
864
telnet option negotiation.  This will also allow you to send the
865
MAGIC_SYSRQ sequence if you use a telnet that supports sending the break
866
sequence.  Typically in unix telnet you do it with Control-] and then
867
type "send break" followed by pressing the enter key.
868

    
869
@item unix:@var{path}[,server][,nowait]
870
A unix domain socket is used instead of a tcp socket.  The option works the
871
same as if you had specified @code{-serial tcp} except the unix domain socket
872
@var{path} is used for connections.
873

    
874
@item mon:@var{dev_string}
875
This is a special option to allow the monitor to be multiplexed onto
876
another serial port.  The monitor is accessed with key sequence of
877
@key{Control-a} and then pressing @key{c}. See monitor access
878
@ref{pcsys_keys} in the -nographic section for more keys.
879
@var{dev_string} should be any one of the serial devices specified
880
above.  An example to multiplex the monitor onto a telnet server
881
listening on port 4444 would be:
882
@table @code
883
@item -serial mon:telnet::4444,server,nowait
884
@end table
885

    
886
@item braille
887
Braille device.  This will use BrlAPI to display the braille output on a real
888
or fake device.
889

    
890
@end table
891

    
892
@item -parallel @var{dev}
893
Redirect the virtual parallel port to host device @var{dev} (same
894
devices as the serial port). On Linux hosts, @file{/dev/parportN} can
895
be used to use hardware devices connected on the corresponding host
896
parallel port.
897

    
898
This option can be used several times to simulate up to 3 parallel
899
ports.
900

    
901
Use @code{-parallel none} to disable all parallel ports.
902

    
903
@item -monitor @var{dev}
904
Redirect the monitor to host device @var{dev} (same devices as the
905
serial port).
906
The default device is @code{vc} in graphical mode and @code{stdio} in
907
non graphical mode.
908

    
909
@item -echr numeric_ascii_value
910
Change the escape character used for switching to the monitor when using
911
monitor and serial sharing.  The default is @code{0x01} when using the
912
@code{-nographic} option.  @code{0x01} is equal to pressing
913
@code{Control-a}.  You can select a different character from the ascii
914
control keys where 1 through 26 map to Control-a through Control-z.  For
915
instance you could use the either of the following to change the escape
916
character to Control-t.
917
@table @code
918
@item -echr 0x14
919
@item -echr 20
920
@end table
921

    
922
@item -s
923
Wait gdb connection to port 1234 (@pxref{gdb_usage}).
924
@item -p @var{port}
925
Change gdb connection port.  @var{port} can be either a decimal number
926
to specify a TCP port, or a host device (same devices as the serial port).
927
@item -S
928
Do not start CPU at startup (you must type 'c' in the monitor).
929
@item -d
930
Output log in /tmp/qemu.log
931
@item -hdachs @var{c},@var{h},@var{s},[,@var{t}]
932
Force hard disk 0 physical geometry (1 <= @var{c} <= 16383, 1 <=
933
@var{h} <= 16, 1 <= @var{s} <= 63) and optionally force the BIOS
934
translation mode (@var{t}=none, lba or auto). Usually QEMU can guess
935
all those parameters. This option is useful for old MS-DOS disk
936
images.
937

    
938
@item -L path
939
Set the directory for the BIOS, VGA BIOS and keymaps.
940

    
941
@item -std-vga
942
Simulate a standard VGA card with Bochs VBE extensions (default is
943
Cirrus Logic GD5446 PCI VGA). If your guest OS supports the VESA 2.0
944
VBE extensions (e.g. Windows XP) and if you want to use high
945
resolution modes (>= 1280x1024x16) then you should use this option.
946

    
947
@item -no-acpi
948
Disable ACPI (Advanced Configuration and Power Interface) support. Use
949
it if your guest OS complains about ACPI problems (PC target machine
950
only).
951

    
952
@item -no-reboot
953
Exit instead of rebooting.
954

    
955
@item -no-shutdown
956
Don't exit QEMU on guest shutdown, but instead only stop the emulation.
957
This allows for instance switching to monitor to commit changes to the
958
disk image.
959

    
960
@item -loadvm file
961
Start right away with a saved state (@code{loadvm} in monitor)
962

    
963
@item -semihosting
964
Enable semihosting syscall emulation (ARM and M68K target machines only).
965

    
966
On ARM this implements the "Angel" interface.
967
On M68K this implements the "ColdFire GDB" interface used by libgloss.
968

    
969
Note that this allows guest direct access to the host filesystem,
970
so should only be used with trusted guest OS.
971

    
972
@item -icount [N|auto]
973
Enable virtual instruction counter.  The virtual cpu will execute one
974
instruction every 2^N ns of virtual time.  If @code{auto} is specified
975
then the virtual cpu speed will be automatically adjusted to keep virtual
976
time within a few seconds of real time.
977

    
978
Note that while this option can give deterministic behavior, it does not
979
provide cycle accurate emulation.  Modern CPUs contain superscalar out of
980
order cores with complex cache hierarchies.  The number of instructions
981
executed often has little or no correlation with actual performance.
982
@end table
983

    
984
@c man end
985

    
986
@node pcsys_keys
987
@section Keys
988

    
989
@c man begin OPTIONS
990

    
991
During the graphical emulation, you can use the following keys:
992
@table @key
993
@item Ctrl-Alt-f
994
Toggle full screen
995

    
996
@item Ctrl-Alt-n
997
Switch to virtual console 'n'. Standard console mappings are:
998
@table @emph
999
@item 1
1000
Target system display
1001
@item 2
1002
Monitor
1003
@item 3
1004
Serial port
1005
@end table
1006

    
1007
@item Ctrl-Alt
1008
Toggle mouse and keyboard grab.
1009
@end table
1010

    
1011
In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
1012
@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
1013

    
1014
During emulation, if you are using the @option{-nographic} option, use
1015
@key{Ctrl-a h} to get terminal commands:
1016

    
1017
@table @key
1018
@item Ctrl-a h
1019
Print this help
1020
@item Ctrl-a x
1021
Exit emulator
1022
@item Ctrl-a s
1023
Save disk data back to file (if -snapshot)
1024
@item Ctrl-a t
1025
toggle console timestamps
1026
@item Ctrl-a b
1027
Send break (magic sysrq in Linux)
1028
@item Ctrl-a c
1029
Switch between console and monitor
1030
@item Ctrl-a Ctrl-a
1031
Send Ctrl-a
1032
@end table
1033
@c man end
1034

    
1035
@ignore
1036

    
1037
@c man begin SEEALSO
1038
The HTML documentation of QEMU for more precise information and Linux
1039
user mode emulator invocation.
1040
@c man end
1041

    
1042
@c man begin AUTHOR
1043
Fabrice Bellard
1044
@c man end
1045

    
1046
@end ignore
1047

    
1048
@node pcsys_monitor
1049
@section QEMU Monitor
1050

    
1051
The QEMU monitor is used to give complex commands to the QEMU
1052
emulator. You can use it to:
1053

    
1054
@itemize @minus
1055

    
1056
@item
1057
Remove or insert removable media images
1058
(such as CD-ROM or floppies).
1059

    
1060
@item
1061
Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
1062
from a disk file.
1063

    
1064
@item Inspect the VM state without an external debugger.
1065

    
1066
@end itemize
1067

    
1068
@subsection Commands
1069

    
1070
The following commands are available:
1071

    
1072
@table @option
1073

    
1074
@item help or ? [@var{cmd}]
1075
Show the help for all commands or just for command @var{cmd}.
1076

    
1077
@item commit
1078
Commit changes to the disk images (if -snapshot is used).
1079

    
1080
@item info @var{subcommand}
1081
Show various information about the system state.
1082

    
1083
@table @option
1084
@item info network
1085
show the various VLANs and the associated devices
1086
@item info block
1087
show the block devices
1088
@item info registers
1089
show the cpu registers
1090
@item info history
1091
show the command line history
1092
@item info pci
1093
show emulated PCI device
1094
@item info usb
1095
show USB devices plugged on the virtual USB hub
1096
@item info usbhost
1097
show all USB host devices
1098
@item info capture
1099
show information about active capturing
1100
@item info snapshots
1101
show list of VM snapshots
1102
@item info mice
1103
show which guest mouse is receiving events
1104
@end table
1105

    
1106
@item q or quit
1107
Quit the emulator.
1108

    
1109
@item eject [-f] @var{device}
1110
Eject a removable medium (use -f to force it).
1111

    
1112
@item change @var{device} @var{setting}
1113

    
1114
Change the configuration of a device.
1115

    
1116
@table @option
1117
@item change @var{diskdevice} @var{filename}
1118
Change the medium for a removable disk device to point to @var{filename}. eg
1119

    
1120
@example
1121
(qemu) change ide1-cd0 /path/to/some.iso
1122
@end example
1123

    
1124
@item change vnc @var{display},@var{options}
1125
Change the configuration of the VNC server. The valid syntax for @var{display}
1126
and @var{options} are described at @ref{sec_invocation}. eg
1127

    
1128
@example
1129
(qemu) change vnc localhost:1
1130
@end example
1131

    
1132
@item change vnc password
1133

    
1134
Change the password associated with the VNC server. The monitor will prompt for
1135
the new password to be entered. VNC passwords are only significant upto 8 letters.
1136
eg.
1137

    
1138
@example
1139
(qemu) change vnc password
1140
Password: ********
1141
@end example
1142

    
1143
@end table
1144

    
1145
@item screendump @var{filename}
1146
Save screen into PPM image @var{filename}.
1147

    
1148
@item mouse_move @var{dx} @var{dy} [@var{dz}]
1149
Move the active mouse to the specified coordinates @var{dx} @var{dy}
1150
with optional scroll axis @var{dz}.
1151

    
1152
@item mouse_button @var{val}
1153
Change the active mouse button state @var{val} (1=L, 2=M, 4=R).
1154

    
1155
@item mouse_set @var{index}
1156
Set which mouse device receives events at given @var{index}, index
1157
can be obtained with
1158
@example
1159
info mice
1160
@end example
1161

    
1162
@item wavcapture @var{filename} [@var{frequency} [@var{bits} [@var{channels}]]]
1163
Capture audio into @var{filename}. Using sample rate @var{frequency}
1164
bits per sample @var{bits} and number of channels @var{channels}.
1165

    
1166
Defaults:
1167
@itemize @minus
1168
@item Sample rate = 44100 Hz - CD quality
1169
@item Bits = 16
1170
@item Number of channels = 2 - Stereo
1171
@end itemize
1172

    
1173
@item stopcapture @var{index}
1174
Stop capture with a given @var{index}, index can be obtained with
1175
@example
1176
info capture
1177
@end example
1178

    
1179
@item log @var{item1}[,...]
1180
Activate logging of the specified items to @file{/tmp/qemu.log}.
1181

    
1182
@item savevm [@var{tag}|@var{id}]
1183
Create a snapshot of the whole virtual machine. If @var{tag} is
1184
provided, it is used as human readable identifier. If there is already
1185
a snapshot with the same tag or ID, it is replaced. More info at
1186
@ref{vm_snapshots}.
1187

    
1188
@item loadvm @var{tag}|@var{id}
1189
Set the whole virtual machine to the snapshot identified by the tag
1190
@var{tag} or the unique snapshot ID @var{id}.
1191

    
1192
@item delvm @var{tag}|@var{id}
1193
Delete the snapshot identified by @var{tag} or @var{id}.
1194

    
1195
@item stop
1196
Stop emulation.
1197

    
1198
@item c or cont
1199
Resume emulation.
1200

    
1201
@item gdbserver [@var{port}]
1202
Start gdbserver session (default @var{port}=1234)
1203

    
1204
@item x/fmt @var{addr}
1205
Virtual memory dump starting at @var{addr}.
1206

    
1207
@item xp /@var{fmt} @var{addr}
1208
Physical memory dump starting at @var{addr}.
1209

    
1210
@var{fmt} is a format which tells the command how to format the
1211
data. Its syntax is: @option{/@{count@}@{format@}@{size@}}
1212

    
1213
@table @var
1214
@item count
1215
is the number of items to be dumped.
1216

    
1217
@item format
1218
can be x (hex), d (signed decimal), u (unsigned decimal), o (octal),
1219
c (char) or i (asm instruction).
1220

    
1221
@item size
1222
can be b (8 bits), h (16 bits), w (32 bits) or g (64 bits). On x86,
1223
@code{h} or @code{w} can be specified with the @code{i} format to
1224
respectively select 16 or 32 bit code instruction size.
1225

    
1226
@end table
1227

    
1228
Examples:
1229
@itemize
1230
@item
1231
Dump 10 instructions at the current instruction pointer:
1232
@example
1233
(qemu) x/10i $eip
1234
0x90107063:  ret
1235
0x90107064:  sti
1236
0x90107065:  lea    0x0(%esi,1),%esi
1237
0x90107069:  lea    0x0(%edi,1),%edi
1238
0x90107070:  ret
1239
0x90107071:  jmp    0x90107080
1240
0x90107073:  nop
1241
0x90107074:  nop
1242
0x90107075:  nop
1243
0x90107076:  nop
1244
@end example
1245

    
1246
@item
1247
Dump 80 16 bit values at the start of the video memory.
1248
@smallexample
1249
(qemu) xp/80hx 0xb8000
1250
0x000b8000: 0x0b50 0x0b6c 0x0b65 0x0b78 0x0b38 0x0b36 0x0b2f 0x0b42
1251
0x000b8010: 0x0b6f 0x0b63 0x0b68 0x0b73 0x0b20 0x0b56 0x0b47 0x0b41
1252
0x000b8020: 0x0b42 0x0b69 0x0b6f 0x0b73 0x0b20 0x0b63 0x0b75 0x0b72
1253
0x000b8030: 0x0b72 0x0b65 0x0b6e 0x0b74 0x0b2d 0x0b63 0x0b76 0x0b73
1254
0x000b8040: 0x0b20 0x0b30 0x0b35 0x0b20 0x0b4e 0x0b6f 0x0b76 0x0b20
1255
0x000b8050: 0x0b32 0x0b30 0x0b30 0x0b33 0x0720 0x0720 0x0720 0x0720
1256
0x000b8060: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1257
0x000b8070: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1258
0x000b8080: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1259
0x000b8090: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1260
@end smallexample
1261
@end itemize
1262

    
1263
@item p or print/@var{fmt} @var{expr}
1264

    
1265
Print expression value. Only the @var{format} part of @var{fmt} is
1266
used.
1267

    
1268
@item sendkey @var{keys}
1269

    
1270
Send @var{keys} to the emulator. Use @code{-} to press several keys
1271
simultaneously. Example:
1272
@example
1273
sendkey ctrl-alt-f1
1274
@end example
1275

    
1276
This command is useful to send keys that your graphical user interface
1277
intercepts at low level, such as @code{ctrl-alt-f1} in X Window.
1278

    
1279
@item system_reset
1280

    
1281
Reset the system.
1282

    
1283
@item boot_set @var{bootdevicelist}
1284

    
1285
Define new values for the boot device list. Those values will override
1286
the values specified on the command line through the @code{-boot} option.
1287

    
1288
The values that can be specified here depend on the machine type, but are
1289
the same that can be specified in the @code{-boot} command line option.
1290

    
1291
@item usb_add @var{devname}
1292

    
1293
Add the USB device @var{devname}.  For details of available devices see
1294
@ref{usb_devices}
1295

    
1296
@item usb_del @var{devname}
1297

    
1298
Remove the USB device @var{devname} from the QEMU virtual USB
1299
hub. @var{devname} has the syntax @code{bus.addr}. Use the monitor
1300
command @code{info usb} to see the devices you can remove.
1301

    
1302
@end table
1303

    
1304
@subsection Integer expressions
1305

    
1306
The monitor understands integers expressions for every integer
1307
argument. You can use register names to get the value of specifics
1308
CPU registers by prefixing them with @emph{$}.
1309

    
1310
@node disk_images
1311
@section Disk Images
1312

    
1313
Since version 0.6.1, QEMU supports many disk image formats, including
1314
growable disk images (their size increase as non empty sectors are
1315
written), compressed and encrypted disk images. Version 0.8.3 added
1316
the new qcow2 disk image format which is essential to support VM
1317
snapshots.
1318

    
1319
@menu
1320
* disk_images_quickstart::    Quick start for disk image creation
1321
* disk_images_snapshot_mode:: Snapshot mode
1322
* vm_snapshots::              VM snapshots
1323
* qemu_img_invocation::       qemu-img Invocation
1324
* qemu_nbd_invocation::       qemu-nbd Invocation
1325
* host_drives::               Using host drives
1326
* disk_images_fat_images::    Virtual FAT disk images
1327
* disk_images_nbd::           NBD access
1328
@end menu
1329

    
1330
@node disk_images_quickstart
1331
@subsection Quick start for disk image creation
1332

    
1333
You can create a disk image with the command:
1334
@example
1335
qemu-img create myimage.img mysize
1336
@end example
1337
where @var{myimage.img} is the disk image filename and @var{mysize} is its
1338
size in kilobytes. You can add an @code{M} suffix to give the size in
1339
megabytes and a @code{G} suffix for gigabytes.
1340

    
1341
See @ref{qemu_img_invocation} for more information.
1342

    
1343
@node disk_images_snapshot_mode
1344
@subsection Snapshot mode
1345

    
1346
If you use the option @option{-snapshot}, all disk images are
1347
considered as read only. When sectors in written, they are written in
1348
a temporary file created in @file{/tmp}. You can however force the
1349
write back to the raw disk images by using the @code{commit} monitor
1350
command (or @key{C-a s} in the serial console).
1351

    
1352
@node vm_snapshots
1353
@subsection VM snapshots
1354

    
1355
VM snapshots are snapshots of the complete virtual machine including
1356
CPU state, RAM, device state and the content of all the writable
1357
disks. In order to use VM snapshots, you must have at least one non
1358
removable and writable block device using the @code{qcow2} disk image
1359
format. Normally this device is the first virtual hard drive.
1360

    
1361
Use the monitor command @code{savevm} to create a new VM snapshot or
1362
replace an existing one. A human readable name can be assigned to each
1363
snapshot in addition to its numerical ID.
1364

    
1365
Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
1366
a VM snapshot. @code{info snapshots} lists the available snapshots
1367
with their associated information:
1368

    
1369
@example
1370
(qemu) info snapshots
1371
Snapshot devices: hda
1372
Snapshot list (from hda):
1373
ID        TAG                 VM SIZE                DATE       VM CLOCK
1374
1         start                   41M 2006-08-06 12:38:02   00:00:14.954
1375
2                                 40M 2006-08-06 12:43:29   00:00:18.633
1376
3         msys                    40M 2006-08-06 12:44:04   00:00:23.514
1377
@end example
1378

    
1379
A VM snapshot is made of a VM state info (its size is shown in
1380
@code{info snapshots}) and a snapshot of every writable disk image.
1381
The VM state info is stored in the first @code{qcow2} non removable
1382
and writable block device. The disk image snapshots are stored in
1383
every disk image. The size of a snapshot in a disk image is difficult
1384
to evaluate and is not shown by @code{info snapshots} because the
1385
associated disk sectors are shared among all the snapshots to save
1386
disk space (otherwise each snapshot would need a full copy of all the
1387
disk images).
1388

    
1389
When using the (unrelated) @code{-snapshot} option
1390
(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
1391
but they are deleted as soon as you exit QEMU.
1392

    
1393
VM snapshots currently have the following known limitations:
1394
@itemize
1395
@item
1396
They cannot cope with removable devices if they are removed or
1397
inserted after a snapshot is done.
1398
@item
1399
A few device drivers still have incomplete snapshot support so their
1400
state is not saved or restored properly (in particular USB).
1401
@end itemize
1402

    
1403
@node qemu_img_invocation
1404
@subsection @code{qemu-img} Invocation
1405

    
1406
@include qemu-img.texi
1407

    
1408
@node qemu_nbd_invocation
1409
@subsection @code{qemu-nbd} Invocation
1410

    
1411
@include qemu-nbd.texi
1412

    
1413
@node host_drives
1414
@subsection Using host drives
1415

    
1416
In addition to disk image files, QEMU can directly access host
1417
devices. We describe here the usage for QEMU version >= 0.8.3.
1418

    
1419
@subsubsection Linux
1420

    
1421
On Linux, you can directly use the host device filename instead of a
1422
disk image filename provided you have enough privileges to access
1423
it. For example, use @file{/dev/cdrom} to access to the CDROM or
1424
@file{/dev/fd0} for the floppy.
1425

    
1426
@table @code
1427
@item CD
1428
You can specify a CDROM device even if no CDROM is loaded. QEMU has
1429
specific code to detect CDROM insertion or removal. CDROM ejection by
1430
the guest OS is supported. Currently only data CDs are supported.
1431
@item Floppy
1432
You can specify a floppy device even if no floppy is loaded. Floppy
1433
removal is currently not detected accurately (if you change floppy
1434
without doing floppy access while the floppy is not loaded, the guest
1435
OS will think that the same floppy is loaded).
1436
@item Hard disks
1437
Hard disks can be used. Normally you must specify the whole disk
1438
(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
1439
see it as a partitioned disk. WARNING: unless you know what you do, it
1440
is better to only make READ-ONLY accesses to the hard disk otherwise
1441
you may corrupt your host data (use the @option{-snapshot} command
1442
line option or modify the device permissions accordingly).
1443
@end table
1444

    
1445
@subsubsection Windows
1446

    
1447
@table @code
1448
@item CD
1449
The preferred syntax is the drive letter (e.g. @file{d:}). The
1450
alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
1451
supported as an alias to the first CDROM drive.
1452

    
1453
Currently there is no specific code to handle removable media, so it
1454
is better to use the @code{change} or @code{eject} monitor commands to
1455
change or eject media.
1456
@item Hard disks
1457
Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
1458
where @var{N} is the drive number (0 is the first hard disk).
1459

    
1460
WARNING: unless you know what you do, it is better to only make
1461
READ-ONLY accesses to the hard disk otherwise you may corrupt your
1462
host data (use the @option{-snapshot} command line so that the
1463
modifications are written in a temporary file).
1464
@end table
1465

    
1466

    
1467
@subsubsection Mac OS X
1468

    
1469
@file{/dev/cdrom} is an alias to the first CDROM.
1470

    
1471
Currently there is no specific code to handle removable media, so it
1472
is better to use the @code{change} or @code{eject} monitor commands to
1473
change or eject media.
1474

    
1475
@node disk_images_fat_images
1476
@subsection Virtual FAT disk images
1477

    
1478
QEMU can automatically create a virtual FAT disk image from a
1479
directory tree. In order to use it, just type:
1480

    
1481
@example
1482
qemu linux.img -hdb fat:/my_directory
1483
@end example
1484

    
1485
Then you access access to all the files in the @file{/my_directory}
1486
directory without having to copy them in a disk image or to export
1487
them via SAMBA or NFS. The default access is @emph{read-only}.
1488

    
1489
Floppies can be emulated with the @code{:floppy:} option:
1490

    
1491
@example
1492
qemu linux.img -fda fat:floppy:/my_directory
1493
@end example
1494

    
1495
A read/write support is available for testing (beta stage) with the
1496
@code{:rw:} option:
1497

    
1498
@example
1499
qemu linux.img -fda fat:floppy:rw:/my_directory
1500
@end example
1501

    
1502
What you should @emph{never} do:
1503
@itemize
1504
@item use non-ASCII filenames ;
1505
@item use "-snapshot" together with ":rw:" ;
1506
@item expect it to work when loadvm'ing ;
1507
@item write to the FAT directory on the host system while accessing it with the guest system.
1508
@end itemize
1509

    
1510
@node disk_images_nbd
1511
@subsection NBD access
1512

    
1513
QEMU can access directly to block device exported using the Network Block Device
1514
protocol.
1515

    
1516
@example
1517
qemu linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
1518
@end example
1519

    
1520
If the NBD server is located on the same host, you can use an unix socket instead
1521
of an inet socket:
1522

    
1523
@example
1524
qemu linux.img -hdb nbd:unix:/tmp/my_socket
1525
@end example
1526

    
1527
In this case, the block device must be exported using qemu-nbd:
1528

    
1529
@example
1530
qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
1531
@end example
1532

    
1533
The use of qemu-nbd allows to share a disk between several guests:
1534
@example
1535
qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
1536
@end example
1537

    
1538
and then you can use it with two guests:
1539
@example
1540
qemu linux1.img -hdb nbd:unix:/tmp/my_socket
1541
qemu linux2.img -hdb nbd:unix:/tmp/my_socket
1542
@end example
1543

    
1544
@node pcsys_network
1545
@section Network emulation
1546

    
1547
QEMU can simulate several network cards (PCI or ISA cards on the PC
1548
target) and can connect them to an arbitrary number of Virtual Local
1549
Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1550
VLAN. VLAN can be connected between separate instances of QEMU to
1551
simulate large networks. For simpler usage, a non privileged user mode
1552
network stack can replace the TAP device to have a basic network
1553
connection.
1554

    
1555
@subsection VLANs
1556

    
1557
QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1558
connection between several network devices. These devices can be for
1559
example QEMU virtual Ethernet cards or virtual Host ethernet devices
1560
(TAP devices).
1561

    
1562
@subsection Using TAP network interfaces
1563

    
1564
This is the standard way to connect QEMU to a real network. QEMU adds
1565
a virtual network device on your host (called @code{tapN}), and you
1566
can then configure it as if it was a real ethernet card.
1567

    
1568
@subsubsection Linux host
1569

    
1570
As an example, you can download the @file{linux-test-xxx.tar.gz}
1571
archive and copy the script @file{qemu-ifup} in @file{/etc} and
1572
configure properly @code{sudo} so that the command @code{ifconfig}
1573
contained in @file{qemu-ifup} can be executed as root. You must verify
1574
that your host kernel supports the TAP network interfaces: the
1575
device @file{/dev/net/tun} must be present.
1576

    
1577
See @ref{sec_invocation} to have examples of command lines using the
1578
TAP network interfaces.
1579

    
1580
@subsubsection Windows host
1581

    
1582
There is a virtual ethernet driver for Windows 2000/XP systems, called
1583
TAP-Win32. But it is not included in standard QEMU for Windows,
1584
so you will need to get it separately. It is part of OpenVPN package,
1585
so download OpenVPN from : @url{http://openvpn.net/}.
1586

    
1587
@subsection Using the user mode network stack
1588

    
1589
By using the option @option{-net user} (default configuration if no
1590
@option{-net} option is specified), QEMU uses a completely user mode
1591
network stack (you don't need root privilege to use the virtual
1592
network). The virtual network configuration is the following:
1593

    
1594
@example
1595

    
1596
         QEMU VLAN      <------>  Firewall/DHCP server <-----> Internet
1597
                           |          (10.0.2.2)
1598
                           |
1599
                           ---->  DNS server (10.0.2.3)
1600
                           |
1601
                           ---->  SMB server (10.0.2.4)
1602
@end example
1603

    
1604
The QEMU VM behaves as if it was behind a firewall which blocks all
1605
incoming connections. You can use a DHCP client to automatically
1606
configure the network in the QEMU VM. The DHCP server assign addresses
1607
to the hosts starting from 10.0.2.15.
1608

    
1609
In order to check that the user mode network is working, you can ping
1610
the address 10.0.2.2 and verify that you got an address in the range
1611
10.0.2.x from the QEMU virtual DHCP server.
1612

    
1613
Note that @code{ping} is not supported reliably to the internet as it
1614
would require root privileges. It means you can only ping the local
1615
router (10.0.2.2).
1616

    
1617
When using the built-in TFTP server, the router is also the TFTP
1618
server.
1619

    
1620
When using the @option{-redir} option, TCP or UDP connections can be
1621
redirected from the host to the guest. It allows for example to
1622
redirect X11, telnet or SSH connections.
1623

    
1624
@subsection Connecting VLANs between QEMU instances
1625

    
1626
Using the @option{-net socket} option, it is possible to make VLANs
1627
that span several QEMU instances. See @ref{sec_invocation} to have a
1628
basic example.
1629

    
1630
@node direct_linux_boot
1631
@section Direct Linux Boot
1632

    
1633
This section explains how to launch a Linux kernel inside QEMU without
1634
having to make a full bootable image. It is very useful for fast Linux
1635
kernel testing.
1636

    
1637
The syntax is:
1638
@example
1639
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1640
@end example
1641

    
1642
Use @option{-kernel} to provide the Linux kernel image and
1643
@option{-append} to give the kernel command line arguments. The
1644
@option{-initrd} option can be used to provide an INITRD image.
1645

    
1646
When using the direct Linux boot, a disk image for the first hard disk
1647
@file{hda} is required because its boot sector is used to launch the
1648
Linux kernel.
1649

    
1650
If you do not need graphical output, you can disable it and redirect
1651
the virtual serial port and the QEMU monitor to the console with the
1652
@option{-nographic} option. The typical command line is:
1653
@example
1654
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1655
     -append "root=/dev/hda console=ttyS0" -nographic
1656
@end example
1657

    
1658
Use @key{Ctrl-a c} to switch between the serial console and the
1659
monitor (@pxref{pcsys_keys}).
1660

    
1661
@node pcsys_usb
1662
@section USB emulation
1663

    
1664
QEMU emulates a PCI UHCI USB controller. You can virtually plug
1665
virtual USB devices or real host USB devices (experimental, works only
1666
on Linux hosts).  Qemu will automatically create and connect virtual USB hubs
1667
as necessary to connect multiple USB devices.
1668

    
1669
@menu
1670
* usb_devices::
1671
* host_usb_devices::
1672
@end menu
1673
@node usb_devices
1674
@subsection Connecting USB devices
1675

    
1676
USB devices can be connected with the @option{-usbdevice} commandline option
1677
or the @code{usb_add} monitor command.  Available devices are:
1678

    
1679
@table @code
1680
@item mouse
1681
Virtual Mouse.  This will override the PS/2 mouse emulation when activated.
1682
@item tablet
1683
Pointer device that uses absolute coordinates (like a touchscreen).
1684
This means qemu is able to report the mouse position without having
1685
to grab the mouse.  Also overrides the PS/2 mouse emulation when activated.
1686
@item disk:@var{file}
1687
Mass storage device based on @var{file} (@pxref{disk_images})
1688
@item host:@var{bus.addr}
1689
Pass through the host device identified by @var{bus.addr}
1690
(Linux only)
1691
@item host:@var{vendor_id:product_id}
1692
Pass through the host device identified by @var{vendor_id:product_id}
1693
(Linux only)
1694
@item wacom-tablet
1695
Virtual Wacom PenPartner tablet.  This device is similar to the @code{tablet}
1696
above but it can be used with the tslib library because in addition to touch
1697
coordinates it reports touch pressure.
1698
@item keyboard
1699
Standard USB keyboard.  Will override the PS/2 keyboard (if present).
1700
@item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
1701
Serial converter. This emulates an FTDI FT232BM chip connected to host character
1702
device @var{dev}. The available character devices are the same as for the
1703
@code{-serial} option. The @code{vendorid} and @code{productid} options can be
1704
used to override the default 0403:6001. For instance, 
1705
@example
1706
usb_add serial:productid=FA00:tcp:192.168.0.2:4444
1707
@end example
1708
will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
1709
serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
1710
@item braille
1711
Braille device.  This will use BrlAPI to display the braille output on a real
1712
or fake device.
1713
@item net:@var{nic_num}
1714
Network adapter that supports CDC ethernet and RNDIS protocols.  This must be
1715
used together with the @code{-net nic,model=usb,...} option (see description),
1716
where @var{nic_num} specifies the index of the @code{-net nic,...} option
1717
describing the interface (zero-based).
1718
For instance, user-mode networking can be used by specifying
1719
@example
1720
qemu -net user,vlan=1 -net nic,model=usb,vlan=1 -usbdevice net:0 [...OPTIONS...]
1721
@end example
1722
Currently this cannot be used in machines that support PCI NICs.
1723
@end table
1724

    
1725
@node host_usb_devices
1726
@subsection Using host USB devices on a Linux host
1727

    
1728
WARNING: this is an experimental feature. QEMU will slow down when
1729
using it. USB devices requiring real time streaming (i.e. USB Video
1730
Cameras) are not supported yet.
1731

    
1732
@enumerate
1733
@item If you use an early Linux 2.4 kernel, verify that no Linux driver
1734
is actually using the USB device. A simple way to do that is simply to
1735
disable the corresponding kernel module by renaming it from @file{mydriver.o}
1736
to @file{mydriver.o.disabled}.
1737

    
1738
@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1739
@example
1740
ls /proc/bus/usb
1741
001  devices  drivers
1742
@end example
1743

    
1744
@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1745
@example
1746
chown -R myuid /proc/bus/usb
1747
@end example
1748

    
1749
@item Launch QEMU and do in the monitor:
1750
@example
1751
info usbhost
1752
  Device 1.2, speed 480 Mb/s
1753
    Class 00: USB device 1234:5678, USB DISK
1754
@end example
1755
You should see the list of the devices you can use (Never try to use
1756
hubs, it won't work).
1757

    
1758
@item Add the device in QEMU by using:
1759
@example
1760
usb_add host:1234:5678
1761
@end example
1762

    
1763
Normally the guest OS should report that a new USB device is
1764
plugged. You can use the option @option{-usbdevice} to do the same.
1765

    
1766
@item Now you can try to use the host USB device in QEMU.
1767

    
1768
@end enumerate
1769

    
1770
When relaunching QEMU, you may have to unplug and plug again the USB
1771
device to make it work again (this is a bug).
1772

    
1773
@node vnc_security
1774
@section VNC security
1775

    
1776
The VNC server capability provides access to the graphical console
1777
of the guest VM across the network. This has a number of security
1778
considerations depending on the deployment scenarios.
1779

    
1780
@menu
1781
* vnc_sec_none::
1782
* vnc_sec_password::
1783
* vnc_sec_certificate::
1784
* vnc_sec_certificate_verify::
1785
* vnc_sec_certificate_pw::
1786
* vnc_generate_cert::
1787
@end menu
1788
@node vnc_sec_none
1789
@subsection Without passwords
1790

    
1791
The simplest VNC server setup does not include any form of authentication.
1792
For this setup it is recommended to restrict it to listen on a UNIX domain
1793
socket only. For example
1794

    
1795
@example
1796
qemu [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
1797
@end example
1798

    
1799
This ensures that only users on local box with read/write access to that
1800
path can access the VNC server. To securely access the VNC server from a
1801
remote machine, a combination of netcat+ssh can be used to provide a secure
1802
tunnel.
1803

    
1804
@node vnc_sec_password
1805
@subsection With passwords
1806

    
1807
The VNC protocol has limited support for password based authentication. Since
1808
the protocol limits passwords to 8 characters it should not be considered
1809
to provide high security. The password can be fairly easily brute-forced by
1810
a client making repeat connections. For this reason, a VNC server using password
1811
authentication should be restricted to only listen on the loopback interface
1812
or UNIX domain sockets. Password ayuthentication is requested with the @code{password}
1813
option, and then once QEMU is running the password is set with the monitor. Until
1814
the monitor is used to set the password all clients will be rejected.
1815

    
1816
@example
1817
qemu [...OPTIONS...] -vnc :1,password -monitor stdio
1818
(qemu) change vnc password
1819
Password: ********
1820
(qemu)
1821
@end example
1822

    
1823
@node vnc_sec_certificate
1824
@subsection With x509 certificates
1825

    
1826
The QEMU VNC server also implements the VeNCrypt extension allowing use of
1827
TLS for encryption of the session, and x509 certificates for authentication.
1828
The use of x509 certificates is strongly recommended, because TLS on its
1829
own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1830
support provides a secure session, but no authentication. This allows any
1831
client to connect, and provides an encrypted session.
1832

    
1833
@example
1834
qemu [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
1835
@end example
1836

    
1837
In the above example @code{/etc/pki/qemu} should contain at least three files,
1838
@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1839
users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1840
NB the @code{server-key.pem} file should be protected with file mode 0600 to
1841
only be readable by the user owning it.
1842

    
1843
@node vnc_sec_certificate_verify
1844
@subsection With x509 certificates and client verification
1845

    
1846
Certificates can also provide a means to authenticate the client connecting.
1847
The server will request that the client provide a certificate, which it will
1848
then validate against the CA certificate. This is a good choice if deploying
1849
in an environment with a private internal certificate authority.
1850

    
1851
@example
1852
qemu [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
1853
@end example
1854

    
1855

    
1856
@node vnc_sec_certificate_pw
1857
@subsection With x509 certificates, client verification and passwords
1858

    
1859
Finally, the previous method can be combined with VNC password authentication
1860
to provide two layers of authentication for clients.
1861

    
1862
@example
1863
qemu [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
1864
(qemu) change vnc password
1865
Password: ********
1866
(qemu)
1867
@end example
1868

    
1869
@node vnc_generate_cert
1870
@subsection Generating certificates for VNC
1871

    
1872
The GNU TLS packages provides a command called @code{certtool} which can
1873
be used to generate certificates and keys in PEM format. At a minimum it
1874
is neccessary to setup a certificate authority, and issue certificates to
1875
each server. If using certificates for authentication, then each client
1876
will also need to be issued a certificate. The recommendation is for the
1877
server to keep its certificates in either @code{/etc/pki/qemu} or for
1878
unprivileged users in @code{$HOME/.pki/qemu}.
1879

    
1880
@menu
1881
* vnc_generate_ca::
1882
* vnc_generate_server::
1883
* vnc_generate_client::
1884
@end menu
1885
@node vnc_generate_ca
1886
@subsubsection Setup the Certificate Authority
1887

    
1888
This step only needs to be performed once per organization / organizational
1889
unit. First the CA needs a private key. This key must be kept VERY secret
1890
and secure. If this key is compromised the entire trust chain of the certificates
1891
issued with it is lost.
1892

    
1893
@example
1894
# certtool --generate-privkey > ca-key.pem
1895
@end example
1896

    
1897
A CA needs to have a public certificate. For simplicity it can be a self-signed
1898
certificate, or one issue by a commercial certificate issuing authority. To
1899
generate a self-signed certificate requires one core piece of information, the
1900
name of the organization.
1901

    
1902
@example
1903
# cat > ca.info <<EOF
1904
cn = Name of your organization
1905
ca
1906
cert_signing_key
1907
EOF
1908
# certtool --generate-self-signed \
1909
           --load-privkey ca-key.pem
1910
           --template ca.info \
1911
           --outfile ca-cert.pem
1912
@end example
1913

    
1914
The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1915
TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1916

    
1917
@node vnc_generate_server
1918
@subsubsection Issuing server certificates
1919

    
1920
Each server (or host) needs to be issued with a key and certificate. When connecting
1921
the certificate is sent to the client which validates it against the CA certificate.
1922
The core piece of information for a server certificate is the hostname. This should
1923
be the fully qualified hostname that the client will connect with, since the client
1924
will typically also verify the hostname in the certificate. On the host holding the
1925
secure CA private key:
1926

    
1927
@example
1928
# cat > server.info <<EOF
1929
organization = Name  of your organization
1930
cn = server.foo.example.com
1931
tls_www_server
1932
encryption_key
1933
signing_key
1934
EOF
1935
# certtool --generate-privkey > server-key.pem
1936
# certtool --generate-certificate \
1937
           --load-ca-certificate ca-cert.pem \
1938
           --load-ca-privkey ca-key.pem \
1939
           --load-privkey server server-key.pem \
1940
           --template server.info \
1941
           --outfile server-cert.pem
1942
@end example
1943

    
1944
The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1945
to the server for which they were generated. The @code{server-key.pem} is security
1946
sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1947

    
1948
@node vnc_generate_client
1949
@subsubsection Issuing client certificates
1950

    
1951
If the QEMU VNC server is to use the @code{x509verify} option to validate client
1952
certificates as its authentication mechanism, each client also needs to be issued
1953
a certificate. The client certificate contains enough metadata to uniquely identify
1954
the client, typically organization, state, city, building, etc. On the host holding
1955
the secure CA private key:
1956

    
1957
@example
1958
# cat > client.info <<EOF
1959
country = GB
1960
state = London
1961
locality = London
1962
organiazation = Name of your organization
1963
cn = client.foo.example.com
1964
tls_www_client
1965
encryption_key
1966
signing_key
1967
EOF
1968
# certtool --generate-privkey > client-key.pem
1969
# certtool --generate-certificate \
1970
           --load-ca-certificate ca-cert.pem \
1971
           --load-ca-privkey ca-key.pem \
1972
           --load-privkey client-key.pem \
1973
           --template client.info \
1974
           --outfile client-cert.pem
1975
@end example
1976

    
1977
The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1978
copied to the client for which they were generated.
1979

    
1980
@node gdb_usage
1981
@section GDB usage
1982

    
1983
QEMU has a primitive support to work with gdb, so that you can do
1984
'Ctrl-C' while the virtual machine is running and inspect its state.
1985

    
1986
In order to use gdb, launch qemu with the '-s' option. It will wait for a
1987
gdb connection:
1988
@example
1989
> qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1990
       -append "root=/dev/hda"
1991
Connected to host network interface: tun0
1992
Waiting gdb connection on port 1234
1993
@end example
1994

    
1995
Then launch gdb on the 'vmlinux' executable:
1996
@example
1997
> gdb vmlinux
1998
@end example
1999

    
2000
In gdb, connect to QEMU:
2001
@example
2002
(gdb) target remote localhost:1234
2003
@end example
2004

    
2005
Then you can use gdb normally. For example, type 'c' to launch the kernel:
2006
@example
2007
(gdb) c
2008
@end example
2009

    
2010
Here are some useful tips in order to use gdb on system code:
2011

    
2012
@enumerate
2013
@item
2014
Use @code{info reg} to display all the CPU registers.
2015
@item
2016
Use @code{x/10i $eip} to display the code at the PC position.
2017
@item
2018
Use @code{set architecture i8086} to dump 16 bit code. Then use
2019
@code{x/10i $cs*16+$eip} to dump the code at the PC position.
2020
@end enumerate
2021

    
2022
Advanced debugging options:
2023

    
2024
The default single stepping behavior is step with the IRQs and timer service routines off.  It is set this way because when gdb executes a single step it expects to advance beyond the current instruction.  With the IRQs and and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed.  Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB.  There are three commands you can query and set the single step behavior:
2025
@table @code
2026
@item maintenance packet qqemu.sstepbits
2027

    
2028
This will display the MASK bits used to control the single stepping IE:
2029
@example
2030
(gdb) maintenance packet qqemu.sstepbits
2031
sending: "qqemu.sstepbits"
2032
received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
2033
@end example
2034
@item maintenance packet qqemu.sstep
2035

    
2036
This will display the current value of the mask used when single stepping IE:
2037
@example
2038
(gdb) maintenance packet qqemu.sstep
2039
sending: "qqemu.sstep"
2040
received: "0x7"
2041
@end example
2042
@item maintenance packet Qqemu.sstep=HEX_VALUE
2043

    
2044
This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
2045
@example
2046
(gdb) maintenance packet Qqemu.sstep=0x5
2047
sending: "qemu.sstep=0x5"
2048
received: "OK"
2049
@end example
2050
@end table
2051

    
2052
@node pcsys_os_specific
2053
@section Target OS specific information
2054

    
2055
@subsection Linux
2056

    
2057
To have access to SVGA graphic modes under X11, use the @code{vesa} or
2058
the @code{cirrus} X11 driver. For optimal performances, use 16 bit
2059
color depth in the guest and the host OS.
2060

    
2061
When using a 2.6 guest Linux kernel, you should add the option
2062
@code{clock=pit} on the kernel command line because the 2.6 Linux
2063
kernels make very strict real time clock checks by default that QEMU
2064
cannot simulate exactly.
2065

    
2066
When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
2067
not activated because QEMU is slower with this patch. The QEMU
2068
Accelerator Module is also much slower in this case. Earlier Fedora
2069
Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
2070
patch by default. Newer kernels don't have it.
2071

    
2072
@subsection Windows
2073

    
2074
If you have a slow host, using Windows 95 is better as it gives the
2075
best speed. Windows 2000 is also a good choice.
2076

    
2077
@subsubsection SVGA graphic modes support
2078

    
2079
QEMU emulates a Cirrus Logic GD5446 Video
2080
card. All Windows versions starting from Windows 95 should recognize
2081
and use this graphic card. For optimal performances, use 16 bit color
2082
depth in the guest and the host OS.
2083

    
2084
If you are using Windows XP as guest OS and if you want to use high
2085
resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
2086
1280x1024x16), then you should use the VESA VBE virtual graphic card
2087
(option @option{-std-vga}).
2088

    
2089
@subsubsection CPU usage reduction
2090

    
2091
Windows 9x does not correctly use the CPU HLT
2092
instruction. The result is that it takes host CPU cycles even when
2093
idle. You can install the utility from
2094
@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
2095
problem. Note that no such tool is needed for NT, 2000 or XP.
2096

    
2097
@subsubsection Windows 2000 disk full problem
2098

    
2099
Windows 2000 has a bug which gives a disk full problem during its
2100
installation. When installing it, use the @option{-win2k-hack} QEMU
2101
option to enable a specific workaround. After Windows 2000 is
2102
installed, you no longer need this option (this option slows down the
2103
IDE transfers).
2104

    
2105
@subsubsection Windows 2000 shutdown
2106

    
2107
Windows 2000 cannot automatically shutdown in QEMU although Windows 98
2108
can. It comes from the fact that Windows 2000 does not automatically
2109
use the APM driver provided by the BIOS.
2110

    
2111
In order to correct that, do the following (thanks to Struan
2112
Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
2113
Add/Troubleshoot a device => Add a new device & Next => No, select the
2114
hardware from a list & Next => NT Apm/Legacy Support & Next => Next
2115
(again) a few times. Now the driver is installed and Windows 2000 now
2116
correctly instructs QEMU to shutdown at the appropriate moment.
2117

    
2118
@subsubsection Share a directory between Unix and Windows
2119

    
2120
See @ref{sec_invocation} about the help of the option @option{-smb}.
2121

    
2122
@subsubsection Windows XP security problem
2123

    
2124
Some releases of Windows XP install correctly but give a security
2125
error when booting:
2126
@example
2127
A problem is preventing Windows from accurately checking the
2128
license for this computer. Error code: 0x800703e6.
2129
@end example
2130

    
2131
The workaround is to install a service pack for XP after a boot in safe
2132
mode. Then reboot, and the problem should go away. Since there is no
2133
network while in safe mode, its recommended to download the full
2134
installation of SP1 or SP2 and transfer that via an ISO or using the
2135
vvfat block device ("-hdb fat:directory_which_holds_the_SP").
2136

    
2137
@subsection MS-DOS and FreeDOS
2138

    
2139
@subsubsection CPU usage reduction
2140

    
2141
DOS does not correctly use the CPU HLT instruction. The result is that
2142
it takes host CPU cycles even when idle. You can install the utility
2143
from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
2144
problem.
2145

    
2146
@node QEMU System emulator for non PC targets
2147
@chapter QEMU System emulator for non PC targets
2148

    
2149
QEMU is a generic emulator and it emulates many non PC
2150
machines. Most of the options are similar to the PC emulator. The
2151
differences are mentioned in the following sections.
2152

    
2153
@menu
2154
* QEMU PowerPC System emulator::
2155
* Sparc32 System emulator::
2156
* Sparc64 System emulator::
2157
* MIPS System emulator::
2158
* ARM System emulator::
2159
* ColdFire System emulator::
2160
@end menu
2161

    
2162
@node QEMU PowerPC System emulator
2163
@section QEMU PowerPC System emulator
2164

    
2165
Use the executable @file{qemu-system-ppc} to simulate a complete PREP
2166
or PowerMac PowerPC system.
2167

    
2168
QEMU emulates the following PowerMac peripherals:
2169

    
2170
@itemize @minus
2171
@item
2172
UniNorth PCI Bridge
2173
@item
2174
PCI VGA compatible card with VESA Bochs Extensions
2175
@item
2176
2 PMAC IDE interfaces with hard disk and CD-ROM support
2177
@item
2178
NE2000 PCI adapters
2179
@item
2180
Non Volatile RAM
2181
@item
2182
VIA-CUDA with ADB keyboard and mouse.
2183
@end itemize
2184

    
2185
QEMU emulates the following PREP peripherals:
2186

    
2187
@itemize @minus
2188
@item
2189
PCI Bridge
2190
@item
2191
PCI VGA compatible card with VESA Bochs Extensions
2192
@item
2193
2 IDE interfaces with hard disk and CD-ROM support
2194
@item
2195
Floppy disk
2196
@item
2197
NE2000 network adapters
2198
@item
2199
Serial port
2200
@item
2201
PREP Non Volatile RAM
2202
@item
2203
PC compatible keyboard and mouse.
2204
@end itemize
2205

    
2206
QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
2207
@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
2208

    
2209
@c man begin OPTIONS
2210

    
2211
The following options are specific to the PowerPC emulation:
2212

    
2213
@table @option
2214

    
2215
@item -g WxH[xDEPTH]
2216

    
2217
Set the initial VGA graphic mode. The default is 800x600x15.
2218

    
2219
@end table
2220

    
2221
@c man end
2222

    
2223

    
2224
More information is available at
2225
@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
2226

    
2227
@node Sparc32 System emulator
2228
@section Sparc32 System emulator
2229

    
2230
Use the executable @file{qemu-system-sparc} to simulate a SPARCstation
2231
5, SPARCstation 10, SPARCstation 20, SPARCserver 600MP (sun4m
2232
architecture), SPARCstation 2 (sun4c architecture), SPARCserver 1000,
2233
or SPARCcenter 2000 (sun4d architecture). The emulation is somewhat
2234
complete.  SMP up to 16 CPUs is supported, but Linux limits the number
2235
of usable CPUs to 4.
2236

    
2237
QEMU emulates the following sun4m/sun4d peripherals:
2238

    
2239
@itemize @minus
2240
@item
2241
IOMMU or IO-UNITs
2242
@item
2243
TCX Frame buffer
2244
@item
2245
Lance (Am7990) Ethernet
2246
@item
2247
Non Volatile RAM M48T08
2248
@item
2249
Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
2250
and power/reset logic
2251
@item
2252
ESP SCSI controller with hard disk and CD-ROM support
2253
@item
2254
Floppy drive (not on SS-600MP)
2255
@item
2256
CS4231 sound device (only on SS-5, not working yet)
2257
@end itemize
2258

    
2259
The number of peripherals is fixed in the architecture.  Maximum
2260
memory size depends on the machine type, for SS-5 it is 256MB and for
2261
others 2047MB.
2262

    
2263
Since version 0.8.2, QEMU uses OpenBIOS
2264
@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
2265
firmware implementation. The goal is to implement a 100% IEEE
2266
1275-1994 (referred to as Open Firmware) compliant firmware.
2267

    
2268
A sample Linux 2.6 series kernel and ram disk image are available on
2269
the QEMU web site. Please note that currently NetBSD, OpenBSD or
2270
Solaris kernels don't work.
2271

    
2272
@c man begin OPTIONS
2273

    
2274
The following options are specific to the Sparc32 emulation:
2275

    
2276
@table @option
2277

    
2278
@item -g WxHx[xDEPTH]
2279

    
2280
Set the initial TCX graphic mode. The default is 1024x768x8, currently
2281
the only other possible mode is 1024x768x24.
2282

    
2283
@item -prom-env string
2284

    
2285
Set OpenBIOS variables in NVRAM, for example:
2286

    
2287
@example
2288
qemu-system-sparc -prom-env 'auto-boot?=false' \
2289
 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
2290
@end example
2291

    
2292
@item -M [SS-5|SS-10|SS-20|SS-600MP|SS-2|SS-1000|SS-2000]
2293

    
2294
Set the emulated machine type. Default is SS-5.
2295

    
2296
@end table
2297

    
2298
@c man end
2299

    
2300
@node Sparc64 System emulator
2301
@section Sparc64 System emulator
2302

    
2303
Use the executable @file{qemu-system-sparc64} to simulate a Sun4u machine.
2304
The emulator is not usable for anything yet.
2305

    
2306
QEMU emulates the following sun4u peripherals:
2307

    
2308
@itemize @minus
2309
@item
2310
UltraSparc IIi APB PCI Bridge
2311
@item
2312
PCI VGA compatible card with VESA Bochs Extensions
2313
@item
2314
Non Volatile RAM M48T59
2315
@item
2316
PC-compatible serial ports
2317
@end itemize
2318

    
2319
@node MIPS System emulator
2320
@section MIPS System emulator
2321

    
2322
Four executables cover simulation of 32 and 64-bit MIPS systems in
2323
both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
2324
@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
2325
Five different machine types are emulated:
2326

    
2327
@itemize @minus
2328
@item
2329
A generic ISA PC-like machine "mips"
2330
@item
2331
The MIPS Malta prototype board "malta"
2332
@item
2333
An ACER Pica "pica61". This machine needs the 64-bit emulator.
2334
@item
2335
MIPS emulator pseudo board "mipssim"
2336
@item
2337
A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
2338
@end itemize
2339

    
2340
The generic emulation is supported by Debian 'Etch' and is able to
2341
install Debian into a virtual disk image. The following devices are
2342
emulated:
2343

    
2344
@itemize @minus
2345
@item
2346
A range of MIPS CPUs, default is the 24Kf
2347
@item
2348
PC style serial port
2349
@item
2350
PC style IDE disk
2351
@item
2352
NE2000 network card
2353
@end itemize
2354

    
2355
The Malta emulation supports the following devices:
2356

    
2357
@itemize @minus
2358
@item
2359
Core board with MIPS 24Kf CPU and Galileo system controller
2360
@item
2361
PIIX4 PCI/USB/SMbus controller
2362
@item
2363
The Multi-I/O chip's serial device
2364
@item
2365
PCnet32 PCI network card
2366
@item
2367
Malta FPGA serial device
2368
@item
2369
Cirrus VGA graphics card
2370
@end itemize
2371

    
2372
The ACER Pica emulation supports:
2373

    
2374
@itemize @minus
2375
@item
2376
MIPS R4000 CPU
2377
@item
2378
PC-style IRQ and DMA controllers
2379
@item
2380
PC Keyboard
2381
@item
2382
IDE controller
2383
@end itemize
2384

    
2385
The mipssim pseudo board emulation provides an environment similiar
2386
to what the proprietary MIPS emulator uses for running Linux.
2387
It supports:
2388

    
2389
@itemize @minus
2390
@item
2391
A range of MIPS CPUs, default is the 24Kf
2392
@item
2393
PC style serial port
2394
@item
2395
MIPSnet network emulation
2396
@end itemize
2397

    
2398
The MIPS Magnum R4000 emulation supports:
2399

    
2400
@itemize @minus
2401
@item
2402
MIPS R4000 CPU
2403
@item
2404
PC-style IRQ controller
2405
@item
2406
PC Keyboard
2407
@item
2408
SCSI controller
2409
@item
2410
G364 framebuffer
2411
@end itemize
2412

    
2413

    
2414
@node ARM System emulator
2415
@section ARM System emulator
2416

    
2417
Use the executable @file{qemu-system-arm} to simulate a ARM
2418
machine. The ARM Integrator/CP board is emulated with the following
2419
devices:
2420

    
2421
@itemize @minus
2422
@item
2423
ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
2424
@item
2425
Two PL011 UARTs
2426
@item
2427
SMC 91c111 Ethernet adapter
2428
@item
2429
PL110 LCD controller
2430
@item
2431
PL050 KMI with PS/2 keyboard and mouse.
2432
@item
2433
PL181 MultiMedia Card Interface with SD card.
2434
@end itemize
2435

    
2436
The ARM Versatile baseboard is emulated with the following devices:
2437

    
2438
@itemize @minus
2439
@item
2440
ARM926E, ARM1136 or Cortex-A8 CPU
2441
@item
2442
PL190 Vectored Interrupt Controller
2443
@item
2444
Four PL011 UARTs
2445
@item
2446
SMC 91c111 Ethernet adapter
2447
@item
2448
PL110 LCD controller
2449
@item
2450
PL050 KMI with PS/2 keyboard and mouse.
2451
@item
2452
PCI host bridge.  Note the emulated PCI bridge only provides access to
2453
PCI memory space.  It does not provide access to PCI IO space.
2454
This means some devices (eg. ne2k_pci NIC) are not usable, and others
2455
(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
2456
mapped control registers.
2457
@item
2458
PCI OHCI USB controller.
2459
@item
2460
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
2461
@item
2462
PL181 MultiMedia Card Interface with SD card.
2463
@end itemize
2464

    
2465
The ARM RealView Emulation baseboard is emulated with the following devices:
2466

    
2467
@itemize @minus
2468
@item
2469
ARM926E, ARM1136, ARM11MPCORE(x4) or Cortex-A8 CPU
2470
@item
2471
ARM AMBA Generic/Distributed Interrupt Controller
2472
@item
2473
Four PL011 UARTs
2474
@item
2475
SMC 91c111 Ethernet adapter
2476
@item
2477
PL110 LCD controller
2478
@item
2479
PL050 KMI with PS/2 keyboard and mouse
2480
@item
2481
PCI host bridge
2482
@item
2483
PCI OHCI USB controller
2484
@item
2485
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
2486
@item
2487
PL181 MultiMedia Card Interface with SD card.
2488
@end itemize
2489

    
2490
The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2491
and "Terrier") emulation includes the following peripherals:
2492

    
2493
@itemize @minus
2494
@item
2495
Intel PXA270 System-on-chip (ARM V5TE core)
2496
@item
2497
NAND Flash memory
2498
@item
2499
IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2500
@item
2501
On-chip OHCI USB controller
2502
@item
2503
On-chip LCD controller
2504
@item
2505
On-chip Real Time Clock
2506
@item
2507
TI ADS7846 touchscreen controller on SSP bus
2508
@item
2509
Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2510
@item
2511
GPIO-connected keyboard controller and LEDs
2512
@item
2513
Secure Digital card connected to PXA MMC/SD host
2514
@item
2515
Three on-chip UARTs
2516
@item
2517
WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2518
@end itemize
2519

    
2520
The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2521
following elements:
2522

    
2523
@itemize @minus
2524
@item
2525
Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2526
@item
2527
ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2528
@item
2529
On-chip LCD controller
2530
@item
2531
On-chip Real Time Clock
2532
@item
2533
TI TSC2102i touchscreen controller / analog-digital converter / Audio
2534
CODEC, connected through MicroWire and I@math{^2}S busses
2535
@item
2536
GPIO-connected matrix keypad
2537
@item
2538
Secure Digital card connected to OMAP MMC/SD host
2539
@item
2540
Three on-chip UARTs
2541
@end itemize
2542

    
2543
Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
2544
emulation supports the following elements:
2545

    
2546
@itemize @minus
2547
@item
2548
Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
2549
@item
2550
RAM and non-volatile OneNAND Flash memories
2551
@item
2552
Display connected to EPSON remote framebuffer chip and OMAP on-chip
2553
display controller and a LS041y3 MIPI DBI-C controller
2554
@item
2555
TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
2556
driven through SPI bus
2557
@item
2558
National Semiconductor LM8323-controlled qwerty keyboard driven
2559
through I@math{^2}C bus
2560
@item
2561
Secure Digital card connected to OMAP MMC/SD host
2562
@item
2563
Three OMAP on-chip UARTs and on-chip STI debugging console
2564
@item
2565
Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
2566
TUSB6010 chip - only USB host mode is supported
2567
@item
2568
TI TMP105 temperature sensor driven through I@math{^2}C bus
2569
@item
2570
TI TWL92230C power management companion with an RTC on I@math{^2}C bus
2571
@item
2572
Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
2573
through CBUS
2574
@end itemize
2575

    
2576
The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2577
devices:
2578

    
2579
@itemize @minus
2580
@item
2581
Cortex-M3 CPU core.
2582
@item
2583
64k Flash and 8k SRAM.
2584
@item
2585
Timers, UARTs, ADC and I@math{^2}C interface.
2586
@item
2587
OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2588
@end itemize
2589

    
2590
The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2591
devices:
2592

    
2593
@itemize @minus
2594
@item
2595
Cortex-M3 CPU core.
2596
@item
2597
256k Flash and 64k SRAM.
2598
@item
2599
Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2600
@item
2601
OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2602
@end itemize
2603

    
2604
The Freecom MusicPal internet radio emulation includes the following
2605
elements:
2606

    
2607
@itemize @minus
2608
@item
2609
Marvell MV88W8618 ARM core.
2610
@item
2611
32 MB RAM, 256 KB SRAM, 8 MB flash.
2612
@item
2613
Up to 2 16550 UARTs
2614
@item
2615
MV88W8xx8 Ethernet controller
2616
@item
2617
MV88W8618 audio controller, WM8750 CODEC and mixer
2618
@item
2619
128?64 display with brightness control
2620
@item
2621
2 buttons, 2 navigation wheels with button function
2622
@end itemize
2623

    
2624
A Linux 2.6 test image is available on the QEMU web site. More
2625
information is available in the QEMU mailing-list archive.
2626

    
2627
@node ColdFire System emulator
2628
@section ColdFire System emulator
2629

    
2630
Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2631
The emulator is able to boot a uClinux kernel.
2632

    
2633
The M5208EVB emulation includes the following devices:
2634

    
2635
@itemize @minus
2636
@item
2637
MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2638
@item
2639
Three Two on-chip UARTs.
2640
@item
2641
Fast Ethernet Controller (FEC)
2642
@end itemize
2643

    
2644
The AN5206 emulation includes the following devices:
2645

    
2646
@itemize @minus
2647
@item
2648
MCF5206 ColdFire V2 Microprocessor.
2649
@item
2650
Two on-chip UARTs.
2651
@end itemize
2652

    
2653
@node QEMU User space emulator
2654
@chapter QEMU User space emulator
2655

    
2656
@menu
2657
* Supported Operating Systems ::
2658
* Linux User space emulator::
2659
* Mac OS X/Darwin User space emulator ::
2660
@end menu
2661

    
2662
@node Supported Operating Systems
2663
@section Supported Operating Systems
2664

    
2665
The following OS are supported in user space emulation:
2666

    
2667
@itemize @minus
2668
@item
2669
Linux (referred as qemu-linux-user)
2670
@item
2671
Mac OS X/Darwin (referred as qemu-darwin-user)
2672
@end itemize
2673

    
2674
@node Linux User space emulator
2675
@section Linux User space emulator
2676

    
2677
@menu
2678
* Quick Start::
2679
* Wine launch::
2680
* Command line options::
2681
* Other binaries::
2682
@end menu
2683

    
2684
@node Quick Start
2685
@subsection Quick Start
2686

    
2687
In order to launch a Linux process, QEMU needs the process executable
2688
itself and all the target (x86) dynamic libraries used by it.
2689

    
2690
@itemize
2691

    
2692
@item On x86, you can just try to launch any process by using the native
2693
libraries:
2694

    
2695
@example
2696
qemu-i386 -L / /bin/ls
2697
@end example
2698

    
2699
@code{-L /} tells that the x86 dynamic linker must be searched with a
2700
@file{/} prefix.
2701

    
2702
@item Since QEMU is also a linux process, you can launch qemu with
2703
qemu (NOTE: you can only do that if you compiled QEMU from the sources):
2704

    
2705
@example
2706
qemu-i386 -L / qemu-i386 -L / /bin/ls
2707
@end example
2708

    
2709
@item On non x86 CPUs, you need first to download at least an x86 glibc
2710
(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2711
@code{LD_LIBRARY_PATH} is not set:
2712

    
2713
@example
2714
unset LD_LIBRARY_PATH
2715
@end example
2716

    
2717
Then you can launch the precompiled @file{ls} x86 executable:
2718

    
2719
@example
2720
qemu-i386 tests/i386/ls
2721
@end example
2722
You can look at @file{qemu-binfmt-conf.sh} so that
2723
QEMU is automatically launched by the Linux kernel when you try to
2724
launch x86 executables. It requires the @code{binfmt_misc} module in the
2725
Linux kernel.
2726

    
2727
@item The x86 version of QEMU is also included. You can try weird things such as:
2728
@example
2729
qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2730
          /usr/local/qemu-i386/bin/ls-i386
2731
@end example
2732

    
2733
@end itemize
2734

    
2735
@node Wine launch
2736
@subsection Wine launch
2737

    
2738
@itemize
2739

    
2740
@item Ensure that you have a working QEMU with the x86 glibc
2741
distribution (see previous section). In order to verify it, you must be
2742
able to do:
2743

    
2744
@example
2745
qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2746
@end example
2747

    
2748
@item Download the binary x86 Wine install
2749
(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
2750

    
2751
@item Configure Wine on your account. Look at the provided script
2752
@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
2753
@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
2754

    
2755
@item Then you can try the example @file{putty.exe}:
2756

    
2757
@example
2758
qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2759
          /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
2760
@end example
2761

    
2762
@end itemize
2763

    
2764
@node Command line options
2765
@subsection Command line options
2766

    
2767
@example
2768
usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
2769
@end example
2770

    
2771
@table @option
2772
@item -h
2773
Print the help
2774
@item -L path
2775
Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2776
@item -s size
2777
Set the x86 stack size in bytes (default=524288)
2778
@end table
2779

    
2780
Debug options:
2781

    
2782
@table @option
2783
@item -d
2784
Activate log (logfile=/tmp/qemu.log)
2785
@item -p pagesize
2786
Act as if the host page size was 'pagesize' bytes
2787
@end table
2788

    
2789
Environment variables:
2790

    
2791
@table @env
2792
@item QEMU_STRACE
2793
Print system calls and arguments similar to the 'strace' program
2794
(NOTE: the actual 'strace' program will not work because the user
2795
space emulator hasn't implemented ptrace).  At the moment this is
2796
incomplete.  All system calls that don't have a specific argument
2797
format are printed with information for six arguments.  Many
2798
flag-style arguments don't have decoders and will show up as numbers.
2799
@end table
2800

    
2801
@node Other binaries
2802
@subsection Other binaries
2803

    
2804
@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2805
binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2806
configurations), and arm-uclinux bFLT format binaries.
2807

    
2808
@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2809
(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2810
coldfire uClinux bFLT format binaries.
2811

    
2812
The binary format is detected automatically.
2813

    
2814
@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2815
(Sparc64 CPU, 32 bit ABI).
2816

    
2817
@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2818
SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2819

    
2820
@node Mac OS X/Darwin User space emulator
2821
@section Mac OS X/Darwin User space emulator
2822

    
2823
@menu
2824
* Mac OS X/Darwin Status::
2825
* Mac OS X/Darwin Quick Start::
2826
* Mac OS X/Darwin Command line options::
2827
@end menu
2828

    
2829
@node Mac OS X/Darwin Status
2830
@subsection Mac OS X/Darwin Status
2831

    
2832
@itemize @minus
2833
@item
2834
target x86 on x86: Most apps (Cocoa and Carbon too) works. [1]
2835
@item
2836
target PowerPC on x86: Not working as the ppc commpage can't be mapped (yet!)
2837
@item
2838
target PowerPC on PowerPC: Most apps (Cocoa and Carbon too) works. [1]
2839
@item
2840
target x86 on PowerPC: most utilities work. Cocoa and Carbon apps are not yet supported.
2841
@end itemize
2842

    
2843
[1] If you're host commpage can be executed by qemu.
2844

    
2845
@node Mac OS X/Darwin Quick Start
2846
@subsection Quick Start
2847

    
2848
In order to launch a Mac OS X/Darwin process, QEMU needs the process executable
2849
itself and all the target dynamic libraries used by it. If you don't have the FAT
2850
libraries (you're running Mac OS X/ppc) you'll need to obtain it from a Mac OS X
2851
CD or compile them by hand.
2852

    
2853
@itemize
2854

    
2855
@item On x86, you can just try to launch any process by using the native
2856
libraries:
2857

    
2858
@example
2859
qemu-i386 /bin/ls
2860
@end example
2861

    
2862
or to run the ppc version of the executable:
2863

    
2864
@example
2865
qemu-ppc /bin/ls
2866
@end example
2867

    
2868
@item On ppc, you'll have to tell qemu where your x86 libraries (and dynamic linker)
2869
are installed:
2870

    
2871
@example
2872
qemu-i386 -L /opt/x86_root/ /bin/ls
2873
@end example
2874

    
2875
@code{-L /opt/x86_root/} tells that the dynamic linker (dyld) path is in
2876
@file{/opt/x86_root/usr/bin/dyld}.
2877

    
2878
@end itemize
2879

    
2880
@node Mac OS X/Darwin Command line options
2881
@subsection Command line options
2882

    
2883
@example
2884
usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
2885
@end example
2886

    
2887
@table @option
2888
@item -h
2889
Print the help
2890
@item -L path
2891
Set the library root path (default=/)
2892
@item -s size
2893
Set the stack size in bytes (default=524288)
2894
@end table
2895

    
2896
Debug options:
2897

    
2898
@table @option
2899
@item -d
2900
Activate log (logfile=/tmp/qemu.log)
2901
@item -p pagesize
2902
Act as if the host page size was 'pagesize' bytes
2903
@end table
2904

    
2905
@node compilation
2906
@chapter Compilation from the sources
2907

    
2908
@menu
2909
* Linux/Unix::
2910
* Windows::
2911
* Cross compilation for Windows with Linux::
2912
* Mac OS X::
2913
@end menu
2914

    
2915
@node Linux/Unix
2916
@section Linux/Unix
2917

    
2918
@subsection Compilation
2919

    
2920
First you must decompress the sources:
2921
@example
2922
cd /tmp
2923
tar zxvf qemu-x.y.z.tar.gz
2924
cd qemu-x.y.z
2925
@end example
2926

    
2927
Then you configure QEMU and build it (usually no options are needed):
2928
@example
2929
./configure
2930
make
2931
@end example
2932

    
2933
Then type as root user:
2934
@example
2935
make install
2936
@end example
2937
to install QEMU in @file{/usr/local}.
2938

    
2939
@subsection GCC version
2940

    
2941
In order to compile QEMU successfully, it is very important that you
2942
have the right tools. The most important one is gcc. On most hosts and
2943
in particular on x86 ones, @emph{gcc 4.x is not supported}. If your
2944
Linux distribution includes a gcc 4.x compiler, you can usually
2945
install an older version (it is invoked by @code{gcc32} or
2946
@code{gcc34}). The QEMU configure script automatically probes for
2947
these older versions so that usually you don't have to do anything.
2948

    
2949
@node Windows
2950
@section Windows
2951

    
2952
@itemize
2953
@item Install the current versions of MSYS and MinGW from
2954
@url{http://www.mingw.org/}. You can find detailed installation
2955
instructions in the download section and the FAQ.
2956

    
2957
@item Download
2958
the MinGW development library of SDL 1.2.x
2959
(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2960
@url{http://www.libsdl.org}. Unpack it in a temporary place, and
2961
unpack the archive @file{i386-mingw32msvc.tar.gz} in the MinGW tool
2962
directory. Edit the @file{sdl-config} script so that it gives the
2963
correct SDL directory when invoked.
2964

    
2965
@item Extract the current version of QEMU.
2966

    
2967
@item Start the MSYS shell (file @file{msys.bat}).
2968

    
2969
@item Change to the QEMU directory. Launch @file{./configure} and
2970
@file{make}.  If you have problems using SDL, verify that
2971
@file{sdl-config} can be launched from the MSYS command line.
2972

    
2973
@item You can install QEMU in @file{Program Files/Qemu} by typing
2974
@file{make install}. Don't forget to copy @file{SDL.dll} in
2975
@file{Program Files/Qemu}.
2976

    
2977
@end itemize
2978

    
2979
@node Cross compilation for Windows with Linux
2980
@section Cross compilation for Windows with Linux
2981

    
2982
@itemize
2983
@item
2984
Install the MinGW cross compilation tools available at
2985
@url{http://www.mingw.org/}.
2986

    
2987
@item
2988
Install the Win32 version of SDL (@url{http://www.libsdl.org}) by
2989
unpacking @file{i386-mingw32msvc.tar.gz}. Set up the PATH environment
2990
variable so that @file{i386-mingw32msvc-sdl-config} can be launched by
2991
the QEMU configuration script.
2992

    
2993
@item
2994
Configure QEMU for Windows cross compilation:
2995
@example
2996
./configure --enable-mingw32
2997
@end example
2998
If necessary, you can change the cross-prefix according to the prefix
2999
chosen for the MinGW tools with --cross-prefix. You can also use
3000
--prefix to set the Win32 install path.
3001

    
3002
@item You can install QEMU in the installation directory by typing
3003
@file{make install}. Don't forget to copy @file{SDL.dll} in the
3004
installation directory.
3005

    
3006
@end itemize
3007

    
3008
Note: Currently, Wine does not seem able to launch
3009
QEMU for Win32.
3010

    
3011
@node Mac OS X
3012
@section Mac OS X
3013

    
3014
The Mac OS X patches are not fully merged in QEMU, so you should look
3015
at the QEMU mailing list archive to have all the necessary
3016
information.
3017

    
3018
@node Index
3019
@chapter Index
3020
@printindex cp
3021

    
3022
@bye