Statistics
| Branch: | Revision:

root / block / qed.c @ 6f6dc656

History | View | Annotate | Download (43.3 kB)

1
/*
2
 * QEMU Enhanced Disk Format
3
 *
4
 * Copyright IBM, Corp. 2010
5
 *
6
 * Authors:
7
 *  Stefan Hajnoczi   <stefanha@linux.vnet.ibm.com>
8
 *  Anthony Liguori   <aliguori@us.ibm.com>
9
 *
10
 * This work is licensed under the terms of the GNU LGPL, version 2 or later.
11
 * See the COPYING.LIB file in the top-level directory.
12
 *
13
 */
14

    
15
#include "qemu-timer.h"
16
#include "trace.h"
17
#include "qed.h"
18
#include "qerror.h"
19

    
20
static void qed_aio_cancel(BlockDriverAIOCB *blockacb)
21
{
22
    QEDAIOCB *acb = (QEDAIOCB *)blockacb;
23
    bool finished = false;
24

    
25
    /* Wait for the request to finish */
26
    acb->finished = &finished;
27
    while (!finished) {
28
        qemu_aio_wait();
29
    }
30
}
31

    
32
static AIOPool qed_aio_pool = {
33
    .aiocb_size         = sizeof(QEDAIOCB),
34
    .cancel             = qed_aio_cancel,
35
};
36

    
37
static int bdrv_qed_probe(const uint8_t *buf, int buf_size,
38
                          const char *filename)
39
{
40
    const QEDHeader *header = (const QEDHeader *)buf;
41

    
42
    if (buf_size < sizeof(*header)) {
43
        return 0;
44
    }
45
    if (le32_to_cpu(header->magic) != QED_MAGIC) {
46
        return 0;
47
    }
48
    return 100;
49
}
50

    
51
/**
52
 * Check whether an image format is raw
53
 *
54
 * @fmt:    Backing file format, may be NULL
55
 */
56
static bool qed_fmt_is_raw(const char *fmt)
57
{
58
    return fmt && strcmp(fmt, "raw") == 0;
59
}
60

    
61
static void qed_header_le_to_cpu(const QEDHeader *le, QEDHeader *cpu)
62
{
63
    cpu->magic = le32_to_cpu(le->magic);
64
    cpu->cluster_size = le32_to_cpu(le->cluster_size);
65
    cpu->table_size = le32_to_cpu(le->table_size);
66
    cpu->header_size = le32_to_cpu(le->header_size);
67
    cpu->features = le64_to_cpu(le->features);
68
    cpu->compat_features = le64_to_cpu(le->compat_features);
69
    cpu->autoclear_features = le64_to_cpu(le->autoclear_features);
70
    cpu->l1_table_offset = le64_to_cpu(le->l1_table_offset);
71
    cpu->image_size = le64_to_cpu(le->image_size);
72
    cpu->backing_filename_offset = le32_to_cpu(le->backing_filename_offset);
73
    cpu->backing_filename_size = le32_to_cpu(le->backing_filename_size);
74
}
75

    
76
static void qed_header_cpu_to_le(const QEDHeader *cpu, QEDHeader *le)
77
{
78
    le->magic = cpu_to_le32(cpu->magic);
79
    le->cluster_size = cpu_to_le32(cpu->cluster_size);
80
    le->table_size = cpu_to_le32(cpu->table_size);
81
    le->header_size = cpu_to_le32(cpu->header_size);
82
    le->features = cpu_to_le64(cpu->features);
83
    le->compat_features = cpu_to_le64(cpu->compat_features);
84
    le->autoclear_features = cpu_to_le64(cpu->autoclear_features);
85
    le->l1_table_offset = cpu_to_le64(cpu->l1_table_offset);
86
    le->image_size = cpu_to_le64(cpu->image_size);
87
    le->backing_filename_offset = cpu_to_le32(cpu->backing_filename_offset);
88
    le->backing_filename_size = cpu_to_le32(cpu->backing_filename_size);
89
}
90

    
91
static int qed_write_header_sync(BDRVQEDState *s)
92
{
93
    QEDHeader le;
94
    int ret;
95

    
96
    qed_header_cpu_to_le(&s->header, &le);
97
    ret = bdrv_pwrite(s->bs->file, 0, &le, sizeof(le));
98
    if (ret != sizeof(le)) {
99
        return ret;
100
    }
101
    return 0;
102
}
103

    
104
typedef struct {
105
    GenericCB gencb;
106
    BDRVQEDState *s;
107
    struct iovec iov;
108
    QEMUIOVector qiov;
109
    int nsectors;
110
    uint8_t *buf;
111
} QEDWriteHeaderCB;
112

    
113
static void qed_write_header_cb(void *opaque, int ret)
114
{
115
    QEDWriteHeaderCB *write_header_cb = opaque;
116

    
117
    qemu_vfree(write_header_cb->buf);
118
    gencb_complete(write_header_cb, ret);
119
}
120

    
121
static void qed_write_header_read_cb(void *opaque, int ret)
122
{
123
    QEDWriteHeaderCB *write_header_cb = opaque;
124
    BDRVQEDState *s = write_header_cb->s;
125
    BlockDriverAIOCB *acb;
126

    
127
    if (ret) {
128
        qed_write_header_cb(write_header_cb, ret);
129
        return;
130
    }
131

    
132
    /* Update header */
133
    qed_header_cpu_to_le(&s->header, (QEDHeader *)write_header_cb->buf);
134

    
135
    acb = bdrv_aio_writev(s->bs->file, 0, &write_header_cb->qiov,
136
                          write_header_cb->nsectors, qed_write_header_cb,
137
                          write_header_cb);
138
    if (!acb) {
139
        qed_write_header_cb(write_header_cb, -EIO);
140
    }
141
}
142

    
143
/**
144
 * Update header in-place (does not rewrite backing filename or other strings)
145
 *
146
 * This function only updates known header fields in-place and does not affect
147
 * extra data after the QED header.
148
 */
149
static void qed_write_header(BDRVQEDState *s, BlockDriverCompletionFunc cb,
150
                             void *opaque)
151
{
152
    /* We must write full sectors for O_DIRECT but cannot necessarily generate
153
     * the data following the header if an unrecognized compat feature is
154
     * active.  Therefore, first read the sectors containing the header, update
155
     * them, and write back.
156
     */
157

    
158
    BlockDriverAIOCB *acb;
159
    int nsectors = (sizeof(QEDHeader) + BDRV_SECTOR_SIZE - 1) /
160
                   BDRV_SECTOR_SIZE;
161
    size_t len = nsectors * BDRV_SECTOR_SIZE;
162
    QEDWriteHeaderCB *write_header_cb = gencb_alloc(sizeof(*write_header_cb),
163
                                                    cb, opaque);
164

    
165
    write_header_cb->s = s;
166
    write_header_cb->nsectors = nsectors;
167
    write_header_cb->buf = qemu_blockalign(s->bs, len);
168
    write_header_cb->iov.iov_base = write_header_cb->buf;
169
    write_header_cb->iov.iov_len = len;
170
    qemu_iovec_init_external(&write_header_cb->qiov, &write_header_cb->iov, 1);
171

    
172
    acb = bdrv_aio_readv(s->bs->file, 0, &write_header_cb->qiov, nsectors,
173
                         qed_write_header_read_cb, write_header_cb);
174
    if (!acb) {
175
        qed_write_header_cb(write_header_cb, -EIO);
176
    }
177
}
178

    
179
static uint64_t qed_max_image_size(uint32_t cluster_size, uint32_t table_size)
180
{
181
    uint64_t table_entries;
182
    uint64_t l2_size;
183

    
184
    table_entries = (table_size * cluster_size) / sizeof(uint64_t);
185
    l2_size = table_entries * cluster_size;
186

    
187
    return l2_size * table_entries;
188
}
189

    
190
static bool qed_is_cluster_size_valid(uint32_t cluster_size)
191
{
192
    if (cluster_size < QED_MIN_CLUSTER_SIZE ||
193
        cluster_size > QED_MAX_CLUSTER_SIZE) {
194
        return false;
195
    }
196
    if (cluster_size & (cluster_size - 1)) {
197
        return false; /* not power of 2 */
198
    }
199
    return true;
200
}
201

    
202
static bool qed_is_table_size_valid(uint32_t table_size)
203
{
204
    if (table_size < QED_MIN_TABLE_SIZE ||
205
        table_size > QED_MAX_TABLE_SIZE) {
206
        return false;
207
    }
208
    if (table_size & (table_size - 1)) {
209
        return false; /* not power of 2 */
210
    }
211
    return true;
212
}
213

    
214
static bool qed_is_image_size_valid(uint64_t image_size, uint32_t cluster_size,
215
                                    uint32_t table_size)
216
{
217
    if (image_size % BDRV_SECTOR_SIZE != 0) {
218
        return false; /* not multiple of sector size */
219
    }
220
    if (image_size > qed_max_image_size(cluster_size, table_size)) {
221
        return false; /* image is too large */
222
    }
223
    return true;
224
}
225

    
226
/**
227
 * Read a string of known length from the image file
228
 *
229
 * @file:       Image file
230
 * @offset:     File offset to start of string, in bytes
231
 * @n:          String length in bytes
232
 * @buf:        Destination buffer
233
 * @buflen:     Destination buffer length in bytes
234
 * @ret:        0 on success, -errno on failure
235
 *
236
 * The string is NUL-terminated.
237
 */
238
static int qed_read_string(BlockDriverState *file, uint64_t offset, size_t n,
239
                           char *buf, size_t buflen)
240
{
241
    int ret;
242
    if (n >= buflen) {
243
        return -EINVAL;
244
    }
245
    ret = bdrv_pread(file, offset, buf, n);
246
    if (ret < 0) {
247
        return ret;
248
    }
249
    buf[n] = '\0';
250
    return 0;
251
}
252

    
253
/**
254
 * Allocate new clusters
255
 *
256
 * @s:          QED state
257
 * @n:          Number of contiguous clusters to allocate
258
 * @ret:        Offset of first allocated cluster
259
 *
260
 * This function only produces the offset where the new clusters should be
261
 * written.  It updates BDRVQEDState but does not make any changes to the image
262
 * file.
263
 */
264
static uint64_t qed_alloc_clusters(BDRVQEDState *s, unsigned int n)
265
{
266
    uint64_t offset = s->file_size;
267
    s->file_size += n * s->header.cluster_size;
268
    return offset;
269
}
270

    
271
QEDTable *qed_alloc_table(BDRVQEDState *s)
272
{
273
    /* Honor O_DIRECT memory alignment requirements */
274
    return qemu_blockalign(s->bs,
275
                           s->header.cluster_size * s->header.table_size);
276
}
277

    
278
/**
279
 * Allocate a new zeroed L2 table
280
 */
281
static CachedL2Table *qed_new_l2_table(BDRVQEDState *s)
282
{
283
    CachedL2Table *l2_table = qed_alloc_l2_cache_entry(&s->l2_cache);
284

    
285
    l2_table->table = qed_alloc_table(s);
286
    l2_table->offset = qed_alloc_clusters(s, s->header.table_size);
287

    
288
    memset(l2_table->table->offsets, 0,
289
           s->header.cluster_size * s->header.table_size);
290
    return l2_table;
291
}
292

    
293
static void qed_aio_next_io(void *opaque, int ret);
294

    
295
static void qed_plug_allocating_write_reqs(BDRVQEDState *s)
296
{
297
    assert(!s->allocating_write_reqs_plugged);
298

    
299
    s->allocating_write_reqs_plugged = true;
300
}
301

    
302
static void qed_unplug_allocating_write_reqs(BDRVQEDState *s)
303
{
304
    QEDAIOCB *acb;
305

    
306
    assert(s->allocating_write_reqs_plugged);
307

    
308
    s->allocating_write_reqs_plugged = false;
309

    
310
    acb = QSIMPLEQ_FIRST(&s->allocating_write_reqs);
311
    if (acb) {
312
        qed_aio_next_io(acb, 0);
313
    }
314
}
315

    
316
static void qed_finish_clear_need_check(void *opaque, int ret)
317
{
318
    /* Do nothing */
319
}
320

    
321
static void qed_flush_after_clear_need_check(void *opaque, int ret)
322
{
323
    BDRVQEDState *s = opaque;
324

    
325
    bdrv_aio_flush(s->bs, qed_finish_clear_need_check, s);
326

    
327
    /* No need to wait until flush completes */
328
    qed_unplug_allocating_write_reqs(s);
329
}
330

    
331
static void qed_clear_need_check(void *opaque, int ret)
332
{
333
    BDRVQEDState *s = opaque;
334

    
335
    if (ret) {
336
        qed_unplug_allocating_write_reqs(s);
337
        return;
338
    }
339

    
340
    s->header.features &= ~QED_F_NEED_CHECK;
341
    qed_write_header(s, qed_flush_after_clear_need_check, s);
342
}
343

    
344
static void qed_need_check_timer_cb(void *opaque)
345
{
346
    BDRVQEDState *s = opaque;
347

    
348
    /* The timer should only fire when allocating writes have drained */
349
    assert(!QSIMPLEQ_FIRST(&s->allocating_write_reqs));
350

    
351
    trace_qed_need_check_timer_cb(s);
352

    
353
    qed_plug_allocating_write_reqs(s);
354

    
355
    /* Ensure writes are on disk before clearing flag */
356
    bdrv_aio_flush(s->bs, qed_clear_need_check, s);
357
}
358

    
359
static void qed_start_need_check_timer(BDRVQEDState *s)
360
{
361
    trace_qed_start_need_check_timer(s);
362

    
363
    /* Use vm_clock so we don't alter the image file while suspended for
364
     * migration.
365
     */
366
    qemu_mod_timer(s->need_check_timer, qemu_get_clock_ns(vm_clock) +
367
                   get_ticks_per_sec() * QED_NEED_CHECK_TIMEOUT);
368
}
369

    
370
/* It's okay to call this multiple times or when no timer is started */
371
static void qed_cancel_need_check_timer(BDRVQEDState *s)
372
{
373
    trace_qed_cancel_need_check_timer(s);
374
    qemu_del_timer(s->need_check_timer);
375
}
376

    
377
static int bdrv_qed_open(BlockDriverState *bs, int flags)
378
{
379
    BDRVQEDState *s = bs->opaque;
380
    QEDHeader le_header;
381
    int64_t file_size;
382
    int ret;
383

    
384
    s->bs = bs;
385
    QSIMPLEQ_INIT(&s->allocating_write_reqs);
386

    
387
    ret = bdrv_pread(bs->file, 0, &le_header, sizeof(le_header));
388
    if (ret < 0) {
389
        return ret;
390
    }
391
    ret = 0; /* ret should always be 0 or -errno */
392
    qed_header_le_to_cpu(&le_header, &s->header);
393

    
394
    if (s->header.magic != QED_MAGIC) {
395
        return -EINVAL;
396
    }
397
    if (s->header.features & ~QED_FEATURE_MASK) {
398
        /* image uses unsupported feature bits */
399
        char buf[64];
400
        snprintf(buf, sizeof(buf), "%" PRIx64,
401
            s->header.features & ~QED_FEATURE_MASK);
402
        qerror_report(QERR_UNKNOWN_BLOCK_FORMAT_FEATURE,
403
            bs->device_name, "QED", buf);
404
        return -ENOTSUP;
405
    }
406
    if (!qed_is_cluster_size_valid(s->header.cluster_size)) {
407
        return -EINVAL;
408
    }
409

    
410
    /* Round down file size to the last cluster */
411
    file_size = bdrv_getlength(bs->file);
412
    if (file_size < 0) {
413
        return file_size;
414
    }
415
    s->file_size = qed_start_of_cluster(s, file_size);
416

    
417
    if (!qed_is_table_size_valid(s->header.table_size)) {
418
        return -EINVAL;
419
    }
420
    if (!qed_is_image_size_valid(s->header.image_size,
421
                                 s->header.cluster_size,
422
                                 s->header.table_size)) {
423
        return -EINVAL;
424
    }
425
    if (!qed_check_table_offset(s, s->header.l1_table_offset)) {
426
        return -EINVAL;
427
    }
428

    
429
    s->table_nelems = (s->header.cluster_size * s->header.table_size) /
430
                      sizeof(uint64_t);
431
    s->l2_shift = ffs(s->header.cluster_size) - 1;
432
    s->l2_mask = s->table_nelems - 1;
433
    s->l1_shift = s->l2_shift + ffs(s->table_nelems) - 1;
434

    
435
    if ((s->header.features & QED_F_BACKING_FILE)) {
436
        if ((uint64_t)s->header.backing_filename_offset +
437
            s->header.backing_filename_size >
438
            s->header.cluster_size * s->header.header_size) {
439
            return -EINVAL;
440
        }
441

    
442
        ret = qed_read_string(bs->file, s->header.backing_filename_offset,
443
                              s->header.backing_filename_size, bs->backing_file,
444
                              sizeof(bs->backing_file));
445
        if (ret < 0) {
446
            return ret;
447
        }
448

    
449
        if (s->header.features & QED_F_BACKING_FORMAT_NO_PROBE) {
450
            pstrcpy(bs->backing_format, sizeof(bs->backing_format), "raw");
451
        }
452
    }
453

    
454
    /* Reset unknown autoclear feature bits.  This is a backwards
455
     * compatibility mechanism that allows images to be opened by older
456
     * programs, which "knock out" unknown feature bits.  When an image is
457
     * opened by a newer program again it can detect that the autoclear
458
     * feature is no longer valid.
459
     */
460
    if ((s->header.autoclear_features & ~QED_AUTOCLEAR_FEATURE_MASK) != 0 &&
461
        !bdrv_is_read_only(bs->file)) {
462
        s->header.autoclear_features &= QED_AUTOCLEAR_FEATURE_MASK;
463

    
464
        ret = qed_write_header_sync(s);
465
        if (ret) {
466
            return ret;
467
        }
468

    
469
        /* From here on only known autoclear feature bits are valid */
470
        bdrv_flush(bs->file);
471
    }
472

    
473
    s->l1_table = qed_alloc_table(s);
474
    qed_init_l2_cache(&s->l2_cache);
475

    
476
    ret = qed_read_l1_table_sync(s);
477
    if (ret) {
478
        goto out;
479
    }
480

    
481
    /* If image was not closed cleanly, check consistency */
482
    if (s->header.features & QED_F_NEED_CHECK) {
483
        /* Read-only images cannot be fixed.  There is no risk of corruption
484
         * since write operations are not possible.  Therefore, allow
485
         * potentially inconsistent images to be opened read-only.  This can
486
         * aid data recovery from an otherwise inconsistent image.
487
         */
488
        if (!bdrv_is_read_only(bs->file)) {
489
            BdrvCheckResult result = {0};
490

    
491
            ret = qed_check(s, &result, true);
492
            if (ret) {
493
                goto out;
494
            }
495
            if (!result.corruptions && !result.check_errors) {
496
                /* Ensure fixes reach storage before clearing check bit */
497
                bdrv_flush(s->bs);
498

    
499
                s->header.features &= ~QED_F_NEED_CHECK;
500
                qed_write_header_sync(s);
501
            }
502
        }
503
    }
504

    
505
    s->need_check_timer = qemu_new_timer_ns(vm_clock,
506
                                            qed_need_check_timer_cb, s);
507

    
508
out:
509
    if (ret) {
510
        qed_free_l2_cache(&s->l2_cache);
511
        qemu_vfree(s->l1_table);
512
    }
513
    return ret;
514
}
515

    
516
static void bdrv_qed_close(BlockDriverState *bs)
517
{
518
    BDRVQEDState *s = bs->opaque;
519

    
520
    qed_cancel_need_check_timer(s);
521
    qemu_free_timer(s->need_check_timer);
522

    
523
    /* Ensure writes reach stable storage */
524
    bdrv_flush(bs->file);
525

    
526
    /* Clean shutdown, no check required on next open */
527
    if (s->header.features & QED_F_NEED_CHECK) {
528
        s->header.features &= ~QED_F_NEED_CHECK;
529
        qed_write_header_sync(s);
530
    }
531

    
532
    qed_free_l2_cache(&s->l2_cache);
533
    qemu_vfree(s->l1_table);
534
}
535

    
536
static int qed_create(const char *filename, uint32_t cluster_size,
537
                      uint64_t image_size, uint32_t table_size,
538
                      const char *backing_file, const char *backing_fmt)
539
{
540
    QEDHeader header = {
541
        .magic = QED_MAGIC,
542
        .cluster_size = cluster_size,
543
        .table_size = table_size,
544
        .header_size = 1,
545
        .features = 0,
546
        .compat_features = 0,
547
        .l1_table_offset = cluster_size,
548
        .image_size = image_size,
549
    };
550
    QEDHeader le_header;
551
    uint8_t *l1_table = NULL;
552
    size_t l1_size = header.cluster_size * header.table_size;
553
    int ret = 0;
554
    BlockDriverState *bs = NULL;
555

    
556
    ret = bdrv_create_file(filename, NULL);
557
    if (ret < 0) {
558
        return ret;
559
    }
560

    
561
    ret = bdrv_file_open(&bs, filename, BDRV_O_RDWR | BDRV_O_CACHE_WB);
562
    if (ret < 0) {
563
        return ret;
564
    }
565

    
566
    /* File must start empty and grow, check truncate is supported */
567
    ret = bdrv_truncate(bs, 0);
568
    if (ret < 0) {
569
        goto out;
570
    }
571

    
572
    if (backing_file) {
573
        header.features |= QED_F_BACKING_FILE;
574
        header.backing_filename_offset = sizeof(le_header);
575
        header.backing_filename_size = strlen(backing_file);
576

    
577
        if (qed_fmt_is_raw(backing_fmt)) {
578
            header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
579
        }
580
    }
581

    
582
    qed_header_cpu_to_le(&header, &le_header);
583
    ret = bdrv_pwrite(bs, 0, &le_header, sizeof(le_header));
584
    if (ret < 0) {
585
        goto out;
586
    }
587
    ret = bdrv_pwrite(bs, sizeof(le_header), backing_file,
588
                      header.backing_filename_size);
589
    if (ret < 0) {
590
        goto out;
591
    }
592

    
593
    l1_table = g_malloc0(l1_size);
594
    ret = bdrv_pwrite(bs, header.l1_table_offset, l1_table, l1_size);
595
    if (ret < 0) {
596
        goto out;
597
    }
598

    
599
    ret = 0; /* success */
600
out:
601
    g_free(l1_table);
602
    bdrv_delete(bs);
603
    return ret;
604
}
605

    
606
static int bdrv_qed_create(const char *filename, QEMUOptionParameter *options)
607
{
608
    uint64_t image_size = 0;
609
    uint32_t cluster_size = QED_DEFAULT_CLUSTER_SIZE;
610
    uint32_t table_size = QED_DEFAULT_TABLE_SIZE;
611
    const char *backing_file = NULL;
612
    const char *backing_fmt = NULL;
613

    
614
    while (options && options->name) {
615
        if (!strcmp(options->name, BLOCK_OPT_SIZE)) {
616
            image_size = options->value.n;
617
        } else if (!strcmp(options->name, BLOCK_OPT_BACKING_FILE)) {
618
            backing_file = options->value.s;
619
        } else if (!strcmp(options->name, BLOCK_OPT_BACKING_FMT)) {
620
            backing_fmt = options->value.s;
621
        } else if (!strcmp(options->name, BLOCK_OPT_CLUSTER_SIZE)) {
622
            if (options->value.n) {
623
                cluster_size = options->value.n;
624
            }
625
        } else if (!strcmp(options->name, BLOCK_OPT_TABLE_SIZE)) {
626
            if (options->value.n) {
627
                table_size = options->value.n;
628
            }
629
        }
630
        options++;
631
    }
632

    
633
    if (!qed_is_cluster_size_valid(cluster_size)) {
634
        fprintf(stderr, "QED cluster size must be within range [%u, %u] and power of 2\n",
635
                QED_MIN_CLUSTER_SIZE, QED_MAX_CLUSTER_SIZE);
636
        return -EINVAL;
637
    }
638
    if (!qed_is_table_size_valid(table_size)) {
639
        fprintf(stderr, "QED table size must be within range [%u, %u] and power of 2\n",
640
                QED_MIN_TABLE_SIZE, QED_MAX_TABLE_SIZE);
641
        return -EINVAL;
642
    }
643
    if (!qed_is_image_size_valid(image_size, cluster_size, table_size)) {
644
        fprintf(stderr, "QED image size must be a non-zero multiple of "
645
                        "cluster size and less than %" PRIu64 " bytes\n",
646
                qed_max_image_size(cluster_size, table_size));
647
        return -EINVAL;
648
    }
649

    
650
    return qed_create(filename, cluster_size, image_size, table_size,
651
                      backing_file, backing_fmt);
652
}
653

    
654
typedef struct {
655
    int is_allocated;
656
    int *pnum;
657
} QEDIsAllocatedCB;
658

    
659
static void qed_is_allocated_cb(void *opaque, int ret, uint64_t offset, size_t len)
660
{
661
    QEDIsAllocatedCB *cb = opaque;
662
    *cb->pnum = len / BDRV_SECTOR_SIZE;
663
    cb->is_allocated = (ret == QED_CLUSTER_FOUND || ret == QED_CLUSTER_ZERO);
664
}
665

    
666
static int bdrv_qed_is_allocated(BlockDriverState *bs, int64_t sector_num,
667
                                  int nb_sectors, int *pnum)
668
{
669
    BDRVQEDState *s = bs->opaque;
670
    uint64_t pos = (uint64_t)sector_num * BDRV_SECTOR_SIZE;
671
    size_t len = (size_t)nb_sectors * BDRV_SECTOR_SIZE;
672
    QEDIsAllocatedCB cb = {
673
        .is_allocated = -1,
674
        .pnum = pnum,
675
    };
676
    QEDRequest request = { .l2_table = NULL };
677

    
678
    qed_find_cluster(s, &request, pos, len, qed_is_allocated_cb, &cb);
679

    
680
    while (cb.is_allocated == -1) {
681
        qemu_aio_wait();
682
    }
683

    
684
    qed_unref_l2_cache_entry(request.l2_table);
685

    
686
    return cb.is_allocated;
687
}
688

    
689
static int bdrv_qed_make_empty(BlockDriverState *bs)
690
{
691
    return -ENOTSUP;
692
}
693

    
694
static BDRVQEDState *acb_to_s(QEDAIOCB *acb)
695
{
696
    return acb->common.bs->opaque;
697
}
698

    
699
/**
700
 * Read from the backing file or zero-fill if no backing file
701
 *
702
 * @s:          QED state
703
 * @pos:        Byte position in device
704
 * @qiov:       Destination I/O vector
705
 * @cb:         Completion function
706
 * @opaque:     User data for completion function
707
 *
708
 * This function reads qiov->size bytes starting at pos from the backing file.
709
 * If there is no backing file then zeroes are read.
710
 */
711
static void qed_read_backing_file(BDRVQEDState *s, uint64_t pos,
712
                                  QEMUIOVector *qiov,
713
                                  BlockDriverCompletionFunc *cb, void *opaque)
714
{
715
    BlockDriverAIOCB *aiocb;
716
    uint64_t backing_length = 0;
717
    size_t size;
718

    
719
    /* If there is a backing file, get its length.  Treat the absence of a
720
     * backing file like a zero length backing file.
721
     */
722
    if (s->bs->backing_hd) {
723
        int64_t l = bdrv_getlength(s->bs->backing_hd);
724
        if (l < 0) {
725
            cb(opaque, l);
726
            return;
727
        }
728
        backing_length = l;
729
    }
730

    
731
    /* Zero all sectors if reading beyond the end of the backing file */
732
    if (pos >= backing_length ||
733
        pos + qiov->size > backing_length) {
734
        qemu_iovec_memset(qiov, 0, qiov->size);
735
    }
736

    
737
    /* Complete now if there are no backing file sectors to read */
738
    if (pos >= backing_length) {
739
        cb(opaque, 0);
740
        return;
741
    }
742

    
743
    /* If the read straddles the end of the backing file, shorten it */
744
    size = MIN((uint64_t)backing_length - pos, qiov->size);
745

    
746
    BLKDBG_EVENT(s->bs->file, BLKDBG_READ_BACKING);
747
    aiocb = bdrv_aio_readv(s->bs->backing_hd, pos / BDRV_SECTOR_SIZE,
748
                           qiov, size / BDRV_SECTOR_SIZE, cb, opaque);
749
    if (!aiocb) {
750
        cb(opaque, -EIO);
751
    }
752
}
753

    
754
typedef struct {
755
    GenericCB gencb;
756
    BDRVQEDState *s;
757
    QEMUIOVector qiov;
758
    struct iovec iov;
759
    uint64_t offset;
760
} CopyFromBackingFileCB;
761

    
762
static void qed_copy_from_backing_file_cb(void *opaque, int ret)
763
{
764
    CopyFromBackingFileCB *copy_cb = opaque;
765
    qemu_vfree(copy_cb->iov.iov_base);
766
    gencb_complete(&copy_cb->gencb, ret);
767
}
768

    
769
static void qed_copy_from_backing_file_write(void *opaque, int ret)
770
{
771
    CopyFromBackingFileCB *copy_cb = opaque;
772
    BDRVQEDState *s = copy_cb->s;
773
    BlockDriverAIOCB *aiocb;
774

    
775
    if (ret) {
776
        qed_copy_from_backing_file_cb(copy_cb, ret);
777
        return;
778
    }
779

    
780
    BLKDBG_EVENT(s->bs->file, BLKDBG_COW_WRITE);
781
    aiocb = bdrv_aio_writev(s->bs->file, copy_cb->offset / BDRV_SECTOR_SIZE,
782
                            &copy_cb->qiov,
783
                            copy_cb->qiov.size / BDRV_SECTOR_SIZE,
784
                            qed_copy_from_backing_file_cb, copy_cb);
785
    if (!aiocb) {
786
        qed_copy_from_backing_file_cb(copy_cb, -EIO);
787
    }
788
}
789

    
790
/**
791
 * Copy data from backing file into the image
792
 *
793
 * @s:          QED state
794
 * @pos:        Byte position in device
795
 * @len:        Number of bytes
796
 * @offset:     Byte offset in image file
797
 * @cb:         Completion function
798
 * @opaque:     User data for completion function
799
 */
800
static void qed_copy_from_backing_file(BDRVQEDState *s, uint64_t pos,
801
                                       uint64_t len, uint64_t offset,
802
                                       BlockDriverCompletionFunc *cb,
803
                                       void *opaque)
804
{
805
    CopyFromBackingFileCB *copy_cb;
806

    
807
    /* Skip copy entirely if there is no work to do */
808
    if (len == 0) {
809
        cb(opaque, 0);
810
        return;
811
    }
812

    
813
    copy_cb = gencb_alloc(sizeof(*copy_cb), cb, opaque);
814
    copy_cb->s = s;
815
    copy_cb->offset = offset;
816
    copy_cb->iov.iov_base = qemu_blockalign(s->bs, len);
817
    copy_cb->iov.iov_len = len;
818
    qemu_iovec_init_external(&copy_cb->qiov, &copy_cb->iov, 1);
819

    
820
    qed_read_backing_file(s, pos, &copy_cb->qiov,
821
                          qed_copy_from_backing_file_write, copy_cb);
822
}
823

    
824
/**
825
 * Link one or more contiguous clusters into a table
826
 *
827
 * @s:              QED state
828
 * @table:          L2 table
829
 * @index:          First cluster index
830
 * @n:              Number of contiguous clusters
831
 * @cluster:        First cluster offset
832
 *
833
 * The cluster offset may be an allocated byte offset in the image file, the
834
 * zero cluster marker, or the unallocated cluster marker.
835
 */
836
static void qed_update_l2_table(BDRVQEDState *s, QEDTable *table, int index,
837
                                unsigned int n, uint64_t cluster)
838
{
839
    int i;
840
    for (i = index; i < index + n; i++) {
841
        table->offsets[i] = cluster;
842
        if (!qed_offset_is_unalloc_cluster(cluster) &&
843
            !qed_offset_is_zero_cluster(cluster)) {
844
            cluster += s->header.cluster_size;
845
        }
846
    }
847
}
848

    
849
static void qed_aio_complete_bh(void *opaque)
850
{
851
    QEDAIOCB *acb = opaque;
852
    BlockDriverCompletionFunc *cb = acb->common.cb;
853
    void *user_opaque = acb->common.opaque;
854
    int ret = acb->bh_ret;
855
    bool *finished = acb->finished;
856

    
857
    qemu_bh_delete(acb->bh);
858
    qemu_aio_release(acb);
859

    
860
    /* Invoke callback */
861
    cb(user_opaque, ret);
862

    
863
    /* Signal cancel completion */
864
    if (finished) {
865
        *finished = true;
866
    }
867
}
868

    
869
static void qed_aio_complete(QEDAIOCB *acb, int ret)
870
{
871
    BDRVQEDState *s = acb_to_s(acb);
872

    
873
    trace_qed_aio_complete(s, acb, ret);
874

    
875
    /* Free resources */
876
    qemu_iovec_destroy(&acb->cur_qiov);
877
    qed_unref_l2_cache_entry(acb->request.l2_table);
878

    
879
    /* Arrange for a bh to invoke the completion function */
880
    acb->bh_ret = ret;
881
    acb->bh = qemu_bh_new(qed_aio_complete_bh, acb);
882
    qemu_bh_schedule(acb->bh);
883

    
884
    /* Start next allocating write request waiting behind this one.  Note that
885
     * requests enqueue themselves when they first hit an unallocated cluster
886
     * but they wait until the entire request is finished before waking up the
887
     * next request in the queue.  This ensures that we don't cycle through
888
     * requests multiple times but rather finish one at a time completely.
889
     */
890
    if (acb == QSIMPLEQ_FIRST(&s->allocating_write_reqs)) {
891
        QSIMPLEQ_REMOVE_HEAD(&s->allocating_write_reqs, next);
892
        acb = QSIMPLEQ_FIRST(&s->allocating_write_reqs);
893
        if (acb) {
894
            qed_aio_next_io(acb, 0);
895
        } else if (s->header.features & QED_F_NEED_CHECK) {
896
            qed_start_need_check_timer(s);
897
        }
898
    }
899
}
900

    
901
/**
902
 * Commit the current L2 table to the cache
903
 */
904
static void qed_commit_l2_update(void *opaque, int ret)
905
{
906
    QEDAIOCB *acb = opaque;
907
    BDRVQEDState *s = acb_to_s(acb);
908
    CachedL2Table *l2_table = acb->request.l2_table;
909
    uint64_t l2_offset = l2_table->offset;
910

    
911
    qed_commit_l2_cache_entry(&s->l2_cache, l2_table);
912

    
913
    /* This is guaranteed to succeed because we just committed the entry to the
914
     * cache.
915
     */
916
    acb->request.l2_table = qed_find_l2_cache_entry(&s->l2_cache, l2_offset);
917
    assert(acb->request.l2_table != NULL);
918

    
919
    qed_aio_next_io(opaque, ret);
920
}
921

    
922
/**
923
 * Update L1 table with new L2 table offset and write it out
924
 */
925
static void qed_aio_write_l1_update(void *opaque, int ret)
926
{
927
    QEDAIOCB *acb = opaque;
928
    BDRVQEDState *s = acb_to_s(acb);
929
    int index;
930

    
931
    if (ret) {
932
        qed_aio_complete(acb, ret);
933
        return;
934
    }
935

    
936
    index = qed_l1_index(s, acb->cur_pos);
937
    s->l1_table->offsets[index] = acb->request.l2_table->offset;
938

    
939
    qed_write_l1_table(s, index, 1, qed_commit_l2_update, acb);
940
}
941

    
942
/**
943
 * Update L2 table with new cluster offsets and write them out
944
 */
945
static void qed_aio_write_l2_update(void *opaque, int ret)
946
{
947
    QEDAIOCB *acb = opaque;
948
    BDRVQEDState *s = acb_to_s(acb);
949
    bool need_alloc = acb->find_cluster_ret == QED_CLUSTER_L1;
950
    int index;
951

    
952
    if (ret) {
953
        goto err;
954
    }
955

    
956
    if (need_alloc) {
957
        qed_unref_l2_cache_entry(acb->request.l2_table);
958
        acb->request.l2_table = qed_new_l2_table(s);
959
    }
960

    
961
    index = qed_l2_index(s, acb->cur_pos);
962
    qed_update_l2_table(s, acb->request.l2_table->table, index, acb->cur_nclusters,
963
                         acb->cur_cluster);
964

    
965
    if (need_alloc) {
966
        /* Write out the whole new L2 table */
967
        qed_write_l2_table(s, &acb->request, 0, s->table_nelems, true,
968
                            qed_aio_write_l1_update, acb);
969
    } else {
970
        /* Write out only the updated part of the L2 table */
971
        qed_write_l2_table(s, &acb->request, index, acb->cur_nclusters, false,
972
                            qed_aio_next_io, acb);
973
    }
974
    return;
975

    
976
err:
977
    qed_aio_complete(acb, ret);
978
}
979

    
980
/**
981
 * Flush new data clusters before updating the L2 table
982
 *
983
 * This flush is necessary when a backing file is in use.  A crash during an
984
 * allocating write could result in empty clusters in the image.  If the write
985
 * only touched a subregion of the cluster, then backing image sectors have
986
 * been lost in the untouched region.  The solution is to flush after writing a
987
 * new data cluster and before updating the L2 table.
988
 */
989
static void qed_aio_write_flush_before_l2_update(void *opaque, int ret)
990
{
991
    QEDAIOCB *acb = opaque;
992
    BDRVQEDState *s = acb_to_s(acb);
993

    
994
    if (!bdrv_aio_flush(s->bs->file, qed_aio_write_l2_update, opaque)) {
995
        qed_aio_complete(acb, -EIO);
996
    }
997
}
998

    
999
/**
1000
 * Write data to the image file
1001
 */
1002
static void qed_aio_write_main(void *opaque, int ret)
1003
{
1004
    QEDAIOCB *acb = opaque;
1005
    BDRVQEDState *s = acb_to_s(acb);
1006
    uint64_t offset = acb->cur_cluster +
1007
                      qed_offset_into_cluster(s, acb->cur_pos);
1008
    BlockDriverCompletionFunc *next_fn;
1009
    BlockDriverAIOCB *file_acb;
1010

    
1011
    trace_qed_aio_write_main(s, acb, ret, offset, acb->cur_qiov.size);
1012

    
1013
    if (ret) {
1014
        qed_aio_complete(acb, ret);
1015
        return;
1016
    }
1017

    
1018
    if (acb->find_cluster_ret == QED_CLUSTER_FOUND) {
1019
        next_fn = qed_aio_next_io;
1020
    } else {
1021
        if (s->bs->backing_hd) {
1022
            next_fn = qed_aio_write_flush_before_l2_update;
1023
        } else {
1024
            next_fn = qed_aio_write_l2_update;
1025
        }
1026
    }
1027

    
1028
    BLKDBG_EVENT(s->bs->file, BLKDBG_WRITE_AIO);
1029
    file_acb = bdrv_aio_writev(s->bs->file, offset / BDRV_SECTOR_SIZE,
1030
                               &acb->cur_qiov,
1031
                               acb->cur_qiov.size / BDRV_SECTOR_SIZE,
1032
                               next_fn, acb);
1033
    if (!file_acb) {
1034
        qed_aio_complete(acb, -EIO);
1035
    }
1036
}
1037

    
1038
/**
1039
 * Populate back untouched region of new data cluster
1040
 */
1041
static void qed_aio_write_postfill(void *opaque, int ret)
1042
{
1043
    QEDAIOCB *acb = opaque;
1044
    BDRVQEDState *s = acb_to_s(acb);
1045
    uint64_t start = acb->cur_pos + acb->cur_qiov.size;
1046
    uint64_t len =
1047
        qed_start_of_cluster(s, start + s->header.cluster_size - 1) - start;
1048
    uint64_t offset = acb->cur_cluster +
1049
                      qed_offset_into_cluster(s, acb->cur_pos) +
1050
                      acb->cur_qiov.size;
1051

    
1052
    if (ret) {
1053
        qed_aio_complete(acb, ret);
1054
        return;
1055
    }
1056

    
1057
    trace_qed_aio_write_postfill(s, acb, start, len, offset);
1058
    qed_copy_from_backing_file(s, start, len, offset,
1059
                                qed_aio_write_main, acb);
1060
}
1061

    
1062
/**
1063
 * Populate front untouched region of new data cluster
1064
 */
1065
static void qed_aio_write_prefill(void *opaque, int ret)
1066
{
1067
    QEDAIOCB *acb = opaque;
1068
    BDRVQEDState *s = acb_to_s(acb);
1069
    uint64_t start = qed_start_of_cluster(s, acb->cur_pos);
1070
    uint64_t len = qed_offset_into_cluster(s, acb->cur_pos);
1071

    
1072
    trace_qed_aio_write_prefill(s, acb, start, len, acb->cur_cluster);
1073
    qed_copy_from_backing_file(s, start, len, acb->cur_cluster,
1074
                                qed_aio_write_postfill, acb);
1075
}
1076

    
1077
/**
1078
 * Check if the QED_F_NEED_CHECK bit should be set during allocating write
1079
 */
1080
static bool qed_should_set_need_check(BDRVQEDState *s)
1081
{
1082
    /* The flush before L2 update path ensures consistency */
1083
    if (s->bs->backing_hd) {
1084
        return false;
1085
    }
1086

    
1087
    return !(s->header.features & QED_F_NEED_CHECK);
1088
}
1089

    
1090
/**
1091
 * Write new data cluster
1092
 *
1093
 * @acb:        Write request
1094
 * @len:        Length in bytes
1095
 *
1096
 * This path is taken when writing to previously unallocated clusters.
1097
 */
1098
static void qed_aio_write_alloc(QEDAIOCB *acb, size_t len)
1099
{
1100
    BDRVQEDState *s = acb_to_s(acb);
1101

    
1102
    /* Cancel timer when the first allocating request comes in */
1103
    if (QSIMPLEQ_EMPTY(&s->allocating_write_reqs)) {
1104
        qed_cancel_need_check_timer(s);
1105
    }
1106

    
1107
    /* Freeze this request if another allocating write is in progress */
1108
    if (acb != QSIMPLEQ_FIRST(&s->allocating_write_reqs)) {
1109
        QSIMPLEQ_INSERT_TAIL(&s->allocating_write_reqs, acb, next);
1110
    }
1111
    if (acb != QSIMPLEQ_FIRST(&s->allocating_write_reqs) ||
1112
        s->allocating_write_reqs_plugged) {
1113
        return; /* wait for existing request to finish */
1114
    }
1115

    
1116
    acb->cur_nclusters = qed_bytes_to_clusters(s,
1117
            qed_offset_into_cluster(s, acb->cur_pos) + len);
1118
    acb->cur_cluster = qed_alloc_clusters(s, acb->cur_nclusters);
1119
    qemu_iovec_copy(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1120

    
1121
    if (qed_should_set_need_check(s)) {
1122
        s->header.features |= QED_F_NEED_CHECK;
1123
        qed_write_header(s, qed_aio_write_prefill, acb);
1124
    } else {
1125
        qed_aio_write_prefill(acb, 0);
1126
    }
1127
}
1128

    
1129
/**
1130
 * Write data cluster in place
1131
 *
1132
 * @acb:        Write request
1133
 * @offset:     Cluster offset in bytes
1134
 * @len:        Length in bytes
1135
 *
1136
 * This path is taken when writing to already allocated clusters.
1137
 */
1138
static void qed_aio_write_inplace(QEDAIOCB *acb, uint64_t offset, size_t len)
1139
{
1140
    /* Calculate the I/O vector */
1141
    acb->cur_cluster = offset;
1142
    qemu_iovec_copy(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1143

    
1144
    /* Do the actual write */
1145
    qed_aio_write_main(acb, 0);
1146
}
1147

    
1148
/**
1149
 * Write data cluster
1150
 *
1151
 * @opaque:     Write request
1152
 * @ret:        QED_CLUSTER_FOUND, QED_CLUSTER_L2, QED_CLUSTER_L1,
1153
 *              or -errno
1154
 * @offset:     Cluster offset in bytes
1155
 * @len:        Length in bytes
1156
 *
1157
 * Callback from qed_find_cluster().
1158
 */
1159
static void qed_aio_write_data(void *opaque, int ret,
1160
                               uint64_t offset, size_t len)
1161
{
1162
    QEDAIOCB *acb = opaque;
1163

    
1164
    trace_qed_aio_write_data(acb_to_s(acb), acb, ret, offset, len);
1165

    
1166
    acb->find_cluster_ret = ret;
1167

    
1168
    switch (ret) {
1169
    case QED_CLUSTER_FOUND:
1170
        qed_aio_write_inplace(acb, offset, len);
1171
        break;
1172

    
1173
    case QED_CLUSTER_L2:
1174
    case QED_CLUSTER_L1:
1175
    case QED_CLUSTER_ZERO:
1176
        qed_aio_write_alloc(acb, len);
1177
        break;
1178

    
1179
    default:
1180
        qed_aio_complete(acb, ret);
1181
        break;
1182
    }
1183
}
1184

    
1185
/**
1186
 * Read data cluster
1187
 *
1188
 * @opaque:     Read request
1189
 * @ret:        QED_CLUSTER_FOUND, QED_CLUSTER_L2, QED_CLUSTER_L1,
1190
 *              or -errno
1191
 * @offset:     Cluster offset in bytes
1192
 * @len:        Length in bytes
1193
 *
1194
 * Callback from qed_find_cluster().
1195
 */
1196
static void qed_aio_read_data(void *opaque, int ret,
1197
                              uint64_t offset, size_t len)
1198
{
1199
    QEDAIOCB *acb = opaque;
1200
    BDRVQEDState *s = acb_to_s(acb);
1201
    BlockDriverState *bs = acb->common.bs;
1202
    BlockDriverAIOCB *file_acb;
1203

    
1204
    /* Adjust offset into cluster */
1205
    offset += qed_offset_into_cluster(s, acb->cur_pos);
1206

    
1207
    trace_qed_aio_read_data(s, acb, ret, offset, len);
1208

    
1209
    if (ret < 0) {
1210
        goto err;
1211
    }
1212

    
1213
    qemu_iovec_copy(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1214

    
1215
    /* Handle zero cluster and backing file reads */
1216
    if (ret == QED_CLUSTER_ZERO) {
1217
        qemu_iovec_memset(&acb->cur_qiov, 0, acb->cur_qiov.size);
1218
        qed_aio_next_io(acb, 0);
1219
        return;
1220
    } else if (ret != QED_CLUSTER_FOUND) {
1221
        qed_read_backing_file(s, acb->cur_pos, &acb->cur_qiov,
1222
                              qed_aio_next_io, acb);
1223
        return;
1224
    }
1225

    
1226
    BLKDBG_EVENT(bs->file, BLKDBG_READ_AIO);
1227
    file_acb = bdrv_aio_readv(bs->file, offset / BDRV_SECTOR_SIZE,
1228
                              &acb->cur_qiov,
1229
                              acb->cur_qiov.size / BDRV_SECTOR_SIZE,
1230
                              qed_aio_next_io, acb);
1231
    if (!file_acb) {
1232
        ret = -EIO;
1233
        goto err;
1234
    }
1235
    return;
1236

    
1237
err:
1238
    qed_aio_complete(acb, ret);
1239
}
1240

    
1241
/**
1242
 * Begin next I/O or complete the request
1243
 */
1244
static void qed_aio_next_io(void *opaque, int ret)
1245
{
1246
    QEDAIOCB *acb = opaque;
1247
    BDRVQEDState *s = acb_to_s(acb);
1248
    QEDFindClusterFunc *io_fn =
1249
        acb->is_write ? qed_aio_write_data : qed_aio_read_data;
1250

    
1251
    trace_qed_aio_next_io(s, acb, ret, acb->cur_pos + acb->cur_qiov.size);
1252

    
1253
    /* Handle I/O error */
1254
    if (ret) {
1255
        qed_aio_complete(acb, ret);
1256
        return;
1257
    }
1258

    
1259
    acb->qiov_offset += acb->cur_qiov.size;
1260
    acb->cur_pos += acb->cur_qiov.size;
1261
    qemu_iovec_reset(&acb->cur_qiov);
1262

    
1263
    /* Complete request */
1264
    if (acb->cur_pos >= acb->end_pos) {
1265
        qed_aio_complete(acb, 0);
1266
        return;
1267
    }
1268

    
1269
    /* Find next cluster and start I/O */
1270
    qed_find_cluster(s, &acb->request,
1271
                      acb->cur_pos, acb->end_pos - acb->cur_pos,
1272
                      io_fn, acb);
1273
}
1274

    
1275
static BlockDriverAIOCB *qed_aio_setup(BlockDriverState *bs,
1276
                                       int64_t sector_num,
1277
                                       QEMUIOVector *qiov, int nb_sectors,
1278
                                       BlockDriverCompletionFunc *cb,
1279
                                       void *opaque, bool is_write)
1280
{
1281
    QEDAIOCB *acb = qemu_aio_get(&qed_aio_pool, bs, cb, opaque);
1282

    
1283
    trace_qed_aio_setup(bs->opaque, acb, sector_num, nb_sectors,
1284
                         opaque, is_write);
1285

    
1286
    acb->is_write = is_write;
1287
    acb->finished = NULL;
1288
    acb->qiov = qiov;
1289
    acb->qiov_offset = 0;
1290
    acb->cur_pos = (uint64_t)sector_num * BDRV_SECTOR_SIZE;
1291
    acb->end_pos = acb->cur_pos + nb_sectors * BDRV_SECTOR_SIZE;
1292
    acb->request.l2_table = NULL;
1293
    qemu_iovec_init(&acb->cur_qiov, qiov->niov);
1294

    
1295
    /* Start request */
1296
    qed_aio_next_io(acb, 0);
1297
    return &acb->common;
1298
}
1299

    
1300
static BlockDriverAIOCB *bdrv_qed_aio_readv(BlockDriverState *bs,
1301
                                            int64_t sector_num,
1302
                                            QEMUIOVector *qiov, int nb_sectors,
1303
                                            BlockDriverCompletionFunc *cb,
1304
                                            void *opaque)
1305
{
1306
    return qed_aio_setup(bs, sector_num, qiov, nb_sectors, cb, opaque, false);
1307
}
1308

    
1309
static BlockDriverAIOCB *bdrv_qed_aio_writev(BlockDriverState *bs,
1310
                                             int64_t sector_num,
1311
                                             QEMUIOVector *qiov, int nb_sectors,
1312
                                             BlockDriverCompletionFunc *cb,
1313
                                             void *opaque)
1314
{
1315
    return qed_aio_setup(bs, sector_num, qiov, nb_sectors, cb, opaque, true);
1316
}
1317

    
1318
static BlockDriverAIOCB *bdrv_qed_aio_flush(BlockDriverState *bs,
1319
                                            BlockDriverCompletionFunc *cb,
1320
                                            void *opaque)
1321
{
1322
    return bdrv_aio_flush(bs->file, cb, opaque);
1323
}
1324

    
1325
static int bdrv_qed_truncate(BlockDriverState *bs, int64_t offset)
1326
{
1327
    BDRVQEDState *s = bs->opaque;
1328
    uint64_t old_image_size;
1329
    int ret;
1330

    
1331
    if (!qed_is_image_size_valid(offset, s->header.cluster_size,
1332
                                 s->header.table_size)) {
1333
        return -EINVAL;
1334
    }
1335

    
1336
    /* Shrinking is currently not supported */
1337
    if ((uint64_t)offset < s->header.image_size) {
1338
        return -ENOTSUP;
1339
    }
1340

    
1341
    old_image_size = s->header.image_size;
1342
    s->header.image_size = offset;
1343
    ret = qed_write_header_sync(s);
1344
    if (ret < 0) {
1345
        s->header.image_size = old_image_size;
1346
    }
1347
    return ret;
1348
}
1349

    
1350
static int64_t bdrv_qed_getlength(BlockDriverState *bs)
1351
{
1352
    BDRVQEDState *s = bs->opaque;
1353
    return s->header.image_size;
1354
}
1355

    
1356
static int bdrv_qed_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
1357
{
1358
    BDRVQEDState *s = bs->opaque;
1359

    
1360
    memset(bdi, 0, sizeof(*bdi));
1361
    bdi->cluster_size = s->header.cluster_size;
1362
    return 0;
1363
}
1364

    
1365
static int bdrv_qed_change_backing_file(BlockDriverState *bs,
1366
                                        const char *backing_file,
1367
                                        const char *backing_fmt)
1368
{
1369
    BDRVQEDState *s = bs->opaque;
1370
    QEDHeader new_header, le_header;
1371
    void *buffer;
1372
    size_t buffer_len, backing_file_len;
1373
    int ret;
1374

    
1375
    /* Refuse to set backing filename if unknown compat feature bits are
1376
     * active.  If the image uses an unknown compat feature then we may not
1377
     * know the layout of data following the header structure and cannot safely
1378
     * add a new string.
1379
     */
1380
    if (backing_file && (s->header.compat_features &
1381
                         ~QED_COMPAT_FEATURE_MASK)) {
1382
        return -ENOTSUP;
1383
    }
1384

    
1385
    memcpy(&new_header, &s->header, sizeof(new_header));
1386

    
1387
    new_header.features &= ~(QED_F_BACKING_FILE |
1388
                             QED_F_BACKING_FORMAT_NO_PROBE);
1389

    
1390
    /* Adjust feature flags */
1391
    if (backing_file) {
1392
        new_header.features |= QED_F_BACKING_FILE;
1393

    
1394
        if (qed_fmt_is_raw(backing_fmt)) {
1395
            new_header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
1396
        }
1397
    }
1398

    
1399
    /* Calculate new header size */
1400
    backing_file_len = 0;
1401

    
1402
    if (backing_file) {
1403
        backing_file_len = strlen(backing_file);
1404
    }
1405

    
1406
    buffer_len = sizeof(new_header);
1407
    new_header.backing_filename_offset = buffer_len;
1408
    new_header.backing_filename_size = backing_file_len;
1409
    buffer_len += backing_file_len;
1410

    
1411
    /* Make sure we can rewrite header without failing */
1412
    if (buffer_len > new_header.header_size * new_header.cluster_size) {
1413
        return -ENOSPC;
1414
    }
1415

    
1416
    /* Prepare new header */
1417
    buffer = g_malloc(buffer_len);
1418

    
1419
    qed_header_cpu_to_le(&new_header, &le_header);
1420
    memcpy(buffer, &le_header, sizeof(le_header));
1421
    buffer_len = sizeof(le_header);
1422

    
1423
    memcpy(buffer + buffer_len, backing_file, backing_file_len);
1424
    buffer_len += backing_file_len;
1425

    
1426
    /* Write new header */
1427
    ret = bdrv_pwrite_sync(bs->file, 0, buffer, buffer_len);
1428
    g_free(buffer);
1429
    if (ret == 0) {
1430
        memcpy(&s->header, &new_header, sizeof(new_header));
1431
    }
1432
    return ret;
1433
}
1434

    
1435
static int bdrv_qed_check(BlockDriverState *bs, BdrvCheckResult *result)
1436
{
1437
    BDRVQEDState *s = bs->opaque;
1438

    
1439
    return qed_check(s, result, false);
1440
}
1441

    
1442
static QEMUOptionParameter qed_create_options[] = {
1443
    {
1444
        .name = BLOCK_OPT_SIZE,
1445
        .type = OPT_SIZE,
1446
        .help = "Virtual disk size (in bytes)"
1447
    }, {
1448
        .name = BLOCK_OPT_BACKING_FILE,
1449
        .type = OPT_STRING,
1450
        .help = "File name of a base image"
1451
    }, {
1452
        .name = BLOCK_OPT_BACKING_FMT,
1453
        .type = OPT_STRING,
1454
        .help = "Image format of the base image"
1455
    }, {
1456
        .name = BLOCK_OPT_CLUSTER_SIZE,
1457
        .type = OPT_SIZE,
1458
        .help = "Cluster size (in bytes)",
1459
        .value = { .n = QED_DEFAULT_CLUSTER_SIZE },
1460
    }, {
1461
        .name = BLOCK_OPT_TABLE_SIZE,
1462
        .type = OPT_SIZE,
1463
        .help = "L1/L2 table size (in clusters)"
1464
    },
1465
    { /* end of list */ }
1466
};
1467

    
1468
static BlockDriver bdrv_qed = {
1469
    .format_name              = "qed",
1470
    .instance_size            = sizeof(BDRVQEDState),
1471
    .create_options           = qed_create_options,
1472

    
1473
    .bdrv_probe               = bdrv_qed_probe,
1474
    .bdrv_open                = bdrv_qed_open,
1475
    .bdrv_close               = bdrv_qed_close,
1476
    .bdrv_create              = bdrv_qed_create,
1477
    .bdrv_is_allocated        = bdrv_qed_is_allocated,
1478
    .bdrv_make_empty          = bdrv_qed_make_empty,
1479
    .bdrv_aio_readv           = bdrv_qed_aio_readv,
1480
    .bdrv_aio_writev          = bdrv_qed_aio_writev,
1481
    .bdrv_aio_flush           = bdrv_qed_aio_flush,
1482
    .bdrv_truncate            = bdrv_qed_truncate,
1483
    .bdrv_getlength           = bdrv_qed_getlength,
1484
    .bdrv_get_info            = bdrv_qed_get_info,
1485
    .bdrv_change_backing_file = bdrv_qed_change_backing_file,
1486
    .bdrv_check               = bdrv_qed_check,
1487
};
1488

    
1489
static void bdrv_qed_init(void)
1490
{
1491
    bdrv_register(&bdrv_qed);
1492
}
1493

    
1494
block_init(bdrv_qed_init);