Statistics
| Branch: | Revision:

root / cpu-exec.c @ 6e473128

History | View | Annotate | Download (51.7 kB)

1
/*
2
 *  i386 emulator main execution loop
3
 * 
4
 *  Copyright (c) 2003-2005 Fabrice Bellard
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, write to the Free Software
18
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19
 */
20
#include "config.h"
21
#include "exec.h"
22
#include "disas.h"
23

    
24
#if !defined(CONFIG_SOFTMMU)
25
#undef EAX
26
#undef ECX
27
#undef EDX
28
#undef EBX
29
#undef ESP
30
#undef EBP
31
#undef ESI
32
#undef EDI
33
#undef EIP
34
#include <signal.h>
35
#include <sys/ucontext.h>
36
#endif
37

    
38
int tb_invalidated_flag;
39

    
40
//#define DEBUG_EXEC
41
//#define DEBUG_SIGNAL
42

    
43
#if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_M68K) || \
44
    defined(TARGET_ALPHA)
45
/* XXX: unify with i386 target */
46
void cpu_loop_exit(void)
47
{
48
    longjmp(env->jmp_env, 1);
49
}
50
#endif
51
#if !(defined(TARGET_SPARC) || defined(TARGET_SH4) || defined(TARGET_M68K))
52
#define reg_T2
53
#endif
54

    
55
/* exit the current TB from a signal handler. The host registers are
56
   restored in a state compatible with the CPU emulator
57
 */
58
void cpu_resume_from_signal(CPUState *env1, void *puc) 
59
{
60
#if !defined(CONFIG_SOFTMMU)
61
    struct ucontext *uc = puc;
62
#endif
63

    
64
    env = env1;
65

    
66
    /* XXX: restore cpu registers saved in host registers */
67

    
68
#if !defined(CONFIG_SOFTMMU)
69
    if (puc) {
70
        /* XXX: use siglongjmp ? */
71
        sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
72
    }
73
#endif
74
    longjmp(env->jmp_env, 1);
75
}
76

    
77

    
78
static TranslationBlock *tb_find_slow(target_ulong pc,
79
                                      target_ulong cs_base,
80
                                      unsigned int flags)
81
{
82
    TranslationBlock *tb, **ptb1;
83
    int code_gen_size;
84
    unsigned int h;
85
    target_ulong phys_pc, phys_page1, phys_page2, virt_page2;
86
    uint8_t *tc_ptr;
87
    
88
    spin_lock(&tb_lock);
89

    
90
    tb_invalidated_flag = 0;
91
    
92
    regs_to_env(); /* XXX: do it just before cpu_gen_code() */
93
    
94
    /* find translated block using physical mappings */
95
    phys_pc = get_phys_addr_code(env, pc);
96
    phys_page1 = phys_pc & TARGET_PAGE_MASK;
97
    phys_page2 = -1;
98
    h = tb_phys_hash_func(phys_pc);
99
    ptb1 = &tb_phys_hash[h];
100
    for(;;) {
101
        tb = *ptb1;
102
        if (!tb)
103
            goto not_found;
104
        if (tb->pc == pc && 
105
            tb->page_addr[0] == phys_page1 &&
106
            tb->cs_base == cs_base && 
107
            tb->flags == flags) {
108
            /* check next page if needed */
109
            if (tb->page_addr[1] != -1) {
110
                virt_page2 = (pc & TARGET_PAGE_MASK) + 
111
                    TARGET_PAGE_SIZE;
112
                phys_page2 = get_phys_addr_code(env, virt_page2);
113
                if (tb->page_addr[1] == phys_page2)
114
                    goto found;
115
            } else {
116
                goto found;
117
            }
118
        }
119
        ptb1 = &tb->phys_hash_next;
120
    }
121
 not_found:
122
    /* if no translated code available, then translate it now */
123
    tb = tb_alloc(pc);
124
    if (!tb) {
125
        /* flush must be done */
126
        tb_flush(env);
127
        /* cannot fail at this point */
128
        tb = tb_alloc(pc);
129
        /* don't forget to invalidate previous TB info */
130
        tb_invalidated_flag = 1;
131
    }
132
    tc_ptr = code_gen_ptr;
133
    tb->tc_ptr = tc_ptr;
134
    tb->cs_base = cs_base;
135
    tb->flags = flags;
136
    cpu_gen_code(env, tb, CODE_GEN_MAX_SIZE, &code_gen_size);
137
    code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
138
    
139
    /* check next page if needed */
140
    virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
141
    phys_page2 = -1;
142
    if ((pc & TARGET_PAGE_MASK) != virt_page2) {
143
        phys_page2 = get_phys_addr_code(env, virt_page2);
144
    }
145
    tb_link_phys(tb, phys_pc, phys_page2);
146
    
147
 found:
148
    /* we add the TB in the virtual pc hash table */
149
    env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb;
150
    spin_unlock(&tb_lock);
151
    return tb;
152
}
153

    
154
static inline TranslationBlock *tb_find_fast(void)
155
{
156
    TranslationBlock *tb;
157
    target_ulong cs_base, pc;
158
    unsigned int flags;
159

    
160
    /* we record a subset of the CPU state. It will
161
       always be the same before a given translated block
162
       is executed. */
163
#if defined(TARGET_I386)
164
    flags = env->hflags;
165
    flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
166
    cs_base = env->segs[R_CS].base;
167
    pc = cs_base + env->eip;
168
#elif defined(TARGET_ARM)
169
    flags = env->thumb | (env->vfp.vec_len << 1)
170
            | (env->vfp.vec_stride << 4);
171
    if ((env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR)
172
        flags |= (1 << 6);
173
    if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30))
174
        flags |= (1 << 7);
175
    cs_base = 0;
176
    pc = env->regs[15];
177
#elif defined(TARGET_SPARC)
178
#ifdef TARGET_SPARC64
179
    // Combined FPU enable bits . PRIV . DMMU enabled . IMMU enabled
180
    flags = (((env->pstate & PS_PEF) >> 1) | ((env->fprs & FPRS_FEF) << 2))
181
        | (env->pstate & PS_PRIV) | ((env->lsu & (DMMU_E | IMMU_E)) >> 2);
182
#else
183
    // FPU enable . MMU enabled . MMU no-fault . Supervisor
184
    flags = (env->psref << 3) | ((env->mmuregs[0] & (MMU_E | MMU_NF)) << 1)
185
        | env->psrs;
186
#endif
187
    cs_base = env->npc;
188
    pc = env->pc;
189
#elif defined(TARGET_PPC)
190
    flags = (msr_pr << MSR_PR) | (msr_fp << MSR_FP) |
191
        (msr_se << MSR_SE) | (msr_le << MSR_LE);
192
    cs_base = 0;
193
    pc = env->nip;
194
#elif defined(TARGET_MIPS)
195
    flags = env->hflags & (MIPS_HFLAG_TMASK | MIPS_HFLAG_BMASK);
196
    cs_base = 0;
197
    pc = env->PC;
198
#elif defined(TARGET_M68K)
199
    flags = (env->fpcr & M68K_FPCR_PREC) | (env->sr & SR_S);
200
    cs_base = 0;
201
    pc = env->pc;
202
#elif defined(TARGET_SH4)
203
    flags = env->sr & (SR_MD | SR_RB);
204
    cs_base = 0;         /* XXXXX */
205
    pc = env->pc;
206
#elif defined(TARGET_ALPHA)
207
    flags = env->ps;
208
    cs_base = 0;
209
    pc = env->pc;
210
#else
211
#error unsupported CPU
212
#endif
213
    tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)];
214
    if (__builtin_expect(!tb || tb->pc != pc || tb->cs_base != cs_base ||
215
                         tb->flags != flags, 0)) {
216
        tb = tb_find_slow(pc, cs_base, flags);
217
        /* Note: we do it here to avoid a gcc bug on Mac OS X when
218
           doing it in tb_find_slow */
219
        if (tb_invalidated_flag) {
220
            /* as some TB could have been invalidated because
221
               of memory exceptions while generating the code, we
222
               must recompute the hash index here */
223
            T0 = 0;
224
        }
225
    }
226
    return tb;
227
}
228

    
229

    
230
/* main execution loop */
231

    
232
int cpu_exec(CPUState *env1)
233
{
234
#define DECLARE_HOST_REGS 1
235
#include "hostregs_helper.h"
236
#if defined(TARGET_SPARC)
237
#if defined(reg_REGWPTR)
238
    uint32_t *saved_regwptr;
239
#endif
240
#endif
241
#if defined(__sparc__) && !defined(HOST_SOLARIS)
242
    int saved_i7;
243
    target_ulong tmp_T0;
244
#endif
245
    int ret, interrupt_request;
246
    void (*gen_func)(void);
247
    TranslationBlock *tb;
248
    uint8_t *tc_ptr;
249

    
250
#if defined(TARGET_I386)
251
    /* handle exit of HALTED state */
252
    if (env1->hflags & HF_HALTED_MASK) {
253
        /* disable halt condition */
254
        if ((env1->interrupt_request & CPU_INTERRUPT_HARD) &&
255
            (env1->eflags & IF_MASK)) {
256
            env1->hflags &= ~HF_HALTED_MASK;
257
        } else {
258
            return EXCP_HALTED;
259
        }
260
    }
261
#elif defined(TARGET_PPC)
262
    if (env1->halted) {
263
        if (env1->msr[MSR_EE] && 
264
            (env1->interrupt_request & CPU_INTERRUPT_HARD)) {
265
            env1->halted = 0;
266
        } else {
267
            return EXCP_HALTED;
268
        }
269
    }
270
#elif defined(TARGET_SPARC)
271
    if (env1->halted) {
272
        if ((env1->interrupt_request & CPU_INTERRUPT_HARD) &&
273
            (env1->psret != 0)) {
274
            env1->halted = 0;
275
        } else {
276
            return EXCP_HALTED;
277
        }
278
    }
279
#elif defined(TARGET_ARM)
280
    if (env1->halted) {
281
        /* An interrupt wakes the CPU even if the I and F CPSR bits are
282
           set.  We use EXITTB to silently wake CPU without causing an
283
           actual interrupt.  */
284
        if (env1->interrupt_request &
285
            (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXITTB)) {
286
            env1->halted = 0;
287
        } else {
288
            return EXCP_HALTED;
289
        }
290
    }
291
#elif defined(TARGET_MIPS)
292
    if (env1->halted) {
293
        if (env1->interrupt_request &
294
            (CPU_INTERRUPT_HARD | CPU_INTERRUPT_TIMER)) {
295
            env1->halted = 0;
296
        } else {
297
            return EXCP_HALTED;
298
        }
299
    }
300
#elif defined(TARGET_ALPHA) || defined(TARGET_M68K)
301
    if (env1->halted) {
302
        if (env1->interrupt_request & CPU_INTERRUPT_HARD) {
303
            env1->halted = 0;
304
        } else {
305
            return EXCP_HALTED;
306
        }
307
    }
308
#endif
309

    
310
    cpu_single_env = env1; 
311

    
312
    /* first we save global registers */
313
#define SAVE_HOST_REGS 1
314
#include "hostregs_helper.h"
315
    env = env1;
316
#if defined(__sparc__) && !defined(HOST_SOLARIS)
317
    /* we also save i7 because longjmp may not restore it */
318
    asm volatile ("mov %%i7, %0" : "=r" (saved_i7));
319
#endif
320

    
321
#if defined(TARGET_I386)
322
    env_to_regs();
323
    /* put eflags in CPU temporary format */
324
    CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
325
    DF = 1 - (2 * ((env->eflags >> 10) & 1));
326
    CC_OP = CC_OP_EFLAGS;
327
    env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
328
#elif defined(TARGET_ARM)
329
#elif defined(TARGET_SPARC)
330
#if defined(reg_REGWPTR)
331
    saved_regwptr = REGWPTR;
332
#endif
333
#elif defined(TARGET_PPC)
334
#elif defined(TARGET_M68K)
335
    env->cc_op = CC_OP_FLAGS;
336
    env->cc_dest = env->sr & 0xf;
337
    env->cc_x = (env->sr >> 4) & 1;
338
#elif defined(TARGET_MIPS)
339
#elif defined(TARGET_SH4)
340
    /* XXXXX */
341
#elif defined(TARGET_ALPHA)
342
    env_to_regs();
343
#else
344
#error unsupported target CPU
345
#endif
346
    env->exception_index = -1;
347

    
348
    /* prepare setjmp context for exception handling */
349
    for(;;) {
350
        if (setjmp(env->jmp_env) == 0) {
351
            env->current_tb = NULL;
352
            /* if an exception is pending, we execute it here */
353
            if (env->exception_index >= 0) {
354
                if (env->exception_index >= EXCP_INTERRUPT) {
355
                    /* exit request from the cpu execution loop */
356
                    ret = env->exception_index;
357
                    break;
358
                } else if (env->user_mode_only) {
359
                    /* if user mode only, we simulate a fake exception
360
                       which will be handled outside the cpu execution
361
                       loop */
362
#if defined(TARGET_I386)
363
                    do_interrupt_user(env->exception_index, 
364
                                      env->exception_is_int, 
365
                                      env->error_code, 
366
                                      env->exception_next_eip);
367
#endif
368
                    ret = env->exception_index;
369
                    break;
370
                } else {
371
#if defined(TARGET_I386)
372
                    /* simulate a real cpu exception. On i386, it can
373
                       trigger new exceptions, but we do not handle
374
                       double or triple faults yet. */
375
                    do_interrupt(env->exception_index, 
376
                                 env->exception_is_int, 
377
                                 env->error_code, 
378
                                 env->exception_next_eip, 0);
379
                    /* successfully delivered */
380
                    env->old_exception = -1;
381
#elif defined(TARGET_PPC)
382
                    do_interrupt(env);
383
#elif defined(TARGET_MIPS)
384
                    do_interrupt(env);
385
#elif defined(TARGET_SPARC)
386
                    do_interrupt(env->exception_index);
387
#elif defined(TARGET_ARM)
388
                    do_interrupt(env);
389
#elif defined(TARGET_SH4)
390
                    do_interrupt(env);
391
#elif defined(TARGET_ALPHA)
392
                    do_interrupt(env);
393
#elif defined(TARGET_M68K)
394
                    do_interrupt(0);
395
#endif
396
                }
397
                env->exception_index = -1;
398
            } 
399
#ifdef USE_KQEMU
400
            if (kqemu_is_ok(env) && env->interrupt_request == 0) {
401
                int ret;
402
                env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
403
                ret = kqemu_cpu_exec(env);
404
                /* put eflags in CPU temporary format */
405
                CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
406
                DF = 1 - (2 * ((env->eflags >> 10) & 1));
407
                CC_OP = CC_OP_EFLAGS;
408
                env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
409
                if (ret == 1) {
410
                    /* exception */
411
                    longjmp(env->jmp_env, 1);
412
                } else if (ret == 2) {
413
                    /* softmmu execution needed */
414
                } else {
415
                    if (env->interrupt_request != 0) {
416
                        /* hardware interrupt will be executed just after */
417
                    } else {
418
                        /* otherwise, we restart */
419
                        longjmp(env->jmp_env, 1);
420
                    }
421
                }
422
            }
423
#endif
424

    
425
            T0 = 0; /* force lookup of first TB */
426
            for(;;) {
427
#if defined(__sparc__) && !defined(HOST_SOLARIS)
428
                /* g1 can be modified by some libc? functions */ 
429
                tmp_T0 = T0;
430
#endif            
431
                interrupt_request = env->interrupt_request;
432
                if (__builtin_expect(interrupt_request, 0)) {
433
                    if (interrupt_request & CPU_INTERRUPT_DEBUG) {
434
                        env->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
435
                        env->exception_index = EXCP_DEBUG;
436
                        cpu_loop_exit();
437
                    }
438
#if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \
439
    defined(TARGET_PPC) || defined(TARGET_ALPHA)
440
                    if (interrupt_request & CPU_INTERRUPT_HALT) {
441
                        env->interrupt_request &= ~CPU_INTERRUPT_HALT;
442
                        env->halted = 1;
443
                        env->exception_index = EXCP_HLT;
444
                        cpu_loop_exit();
445
                    }
446
#endif
447
#if defined(TARGET_I386)
448
                    if ((interrupt_request & CPU_INTERRUPT_SMI) &&
449
                        !(env->hflags & HF_SMM_MASK)) {
450
                        env->interrupt_request &= ~CPU_INTERRUPT_SMI;
451
                        do_smm_enter();
452
#if defined(__sparc__) && !defined(HOST_SOLARIS)
453
                        tmp_T0 = 0;
454
#else
455
                        T0 = 0;
456
#endif
457
                    } else if ((interrupt_request & CPU_INTERRUPT_HARD) &&
458
                        (env->eflags & IF_MASK) && 
459
                        !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
460
                        int intno;
461
                        env->interrupt_request &= ~CPU_INTERRUPT_HARD;
462
                        intno = cpu_get_pic_interrupt(env);
463
                        if (loglevel & CPU_LOG_TB_IN_ASM) {
464
                            fprintf(logfile, "Servicing hardware INT=0x%02x\n", intno);
465
                        }
466
                        do_interrupt(intno, 0, 0, 0, 1);
467
                        /* ensure that no TB jump will be modified as
468
                           the program flow was changed */
469
#if defined(__sparc__) && !defined(HOST_SOLARIS)
470
                        tmp_T0 = 0;
471
#else
472
                        T0 = 0;
473
#endif
474
                    }
475
#elif defined(TARGET_PPC)
476
#if 0
477
                    if ((interrupt_request & CPU_INTERRUPT_RESET)) {
478
                        cpu_ppc_reset(env);
479
                    }
480
#endif
481
                    if (interrupt_request & CPU_INTERRUPT_HARD) {
482
                        ppc_hw_interrupt(env);
483
                        if (env->pending_interrupts == 0)
484
                            env->interrupt_request &= ~CPU_INTERRUPT_HARD;
485
#if defined(__sparc__) && !defined(HOST_SOLARIS)
486
                        tmp_T0 = 0;
487
#else
488
                        T0 = 0;
489
#endif
490
                    }
491
#elif defined(TARGET_MIPS)
492
                    if ((interrupt_request & CPU_INTERRUPT_HARD) &&
493
                        (env->CP0_Status & env->CP0_Cause & CP0Ca_IP_mask) &&
494
                        (env->CP0_Status & (1 << CP0St_IE)) &&
495
                        !(env->CP0_Status & (1 << CP0St_EXL)) &&
496
                        !(env->CP0_Status & (1 << CP0St_ERL)) &&
497
                        !(env->hflags & MIPS_HFLAG_DM)) {
498
                        /* Raise it */
499
                        env->exception_index = EXCP_EXT_INTERRUPT;
500
                        env->error_code = 0;
501
                        do_interrupt(env);
502
#if defined(__sparc__) && !defined(HOST_SOLARIS)
503
                        tmp_T0 = 0;
504
#else
505
                        T0 = 0;
506
#endif
507
                    }
508
#elif defined(TARGET_SPARC)
509
                    if ((interrupt_request & CPU_INTERRUPT_HARD) &&
510
                        (env->psret != 0)) {
511
                        int pil = env->interrupt_index & 15;
512
                        int type = env->interrupt_index & 0xf0;
513

    
514
                        if (((type == TT_EXTINT) &&
515
                             (pil == 15 || pil > env->psrpil)) ||
516
                            type != TT_EXTINT) {
517
                            env->interrupt_request &= ~CPU_INTERRUPT_HARD;
518
                            do_interrupt(env->interrupt_index);
519
                            env->interrupt_index = 0;
520
#if defined(__sparc__) && !defined(HOST_SOLARIS)
521
                            tmp_T0 = 0;
522
#else
523
                            T0 = 0;
524
#endif
525
                        }
526
                    } else if (interrupt_request & CPU_INTERRUPT_TIMER) {
527
                        //do_interrupt(0, 0, 0, 0, 0);
528
                        env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
529
                    }
530
#elif defined(TARGET_ARM)
531
                    if (interrupt_request & CPU_INTERRUPT_FIQ
532
                        && !(env->uncached_cpsr & CPSR_F)) {
533
                        env->exception_index = EXCP_FIQ;
534
                        do_interrupt(env);
535
                    }
536
                    if (interrupt_request & CPU_INTERRUPT_HARD
537
                        && !(env->uncached_cpsr & CPSR_I)) {
538
                        env->exception_index = EXCP_IRQ;
539
                        do_interrupt(env);
540
                    }
541
#elif defined(TARGET_SH4)
542
                    /* XXXXX */
543
#elif defined(TARGET_ALPHA)
544
                    if (interrupt_request & CPU_INTERRUPT_HARD) {
545
                        do_interrupt(env);
546
                    }
547
#elif defined(TARGET_M68K)
548
                    if (interrupt_request & CPU_INTERRUPT_HARD
549
                        && ((env->sr & SR_I) >> SR_I_SHIFT)
550
                            < env->pending_level) {
551
                        /* Real hardware gets the interrupt vector via an
552
                           IACK cycle at this point.  Current emulated
553
                           hardware doesn't rely on this, so we
554
                           provide/save the vector when the interrupt is
555
                           first signalled.  */
556
                        env->exception_index = env->pending_vector;
557
                        do_interrupt(1);
558
                    }
559
#endif
560
                   /* Don't use the cached interupt_request value,
561
                      do_interrupt may have updated the EXITTB flag. */
562
                    if (env->interrupt_request & CPU_INTERRUPT_EXITTB) {
563
                        env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
564
                        /* ensure that no TB jump will be modified as
565
                           the program flow was changed */
566
#if defined(__sparc__) && !defined(HOST_SOLARIS)
567
                        tmp_T0 = 0;
568
#else
569
                        T0 = 0;
570
#endif
571
                    }
572
                    if (interrupt_request & CPU_INTERRUPT_EXIT) {
573
                        env->interrupt_request &= ~CPU_INTERRUPT_EXIT;
574
                        env->exception_index = EXCP_INTERRUPT;
575
                        cpu_loop_exit();
576
                    }
577
                }
578
#ifdef DEBUG_EXEC
579
                if ((loglevel & CPU_LOG_TB_CPU)) {
580
#if defined(TARGET_I386)
581
                    /* restore flags in standard format */
582
#ifdef reg_EAX
583
                    env->regs[R_EAX] = EAX;
584
#endif
585
#ifdef reg_EBX
586
                    env->regs[R_EBX] = EBX;
587
#endif
588
#ifdef reg_ECX
589
                    env->regs[R_ECX] = ECX;
590
#endif
591
#ifdef reg_EDX
592
                    env->regs[R_EDX] = EDX;
593
#endif
594
#ifdef reg_ESI
595
                    env->regs[R_ESI] = ESI;
596
#endif
597
#ifdef reg_EDI
598
                    env->regs[R_EDI] = EDI;
599
#endif
600
#ifdef reg_EBP
601
                    env->regs[R_EBP] = EBP;
602
#endif
603
#ifdef reg_ESP
604
                    env->regs[R_ESP] = ESP;
605
#endif
606
                    env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
607
                    cpu_dump_state(env, logfile, fprintf, X86_DUMP_CCOP);
608
                    env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
609
#elif defined(TARGET_ARM)
610
                    cpu_dump_state(env, logfile, fprintf, 0);
611
#elif defined(TARGET_SPARC)
612
                    REGWPTR = env->regbase + (env->cwp * 16);
613
                    env->regwptr = REGWPTR;
614
                    cpu_dump_state(env, logfile, fprintf, 0);
615
#elif defined(TARGET_PPC)
616
                    cpu_dump_state(env, logfile, fprintf, 0);
617
#elif defined(TARGET_M68K)
618
                    cpu_m68k_flush_flags(env, env->cc_op);
619
                    env->cc_op = CC_OP_FLAGS;
620
                    env->sr = (env->sr & 0xffe0)
621
                              | env->cc_dest | (env->cc_x << 4);
622
                    cpu_dump_state(env, logfile, fprintf, 0);
623
#elif defined(TARGET_MIPS)
624
                    cpu_dump_state(env, logfile, fprintf, 0);
625
#elif defined(TARGET_SH4)
626
                    cpu_dump_state(env, logfile, fprintf, 0);
627
#elif defined(TARGET_ALPHA)
628
                    cpu_dump_state(env, logfile, fprintf, 0);
629
#else
630
#error unsupported target CPU 
631
#endif
632
                }
633
#endif
634
                tb = tb_find_fast();
635
#ifdef DEBUG_EXEC
636
                if ((loglevel & CPU_LOG_EXEC)) {
637
                    fprintf(logfile, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n",
638
                            (long)tb->tc_ptr, tb->pc,
639
                            lookup_symbol(tb->pc));
640
                }
641
#endif
642
#if defined(__sparc__) && !defined(HOST_SOLARIS)
643
                T0 = tmp_T0;
644
#endif            
645
                /* see if we can patch the calling TB. When the TB
646
                   spans two pages, we cannot safely do a direct
647
                   jump. */
648
                {
649
                    if (T0 != 0 &&
650
#if USE_KQEMU
651
                        (env->kqemu_enabled != 2) &&
652
#endif
653
                        tb->page_addr[1] == -1
654
#if defined(TARGET_I386) && defined(USE_CODE_COPY)
655
                    && (tb->cflags & CF_CODE_COPY) == 
656
                    (((TranslationBlock *)(T0 & ~3))->cflags & CF_CODE_COPY)
657
#endif
658
                    ) {
659
                    spin_lock(&tb_lock);
660
                    tb_add_jump((TranslationBlock *)(long)(T0 & ~3), T0 & 3, tb);
661
#if defined(USE_CODE_COPY)
662
                    /* propagates the FP use info */
663
                    ((TranslationBlock *)(T0 & ~3))->cflags |= 
664
                        (tb->cflags & CF_FP_USED);
665
#endif
666
                    spin_unlock(&tb_lock);
667
                }
668
                }
669
                tc_ptr = tb->tc_ptr;
670
                env->current_tb = tb;
671
                /* execute the generated code */
672
                gen_func = (void *)tc_ptr;
673
#if defined(__sparc__)
674
                __asm__ __volatile__("call        %0\n\t"
675
                                     "mov        %%o7,%%i0"
676
                                     : /* no outputs */
677
                                     : "r" (gen_func) 
678
                                     : "i0", "i1", "i2", "i3", "i4", "i5",
679
                                       "o0", "o1", "o2", "o3", "o4", "o5",
680
                                       "l0", "l1", "l2", "l3", "l4", "l5",
681
                                       "l6", "l7");
682
#elif defined(__arm__)
683
                asm volatile ("mov pc, %0\n\t"
684
                              ".global exec_loop\n\t"
685
                              "exec_loop:\n\t"
686
                              : /* no outputs */
687
                              : "r" (gen_func)
688
                              : "r1", "r2", "r3", "r8", "r9", "r10", "r12", "r14");
689
#elif defined(TARGET_I386) && defined(USE_CODE_COPY)
690
{
691
    if (!(tb->cflags & CF_CODE_COPY)) {
692
        if ((tb->cflags & CF_FP_USED) && env->native_fp_regs) {
693
            save_native_fp_state(env);
694
        }
695
        gen_func();
696
    } else {
697
        if ((tb->cflags & CF_FP_USED) && !env->native_fp_regs) {
698
            restore_native_fp_state(env);
699
        }
700
        /* we work with native eflags */
701
        CC_SRC = cc_table[CC_OP].compute_all();
702
        CC_OP = CC_OP_EFLAGS;
703
        asm(".globl exec_loop\n"
704
            "\n"
705
            "debug1:\n"
706
            "    pushl %%ebp\n"
707
            "    fs movl %10, %9\n"
708
            "    fs movl %11, %%eax\n"
709
            "    andl $0x400, %%eax\n"
710
            "    fs orl %8, %%eax\n"
711
            "    pushl %%eax\n"
712
            "    popf\n"
713
            "    fs movl %%esp, %12\n"
714
            "    fs movl %0, %%eax\n"
715
            "    fs movl %1, %%ecx\n"
716
            "    fs movl %2, %%edx\n"
717
            "    fs movl %3, %%ebx\n"
718
            "    fs movl %4, %%esp\n"
719
            "    fs movl %5, %%ebp\n"
720
            "    fs movl %6, %%esi\n"
721
            "    fs movl %7, %%edi\n"
722
            "    fs jmp *%9\n"
723
            "exec_loop:\n"
724
            "    fs movl %%esp, %4\n"
725
            "    fs movl %12, %%esp\n"
726
            "    fs movl %%eax, %0\n"
727
            "    fs movl %%ecx, %1\n"
728
            "    fs movl %%edx, %2\n"
729
            "    fs movl %%ebx, %3\n"
730
            "    fs movl %%ebp, %5\n"
731
            "    fs movl %%esi, %6\n"
732
            "    fs movl %%edi, %7\n"
733
            "    pushf\n"
734
            "    popl %%eax\n"
735
            "    movl %%eax, %%ecx\n"
736
            "    andl $0x400, %%ecx\n"
737
            "    shrl $9, %%ecx\n"
738
            "    andl $0x8d5, %%eax\n"
739
            "    fs movl %%eax, %8\n"
740
            "    movl $1, %%eax\n"
741
            "    subl %%ecx, %%eax\n"
742
            "    fs movl %%eax, %11\n"
743
            "    fs movl %9, %%ebx\n" /* get T0 value */
744
            "    popl %%ebp\n"
745
            :
746
            : "m" (*(uint8_t *)offsetof(CPUState, regs[0])),
747
            "m" (*(uint8_t *)offsetof(CPUState, regs[1])),
748
            "m" (*(uint8_t *)offsetof(CPUState, regs[2])),
749
            "m" (*(uint8_t *)offsetof(CPUState, regs[3])),
750
            "m" (*(uint8_t *)offsetof(CPUState, regs[4])),
751
            "m" (*(uint8_t *)offsetof(CPUState, regs[5])),
752
            "m" (*(uint8_t *)offsetof(CPUState, regs[6])),
753
            "m" (*(uint8_t *)offsetof(CPUState, regs[7])),
754
            "m" (*(uint8_t *)offsetof(CPUState, cc_src)),
755
            "m" (*(uint8_t *)offsetof(CPUState, tmp0)),
756
            "a" (gen_func),
757
            "m" (*(uint8_t *)offsetof(CPUState, df)),
758
            "m" (*(uint8_t *)offsetof(CPUState, saved_esp))
759
            : "%ecx", "%edx"
760
            );
761
    }
762
}
763
#elif defined(__ia64)
764
                struct fptr {
765
                        void *ip;
766
                        void *gp;
767
                } fp;
768

    
769
                fp.ip = tc_ptr;
770
                fp.gp = code_gen_buffer + 2 * (1 << 20);
771
                (*(void (*)(void)) &fp)();
772
#else
773
                gen_func();
774
#endif
775
                env->current_tb = NULL;
776
                /* reset soft MMU for next block (it can currently
777
                   only be set by a memory fault) */
778
#if defined(TARGET_I386) && !defined(CONFIG_SOFTMMU)
779
                if (env->hflags & HF_SOFTMMU_MASK) {
780
                    env->hflags &= ~HF_SOFTMMU_MASK;
781
                    /* do not allow linking to another block */
782
                    T0 = 0;
783
                }
784
#endif
785
#if defined(USE_KQEMU)
786
#define MIN_CYCLE_BEFORE_SWITCH (100 * 1000)
787
                if (kqemu_is_ok(env) &&
788
                    (cpu_get_time_fast() - env->last_io_time) >= MIN_CYCLE_BEFORE_SWITCH) {
789
                    cpu_loop_exit();
790
                }
791
#endif
792
            }
793
        } else {
794
            env_to_regs();
795
        }
796
    } /* for(;;) */
797

    
798

    
799
#if defined(TARGET_I386)
800
#if defined(USE_CODE_COPY)
801
    if (env->native_fp_regs) {
802
        save_native_fp_state(env);
803
    }
804
#endif
805
    /* restore flags in standard format */
806
    env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
807
#elif defined(TARGET_ARM)
808
    /* XXX: Save/restore host fpu exception state?.  */
809
#elif defined(TARGET_SPARC)
810
#if defined(reg_REGWPTR)
811
    REGWPTR = saved_regwptr;
812
#endif
813
#elif defined(TARGET_PPC)
814
#elif defined(TARGET_M68K)
815
    cpu_m68k_flush_flags(env, env->cc_op);
816
    env->cc_op = CC_OP_FLAGS;
817
    env->sr = (env->sr & 0xffe0)
818
              | env->cc_dest | (env->cc_x << 4);
819
#elif defined(TARGET_MIPS)
820
#elif defined(TARGET_SH4)
821
#elif defined(TARGET_ALPHA)
822
    /* XXXXX */
823
#else
824
#error unsupported target CPU
825
#endif
826

    
827
    /* restore global registers */
828
#if defined(__sparc__) && !defined(HOST_SOLARIS)
829
    asm volatile ("mov %0, %%i7" : : "r" (saved_i7));
830
#endif
831
#include "hostregs_helper.h"
832

    
833
    /* fail safe : never use cpu_single_env outside cpu_exec() */
834
    cpu_single_env = NULL; 
835
    return ret;
836
}
837

    
838
/* must only be called from the generated code as an exception can be
839
   generated */
840
void tb_invalidate_page_range(target_ulong start, target_ulong end)
841
{
842
    /* XXX: cannot enable it yet because it yields to MMU exception
843
       where NIP != read address on PowerPC */
844
#if 0
845
    target_ulong phys_addr;
846
    phys_addr = get_phys_addr_code(env, start);
847
    tb_invalidate_phys_page_range(phys_addr, phys_addr + end - start, 0);
848
#endif
849
}
850

    
851
#if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
852

    
853
void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
854
{
855
    CPUX86State *saved_env;
856

    
857
    saved_env = env;
858
    env = s;
859
    if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
860
        selector &= 0xffff;
861
        cpu_x86_load_seg_cache(env, seg_reg, selector, 
862
                               (selector << 4), 0xffff, 0);
863
    } else {
864
        load_seg(seg_reg, selector);
865
    }
866
    env = saved_env;
867
}
868

    
869
void cpu_x86_fsave(CPUX86State *s, uint8_t *ptr, int data32)
870
{
871
    CPUX86State *saved_env;
872

    
873
    saved_env = env;
874
    env = s;
875
    
876
    helper_fsave((target_ulong)ptr, data32);
877

    
878
    env = saved_env;
879
}
880

    
881
void cpu_x86_frstor(CPUX86State *s, uint8_t *ptr, int data32)
882
{
883
    CPUX86State *saved_env;
884

    
885
    saved_env = env;
886
    env = s;
887
    
888
    helper_frstor((target_ulong)ptr, data32);
889

    
890
    env = saved_env;
891
}
892

    
893
#endif /* TARGET_I386 */
894

    
895
#if !defined(CONFIG_SOFTMMU)
896

    
897
#if defined(TARGET_I386)
898

    
899
/* 'pc' is the host PC at which the exception was raised. 'address' is
900
   the effective address of the memory exception. 'is_write' is 1 if a
901
   write caused the exception and otherwise 0'. 'old_set' is the
902
   signal set which should be restored */
903
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
904
                                    int is_write, sigset_t *old_set, 
905
                                    void *puc)
906
{
907
    TranslationBlock *tb;
908
    int ret;
909

    
910
    if (cpu_single_env)
911
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
912
#if defined(DEBUG_SIGNAL)
913
    qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
914
                pc, address, is_write, *(unsigned long *)old_set);
915
#endif
916
    /* XXX: locking issue */
917
    if (is_write && page_unprotect(h2g(address), pc, puc)) {
918
        return 1;
919
    }
920

    
921
    /* see if it is an MMU fault */
922
    ret = cpu_x86_handle_mmu_fault(env, address, is_write, 
923
                                   ((env->hflags & HF_CPL_MASK) == 3), 0);
924
    if (ret < 0)
925
        return 0; /* not an MMU fault */
926
    if (ret == 0)
927
        return 1; /* the MMU fault was handled without causing real CPU fault */
928
    /* now we have a real cpu fault */
929
    tb = tb_find_pc(pc);
930
    if (tb) {
931
        /* the PC is inside the translated code. It means that we have
932
           a virtual CPU fault */
933
        cpu_restore_state(tb, env, pc, puc);
934
    }
935
    if (ret == 1) {
936
#if 0
937
        printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n", 
938
               env->eip, env->cr[2], env->error_code);
939
#endif
940
        /* we restore the process signal mask as the sigreturn should
941
           do it (XXX: use sigsetjmp) */
942
        sigprocmask(SIG_SETMASK, old_set, NULL);
943
        raise_exception_err(env->exception_index, env->error_code);
944
    } else {
945
        /* activate soft MMU for this block */
946
        env->hflags |= HF_SOFTMMU_MASK;
947
        cpu_resume_from_signal(env, puc);
948
    }
949
    /* never comes here */
950
    return 1;
951
}
952

    
953
#elif defined(TARGET_ARM)
954
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
955
                                    int is_write, sigset_t *old_set,
956
                                    void *puc)
957
{
958
    TranslationBlock *tb;
959
    int ret;
960

    
961
    if (cpu_single_env)
962
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
963
#if defined(DEBUG_SIGNAL)
964
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
965
           pc, address, is_write, *(unsigned long *)old_set);
966
#endif
967
    /* XXX: locking issue */
968
    if (is_write && page_unprotect(h2g(address), pc, puc)) {
969
        return 1;
970
    }
971
    /* see if it is an MMU fault */
972
    ret = cpu_arm_handle_mmu_fault(env, address, is_write, 1, 0);
973
    if (ret < 0)
974
        return 0; /* not an MMU fault */
975
    if (ret == 0)
976
        return 1; /* the MMU fault was handled without causing real CPU fault */
977
    /* now we have a real cpu fault */
978
    tb = tb_find_pc(pc);
979
    if (tb) {
980
        /* the PC is inside the translated code. It means that we have
981
           a virtual CPU fault */
982
        cpu_restore_state(tb, env, pc, puc);
983
    }
984
    /* we restore the process signal mask as the sigreturn should
985
       do it (XXX: use sigsetjmp) */
986
    sigprocmask(SIG_SETMASK, old_set, NULL);
987
    cpu_loop_exit();
988
}
989
#elif defined(TARGET_SPARC)
990
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
991
                                    int is_write, sigset_t *old_set,
992
                                    void *puc)
993
{
994
    TranslationBlock *tb;
995
    int ret;
996

    
997
    if (cpu_single_env)
998
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
999
#if defined(DEBUG_SIGNAL)
1000
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
1001
           pc, address, is_write, *(unsigned long *)old_set);
1002
#endif
1003
    /* XXX: locking issue */
1004
    if (is_write && page_unprotect(h2g(address), pc, puc)) {
1005
        return 1;
1006
    }
1007
    /* see if it is an MMU fault */
1008
    ret = cpu_sparc_handle_mmu_fault(env, address, is_write, 1, 0);
1009
    if (ret < 0)
1010
        return 0; /* not an MMU fault */
1011
    if (ret == 0)
1012
        return 1; /* the MMU fault was handled without causing real CPU fault */
1013
    /* now we have a real cpu fault */
1014
    tb = tb_find_pc(pc);
1015
    if (tb) {
1016
        /* the PC is inside the translated code. It means that we have
1017
           a virtual CPU fault */
1018
        cpu_restore_state(tb, env, pc, puc);
1019
    }
1020
    /* we restore the process signal mask as the sigreturn should
1021
       do it (XXX: use sigsetjmp) */
1022
    sigprocmask(SIG_SETMASK, old_set, NULL);
1023
    cpu_loop_exit();
1024
}
1025
#elif defined (TARGET_PPC)
1026
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1027
                                    int is_write, sigset_t *old_set,
1028
                                    void *puc)
1029
{
1030
    TranslationBlock *tb;
1031
    int ret;
1032
    
1033
    if (cpu_single_env)
1034
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
1035
#if defined(DEBUG_SIGNAL)
1036
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
1037
           pc, address, is_write, *(unsigned long *)old_set);
1038
#endif
1039
    /* XXX: locking issue */
1040
    if (is_write && page_unprotect(h2g(address), pc, puc)) {
1041
        return 1;
1042
    }
1043

    
1044
    /* see if it is an MMU fault */
1045
    ret = cpu_ppc_handle_mmu_fault(env, address, is_write, msr_pr, 0);
1046
    if (ret < 0)
1047
        return 0; /* not an MMU fault */
1048
    if (ret == 0)
1049
        return 1; /* the MMU fault was handled without causing real CPU fault */
1050

    
1051
    /* now we have a real cpu fault */
1052
    tb = tb_find_pc(pc);
1053
    if (tb) {
1054
        /* the PC is inside the translated code. It means that we have
1055
           a virtual CPU fault */
1056
        cpu_restore_state(tb, env, pc, puc);
1057
    }
1058
    if (ret == 1) {
1059
#if 0
1060
        printf("PF exception: NIP=0x%08x error=0x%x %p\n", 
1061
               env->nip, env->error_code, tb);
1062
#endif
1063
    /* we restore the process signal mask as the sigreturn should
1064
       do it (XXX: use sigsetjmp) */
1065
        sigprocmask(SIG_SETMASK, old_set, NULL);
1066
        do_raise_exception_err(env->exception_index, env->error_code);
1067
    } else {
1068
        /* activate soft MMU for this block */
1069
        cpu_resume_from_signal(env, puc);
1070
    }
1071
    /* never comes here */
1072
    return 1;
1073
}
1074

    
1075
#elif defined(TARGET_M68K)
1076
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1077
                                    int is_write, sigset_t *old_set,
1078
                                    void *puc)
1079
{
1080
    TranslationBlock *tb;
1081
    int ret;
1082

    
1083
    if (cpu_single_env)
1084
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
1085
#if defined(DEBUG_SIGNAL)
1086
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
1087
           pc, address, is_write, *(unsigned long *)old_set);
1088
#endif
1089
    /* XXX: locking issue */
1090
    if (is_write && page_unprotect(address, pc, puc)) {
1091
        return 1;
1092
    }
1093
    /* see if it is an MMU fault */
1094
    ret = cpu_m68k_handle_mmu_fault(env, address, is_write, 1, 0);
1095
    if (ret < 0)
1096
        return 0; /* not an MMU fault */
1097
    if (ret == 0)
1098
        return 1; /* the MMU fault was handled without causing real CPU fault */
1099
    /* now we have a real cpu fault */
1100
    tb = tb_find_pc(pc);
1101
    if (tb) {
1102
        /* the PC is inside the translated code. It means that we have
1103
           a virtual CPU fault */
1104
        cpu_restore_state(tb, env, pc, puc);
1105
    }
1106
    /* we restore the process signal mask as the sigreturn should
1107
       do it (XXX: use sigsetjmp) */
1108
    sigprocmask(SIG_SETMASK, old_set, NULL);
1109
    cpu_loop_exit();
1110
    /* never comes here */
1111
    return 1;
1112
}
1113

    
1114
#elif defined (TARGET_MIPS)
1115
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1116
                                    int is_write, sigset_t *old_set,
1117
                                    void *puc)
1118
{
1119
    TranslationBlock *tb;
1120
    int ret;
1121
    
1122
    if (cpu_single_env)
1123
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
1124
#if defined(DEBUG_SIGNAL)
1125
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
1126
           pc, address, is_write, *(unsigned long *)old_set);
1127
#endif
1128
    /* XXX: locking issue */
1129
    if (is_write && page_unprotect(h2g(address), pc, puc)) {
1130
        return 1;
1131
    }
1132

    
1133
    /* see if it is an MMU fault */
1134
    ret = cpu_mips_handle_mmu_fault(env, address, is_write, 1, 0);
1135
    if (ret < 0)
1136
        return 0; /* not an MMU fault */
1137
    if (ret == 0)
1138
        return 1; /* the MMU fault was handled without causing real CPU fault */
1139

    
1140
    /* now we have a real cpu fault */
1141
    tb = tb_find_pc(pc);
1142
    if (tb) {
1143
        /* the PC is inside the translated code. It means that we have
1144
           a virtual CPU fault */
1145
        cpu_restore_state(tb, env, pc, puc);
1146
    }
1147
    if (ret == 1) {
1148
#if 0
1149
        printf("PF exception: PC=0x" TARGET_FMT_lx " error=0x%x %p\n", 
1150
               env->PC, env->error_code, tb);
1151
#endif
1152
    /* we restore the process signal mask as the sigreturn should
1153
       do it (XXX: use sigsetjmp) */
1154
        sigprocmask(SIG_SETMASK, old_set, NULL);
1155
        do_raise_exception_err(env->exception_index, env->error_code);
1156
    } else {
1157
        /* activate soft MMU for this block */
1158
        cpu_resume_from_signal(env, puc);
1159
    }
1160
    /* never comes here */
1161
    return 1;
1162
}
1163

    
1164
#elif defined (TARGET_SH4)
1165
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1166
                                    int is_write, sigset_t *old_set,
1167
                                    void *puc)
1168
{
1169
    TranslationBlock *tb;
1170
    int ret;
1171
    
1172
    if (cpu_single_env)
1173
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
1174
#if defined(DEBUG_SIGNAL)
1175
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
1176
           pc, address, is_write, *(unsigned long *)old_set);
1177
#endif
1178
    /* XXX: locking issue */
1179
    if (is_write && page_unprotect(h2g(address), pc, puc)) {
1180
        return 1;
1181
    }
1182

    
1183
    /* see if it is an MMU fault */
1184
    ret = cpu_sh4_handle_mmu_fault(env, address, is_write, 1, 0);
1185
    if (ret < 0)
1186
        return 0; /* not an MMU fault */
1187
    if (ret == 0)
1188
        return 1; /* the MMU fault was handled without causing real CPU fault */
1189

    
1190
    /* now we have a real cpu fault */
1191
    tb = tb_find_pc(pc);
1192
    if (tb) {
1193
        /* the PC is inside the translated code. It means that we have
1194
           a virtual CPU fault */
1195
        cpu_restore_state(tb, env, pc, puc);
1196
    }
1197
#if 0
1198
        printf("PF exception: NIP=0x%08x error=0x%x %p\n", 
1199
               env->nip, env->error_code, tb);
1200
#endif
1201
    /* we restore the process signal mask as the sigreturn should
1202
       do it (XXX: use sigsetjmp) */
1203
    sigprocmask(SIG_SETMASK, old_set, NULL);
1204
    cpu_loop_exit();
1205
    /* never comes here */
1206
    return 1;
1207
}
1208

    
1209
#elif defined (TARGET_ALPHA)
1210
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1211
                                    int is_write, sigset_t *old_set,
1212
                                    void *puc)
1213
{
1214
    TranslationBlock *tb;
1215
    int ret;
1216
    
1217
    if (cpu_single_env)
1218
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
1219
#if defined(DEBUG_SIGNAL)
1220
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
1221
           pc, address, is_write, *(unsigned long *)old_set);
1222
#endif
1223
    /* XXX: locking issue */
1224
    if (is_write && page_unprotect(h2g(address), pc, puc)) {
1225
        return 1;
1226
    }
1227

    
1228
    /* see if it is an MMU fault */
1229
    ret = cpu_alpha_handle_mmu_fault(env, address, is_write, 1, 0);
1230
    if (ret < 0)
1231
        return 0; /* not an MMU fault */
1232
    if (ret == 0)
1233
        return 1; /* the MMU fault was handled without causing real CPU fault */
1234

    
1235
    /* now we have a real cpu fault */
1236
    tb = tb_find_pc(pc);
1237
    if (tb) {
1238
        /* the PC is inside the translated code. It means that we have
1239
           a virtual CPU fault */
1240
        cpu_restore_state(tb, env, pc, puc);
1241
    }
1242
#if 0
1243
        printf("PF exception: NIP=0x%08x error=0x%x %p\n", 
1244
               env->nip, env->error_code, tb);
1245
#endif
1246
    /* we restore the process signal mask as the sigreturn should
1247
       do it (XXX: use sigsetjmp) */
1248
    sigprocmask(SIG_SETMASK, old_set, NULL);
1249
    cpu_loop_exit();
1250
    /* never comes here */
1251
    return 1;
1252
}
1253
#else
1254
#error unsupported target CPU
1255
#endif
1256

    
1257
#if defined(__i386__)
1258

    
1259
#if defined(__APPLE__)
1260
# include <sys/ucontext.h>
1261

    
1262
# define EIP_sig(context)  (*((unsigned long*)&(context)->uc_mcontext->ss.eip))
1263
# define TRAP_sig(context)    ((context)->uc_mcontext->es.trapno)
1264
# define ERROR_sig(context)   ((context)->uc_mcontext->es.err)
1265
#else
1266
# define EIP_sig(context)     ((context)->uc_mcontext.gregs[REG_EIP])
1267
# define TRAP_sig(context)    ((context)->uc_mcontext.gregs[REG_TRAPNO])
1268
# define ERROR_sig(context)   ((context)->uc_mcontext.gregs[REG_ERR])
1269
#endif
1270

    
1271
#if defined(USE_CODE_COPY)
1272
static void cpu_send_trap(unsigned long pc, int trap, 
1273
                          struct ucontext *uc)
1274
{
1275
    TranslationBlock *tb;
1276

    
1277
    if (cpu_single_env)
1278
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
1279
    /* now we have a real cpu fault */
1280
    tb = tb_find_pc(pc);
1281
    if (tb) {
1282
        /* the PC is inside the translated code. It means that we have
1283
           a virtual CPU fault */
1284
        cpu_restore_state(tb, env, pc, uc);
1285
    }
1286
    sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
1287
    raise_exception_err(trap, env->error_code);
1288
}
1289
#endif
1290

    
1291
int cpu_signal_handler(int host_signum, void *pinfo, 
1292
                       void *puc)
1293
{
1294
    siginfo_t *info = pinfo;
1295
    struct ucontext *uc = puc;
1296
    unsigned long pc;
1297
    int trapno;
1298

    
1299
#ifndef REG_EIP
1300
/* for glibc 2.1 */
1301
#define REG_EIP    EIP
1302
#define REG_ERR    ERR
1303
#define REG_TRAPNO TRAPNO
1304
#endif
1305
    pc = EIP_sig(uc);
1306
    trapno = TRAP_sig(uc);
1307
#if defined(TARGET_I386) && defined(USE_CODE_COPY)
1308
    if (trapno == 0x00 || trapno == 0x05) {
1309
        /* send division by zero or bound exception */
1310
        cpu_send_trap(pc, trapno, uc);
1311
        return 1;
1312
    } else
1313
#endif
1314
        return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1315
                                 trapno == 0xe ? 
1316
                                 (ERROR_sig(uc) >> 1) & 1 : 0,
1317
                                 &uc->uc_sigmask, puc);
1318
}
1319

    
1320
#elif defined(__x86_64__)
1321

    
1322
int cpu_signal_handler(int host_signum, void *pinfo,
1323
                       void *puc)
1324
{
1325
    siginfo_t *info = pinfo;
1326
    struct ucontext *uc = puc;
1327
    unsigned long pc;
1328

    
1329
    pc = uc->uc_mcontext.gregs[REG_RIP];
1330
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1331
                             uc->uc_mcontext.gregs[REG_TRAPNO] == 0xe ? 
1332
                             (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
1333
                             &uc->uc_sigmask, puc);
1334
}
1335

    
1336
#elif defined(__powerpc__)
1337

    
1338
/***********************************************************************
1339
 * signal context platform-specific definitions
1340
 * From Wine
1341
 */
1342
#ifdef linux
1343
/* All Registers access - only for local access */
1344
# define REG_sig(reg_name, context)                ((context)->uc_mcontext.regs->reg_name)
1345
/* Gpr Registers access  */
1346
# define GPR_sig(reg_num, context)                REG_sig(gpr[reg_num], context)
1347
# define IAR_sig(context)                        REG_sig(nip, context)        /* Program counter */
1348
# define MSR_sig(context)                        REG_sig(msr, context)   /* Machine State Register (Supervisor) */
1349
# define CTR_sig(context)                        REG_sig(ctr, context)   /* Count register */
1350
# define XER_sig(context)                        REG_sig(xer, context) /* User's integer exception register */
1351
# define LR_sig(context)                        REG_sig(link, context) /* Link register */
1352
# define CR_sig(context)                        REG_sig(ccr, context) /* Condition register */
1353
/* Float Registers access  */
1354
# define FLOAT_sig(reg_num, context)                (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
1355
# define FPSCR_sig(context)                        (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
1356
/* Exception Registers access */
1357
# define DAR_sig(context)                        REG_sig(dar, context)
1358
# define DSISR_sig(context)                        REG_sig(dsisr, context)
1359
# define TRAP_sig(context)                        REG_sig(trap, context)
1360
#endif /* linux */
1361

    
1362
#ifdef __APPLE__
1363
# include <sys/ucontext.h>
1364
typedef struct ucontext SIGCONTEXT;
1365
/* All Registers access - only for local access */
1366
# define REG_sig(reg_name, context)                ((context)->uc_mcontext->ss.reg_name)
1367
# define FLOATREG_sig(reg_name, context)        ((context)->uc_mcontext->fs.reg_name)
1368
# define EXCEPREG_sig(reg_name, context)        ((context)->uc_mcontext->es.reg_name)
1369
# define VECREG_sig(reg_name, context)                ((context)->uc_mcontext->vs.reg_name)
1370
/* Gpr Registers access */
1371
# define GPR_sig(reg_num, context)                REG_sig(r##reg_num, context)
1372
# define IAR_sig(context)                        REG_sig(srr0, context)        /* Program counter */
1373
# define MSR_sig(context)                        REG_sig(srr1, context)  /* Machine State Register (Supervisor) */
1374
# define CTR_sig(context)                        REG_sig(ctr, context)
1375
# define XER_sig(context)                        REG_sig(xer, context) /* Link register */
1376
# define LR_sig(context)                        REG_sig(lr, context)  /* User's integer exception register */
1377
# define CR_sig(context)                        REG_sig(cr, context)  /* Condition register */
1378
/* Float Registers access */
1379
# define FLOAT_sig(reg_num, context)                FLOATREG_sig(fpregs[reg_num], context)
1380
# define FPSCR_sig(context)                        ((double)FLOATREG_sig(fpscr, context))
1381
/* Exception Registers access */
1382
# define DAR_sig(context)                        EXCEPREG_sig(dar, context)     /* Fault registers for coredump */
1383
# define DSISR_sig(context)                        EXCEPREG_sig(dsisr, context)
1384
# define TRAP_sig(context)                        EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
1385
#endif /* __APPLE__ */
1386

    
1387
int cpu_signal_handler(int host_signum, void *pinfo, 
1388
                       void *puc)
1389
{
1390
    siginfo_t *info = pinfo;
1391
    struct ucontext *uc = puc;
1392
    unsigned long pc;
1393
    int is_write;
1394

    
1395
    pc = IAR_sig(uc);
1396
    is_write = 0;
1397
#if 0
1398
    /* ppc 4xx case */
1399
    if (DSISR_sig(uc) & 0x00800000)
1400
        is_write = 1;
1401
#else
1402
    if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000))
1403
        is_write = 1;
1404
#endif
1405
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1406
                             is_write, &uc->uc_sigmask, puc);
1407
}
1408

    
1409
#elif defined(__alpha__)
1410

    
1411
int cpu_signal_handler(int host_signum, void *pinfo, 
1412
                           void *puc)
1413
{
1414
    siginfo_t *info = pinfo;
1415
    struct ucontext *uc = puc;
1416
    uint32_t *pc = uc->uc_mcontext.sc_pc;
1417
    uint32_t insn = *pc;
1418
    int is_write = 0;
1419

    
1420
    /* XXX: need kernel patch to get write flag faster */
1421
    switch (insn >> 26) {
1422
    case 0x0d: // stw
1423
    case 0x0e: // stb
1424
    case 0x0f: // stq_u
1425
    case 0x24: // stf
1426
    case 0x25: // stg
1427
    case 0x26: // sts
1428
    case 0x27: // stt
1429
    case 0x2c: // stl
1430
    case 0x2d: // stq
1431
    case 0x2e: // stl_c
1432
    case 0x2f: // stq_c
1433
        is_write = 1;
1434
    }
1435

    
1436
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1437
                             is_write, &uc->uc_sigmask, puc);
1438
}
1439
#elif defined(__sparc__)
1440

    
1441
int cpu_signal_handler(int host_signum, void *pinfo, 
1442
                       void *puc)
1443
{
1444
    siginfo_t *info = pinfo;
1445
    uint32_t *regs = (uint32_t *)(info + 1);
1446
    void *sigmask = (regs + 20);
1447
    unsigned long pc;
1448
    int is_write;
1449
    uint32_t insn;
1450
    
1451
    /* XXX: is there a standard glibc define ? */
1452
    pc = regs[1];
1453
    /* XXX: need kernel patch to get write flag faster */
1454
    is_write = 0;
1455
    insn = *(uint32_t *)pc;
1456
    if ((insn >> 30) == 3) {
1457
      switch((insn >> 19) & 0x3f) {
1458
      case 0x05: // stb
1459
      case 0x06: // sth
1460
      case 0x04: // st
1461
      case 0x07: // std
1462
      case 0x24: // stf
1463
      case 0x27: // stdf
1464
      case 0x25: // stfsr
1465
        is_write = 1;
1466
        break;
1467
      }
1468
    }
1469
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1470
                             is_write, sigmask, NULL);
1471
}
1472

    
1473
#elif defined(__arm__)
1474

    
1475
int cpu_signal_handler(int host_signum, void *pinfo, 
1476
                       void *puc)
1477
{
1478
    siginfo_t *info = pinfo;
1479
    struct ucontext *uc = puc;
1480
    unsigned long pc;
1481
    int is_write;
1482
    
1483
    pc = uc->uc_mcontext.gregs[R15];
1484
    /* XXX: compute is_write */
1485
    is_write = 0;
1486
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1487
                             is_write,
1488
                             &uc->uc_sigmask, puc);
1489
}
1490

    
1491
#elif defined(__mc68000)
1492

    
1493
int cpu_signal_handler(int host_signum, void *pinfo, 
1494
                       void *puc)
1495
{
1496
    siginfo_t *info = pinfo;
1497
    struct ucontext *uc = puc;
1498
    unsigned long pc;
1499
    int is_write;
1500
    
1501
    pc = uc->uc_mcontext.gregs[16];
1502
    /* XXX: compute is_write */
1503
    is_write = 0;
1504
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1505
                             is_write,
1506
                             &uc->uc_sigmask, puc);
1507
}
1508

    
1509
#elif defined(__ia64)
1510

    
1511
#ifndef __ISR_VALID
1512
  /* This ought to be in <bits/siginfo.h>... */
1513
# define __ISR_VALID        1
1514
#endif
1515

    
1516
int cpu_signal_handler(int host_signum, void *pinfo, void *puc)
1517
{
1518
    siginfo_t *info = pinfo;
1519
    struct ucontext *uc = puc;
1520
    unsigned long ip;
1521
    int is_write = 0;
1522

    
1523
    ip = uc->uc_mcontext.sc_ip;
1524
    switch (host_signum) {
1525
      case SIGILL:
1526
      case SIGFPE:
1527
      case SIGSEGV:
1528
      case SIGBUS:
1529
      case SIGTRAP:
1530
          if (info->si_code && (info->si_segvflags & __ISR_VALID))
1531
              /* ISR.W (write-access) is bit 33:  */
1532
              is_write = (info->si_isr >> 33) & 1;
1533
          break;
1534

    
1535
      default:
1536
          break;
1537
    }
1538
    return handle_cpu_signal(ip, (unsigned long)info->si_addr,
1539
                             is_write,
1540
                             &uc->uc_sigmask, puc);
1541
}
1542

    
1543
#elif defined(__s390__)
1544

    
1545
int cpu_signal_handler(int host_signum, void *pinfo, 
1546
                       void *puc)
1547
{
1548
    siginfo_t *info = pinfo;
1549
    struct ucontext *uc = puc;
1550
    unsigned long pc;
1551
    int is_write;
1552
    
1553
    pc = uc->uc_mcontext.psw.addr;
1554
    /* XXX: compute is_write */
1555
    is_write = 0;
1556
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1557
                             is_write, &uc->uc_sigmask, puc);
1558
}
1559

    
1560
#elif defined(__mips__)
1561

    
1562
int cpu_signal_handler(int host_signum, void *pinfo, 
1563
                       void *puc)
1564
{
1565
    siginfo_t *info = pinfo;
1566
    struct ucontext *uc = puc;
1567
    greg_t pc = uc->uc_mcontext.pc;
1568
    int is_write;
1569
    
1570
    /* XXX: compute is_write */
1571
    is_write = 0;
1572
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1573
                             is_write, &uc->uc_sigmask, puc);
1574
}
1575

    
1576
#else
1577

    
1578
#error host CPU specific signal handler needed
1579

    
1580
#endif
1581

    
1582
#endif /* !defined(CONFIG_SOFTMMU) */