Statistics
| Branch: | Revision:

root / block / qcow2-cluster.c @ 6cfcb9b8

History | View | Annotate | Download (43.8 kB)

1
/*
2
 * Block driver for the QCOW version 2 format
3
 *
4
 * Copyright (c) 2004-2006 Fabrice Bellard
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24

    
25
#include <zlib.h>
26

    
27
#include "qemu-common.h"
28
#include "block/block_int.h"
29
#include "block/qcow2.h"
30
#include "trace.h"
31

    
32
int qcow2_grow_l1_table(BlockDriverState *bs, uint64_t min_size,
33
                        bool exact_size)
34
{
35
    BDRVQcowState *s = bs->opaque;
36
    int new_l1_size2, ret, i;
37
    uint64_t *new_l1_table;
38
    int64_t new_l1_table_offset, new_l1_size;
39
    uint8_t data[12];
40

    
41
    if (min_size <= s->l1_size)
42
        return 0;
43

    
44
    if (exact_size) {
45
        new_l1_size = min_size;
46
    } else {
47
        /* Bump size up to reduce the number of times we have to grow */
48
        new_l1_size = s->l1_size;
49
        if (new_l1_size == 0) {
50
            new_l1_size = 1;
51
        }
52
        while (min_size > new_l1_size) {
53
            new_l1_size = (new_l1_size * 3 + 1) / 2;
54
        }
55
    }
56

    
57
    if (new_l1_size > INT_MAX) {
58
        return -EFBIG;
59
    }
60

    
61
#ifdef DEBUG_ALLOC2
62
    fprintf(stderr, "grow l1_table from %d to %" PRId64 "\n",
63
            s->l1_size, new_l1_size);
64
#endif
65

    
66
    new_l1_size2 = sizeof(uint64_t) * new_l1_size;
67
    new_l1_table = g_malloc0(align_offset(new_l1_size2, 512));
68
    memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t));
69

    
70
    /* write new table (align to cluster) */
71
    BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE);
72
    new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2);
73
    if (new_l1_table_offset < 0) {
74
        g_free(new_l1_table);
75
        return new_l1_table_offset;
76
    }
77

    
78
    ret = qcow2_cache_flush(bs, s->refcount_block_cache);
79
    if (ret < 0) {
80
        goto fail;
81
    }
82

    
83
    BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE);
84
    for(i = 0; i < s->l1_size; i++)
85
        new_l1_table[i] = cpu_to_be64(new_l1_table[i]);
86
    ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset, new_l1_table, new_l1_size2);
87
    if (ret < 0)
88
        goto fail;
89
    for(i = 0; i < s->l1_size; i++)
90
        new_l1_table[i] = be64_to_cpu(new_l1_table[i]);
91

    
92
    /* set new table */
93
    BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE);
94
    cpu_to_be32w((uint32_t*)data, new_l1_size);
95
    cpu_to_be64wu((uint64_t*)(data + 4), new_l1_table_offset);
96
    ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size), data,sizeof(data));
97
    if (ret < 0) {
98
        goto fail;
99
    }
100
    g_free(s->l1_table);
101
    qcow2_free_clusters(bs, s->l1_table_offset, s->l1_size * sizeof(uint64_t),
102
                        QCOW2_DISCARD_OTHER);
103
    s->l1_table_offset = new_l1_table_offset;
104
    s->l1_table = new_l1_table;
105
    s->l1_size = new_l1_size;
106
    return 0;
107
 fail:
108
    g_free(new_l1_table);
109
    qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2,
110
                        QCOW2_DISCARD_OTHER);
111
    return ret;
112
}
113

    
114
/*
115
 * l2_load
116
 *
117
 * Loads a L2 table into memory. If the table is in the cache, the cache
118
 * is used; otherwise the L2 table is loaded from the image file.
119
 *
120
 * Returns a pointer to the L2 table on success, or NULL if the read from
121
 * the image file failed.
122
 */
123

    
124
static int l2_load(BlockDriverState *bs, uint64_t l2_offset,
125
    uint64_t **l2_table)
126
{
127
    BDRVQcowState *s = bs->opaque;
128
    int ret;
129

    
130
    ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset, (void**) l2_table);
131

    
132
    return ret;
133
}
134

    
135
/*
136
 * Writes one sector of the L1 table to the disk (can't update single entries
137
 * and we really don't want bdrv_pread to perform a read-modify-write)
138
 */
139
#define L1_ENTRIES_PER_SECTOR (512 / 8)
140
static int write_l1_entry(BlockDriverState *bs, int l1_index)
141
{
142
    BDRVQcowState *s = bs->opaque;
143
    uint64_t buf[L1_ENTRIES_PER_SECTOR];
144
    int l1_start_index;
145
    int i, ret;
146

    
147
    l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1);
148
    for (i = 0; i < L1_ENTRIES_PER_SECTOR; i++) {
149
        buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]);
150
    }
151

    
152
    BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE);
153
    ret = bdrv_pwrite_sync(bs->file, s->l1_table_offset + 8 * l1_start_index,
154
        buf, sizeof(buf));
155
    if (ret < 0) {
156
        return ret;
157
    }
158

    
159
    return 0;
160
}
161

    
162
/*
163
 * l2_allocate
164
 *
165
 * Allocate a new l2 entry in the file. If l1_index points to an already
166
 * used entry in the L2 table (i.e. we are doing a copy on write for the L2
167
 * table) copy the contents of the old L2 table into the newly allocated one.
168
 * Otherwise the new table is initialized with zeros.
169
 *
170
 */
171

    
172
static int l2_allocate(BlockDriverState *bs, int l1_index, uint64_t **table)
173
{
174
    BDRVQcowState *s = bs->opaque;
175
    uint64_t old_l2_offset;
176
    uint64_t *l2_table;
177
    int64_t l2_offset;
178
    int ret;
179

    
180
    old_l2_offset = s->l1_table[l1_index];
181

    
182
    trace_qcow2_l2_allocate(bs, l1_index);
183

    
184
    /* allocate a new l2 entry */
185

    
186
    l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t));
187
    if (l2_offset < 0) {
188
        return l2_offset;
189
    }
190

    
191
    ret = qcow2_cache_flush(bs, s->refcount_block_cache);
192
    if (ret < 0) {
193
        goto fail;
194
    }
195

    
196
    /* allocate a new entry in the l2 cache */
197

    
198
    trace_qcow2_l2_allocate_get_empty(bs, l1_index);
199
    ret = qcow2_cache_get_empty(bs, s->l2_table_cache, l2_offset, (void**) table);
200
    if (ret < 0) {
201
        return ret;
202
    }
203

    
204
    l2_table = *table;
205

    
206
    if ((old_l2_offset & L1E_OFFSET_MASK) == 0) {
207
        /* if there was no old l2 table, clear the new table */
208
        memset(l2_table, 0, s->l2_size * sizeof(uint64_t));
209
    } else {
210
        uint64_t* old_table;
211

    
212
        /* if there was an old l2 table, read it from the disk */
213
        BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ);
214
        ret = qcow2_cache_get(bs, s->l2_table_cache,
215
            old_l2_offset & L1E_OFFSET_MASK,
216
            (void**) &old_table);
217
        if (ret < 0) {
218
            goto fail;
219
        }
220

    
221
        memcpy(l2_table, old_table, s->cluster_size);
222

    
223
        ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &old_table);
224
        if (ret < 0) {
225
            goto fail;
226
        }
227
    }
228

    
229
    /* write the l2 table to the file */
230
    BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE);
231

    
232
    trace_qcow2_l2_allocate_write_l2(bs, l1_index);
233
    qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
234
    ret = qcow2_cache_flush(bs, s->l2_table_cache);
235
    if (ret < 0) {
236
        goto fail;
237
    }
238

    
239
    /* update the L1 entry */
240
    trace_qcow2_l2_allocate_write_l1(bs, l1_index);
241
    s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED;
242
    ret = write_l1_entry(bs, l1_index);
243
    if (ret < 0) {
244
        goto fail;
245
    }
246

    
247
    *table = l2_table;
248
    trace_qcow2_l2_allocate_done(bs, l1_index, 0);
249
    return 0;
250

    
251
fail:
252
    trace_qcow2_l2_allocate_done(bs, l1_index, ret);
253
    qcow2_cache_put(bs, s->l2_table_cache, (void**) table);
254
    s->l1_table[l1_index] = old_l2_offset;
255
    return ret;
256
}
257

    
258
/*
259
 * Checks how many clusters in a given L2 table are contiguous in the image
260
 * file. As soon as one of the flags in the bitmask stop_flags changes compared
261
 * to the first cluster, the search is stopped and the cluster is not counted
262
 * as contiguous. (This allows it, for example, to stop at the first compressed
263
 * cluster which may require a different handling)
264
 */
265
static int count_contiguous_clusters(uint64_t nb_clusters, int cluster_size,
266
        uint64_t *l2_table, uint64_t start, uint64_t stop_flags)
267
{
268
    int i;
269
    uint64_t mask = stop_flags | L2E_OFFSET_MASK;
270
    uint64_t offset = be64_to_cpu(l2_table[0]) & mask;
271

    
272
    if (!offset)
273
        return 0;
274

    
275
    for (i = start; i < start + nb_clusters; i++) {
276
        uint64_t l2_entry = be64_to_cpu(l2_table[i]) & mask;
277
        if (offset + (uint64_t) i * cluster_size != l2_entry) {
278
            break;
279
        }
280
    }
281

    
282
        return (i - start);
283
}
284

    
285
static int count_contiguous_free_clusters(uint64_t nb_clusters, uint64_t *l2_table)
286
{
287
    int i;
288

    
289
    for (i = 0; i < nb_clusters; i++) {
290
        int type = qcow2_get_cluster_type(be64_to_cpu(l2_table[i]));
291

    
292
        if (type != QCOW2_CLUSTER_UNALLOCATED) {
293
            break;
294
        }
295
    }
296

    
297
    return i;
298
}
299

    
300
/* The crypt function is compatible with the linux cryptoloop
301
   algorithm for < 4 GB images. NOTE: out_buf == in_buf is
302
   supported */
303
void qcow2_encrypt_sectors(BDRVQcowState *s, int64_t sector_num,
304
                           uint8_t *out_buf, const uint8_t *in_buf,
305
                           int nb_sectors, int enc,
306
                           const AES_KEY *key)
307
{
308
    union {
309
        uint64_t ll[2];
310
        uint8_t b[16];
311
    } ivec;
312
    int i;
313

    
314
    for(i = 0; i < nb_sectors; i++) {
315
        ivec.ll[0] = cpu_to_le64(sector_num);
316
        ivec.ll[1] = 0;
317
        AES_cbc_encrypt(in_buf, out_buf, 512, key,
318
                        ivec.b, enc);
319
        sector_num++;
320
        in_buf += 512;
321
        out_buf += 512;
322
    }
323
}
324

    
325
static int coroutine_fn copy_sectors(BlockDriverState *bs,
326
                                     uint64_t start_sect,
327
                                     uint64_t cluster_offset,
328
                                     int n_start, int n_end)
329
{
330
    BDRVQcowState *s = bs->opaque;
331
    QEMUIOVector qiov;
332
    struct iovec iov;
333
    int n, ret;
334

    
335
    /*
336
     * If this is the last cluster and it is only partially used, we must only
337
     * copy until the end of the image, or bdrv_check_request will fail for the
338
     * bdrv_read/write calls below.
339
     */
340
    if (start_sect + n_end > bs->total_sectors) {
341
        n_end = bs->total_sectors - start_sect;
342
    }
343

    
344
    n = n_end - n_start;
345
    if (n <= 0) {
346
        return 0;
347
    }
348

    
349
    iov.iov_len = n * BDRV_SECTOR_SIZE;
350
    iov.iov_base = qemu_blockalign(bs, iov.iov_len);
351

    
352
    qemu_iovec_init_external(&qiov, &iov, 1);
353

    
354
    BLKDBG_EVENT(bs->file, BLKDBG_COW_READ);
355

    
356
    /* Call .bdrv_co_readv() directly instead of using the public block-layer
357
     * interface.  This avoids double I/O throttling and request tracking,
358
     * which can lead to deadlock when block layer copy-on-read is enabled.
359
     */
360
    ret = bs->drv->bdrv_co_readv(bs, start_sect + n_start, n, &qiov);
361
    if (ret < 0) {
362
        goto out;
363
    }
364

    
365
    if (s->crypt_method) {
366
        qcow2_encrypt_sectors(s, start_sect + n_start,
367
                        iov.iov_base, iov.iov_base, n, 1,
368
                        &s->aes_encrypt_key);
369
    }
370

    
371
    BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE);
372
    ret = bdrv_co_writev(bs->file, (cluster_offset >> 9) + n_start, n, &qiov);
373
    if (ret < 0) {
374
        goto out;
375
    }
376

    
377
    ret = 0;
378
out:
379
    qemu_vfree(iov.iov_base);
380
    return ret;
381
}
382

    
383

    
384
/*
385
 * get_cluster_offset
386
 *
387
 * For a given offset of the disk image, find the cluster offset in
388
 * qcow2 file. The offset is stored in *cluster_offset.
389
 *
390
 * on entry, *num is the number of contiguous sectors we'd like to
391
 * access following offset.
392
 *
393
 * on exit, *num is the number of contiguous sectors we can read.
394
 *
395
 * Returns the cluster type (QCOW2_CLUSTER_*) on success, -errno in error
396
 * cases.
397
 */
398
int qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset,
399
    int *num, uint64_t *cluster_offset)
400
{
401
    BDRVQcowState *s = bs->opaque;
402
    unsigned int l2_index;
403
    uint64_t l1_index, l2_offset, *l2_table;
404
    int l1_bits, c;
405
    unsigned int index_in_cluster, nb_clusters;
406
    uint64_t nb_available, nb_needed;
407
    int ret;
408

    
409
    index_in_cluster = (offset >> 9) & (s->cluster_sectors - 1);
410
    nb_needed = *num + index_in_cluster;
411

    
412
    l1_bits = s->l2_bits + s->cluster_bits;
413

    
414
    /* compute how many bytes there are between the offset and
415
     * the end of the l1 entry
416
     */
417

    
418
    nb_available = (1ULL << l1_bits) - (offset & ((1ULL << l1_bits) - 1));
419

    
420
    /* compute the number of available sectors */
421

    
422
    nb_available = (nb_available >> 9) + index_in_cluster;
423

    
424
    if (nb_needed > nb_available) {
425
        nb_needed = nb_available;
426
    }
427

    
428
    *cluster_offset = 0;
429

    
430
    /* seek the the l2 offset in the l1 table */
431

    
432
    l1_index = offset >> l1_bits;
433
    if (l1_index >= s->l1_size) {
434
        ret = QCOW2_CLUSTER_UNALLOCATED;
435
        goto out;
436
    }
437

    
438
    l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
439
    if (!l2_offset) {
440
        ret = QCOW2_CLUSTER_UNALLOCATED;
441
        goto out;
442
    }
443

    
444
    /* load the l2 table in memory */
445

    
446
    ret = l2_load(bs, l2_offset, &l2_table);
447
    if (ret < 0) {
448
        return ret;
449
    }
450

    
451
    /* find the cluster offset for the given disk offset */
452

    
453
    l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
454
    *cluster_offset = be64_to_cpu(l2_table[l2_index]);
455
    nb_clusters = size_to_clusters(s, nb_needed << 9);
456

    
457
    ret = qcow2_get_cluster_type(*cluster_offset);
458
    switch (ret) {
459
    case QCOW2_CLUSTER_COMPRESSED:
460
        /* Compressed clusters can only be processed one by one */
461
        c = 1;
462
        *cluster_offset &= L2E_COMPRESSED_OFFSET_SIZE_MASK;
463
        break;
464
    case QCOW2_CLUSTER_ZERO:
465
        if (s->qcow_version < 3) {
466
            return -EIO;
467
        }
468
        c = count_contiguous_clusters(nb_clusters, s->cluster_size,
469
                &l2_table[l2_index], 0,
470
                QCOW_OFLAG_COMPRESSED | QCOW_OFLAG_ZERO);
471
        *cluster_offset = 0;
472
        break;
473
    case QCOW2_CLUSTER_UNALLOCATED:
474
        /* how many empty clusters ? */
475
        c = count_contiguous_free_clusters(nb_clusters, &l2_table[l2_index]);
476
        *cluster_offset = 0;
477
        break;
478
    case QCOW2_CLUSTER_NORMAL:
479
        /* how many allocated clusters ? */
480
        c = count_contiguous_clusters(nb_clusters, s->cluster_size,
481
                &l2_table[l2_index], 0,
482
                QCOW_OFLAG_COMPRESSED | QCOW_OFLAG_ZERO);
483
        *cluster_offset &= L2E_OFFSET_MASK;
484
        break;
485
    default:
486
        abort();
487
    }
488

    
489
    qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
490

    
491
    nb_available = (c * s->cluster_sectors);
492

    
493
out:
494
    if (nb_available > nb_needed)
495
        nb_available = nb_needed;
496

    
497
    *num = nb_available - index_in_cluster;
498

    
499
    return ret;
500
}
501

    
502
/*
503
 * get_cluster_table
504
 *
505
 * for a given disk offset, load (and allocate if needed)
506
 * the l2 table.
507
 *
508
 * the l2 table offset in the qcow2 file and the cluster index
509
 * in the l2 table are given to the caller.
510
 *
511
 * Returns 0 on success, -errno in failure case
512
 */
513
static int get_cluster_table(BlockDriverState *bs, uint64_t offset,
514
                             uint64_t **new_l2_table,
515
                             int *new_l2_index)
516
{
517
    BDRVQcowState *s = bs->opaque;
518
    unsigned int l2_index;
519
    uint64_t l1_index, l2_offset;
520
    uint64_t *l2_table = NULL;
521
    int ret;
522

    
523
    /* seek the the l2 offset in the l1 table */
524

    
525
    l1_index = offset >> (s->l2_bits + s->cluster_bits);
526
    if (l1_index >= s->l1_size) {
527
        ret = qcow2_grow_l1_table(bs, l1_index + 1, false);
528
        if (ret < 0) {
529
            return ret;
530
        }
531
    }
532

    
533
    assert(l1_index < s->l1_size);
534
    l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
535

    
536
    /* seek the l2 table of the given l2 offset */
537

    
538
    if (s->l1_table[l1_index] & QCOW_OFLAG_COPIED) {
539
        /* load the l2 table in memory */
540
        ret = l2_load(bs, l2_offset, &l2_table);
541
        if (ret < 0) {
542
            return ret;
543
        }
544
    } else {
545
        /* First allocate a new L2 table (and do COW if needed) */
546
        ret = l2_allocate(bs, l1_index, &l2_table);
547
        if (ret < 0) {
548
            return ret;
549
        }
550

    
551
        /* Then decrease the refcount of the old table */
552
        if (l2_offset) {
553
            qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t),
554
                                QCOW2_DISCARD_OTHER);
555
        }
556
    }
557

    
558
    /* find the cluster offset for the given disk offset */
559

    
560
    l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
561

    
562
    *new_l2_table = l2_table;
563
    *new_l2_index = l2_index;
564

    
565
    return 0;
566
}
567

    
568
/*
569
 * alloc_compressed_cluster_offset
570
 *
571
 * For a given offset of the disk image, return cluster offset in
572
 * qcow2 file.
573
 *
574
 * If the offset is not found, allocate a new compressed cluster.
575
 *
576
 * Return the cluster offset if successful,
577
 * Return 0, otherwise.
578
 *
579
 */
580

    
581
uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs,
582
                                               uint64_t offset,
583
                                               int compressed_size)
584
{
585
    BDRVQcowState *s = bs->opaque;
586
    int l2_index, ret;
587
    uint64_t *l2_table;
588
    int64_t cluster_offset;
589
    int nb_csectors;
590

    
591
    ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
592
    if (ret < 0) {
593
        return 0;
594
    }
595

    
596
    /* Compression can't overwrite anything. Fail if the cluster was already
597
     * allocated. */
598
    cluster_offset = be64_to_cpu(l2_table[l2_index]);
599
    if (cluster_offset & L2E_OFFSET_MASK) {
600
        qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
601
        return 0;
602
    }
603

    
604
    cluster_offset = qcow2_alloc_bytes(bs, compressed_size);
605
    if (cluster_offset < 0) {
606
        qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
607
        return 0;
608
    }
609

    
610
    nb_csectors = ((cluster_offset + compressed_size - 1) >> 9) -
611
                  (cluster_offset >> 9);
612

    
613
    cluster_offset |= QCOW_OFLAG_COMPRESSED |
614
                      ((uint64_t)nb_csectors << s->csize_shift);
615

    
616
    /* update L2 table */
617

    
618
    /* compressed clusters never have the copied flag */
619

    
620
    BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED);
621
    qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
622
    l2_table[l2_index] = cpu_to_be64(cluster_offset);
623
    ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
624
    if (ret < 0) {
625
        return 0;
626
    }
627

    
628
    return cluster_offset;
629
}
630

    
631
static int perform_cow(BlockDriverState *bs, QCowL2Meta *m, Qcow2COWRegion *r)
632
{
633
    BDRVQcowState *s = bs->opaque;
634
    int ret;
635

    
636
    if (r->nb_sectors == 0) {
637
        return 0;
638
    }
639

    
640
    qemu_co_mutex_unlock(&s->lock);
641
    ret = copy_sectors(bs, m->offset / BDRV_SECTOR_SIZE, m->alloc_offset,
642
                       r->offset / BDRV_SECTOR_SIZE,
643
                       r->offset / BDRV_SECTOR_SIZE + r->nb_sectors);
644
    qemu_co_mutex_lock(&s->lock);
645

    
646
    if (ret < 0) {
647
        return ret;
648
    }
649

    
650
    /*
651
     * Before we update the L2 table to actually point to the new cluster, we
652
     * need to be sure that the refcounts have been increased and COW was
653
     * handled.
654
     */
655
    qcow2_cache_depends_on_flush(s->l2_table_cache);
656

    
657
    return 0;
658
}
659

    
660
int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m)
661
{
662
    BDRVQcowState *s = bs->opaque;
663
    int i, j = 0, l2_index, ret;
664
    uint64_t *old_cluster, *l2_table;
665
    uint64_t cluster_offset = m->alloc_offset;
666

    
667
    trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m->nb_clusters);
668
    assert(m->nb_clusters > 0);
669

    
670
    old_cluster = g_malloc(m->nb_clusters * sizeof(uint64_t));
671

    
672
    /* copy content of unmodified sectors */
673
    ret = perform_cow(bs, m, &m->cow_start);
674
    if (ret < 0) {
675
        goto err;
676
    }
677

    
678
    ret = perform_cow(bs, m, &m->cow_end);
679
    if (ret < 0) {
680
        goto err;
681
    }
682

    
683
    /* Update L2 table. */
684
    if (s->use_lazy_refcounts) {
685
        qcow2_mark_dirty(bs);
686
    }
687
    if (qcow2_need_accurate_refcounts(s)) {
688
        qcow2_cache_set_dependency(bs, s->l2_table_cache,
689
                                   s->refcount_block_cache);
690
    }
691

    
692
    ret = get_cluster_table(bs, m->offset, &l2_table, &l2_index);
693
    if (ret < 0) {
694
        goto err;
695
    }
696
    qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
697

    
698
    for (i = 0; i < m->nb_clusters; i++) {
699
        /* if two concurrent writes happen to the same unallocated cluster
700
         * each write allocates separate cluster and writes data concurrently.
701
         * The first one to complete updates l2 table with pointer to its
702
         * cluster the second one has to do RMW (which is done above by
703
         * copy_sectors()), update l2 table with its cluster pointer and free
704
         * old cluster. This is what this loop does */
705
        if(l2_table[l2_index + i] != 0)
706
            old_cluster[j++] = l2_table[l2_index + i];
707

    
708
        l2_table[l2_index + i] = cpu_to_be64((cluster_offset +
709
                    (i << s->cluster_bits)) | QCOW_OFLAG_COPIED);
710
     }
711

    
712

    
713
    ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
714
    if (ret < 0) {
715
        goto err;
716
    }
717

    
718
    /*
719
     * If this was a COW, we need to decrease the refcount of the old cluster.
720
     * Also flush bs->file to get the right order for L2 and refcount update.
721
     *
722
     * Don't discard clusters that reach a refcount of 0 (e.g. compressed
723
     * clusters), the next write will reuse them anyway.
724
     */
725
    if (j != 0) {
726
        for (i = 0; i < j; i++) {
727
            qcow2_free_any_clusters(bs, be64_to_cpu(old_cluster[i]), 1,
728
                                    QCOW2_DISCARD_NEVER);
729
        }
730
    }
731

    
732
    ret = 0;
733
err:
734
    g_free(old_cluster);
735
    return ret;
736
 }
737

    
738
/*
739
 * Returns the number of contiguous clusters that can be used for an allocating
740
 * write, but require COW to be performed (this includes yet unallocated space,
741
 * which must copy from the backing file)
742
 */
743
static int count_cow_clusters(BDRVQcowState *s, int nb_clusters,
744
    uint64_t *l2_table, int l2_index)
745
{
746
    int i;
747

    
748
    for (i = 0; i < nb_clusters; i++) {
749
        uint64_t l2_entry = be64_to_cpu(l2_table[l2_index + i]);
750
        int cluster_type = qcow2_get_cluster_type(l2_entry);
751

    
752
        switch(cluster_type) {
753
        case QCOW2_CLUSTER_NORMAL:
754
            if (l2_entry & QCOW_OFLAG_COPIED) {
755
                goto out;
756
            }
757
            break;
758
        case QCOW2_CLUSTER_UNALLOCATED:
759
        case QCOW2_CLUSTER_COMPRESSED:
760
        case QCOW2_CLUSTER_ZERO:
761
            break;
762
        default:
763
            abort();
764
        }
765
    }
766

    
767
out:
768
    assert(i <= nb_clusters);
769
    return i;
770
}
771

    
772
/*
773
 * Check if there already is an AIO write request in flight which allocates
774
 * the same cluster. In this case we need to wait until the previous
775
 * request has completed and updated the L2 table accordingly.
776
 *
777
 * Returns:
778
 *   0       if there was no dependency. *cur_bytes indicates the number of
779
 *           bytes from guest_offset that can be read before the next
780
 *           dependency must be processed (or the request is complete)
781
 *
782
 *   -EAGAIN if we had to wait for another request, previously gathered
783
 *           information on cluster allocation may be invalid now. The caller
784
 *           must start over anyway, so consider *cur_bytes undefined.
785
 */
786
static int handle_dependencies(BlockDriverState *bs, uint64_t guest_offset,
787
    uint64_t *cur_bytes, QCowL2Meta **m)
788
{
789
    BDRVQcowState *s = bs->opaque;
790
    QCowL2Meta *old_alloc;
791
    uint64_t bytes = *cur_bytes;
792

    
793
    QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) {
794

    
795
        uint64_t start = guest_offset;
796
        uint64_t end = start + bytes;
797
        uint64_t old_start = l2meta_cow_start(old_alloc);
798
        uint64_t old_end = l2meta_cow_end(old_alloc);
799

    
800
        if (end <= old_start || start >= old_end) {
801
            /* No intersection */
802
        } else {
803
            if (start < old_start) {
804
                /* Stop at the start of a running allocation */
805
                bytes = old_start - start;
806
            } else {
807
                bytes = 0;
808
            }
809

    
810
            /* Stop if already an l2meta exists. After yielding, it wouldn't
811
             * be valid any more, so we'd have to clean up the old L2Metas
812
             * and deal with requests depending on them before starting to
813
             * gather new ones. Not worth the trouble. */
814
            if (bytes == 0 && *m) {
815
                *cur_bytes = 0;
816
                return 0;
817
            }
818

    
819
            if (bytes == 0) {
820
                /* Wait for the dependency to complete. We need to recheck
821
                 * the free/allocated clusters when we continue. */
822
                qemu_co_mutex_unlock(&s->lock);
823
                qemu_co_queue_wait(&old_alloc->dependent_requests);
824
                qemu_co_mutex_lock(&s->lock);
825
                return -EAGAIN;
826
            }
827
        }
828
    }
829

    
830
    /* Make sure that existing clusters and new allocations are only used up to
831
     * the next dependency if we shortened the request above */
832
    *cur_bytes = bytes;
833

    
834
    return 0;
835
}
836

    
837
/*
838
 * Checks how many already allocated clusters that don't require a copy on
839
 * write there are at the given guest_offset (up to *bytes). If
840
 * *host_offset is not zero, only physically contiguous clusters beginning at
841
 * this host offset are counted.
842
 *
843
 * Note that guest_offset may not be cluster aligned. In this case, the
844
 * returned *host_offset points to exact byte referenced by guest_offset and
845
 * therefore isn't cluster aligned as well.
846
 *
847
 * Returns:
848
 *   0:     if no allocated clusters are available at the given offset.
849
 *          *bytes is normally unchanged. It is set to 0 if the cluster
850
 *          is allocated and doesn't need COW, but doesn't have the right
851
 *          physical offset.
852
 *
853
 *   1:     if allocated clusters that don't require a COW are available at
854
 *          the requested offset. *bytes may have decreased and describes
855
 *          the length of the area that can be written to.
856
 *
857
 *  -errno: in error cases
858
 */
859
static int handle_copied(BlockDriverState *bs, uint64_t guest_offset,
860
    uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
861
{
862
    BDRVQcowState *s = bs->opaque;
863
    int l2_index;
864
    uint64_t cluster_offset;
865
    uint64_t *l2_table;
866
    unsigned int nb_clusters;
867
    unsigned int keep_clusters;
868
    int ret, pret;
869

    
870
    trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset, *host_offset,
871
                              *bytes);
872

    
873
    assert(*host_offset == 0 ||    offset_into_cluster(s, guest_offset)
874
                                == offset_into_cluster(s, *host_offset));
875

    
876
    /*
877
     * Calculate the number of clusters to look for. We stop at L2 table
878
     * boundaries to keep things simple.
879
     */
880
    nb_clusters =
881
        size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
882

    
883
    l2_index = offset_to_l2_index(s, guest_offset);
884
    nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
885

    
886
    /* Find L2 entry for the first involved cluster */
887
    ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index);
888
    if (ret < 0) {
889
        return ret;
890
    }
891

    
892
    cluster_offset = be64_to_cpu(l2_table[l2_index]);
893

    
894
    /* Check how many clusters are already allocated and don't need COW */
895
    if (qcow2_get_cluster_type(cluster_offset) == QCOW2_CLUSTER_NORMAL
896
        && (cluster_offset & QCOW_OFLAG_COPIED))
897
    {
898
        /* If a specific host_offset is required, check it */
899
        bool offset_matches =
900
            (cluster_offset & L2E_OFFSET_MASK) == *host_offset;
901

    
902
        if (*host_offset != 0 && !offset_matches) {
903
            *bytes = 0;
904
            ret = 0;
905
            goto out;
906
        }
907

    
908
        /* We keep all QCOW_OFLAG_COPIED clusters */
909
        keep_clusters =
910
            count_contiguous_clusters(nb_clusters, s->cluster_size,
911
                                      &l2_table[l2_index], 0,
912
                                      QCOW_OFLAG_COPIED | QCOW_OFLAG_ZERO);
913
        assert(keep_clusters <= nb_clusters);
914

    
915
        *bytes = MIN(*bytes,
916
                 keep_clusters * s->cluster_size
917
                 - offset_into_cluster(s, guest_offset));
918

    
919
        ret = 1;
920
    } else {
921
        ret = 0;
922
    }
923

    
924
    /* Cleanup */
925
out:
926
    pret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
927
    if (pret < 0) {
928
        return pret;
929
    }
930

    
931
    /* Only return a host offset if we actually made progress. Otherwise we
932
     * would make requirements for handle_alloc() that it can't fulfill */
933
    if (ret) {
934
        *host_offset = (cluster_offset & L2E_OFFSET_MASK)
935
                     + offset_into_cluster(s, guest_offset);
936
    }
937

    
938
    return ret;
939
}
940

    
941
/*
942
 * Allocates new clusters for the given guest_offset.
943
 *
944
 * At most *nb_clusters are allocated, and on return *nb_clusters is updated to
945
 * contain the number of clusters that have been allocated and are contiguous
946
 * in the image file.
947
 *
948
 * If *host_offset is non-zero, it specifies the offset in the image file at
949
 * which the new clusters must start. *nb_clusters can be 0 on return in this
950
 * case if the cluster at host_offset is already in use. If *host_offset is
951
 * zero, the clusters can be allocated anywhere in the image file.
952
 *
953
 * *host_offset is updated to contain the offset into the image file at which
954
 * the first allocated cluster starts.
955
 *
956
 * Return 0 on success and -errno in error cases. -EAGAIN means that the
957
 * function has been waiting for another request and the allocation must be
958
 * restarted, but the whole request should not be failed.
959
 */
960
static int do_alloc_cluster_offset(BlockDriverState *bs, uint64_t guest_offset,
961
    uint64_t *host_offset, unsigned int *nb_clusters)
962
{
963
    BDRVQcowState *s = bs->opaque;
964

    
965
    trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset,
966
                                         *host_offset, *nb_clusters);
967

    
968
    /* Allocate new clusters */
969
    trace_qcow2_cluster_alloc_phys(qemu_coroutine_self());
970
    if (*host_offset == 0) {
971
        int64_t cluster_offset =
972
            qcow2_alloc_clusters(bs, *nb_clusters * s->cluster_size);
973
        if (cluster_offset < 0) {
974
            return cluster_offset;
975
        }
976
        *host_offset = cluster_offset;
977
        return 0;
978
    } else {
979
        int ret = qcow2_alloc_clusters_at(bs, *host_offset, *nb_clusters);
980
        if (ret < 0) {
981
            return ret;
982
        }
983
        *nb_clusters = ret;
984
        return 0;
985
    }
986
}
987

    
988
/*
989
 * Allocates new clusters for an area that either is yet unallocated or needs a
990
 * copy on write. If *host_offset is non-zero, clusters are only allocated if
991
 * the new allocation can match the specified host offset.
992
 *
993
 * Note that guest_offset may not be cluster aligned. In this case, the
994
 * returned *host_offset points to exact byte referenced by guest_offset and
995
 * therefore isn't cluster aligned as well.
996
 *
997
 * Returns:
998
 *   0:     if no clusters could be allocated. *bytes is set to 0,
999
 *          *host_offset is left unchanged.
1000
 *
1001
 *   1:     if new clusters were allocated. *bytes may be decreased if the
1002
 *          new allocation doesn't cover all of the requested area.
1003
 *          *host_offset is updated to contain the host offset of the first
1004
 *          newly allocated cluster.
1005
 *
1006
 *  -errno: in error cases
1007
 */
1008
static int handle_alloc(BlockDriverState *bs, uint64_t guest_offset,
1009
    uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
1010
{
1011
    BDRVQcowState *s = bs->opaque;
1012
    int l2_index;
1013
    uint64_t *l2_table;
1014
    uint64_t entry;
1015
    unsigned int nb_clusters;
1016
    int ret;
1017

    
1018
    uint64_t alloc_cluster_offset;
1019

    
1020
    trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset, *host_offset,
1021
                             *bytes);
1022
    assert(*bytes > 0);
1023

    
1024
    /*
1025
     * Calculate the number of clusters to look for. We stop at L2 table
1026
     * boundaries to keep things simple.
1027
     */
1028
    nb_clusters =
1029
        size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
1030

    
1031
    l2_index = offset_to_l2_index(s, guest_offset);
1032
    nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1033

    
1034
    /* Find L2 entry for the first involved cluster */
1035
    ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index);
1036
    if (ret < 0) {
1037
        return ret;
1038
    }
1039

    
1040
    entry = be64_to_cpu(l2_table[l2_index]);
1041

    
1042
    /* For the moment, overwrite compressed clusters one by one */
1043
    if (entry & QCOW_OFLAG_COMPRESSED) {
1044
        nb_clusters = 1;
1045
    } else {
1046
        nb_clusters = count_cow_clusters(s, nb_clusters, l2_table, l2_index);
1047
    }
1048

    
1049
    /* This function is only called when there were no non-COW clusters, so if
1050
     * we can't find any unallocated or COW clusters either, something is
1051
     * wrong with our code. */
1052
    assert(nb_clusters > 0);
1053

    
1054
    ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
1055
    if (ret < 0) {
1056
        return ret;
1057
    }
1058

    
1059
    /* Allocate, if necessary at a given offset in the image file */
1060
    alloc_cluster_offset = start_of_cluster(s, *host_offset);
1061
    ret = do_alloc_cluster_offset(bs, guest_offset, &alloc_cluster_offset,
1062
                                  &nb_clusters);
1063
    if (ret < 0) {
1064
        goto fail;
1065
    }
1066

    
1067
    /* Can't extend contiguous allocation */
1068
    if (nb_clusters == 0) {
1069
        *bytes = 0;
1070
        return 0;
1071
    }
1072

    
1073
    /*
1074
     * Save info needed for meta data update.
1075
     *
1076
     * requested_sectors: Number of sectors from the start of the first
1077
     * newly allocated cluster to the end of the (possibly shortened
1078
     * before) write request.
1079
     *
1080
     * avail_sectors: Number of sectors from the start of the first
1081
     * newly allocated to the end of the last newly allocated cluster.
1082
     *
1083
     * nb_sectors: The number of sectors from the start of the first
1084
     * newly allocated cluster to the end of the area that the write
1085
     * request actually writes to (excluding COW at the end)
1086
     */
1087
    int requested_sectors =
1088
        (*bytes + offset_into_cluster(s, guest_offset))
1089
        >> BDRV_SECTOR_BITS;
1090
    int avail_sectors = nb_clusters
1091
                        << (s->cluster_bits - BDRV_SECTOR_BITS);
1092
    int alloc_n_start = offset_into_cluster(s, guest_offset)
1093
                        >> BDRV_SECTOR_BITS;
1094
    int nb_sectors = MIN(requested_sectors, avail_sectors);
1095
    QCowL2Meta *old_m = *m;
1096

    
1097
    *m = g_malloc0(sizeof(**m));
1098

    
1099
    **m = (QCowL2Meta) {
1100
        .next           = old_m,
1101

    
1102
        .alloc_offset   = alloc_cluster_offset,
1103
        .offset         = start_of_cluster(s, guest_offset),
1104
        .nb_clusters    = nb_clusters,
1105
        .nb_available   = nb_sectors,
1106

    
1107
        .cow_start = {
1108
            .offset     = 0,
1109
            .nb_sectors = alloc_n_start,
1110
        },
1111
        .cow_end = {
1112
            .offset     = nb_sectors * BDRV_SECTOR_SIZE,
1113
            .nb_sectors = avail_sectors - nb_sectors,
1114
        },
1115
    };
1116
    qemu_co_queue_init(&(*m)->dependent_requests);
1117
    QLIST_INSERT_HEAD(&s->cluster_allocs, *m, next_in_flight);
1118

    
1119
    *host_offset = alloc_cluster_offset + offset_into_cluster(s, guest_offset);
1120
    *bytes = MIN(*bytes, (nb_sectors * BDRV_SECTOR_SIZE)
1121
                         - offset_into_cluster(s, guest_offset));
1122
    assert(*bytes != 0);
1123

    
1124
    return 1;
1125

    
1126
fail:
1127
    if (*m && (*m)->nb_clusters > 0) {
1128
        QLIST_REMOVE(*m, next_in_flight);
1129
    }
1130
    return ret;
1131
}
1132

    
1133
/*
1134
 * alloc_cluster_offset
1135
 *
1136
 * For a given offset on the virtual disk, find the cluster offset in qcow2
1137
 * file. If the offset is not found, allocate a new cluster.
1138
 *
1139
 * If the cluster was already allocated, m->nb_clusters is set to 0 and
1140
 * other fields in m are meaningless.
1141
 *
1142
 * If the cluster is newly allocated, m->nb_clusters is set to the number of
1143
 * contiguous clusters that have been allocated. In this case, the other
1144
 * fields of m are valid and contain information about the first allocated
1145
 * cluster.
1146
 *
1147
 * If the request conflicts with another write request in flight, the coroutine
1148
 * is queued and will be reentered when the dependency has completed.
1149
 *
1150
 * Return 0 on success and -errno in error cases
1151
 */
1152
int qcow2_alloc_cluster_offset(BlockDriverState *bs, uint64_t offset,
1153
    int n_start, int n_end, int *num, uint64_t *host_offset, QCowL2Meta **m)
1154
{
1155
    BDRVQcowState *s = bs->opaque;
1156
    uint64_t start, remaining;
1157
    uint64_t cluster_offset;
1158
    uint64_t cur_bytes;
1159
    int ret;
1160

    
1161
    trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset,
1162
                                      n_start, n_end);
1163

    
1164
    assert(n_start * BDRV_SECTOR_SIZE == offset_into_cluster(s, offset));
1165
    offset = start_of_cluster(s, offset);
1166

    
1167
again:
1168
    start = offset + (n_start << BDRV_SECTOR_BITS);
1169
    remaining = (n_end - n_start) << BDRV_SECTOR_BITS;
1170
    cluster_offset = 0;
1171
    *host_offset = 0;
1172
    cur_bytes = 0;
1173
    *m = NULL;
1174

    
1175
    while (true) {
1176

    
1177
        if (!*host_offset) {
1178
            *host_offset = start_of_cluster(s, cluster_offset);
1179
        }
1180

    
1181
        assert(remaining >= cur_bytes);
1182

    
1183
        start           += cur_bytes;
1184
        remaining       -= cur_bytes;
1185
        cluster_offset  += cur_bytes;
1186

    
1187
        if (remaining == 0) {
1188
            break;
1189
        }
1190

    
1191
        cur_bytes = remaining;
1192

    
1193
        /*
1194
         * Now start gathering as many contiguous clusters as possible:
1195
         *
1196
         * 1. Check for overlaps with in-flight allocations
1197
         *
1198
         *      a) Overlap not in the first cluster -> shorten this request and
1199
         *         let the caller handle the rest in its next loop iteration.
1200
         *
1201
         *      b) Real overlaps of two requests. Yield and restart the search
1202
         *         for contiguous clusters (the situation could have changed
1203
         *         while we were sleeping)
1204
         *
1205
         *      c) TODO: Request starts in the same cluster as the in-flight
1206
         *         allocation ends. Shorten the COW of the in-fight allocation,
1207
         *         set cluster_offset to write to the same cluster and set up
1208
         *         the right synchronisation between the in-flight request and
1209
         *         the new one.
1210
         */
1211
        ret = handle_dependencies(bs, start, &cur_bytes, m);
1212
        if (ret == -EAGAIN) {
1213
            /* Currently handle_dependencies() doesn't yield if we already had
1214
             * an allocation. If it did, we would have to clean up the L2Meta
1215
             * structs before starting over. */
1216
            assert(*m == NULL);
1217
            goto again;
1218
        } else if (ret < 0) {
1219
            return ret;
1220
        } else if (cur_bytes == 0) {
1221
            break;
1222
        } else {
1223
            /* handle_dependencies() may have decreased cur_bytes (shortened
1224
             * the allocations below) so that the next dependency is processed
1225
             * correctly during the next loop iteration. */
1226
        }
1227

    
1228
        /*
1229
         * 2. Count contiguous COPIED clusters.
1230
         */
1231
        ret = handle_copied(bs, start, &cluster_offset, &cur_bytes, m);
1232
        if (ret < 0) {
1233
            return ret;
1234
        } else if (ret) {
1235
            continue;
1236
        } else if (cur_bytes == 0) {
1237
            break;
1238
        }
1239

    
1240
        /*
1241
         * 3. If the request still hasn't completed, allocate new clusters,
1242
         *    considering any cluster_offset of steps 1c or 2.
1243
         */
1244
        ret = handle_alloc(bs, start, &cluster_offset, &cur_bytes, m);
1245
        if (ret < 0) {
1246
            return ret;
1247
        } else if (ret) {
1248
            continue;
1249
        } else {
1250
            assert(cur_bytes == 0);
1251
            break;
1252
        }
1253
    }
1254

    
1255
    *num = (n_end - n_start) - (remaining >> BDRV_SECTOR_BITS);
1256
    assert(*num > 0);
1257
    assert(*host_offset != 0);
1258

    
1259
    return 0;
1260
}
1261

    
1262
static int decompress_buffer(uint8_t *out_buf, int out_buf_size,
1263
                             const uint8_t *buf, int buf_size)
1264
{
1265
    z_stream strm1, *strm = &strm1;
1266
    int ret, out_len;
1267

    
1268
    memset(strm, 0, sizeof(*strm));
1269

    
1270
    strm->next_in = (uint8_t *)buf;
1271
    strm->avail_in = buf_size;
1272
    strm->next_out = out_buf;
1273
    strm->avail_out = out_buf_size;
1274

    
1275
    ret = inflateInit2(strm, -12);
1276
    if (ret != Z_OK)
1277
        return -1;
1278
    ret = inflate(strm, Z_FINISH);
1279
    out_len = strm->next_out - out_buf;
1280
    if ((ret != Z_STREAM_END && ret != Z_BUF_ERROR) ||
1281
        out_len != out_buf_size) {
1282
        inflateEnd(strm);
1283
        return -1;
1284
    }
1285
    inflateEnd(strm);
1286
    return 0;
1287
}
1288

    
1289
int qcow2_decompress_cluster(BlockDriverState *bs, uint64_t cluster_offset)
1290
{
1291
    BDRVQcowState *s = bs->opaque;
1292
    int ret, csize, nb_csectors, sector_offset;
1293
    uint64_t coffset;
1294

    
1295
    coffset = cluster_offset & s->cluster_offset_mask;
1296
    if (s->cluster_cache_offset != coffset) {
1297
        nb_csectors = ((cluster_offset >> s->csize_shift) & s->csize_mask) + 1;
1298
        sector_offset = coffset & 511;
1299
        csize = nb_csectors * 512 - sector_offset;
1300
        BLKDBG_EVENT(bs->file, BLKDBG_READ_COMPRESSED);
1301
        ret = bdrv_read(bs->file, coffset >> 9, s->cluster_data, nb_csectors);
1302
        if (ret < 0) {
1303
            return ret;
1304
        }
1305
        if (decompress_buffer(s->cluster_cache, s->cluster_size,
1306
                              s->cluster_data + sector_offset, csize) < 0) {
1307
            return -EIO;
1308
        }
1309
        s->cluster_cache_offset = coffset;
1310
    }
1311
    return 0;
1312
}
1313

    
1314
/*
1315
 * This discards as many clusters of nb_clusters as possible at once (i.e.
1316
 * all clusters in the same L2 table) and returns the number of discarded
1317
 * clusters.
1318
 */
1319
static int discard_single_l2(BlockDriverState *bs, uint64_t offset,
1320
    unsigned int nb_clusters)
1321
{
1322
    BDRVQcowState *s = bs->opaque;
1323
    uint64_t *l2_table;
1324
    int l2_index;
1325
    int ret;
1326
    int i;
1327

    
1328
    ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
1329
    if (ret < 0) {
1330
        return ret;
1331
    }
1332

    
1333
    /* Limit nb_clusters to one L2 table */
1334
    nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1335

    
1336
    for (i = 0; i < nb_clusters; i++) {
1337
        uint64_t old_offset;
1338

    
1339
        old_offset = be64_to_cpu(l2_table[l2_index + i]);
1340
        if ((old_offset & L2E_OFFSET_MASK) == 0) {
1341
            continue;
1342
        }
1343

    
1344
        /* First remove L2 entries */
1345
        qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
1346
        l2_table[l2_index + i] = cpu_to_be64(0);
1347

    
1348
        /* Then decrease the refcount */
1349
        qcow2_free_any_clusters(bs, old_offset, 1, QCOW2_DISCARD_REQUEST);
1350
    }
1351

    
1352
    ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
1353
    if (ret < 0) {
1354
        return ret;
1355
    }
1356

    
1357
    return nb_clusters;
1358
}
1359

    
1360
int qcow2_discard_clusters(BlockDriverState *bs, uint64_t offset,
1361
    int nb_sectors)
1362
{
1363
    BDRVQcowState *s = bs->opaque;
1364
    uint64_t end_offset;
1365
    unsigned int nb_clusters;
1366
    int ret;
1367

    
1368
    end_offset = offset + (nb_sectors << BDRV_SECTOR_BITS);
1369

    
1370
    /* Round start up and end down */
1371
    offset = align_offset(offset, s->cluster_size);
1372
    end_offset &= ~(s->cluster_size - 1);
1373

    
1374
    if (offset > end_offset) {
1375
        return 0;
1376
    }
1377

    
1378
    nb_clusters = size_to_clusters(s, end_offset - offset);
1379

    
1380
    /* Each L2 table is handled by its own loop iteration */
1381
    while (nb_clusters > 0) {
1382
        ret = discard_single_l2(bs, offset, nb_clusters);
1383
        if (ret < 0) {
1384
            return ret;
1385
        }
1386

    
1387
        nb_clusters -= ret;
1388
        offset += (ret * s->cluster_size);
1389
    }
1390

    
1391
    return 0;
1392
}
1393

    
1394
/*
1395
 * This zeroes as many clusters of nb_clusters as possible at once (i.e.
1396
 * all clusters in the same L2 table) and returns the number of zeroed
1397
 * clusters.
1398
 */
1399
static int zero_single_l2(BlockDriverState *bs, uint64_t offset,
1400
    unsigned int nb_clusters)
1401
{
1402
    BDRVQcowState *s = bs->opaque;
1403
    uint64_t *l2_table;
1404
    int l2_index;
1405
    int ret;
1406
    int i;
1407

    
1408
    ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
1409
    if (ret < 0) {
1410
        return ret;
1411
    }
1412

    
1413
    /* Limit nb_clusters to one L2 table */
1414
    nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1415

    
1416
    for (i = 0; i < nb_clusters; i++) {
1417
        uint64_t old_offset;
1418

    
1419
        old_offset = be64_to_cpu(l2_table[l2_index + i]);
1420

    
1421
        /* Update L2 entries */
1422
        qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
1423
        if (old_offset & QCOW_OFLAG_COMPRESSED) {
1424
            l2_table[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO);
1425
            qcow2_free_any_clusters(bs, old_offset, 1, QCOW2_DISCARD_REQUEST);
1426
        } else {
1427
            l2_table[l2_index + i] |= cpu_to_be64(QCOW_OFLAG_ZERO);
1428
        }
1429
    }
1430

    
1431
    ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
1432
    if (ret < 0) {
1433
        return ret;
1434
    }
1435

    
1436
    return nb_clusters;
1437
}
1438

    
1439
int qcow2_zero_clusters(BlockDriverState *bs, uint64_t offset, int nb_sectors)
1440
{
1441
    BDRVQcowState *s = bs->opaque;
1442
    unsigned int nb_clusters;
1443
    int ret;
1444

    
1445
    /* The zero flag is only supported by version 3 and newer */
1446
    if (s->qcow_version < 3) {
1447
        return -ENOTSUP;
1448
    }
1449

    
1450
    /* Each L2 table is handled by its own loop iteration */
1451
    nb_clusters = size_to_clusters(s, nb_sectors << BDRV_SECTOR_BITS);
1452

    
1453
    while (nb_clusters > 0) {
1454
        ret = zero_single_l2(bs, offset, nb_clusters);
1455
        if (ret < 0) {
1456
            return ret;
1457
        }
1458

    
1459
        nb_clusters -= ret;
1460
        offset += (ret * s->cluster_size);
1461
    }
1462

    
1463
    return 0;
1464
}