Statistics
| Branch: | Revision:

root / vl.c @ 70744b3a

History | View | Annotate | Download (216.8 kB)

1
/*
2
 * QEMU System Emulator
3
 * 
4
 * Copyright (c) 2003-2007 Fabrice Bellard
5
 * 
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "vl.h"
25

    
26
#include <unistd.h>
27
#include <fcntl.h>
28
#include <signal.h>
29
#include <time.h>
30
#include <errno.h>
31
#include <sys/time.h>
32
#include <zlib.h>
33

    
34
#ifndef _WIN32
35
#include <sys/times.h>
36
#include <sys/wait.h>
37
#include <termios.h>
38
#include <sys/poll.h>
39
#include <sys/mman.h>
40
#include <sys/ioctl.h>
41
#include <sys/socket.h>
42
#include <netinet/in.h>
43
#include <dirent.h>
44
#include <netdb.h>
45
#ifdef _BSD
46
#include <sys/stat.h>
47
#ifndef __APPLE__
48
#include <libutil.h>
49
#endif
50
#elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
51
#include <freebsd/stdlib.h>
52
#else
53
#ifndef __sun__
54
#include <linux/if.h>
55
#include <linux/if_tun.h>
56
#include <pty.h>
57
#include <malloc.h>
58
#include <linux/rtc.h>
59
#include <linux/hpet.h>
60
#include <linux/ppdev.h>
61
#include <linux/parport.h>
62
#else
63
#include <sys/stat.h>
64
#include <sys/ethernet.h>
65
#include <sys/sockio.h>
66
#include <arpa/inet.h>
67
#include <netinet/arp.h>
68
#include <netinet/in.h>
69
#include <netinet/in_systm.h>
70
#include <netinet/ip.h>
71
#include <netinet/ip_icmp.h> // must come after ip.h
72
#include <netinet/udp.h>
73
#include <netinet/tcp.h>
74
#include <net/if.h>
75
#include <syslog.h>
76
#include <stropts.h>
77
#endif
78
#endif
79
#endif
80

    
81
#if defined(CONFIG_SLIRP)
82
#include "libslirp.h"
83
#endif
84

    
85
#ifdef _WIN32
86
#include <malloc.h>
87
#include <sys/timeb.h>
88
#include <windows.h>
89
#define getopt_long_only getopt_long
90
#define memalign(align, size) malloc(size)
91
#endif
92

    
93
#include "qemu_socket.h"
94

    
95
#ifdef CONFIG_SDL
96
#ifdef __APPLE__
97
#include <SDL/SDL.h>
98
#endif
99
#endif /* CONFIG_SDL */
100

    
101
#ifdef CONFIG_COCOA
102
#undef main
103
#define main qemu_main
104
#endif /* CONFIG_COCOA */
105

    
106
#include "disas.h"
107

    
108
#include "exec-all.h"
109

    
110
#define DEFAULT_NETWORK_SCRIPT "/etc/qemu-ifup"
111
#ifdef __sun__
112
#define SMBD_COMMAND "/usr/sfw/sbin/smbd"
113
#else
114
#define SMBD_COMMAND "/usr/sbin/smbd"
115
#endif
116

    
117
//#define DEBUG_UNUSED_IOPORT
118
//#define DEBUG_IOPORT
119

    
120
#define PHYS_RAM_MAX_SIZE (2047 * 1024 * 1024)
121

    
122
#ifdef TARGET_PPC
123
#define DEFAULT_RAM_SIZE 144
124
#else
125
#define DEFAULT_RAM_SIZE 128
126
#endif
127
/* in ms */
128
#define GUI_REFRESH_INTERVAL 30
129

    
130
/* Max number of USB devices that can be specified on the commandline.  */
131
#define MAX_USB_CMDLINE 8
132

    
133
/* XXX: use a two level table to limit memory usage */
134
#define MAX_IOPORTS 65536
135

    
136
const char *bios_dir = CONFIG_QEMU_SHAREDIR;
137
char phys_ram_file[1024];
138
void *ioport_opaque[MAX_IOPORTS];
139
IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
140
IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
141
/* Note: bs_table[MAX_DISKS] is a dummy block driver if none available
142
   to store the VM snapshots */
143
BlockDriverState *bs_table[MAX_DISKS + 1], *fd_table[MAX_FD];
144
BlockDriverState *pflash_table[MAX_PFLASH];
145
BlockDriverState *sd_bdrv;
146
BlockDriverState *mtd_bdrv;
147
/* point to the block driver where the snapshots are managed */
148
BlockDriverState *bs_snapshots;
149
int vga_ram_size;
150
static DisplayState display_state;
151
int nographic;
152
const char* keyboard_layout = NULL;
153
int64_t ticks_per_sec;
154
int boot_device = 'c';
155
int ram_size;
156
int pit_min_timer_count = 0;
157
int nb_nics;
158
NICInfo nd_table[MAX_NICS];
159
int vm_running;
160
int rtc_utc = 1;
161
int cirrus_vga_enabled = 1;
162
int vmsvga_enabled = 0;
163
#ifdef TARGET_SPARC
164
int graphic_width = 1024;
165
int graphic_height = 768;
166
int graphic_depth = 8;
167
#else
168
int graphic_width = 800;
169
int graphic_height = 600;
170
int graphic_depth = 15;
171
#endif
172
int full_screen = 0;
173
int no_frame = 0;
174
int no_quit = 0;
175
CharDriverState *serial_hds[MAX_SERIAL_PORTS];
176
CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
177
#ifdef TARGET_I386
178
int win2k_install_hack = 0;
179
#endif
180
int usb_enabled = 0;
181
static VLANState *first_vlan;
182
int smp_cpus = 1;
183
const char *vnc_display;
184
#if defined(TARGET_SPARC)
185
#define MAX_CPUS 16
186
#elif defined(TARGET_I386)
187
#define MAX_CPUS 255
188
#else
189
#define MAX_CPUS 1
190
#endif
191
int acpi_enabled = 1;
192
int fd_bootchk = 1;
193
int no_reboot = 0;
194
int cursor_hide = 1;
195
int graphic_rotate = 0;
196
int daemonize = 0;
197
const char *option_rom[MAX_OPTION_ROMS];
198
int nb_option_roms;
199
int semihosting_enabled = 0;
200
int autostart = 1;
201
#ifdef TARGET_ARM
202
int old_param = 0;
203
#endif
204
const char *qemu_name;
205
int alt_grab = 0;
206
#ifdef TARGET_SPARC
207
unsigned int nb_prom_envs = 0;
208
const char *prom_envs[MAX_PROM_ENVS];
209
#endif
210

    
211
#define TFR(expr) do { if ((expr) != -1) break; } while (errno == EINTR)
212

    
213
/***********************************************************/
214
/* x86 ISA bus support */
215

    
216
target_phys_addr_t isa_mem_base = 0;
217
PicState2 *isa_pic;
218

    
219
uint32_t default_ioport_readb(void *opaque, uint32_t address)
220
{
221
#ifdef DEBUG_UNUSED_IOPORT
222
    fprintf(stderr, "unused inb: port=0x%04x\n", address);
223
#endif
224
    return 0xff;
225
}
226

    
227
void default_ioport_writeb(void *opaque, uint32_t address, uint32_t data)
228
{
229
#ifdef DEBUG_UNUSED_IOPORT
230
    fprintf(stderr, "unused outb: port=0x%04x data=0x%02x\n", address, data);
231
#endif
232
}
233

    
234
/* default is to make two byte accesses */
235
uint32_t default_ioport_readw(void *opaque, uint32_t address)
236
{
237
    uint32_t data;
238
    data = ioport_read_table[0][address](ioport_opaque[address], address);
239
    address = (address + 1) & (MAX_IOPORTS - 1);
240
    data |= ioport_read_table[0][address](ioport_opaque[address], address) << 8;
241
    return data;
242
}
243

    
244
void default_ioport_writew(void *opaque, uint32_t address, uint32_t data)
245
{
246
    ioport_write_table[0][address](ioport_opaque[address], address, data & 0xff);
247
    address = (address + 1) & (MAX_IOPORTS - 1);
248
    ioport_write_table[0][address](ioport_opaque[address], address, (data >> 8) & 0xff);
249
}
250

    
251
uint32_t default_ioport_readl(void *opaque, uint32_t address)
252
{
253
#ifdef DEBUG_UNUSED_IOPORT
254
    fprintf(stderr, "unused inl: port=0x%04x\n", address);
255
#endif
256
    return 0xffffffff;
257
}
258

    
259
void default_ioport_writel(void *opaque, uint32_t address, uint32_t data)
260
{
261
#ifdef DEBUG_UNUSED_IOPORT
262
    fprintf(stderr, "unused outl: port=0x%04x data=0x%02x\n", address, data);
263
#endif
264
}
265

    
266
void init_ioports(void)
267
{
268
    int i;
269

    
270
    for(i = 0; i < MAX_IOPORTS; i++) {
271
        ioport_read_table[0][i] = default_ioport_readb;
272
        ioport_write_table[0][i] = default_ioport_writeb;
273
        ioport_read_table[1][i] = default_ioport_readw;
274
        ioport_write_table[1][i] = default_ioport_writew;
275
        ioport_read_table[2][i] = default_ioport_readl;
276
        ioport_write_table[2][i] = default_ioport_writel;
277
    }
278
}
279

    
280
/* size is the word size in byte */
281
int register_ioport_read(int start, int length, int size, 
282
                         IOPortReadFunc *func, void *opaque)
283
{
284
    int i, bsize;
285

    
286
    if (size == 1) {
287
        bsize = 0;
288
    } else if (size == 2) {
289
        bsize = 1;
290
    } else if (size == 4) {
291
        bsize = 2;
292
    } else {
293
        hw_error("register_ioport_read: invalid size");
294
        return -1;
295
    }
296
    for(i = start; i < start + length; i += size) {
297
        ioport_read_table[bsize][i] = func;
298
        if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
299
            hw_error("register_ioport_read: invalid opaque");
300
        ioport_opaque[i] = opaque;
301
    }
302
    return 0;
303
}
304

    
305
/* size is the word size in byte */
306
int register_ioport_write(int start, int length, int size, 
307
                          IOPortWriteFunc *func, void *opaque)
308
{
309
    int i, bsize;
310

    
311
    if (size == 1) {
312
        bsize = 0;
313
    } else if (size == 2) {
314
        bsize = 1;
315
    } else if (size == 4) {
316
        bsize = 2;
317
    } else {
318
        hw_error("register_ioport_write: invalid size");
319
        return -1;
320
    }
321
    for(i = start; i < start + length; i += size) {
322
        ioport_write_table[bsize][i] = func;
323
        if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
324
            hw_error("register_ioport_write: invalid opaque");
325
        ioport_opaque[i] = opaque;
326
    }
327
    return 0;
328
}
329

    
330
void isa_unassign_ioport(int start, int length)
331
{
332
    int i;
333

    
334
    for(i = start; i < start + length; i++) {
335
        ioport_read_table[0][i] = default_ioport_readb;
336
        ioport_read_table[1][i] = default_ioport_readw;
337
        ioport_read_table[2][i] = default_ioport_readl;
338

    
339
        ioport_write_table[0][i] = default_ioport_writeb;
340
        ioport_write_table[1][i] = default_ioport_writew;
341
        ioport_write_table[2][i] = default_ioport_writel;
342
    }
343
}
344

    
345
/***********************************************************/
346

    
347
void cpu_outb(CPUState *env, int addr, int val)
348
{
349
#ifdef DEBUG_IOPORT
350
    if (loglevel & CPU_LOG_IOPORT)
351
        fprintf(logfile, "outb: %04x %02x\n", addr, val);
352
#endif    
353
    ioport_write_table[0][addr](ioport_opaque[addr], addr, val);
354
#ifdef USE_KQEMU
355
    if (env)
356
        env->last_io_time = cpu_get_time_fast();
357
#endif
358
}
359

    
360
void cpu_outw(CPUState *env, int addr, int val)
361
{
362
#ifdef DEBUG_IOPORT
363
    if (loglevel & CPU_LOG_IOPORT)
364
        fprintf(logfile, "outw: %04x %04x\n", addr, val);
365
#endif    
366
    ioport_write_table[1][addr](ioport_opaque[addr], addr, val);
367
#ifdef USE_KQEMU
368
    if (env)
369
        env->last_io_time = cpu_get_time_fast();
370
#endif
371
}
372

    
373
void cpu_outl(CPUState *env, int addr, int val)
374
{
375
#ifdef DEBUG_IOPORT
376
    if (loglevel & CPU_LOG_IOPORT)
377
        fprintf(logfile, "outl: %04x %08x\n", addr, val);
378
#endif
379
    ioport_write_table[2][addr](ioport_opaque[addr], addr, val);
380
#ifdef USE_KQEMU
381
    if (env)
382
        env->last_io_time = cpu_get_time_fast();
383
#endif
384
}
385

    
386
int cpu_inb(CPUState *env, int addr)
387
{
388
    int val;
389
    val = ioport_read_table[0][addr](ioport_opaque[addr], addr);
390
#ifdef DEBUG_IOPORT
391
    if (loglevel & CPU_LOG_IOPORT)
392
        fprintf(logfile, "inb : %04x %02x\n", addr, val);
393
#endif
394
#ifdef USE_KQEMU
395
    if (env)
396
        env->last_io_time = cpu_get_time_fast();
397
#endif
398
    return val;
399
}
400

    
401
int cpu_inw(CPUState *env, int addr)
402
{
403
    int val;
404
    val = ioport_read_table[1][addr](ioport_opaque[addr], addr);
405
#ifdef DEBUG_IOPORT
406
    if (loglevel & CPU_LOG_IOPORT)
407
        fprintf(logfile, "inw : %04x %04x\n", addr, val);
408
#endif
409
#ifdef USE_KQEMU
410
    if (env)
411
        env->last_io_time = cpu_get_time_fast();
412
#endif
413
    return val;
414
}
415

    
416
int cpu_inl(CPUState *env, int addr)
417
{
418
    int val;
419
    val = ioport_read_table[2][addr](ioport_opaque[addr], addr);
420
#ifdef DEBUG_IOPORT
421
    if (loglevel & CPU_LOG_IOPORT)
422
        fprintf(logfile, "inl : %04x %08x\n", addr, val);
423
#endif
424
#ifdef USE_KQEMU
425
    if (env)
426
        env->last_io_time = cpu_get_time_fast();
427
#endif
428
    return val;
429
}
430

    
431
/***********************************************************/
432
void hw_error(const char *fmt, ...)
433
{
434
    va_list ap;
435
    CPUState *env;
436

    
437
    va_start(ap, fmt);
438
    fprintf(stderr, "qemu: hardware error: ");
439
    vfprintf(stderr, fmt, ap);
440
    fprintf(stderr, "\n");
441
    for(env = first_cpu; env != NULL; env = env->next_cpu) {
442
        fprintf(stderr, "CPU #%d:\n", env->cpu_index);
443
#ifdef TARGET_I386
444
        cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
445
#else
446
        cpu_dump_state(env, stderr, fprintf, 0);
447
#endif
448
    }
449
    va_end(ap);
450
    abort();
451
}
452

    
453
/***********************************************************/
454
/* keyboard/mouse */
455

    
456
static QEMUPutKBDEvent *qemu_put_kbd_event;
457
static void *qemu_put_kbd_event_opaque;
458
static QEMUPutMouseEntry *qemu_put_mouse_event_head;
459
static QEMUPutMouseEntry *qemu_put_mouse_event_current;
460

    
461
void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
462
{
463
    qemu_put_kbd_event_opaque = opaque;
464
    qemu_put_kbd_event = func;
465
}
466

    
467
QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
468
                                                void *opaque, int absolute,
469
                                                const char *name)
470
{
471
    QEMUPutMouseEntry *s, *cursor;
472

    
473
    s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
474
    if (!s)
475
        return NULL;
476

    
477
    s->qemu_put_mouse_event = func;
478
    s->qemu_put_mouse_event_opaque = opaque;
479
    s->qemu_put_mouse_event_absolute = absolute;
480
    s->qemu_put_mouse_event_name = qemu_strdup(name);
481
    s->next = NULL;
482

    
483
    if (!qemu_put_mouse_event_head) {
484
        qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
485
        return s;
486
    }
487

    
488
    cursor = qemu_put_mouse_event_head;
489
    while (cursor->next != NULL)
490
        cursor = cursor->next;
491

    
492
    cursor->next = s;
493
    qemu_put_mouse_event_current = s;
494

    
495
    return s;
496
}
497

    
498
void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
499
{
500
    QEMUPutMouseEntry *prev = NULL, *cursor;
501

    
502
    if (!qemu_put_mouse_event_head || entry == NULL)
503
        return;
504

    
505
    cursor = qemu_put_mouse_event_head;
506
    while (cursor != NULL && cursor != entry) {
507
        prev = cursor;
508
        cursor = cursor->next;
509
    }
510

    
511
    if (cursor == NULL) // does not exist or list empty
512
        return;
513
    else if (prev == NULL) { // entry is head
514
        qemu_put_mouse_event_head = cursor->next;
515
        if (qemu_put_mouse_event_current == entry)
516
            qemu_put_mouse_event_current = cursor->next;
517
        qemu_free(entry->qemu_put_mouse_event_name);
518
        qemu_free(entry);
519
        return;
520
    }
521

    
522
    prev->next = entry->next;
523

    
524
    if (qemu_put_mouse_event_current == entry)
525
        qemu_put_mouse_event_current = prev;
526

    
527
    qemu_free(entry->qemu_put_mouse_event_name);
528
    qemu_free(entry);
529
}
530

    
531
void kbd_put_keycode(int keycode)
532
{
533
    if (qemu_put_kbd_event) {
534
        qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
535
    }
536
}
537

    
538
void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
539
{
540
    QEMUPutMouseEvent *mouse_event;
541
    void *mouse_event_opaque;
542
    int width;
543

    
544
    if (!qemu_put_mouse_event_current) {
545
        return;
546
    }
547

    
548
    mouse_event =
549
        qemu_put_mouse_event_current->qemu_put_mouse_event;
550
    mouse_event_opaque =
551
        qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
552

    
553
    if (mouse_event) {
554
        if (graphic_rotate) {
555
            if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
556
                width = 0x7fff;
557
            else
558
                width = graphic_width;
559
            mouse_event(mouse_event_opaque,
560
                                 width - dy, dx, dz, buttons_state);
561
        } else
562
            mouse_event(mouse_event_opaque,
563
                                 dx, dy, dz, buttons_state);
564
    }
565
}
566

    
567
int kbd_mouse_is_absolute(void)
568
{
569
    if (!qemu_put_mouse_event_current)
570
        return 0;
571

    
572
    return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
573
}
574

    
575
void do_info_mice(void)
576
{
577
    QEMUPutMouseEntry *cursor;
578
    int index = 0;
579

    
580
    if (!qemu_put_mouse_event_head) {
581
        term_printf("No mouse devices connected\n");
582
        return;
583
    }
584

    
585
    term_printf("Mouse devices available:\n");
586
    cursor = qemu_put_mouse_event_head;
587
    while (cursor != NULL) {
588
        term_printf("%c Mouse #%d: %s\n",
589
                    (cursor == qemu_put_mouse_event_current ? '*' : ' '),
590
                    index, cursor->qemu_put_mouse_event_name);
591
        index++;
592
        cursor = cursor->next;
593
    }
594
}
595

    
596
void do_mouse_set(int index)
597
{
598
    QEMUPutMouseEntry *cursor;
599
    int i = 0;
600

    
601
    if (!qemu_put_mouse_event_head) {
602
        term_printf("No mouse devices connected\n");
603
        return;
604
    }
605

    
606
    cursor = qemu_put_mouse_event_head;
607
    while (cursor != NULL && index != i) {
608
        i++;
609
        cursor = cursor->next;
610
    }
611

    
612
    if (cursor != NULL)
613
        qemu_put_mouse_event_current = cursor;
614
    else
615
        term_printf("Mouse at given index not found\n");
616
}
617

    
618
/* compute with 96 bit intermediate result: (a*b)/c */
619
uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
620
{
621
    union {
622
        uint64_t ll;
623
        struct {
624
#ifdef WORDS_BIGENDIAN
625
            uint32_t high, low;
626
#else
627
            uint32_t low, high;
628
#endif            
629
        } l;
630
    } u, res;
631
    uint64_t rl, rh;
632

    
633
    u.ll = a;
634
    rl = (uint64_t)u.l.low * (uint64_t)b;
635
    rh = (uint64_t)u.l.high * (uint64_t)b;
636
    rh += (rl >> 32);
637
    res.l.high = rh / c;
638
    res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
639
    return res.ll;
640
}
641

    
642
/***********************************************************/
643
/* real time host monotonic timer */
644

    
645
#define QEMU_TIMER_BASE 1000000000LL
646

    
647
#ifdef WIN32
648

    
649
static int64_t clock_freq;
650

    
651
static void init_get_clock(void)
652
{
653
    LARGE_INTEGER freq;
654
    int ret;
655
    ret = QueryPerformanceFrequency(&freq);
656
    if (ret == 0) {
657
        fprintf(stderr, "Could not calibrate ticks\n");
658
        exit(1);
659
    }
660
    clock_freq = freq.QuadPart;
661
}
662

    
663
static int64_t get_clock(void)
664
{
665
    LARGE_INTEGER ti;
666
    QueryPerformanceCounter(&ti);
667
    return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
668
}
669

    
670
#else
671

    
672
static int use_rt_clock;
673

    
674
static void init_get_clock(void)
675
{
676
    use_rt_clock = 0;
677
#if defined(__linux__)
678
    {
679
        struct timespec ts;
680
        if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
681
            use_rt_clock = 1;
682
        }
683
    }
684
#endif
685
}
686

    
687
static int64_t get_clock(void)
688
{
689
#if defined(__linux__)
690
    if (use_rt_clock) {
691
        struct timespec ts;
692
        clock_gettime(CLOCK_MONOTONIC, &ts);
693
        return ts.tv_sec * 1000000000LL + ts.tv_nsec;
694
    } else 
695
#endif
696
    {
697
        /* XXX: using gettimeofday leads to problems if the date
698
           changes, so it should be avoided. */
699
        struct timeval tv;
700
        gettimeofday(&tv, NULL);
701
        return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
702
    }
703
}
704

    
705
#endif
706

    
707
/***********************************************************/
708
/* guest cycle counter */
709

    
710
static int64_t cpu_ticks_prev;
711
static int64_t cpu_ticks_offset;
712
static int64_t cpu_clock_offset;
713
static int cpu_ticks_enabled;
714

    
715
/* return the host CPU cycle counter and handle stop/restart */
716
int64_t cpu_get_ticks(void)
717
{
718
    if (!cpu_ticks_enabled) {
719
        return cpu_ticks_offset;
720
    } else {
721
        int64_t ticks;
722
        ticks = cpu_get_real_ticks();
723
        if (cpu_ticks_prev > ticks) {
724
            /* Note: non increasing ticks may happen if the host uses
725
               software suspend */
726
            cpu_ticks_offset += cpu_ticks_prev - ticks;
727
        }
728
        cpu_ticks_prev = ticks;
729
        return ticks + cpu_ticks_offset;
730
    }
731
}
732

    
733
/* return the host CPU monotonic timer and handle stop/restart */
734
static int64_t cpu_get_clock(void)
735
{
736
    int64_t ti;
737
    if (!cpu_ticks_enabled) {
738
        return cpu_clock_offset;
739
    } else {
740
        ti = get_clock();
741
        return ti + cpu_clock_offset;
742
    }
743
}
744

    
745
/* enable cpu_get_ticks() */
746
void cpu_enable_ticks(void)
747
{
748
    if (!cpu_ticks_enabled) {
749
        cpu_ticks_offset -= cpu_get_real_ticks();
750
        cpu_clock_offset -= get_clock();
751
        cpu_ticks_enabled = 1;
752
    }
753
}
754

    
755
/* disable cpu_get_ticks() : the clock is stopped. You must not call
756
   cpu_get_ticks() after that.  */
757
void cpu_disable_ticks(void)
758
{
759
    if (cpu_ticks_enabled) {
760
        cpu_ticks_offset = cpu_get_ticks();
761
        cpu_clock_offset = cpu_get_clock();
762
        cpu_ticks_enabled = 0;
763
    }
764
}
765

    
766
/***********************************************************/
767
/* timers */
768
 
769
#define QEMU_TIMER_REALTIME 0
770
#define QEMU_TIMER_VIRTUAL  1
771

    
772
struct QEMUClock {
773
    int type;
774
    /* XXX: add frequency */
775
};
776

    
777
struct QEMUTimer {
778
    QEMUClock *clock;
779
    int64_t expire_time;
780
    QEMUTimerCB *cb;
781
    void *opaque;
782
    struct QEMUTimer *next;
783
};
784

    
785
struct qemu_alarm_timer {
786
    char const *name;
787
    unsigned int flags;
788

    
789
    int (*start)(struct qemu_alarm_timer *t);
790
    void (*stop)(struct qemu_alarm_timer *t);
791
    void (*rearm)(struct qemu_alarm_timer *t);
792
    void *priv;
793
};
794

    
795
#define ALARM_FLAG_DYNTICKS  0x1
796

    
797
static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
798
{
799
    return t->flags & ALARM_FLAG_DYNTICKS;
800
}
801

    
802
static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
803
{
804
    if (!alarm_has_dynticks(t))
805
        return;
806

    
807
    t->rearm(t);
808
}
809

    
810
/* TODO: MIN_TIMER_REARM_US should be optimized */
811
#define MIN_TIMER_REARM_US 250
812

    
813
static struct qemu_alarm_timer *alarm_timer;
814

    
815
#ifdef _WIN32
816

    
817
struct qemu_alarm_win32 {
818
    MMRESULT timerId;
819
    HANDLE host_alarm;
820
    unsigned int period;
821
} alarm_win32_data = {0, NULL, -1};
822

    
823
static int win32_start_timer(struct qemu_alarm_timer *t);
824
static void win32_stop_timer(struct qemu_alarm_timer *t);
825
static void win32_rearm_timer(struct qemu_alarm_timer *t);
826

    
827
#else
828

    
829
static int unix_start_timer(struct qemu_alarm_timer *t);
830
static void unix_stop_timer(struct qemu_alarm_timer *t);
831

    
832
#ifdef __linux__
833

    
834
static int dynticks_start_timer(struct qemu_alarm_timer *t);
835
static void dynticks_stop_timer(struct qemu_alarm_timer *t);
836
static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
837

    
838
static int hpet_start_timer(struct qemu_alarm_timer *t);
839
static void hpet_stop_timer(struct qemu_alarm_timer *t);
840

    
841
static int rtc_start_timer(struct qemu_alarm_timer *t);
842
static void rtc_stop_timer(struct qemu_alarm_timer *t);
843

    
844
#endif /* __linux__ */
845

    
846
#endif /* _WIN32 */
847

    
848
static struct qemu_alarm_timer alarm_timers[] = {
849
#ifndef _WIN32
850
#ifdef __linux__
851
    {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
852
     dynticks_stop_timer, dynticks_rearm_timer, NULL},
853
    /* HPET - if available - is preferred */
854
    {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
855
    /* ...otherwise try RTC */
856
    {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
857
#endif
858
    {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
859
#else
860
    {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
861
     win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
862
    {"win32", 0, win32_start_timer,
863
     win32_stop_timer, NULL, &alarm_win32_data},
864
#endif
865
    {NULL, }
866
};
867

    
868
static void show_available_alarms()
869
{
870
    int i;
871

    
872
    printf("Available alarm timers, in order of precedence:\n");
873
    for (i = 0; alarm_timers[i].name; i++)
874
        printf("%s\n", alarm_timers[i].name);
875
}
876

    
877
static void configure_alarms(char const *opt)
878
{
879
    int i;
880
    int cur = 0;
881
    int count = (sizeof(alarm_timers) / sizeof(*alarm_timers)) - 1;
882
    char *arg;
883
    char *name;
884

    
885
    if (!strcmp(opt, "help")) {
886
        show_available_alarms();
887
        exit(0);
888
    }
889

    
890
    arg = strdup(opt);
891

    
892
    /* Reorder the array */
893
    name = strtok(arg, ",");
894
    while (name) {
895
        struct qemu_alarm_timer tmp;
896

    
897
        for (i = 0; i < count; i++) {
898
            if (!strcmp(alarm_timers[i].name, name))
899
                break;
900
        }
901

    
902
        if (i == count) {
903
            fprintf(stderr, "Unknown clock %s\n", name);
904
            goto next;
905
        }
906

    
907
        if (i < cur)
908
            /* Ignore */
909
            goto next;
910

    
911
        /* Swap */
912
        tmp = alarm_timers[i];
913
        alarm_timers[i] = alarm_timers[cur];
914
        alarm_timers[cur] = tmp;
915

    
916
        cur++;
917
next:
918
        name = strtok(NULL, ",");
919
    }
920

    
921
    free(arg);
922

    
923
    if (cur) {
924
        /* Disable remaining timers */
925
        for (i = cur; i < count; i++)
926
            alarm_timers[i].name = NULL;
927
    }
928

    
929
    /* debug */
930
    show_available_alarms();
931
}
932

    
933
QEMUClock *rt_clock;
934
QEMUClock *vm_clock;
935

    
936
static QEMUTimer *active_timers[2];
937

    
938
QEMUClock *qemu_new_clock(int type)
939
{
940
    QEMUClock *clock;
941
    clock = qemu_mallocz(sizeof(QEMUClock));
942
    if (!clock)
943
        return NULL;
944
    clock->type = type;
945
    return clock;
946
}
947

    
948
QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
949
{
950
    QEMUTimer *ts;
951

    
952
    ts = qemu_mallocz(sizeof(QEMUTimer));
953
    ts->clock = clock;
954
    ts->cb = cb;
955
    ts->opaque = opaque;
956
    return ts;
957
}
958

    
959
void qemu_free_timer(QEMUTimer *ts)
960
{
961
    qemu_free(ts);
962
}
963

    
964
/* stop a timer, but do not dealloc it */
965
void qemu_del_timer(QEMUTimer *ts)
966
{
967
    QEMUTimer **pt, *t;
968

    
969
    /* NOTE: this code must be signal safe because
970
       qemu_timer_expired() can be called from a signal. */
971
    pt = &active_timers[ts->clock->type];
972
    for(;;) {
973
        t = *pt;
974
        if (!t)
975
            break;
976
        if (t == ts) {
977
            *pt = t->next;
978
            break;
979
        }
980
        pt = &t->next;
981
    }
982

    
983
    qemu_rearm_alarm_timer(alarm_timer);
984
}
985

    
986
/* modify the current timer so that it will be fired when current_time
987
   >= expire_time. The corresponding callback will be called. */
988
void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
989
{
990
    QEMUTimer **pt, *t;
991

    
992
    qemu_del_timer(ts);
993

    
994
    /* add the timer in the sorted list */
995
    /* NOTE: this code must be signal safe because
996
       qemu_timer_expired() can be called from a signal. */
997
    pt = &active_timers[ts->clock->type];
998
    for(;;) {
999
        t = *pt;
1000
        if (!t)
1001
            break;
1002
        if (t->expire_time > expire_time) 
1003
            break;
1004
        pt = &t->next;
1005
    }
1006
    ts->expire_time = expire_time;
1007
    ts->next = *pt;
1008
    *pt = ts;
1009
}
1010

    
1011
int qemu_timer_pending(QEMUTimer *ts)
1012
{
1013
    QEMUTimer *t;
1014
    for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
1015
        if (t == ts)
1016
            return 1;
1017
    }
1018
    return 0;
1019
}
1020

    
1021
static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
1022
{
1023
    if (!timer_head)
1024
        return 0;
1025
    return (timer_head->expire_time <= current_time);
1026
}
1027

    
1028
static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
1029
{
1030
    QEMUTimer *ts;
1031
    
1032
    for(;;) {
1033
        ts = *ptimer_head;
1034
        if (!ts || ts->expire_time > current_time)
1035
            break;
1036
        /* remove timer from the list before calling the callback */
1037
        *ptimer_head = ts->next;
1038
        ts->next = NULL;
1039
        
1040
        /* run the callback (the timer list can be modified) */
1041
        ts->cb(ts->opaque);
1042
    }
1043
    qemu_rearm_alarm_timer(alarm_timer);
1044
}
1045

    
1046
int64_t qemu_get_clock(QEMUClock *clock)
1047
{
1048
    switch(clock->type) {
1049
    case QEMU_TIMER_REALTIME:
1050
        return get_clock() / 1000000;
1051
    default:
1052
    case QEMU_TIMER_VIRTUAL:
1053
        return cpu_get_clock();
1054
    }
1055
}
1056

    
1057
static void init_timers(void)
1058
{
1059
    init_get_clock();
1060
    ticks_per_sec = QEMU_TIMER_BASE;
1061
    rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
1062
    vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
1063
}
1064

    
1065
/* save a timer */
1066
void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
1067
{
1068
    uint64_t expire_time;
1069

    
1070
    if (qemu_timer_pending(ts)) {
1071
        expire_time = ts->expire_time;
1072
    } else {
1073
        expire_time = -1;
1074
    }
1075
    qemu_put_be64(f, expire_time);
1076
}
1077

    
1078
void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
1079
{
1080
    uint64_t expire_time;
1081

    
1082
    expire_time = qemu_get_be64(f);
1083
    if (expire_time != -1) {
1084
        qemu_mod_timer(ts, expire_time);
1085
    } else {
1086
        qemu_del_timer(ts);
1087
    }
1088
}
1089

    
1090
static void timer_save(QEMUFile *f, void *opaque)
1091
{
1092
    if (cpu_ticks_enabled) {
1093
        hw_error("cannot save state if virtual timers are running");
1094
    }
1095
    qemu_put_be64s(f, &cpu_ticks_offset);
1096
    qemu_put_be64s(f, &ticks_per_sec);
1097
    qemu_put_be64s(f, &cpu_clock_offset);
1098
}
1099

    
1100
static int timer_load(QEMUFile *f, void *opaque, int version_id)
1101
{
1102
    if (version_id != 1 && version_id != 2)
1103
        return -EINVAL;
1104
    if (cpu_ticks_enabled) {
1105
        return -EINVAL;
1106
    }
1107
    qemu_get_be64s(f, &cpu_ticks_offset);
1108
    qemu_get_be64s(f, &ticks_per_sec);
1109
    if (version_id == 2) {
1110
        qemu_get_be64s(f, &cpu_clock_offset);
1111
    }
1112
    return 0;
1113
}
1114

    
1115
#ifdef _WIN32
1116
void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg, 
1117
                                 DWORD_PTR dwUser, DWORD_PTR dw1, DWORD_PTR dw2)
1118
#else
1119
static void host_alarm_handler(int host_signum)
1120
#endif
1121
{
1122
#if 0
1123
#define DISP_FREQ 1000
1124
    {
1125
        static int64_t delta_min = INT64_MAX;
1126
        static int64_t delta_max, delta_cum, last_clock, delta, ti;
1127
        static int count;
1128
        ti = qemu_get_clock(vm_clock);
1129
        if (last_clock != 0) {
1130
            delta = ti - last_clock;
1131
            if (delta < delta_min)
1132
                delta_min = delta;
1133
            if (delta > delta_max)
1134
                delta_max = delta;
1135
            delta_cum += delta;
1136
            if (++count == DISP_FREQ) {
1137
                printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1138
                       muldiv64(delta_min, 1000000, ticks_per_sec),
1139
                       muldiv64(delta_max, 1000000, ticks_per_sec),
1140
                       muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
1141
                       (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
1142
                count = 0;
1143
                delta_min = INT64_MAX;
1144
                delta_max = 0;
1145
                delta_cum = 0;
1146
            }
1147
        }
1148
        last_clock = ti;
1149
    }
1150
#endif
1151
    if (alarm_has_dynticks(alarm_timer) ||
1152
        qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
1153
                           qemu_get_clock(vm_clock)) ||
1154
        qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
1155
                           qemu_get_clock(rt_clock))) {
1156
#ifdef _WIN32
1157
        struct qemu_alarm_win32 *data = ((struct qemu_alarm_timer*)dwUser)->priv;
1158
        SetEvent(data->host_alarm);
1159
#endif
1160
        CPUState *env = cpu_single_env;
1161
        if (env) {
1162
            /* stop the currently executing cpu because a timer occured */
1163
            cpu_interrupt(env, CPU_INTERRUPT_EXIT);
1164
#ifdef USE_KQEMU
1165
            if (env->kqemu_enabled) {
1166
                kqemu_cpu_interrupt(env);
1167
            }
1168
#endif
1169
        }
1170
    }
1171
}
1172

    
1173
static uint64_t qemu_next_deadline(void)
1174
{
1175
    int64_t nearest_delta_us = ULLONG_MAX;
1176
    int64_t vmdelta_us;
1177

    
1178
    if (active_timers[QEMU_TIMER_REALTIME])
1179
        nearest_delta_us = (active_timers[QEMU_TIMER_REALTIME]->expire_time -
1180
                            qemu_get_clock(rt_clock))*1000;
1181

    
1182
    if (active_timers[QEMU_TIMER_VIRTUAL]) {
1183
        /* round up */
1184
        vmdelta_us = (active_timers[QEMU_TIMER_VIRTUAL]->expire_time -
1185
                      qemu_get_clock(vm_clock)+999)/1000;
1186
        if (vmdelta_us < nearest_delta_us)
1187
            nearest_delta_us = vmdelta_us;
1188
    }
1189

    
1190
    /* Avoid arming the timer to negative, zero, or too low values */
1191
    if (nearest_delta_us <= MIN_TIMER_REARM_US)
1192
        nearest_delta_us = MIN_TIMER_REARM_US;
1193

    
1194
    return nearest_delta_us;
1195
}
1196

    
1197
#ifndef _WIN32
1198

    
1199
#if defined(__linux__)
1200

    
1201
#define RTC_FREQ 1024
1202

    
1203
static void enable_sigio_timer(int fd)
1204
{
1205
    struct sigaction act;
1206

    
1207
    /* timer signal */
1208
    sigfillset(&act.sa_mask);
1209
    act.sa_flags = 0;
1210
#if defined (TARGET_I386) && defined(USE_CODE_COPY)
1211
    act.sa_flags |= SA_ONSTACK;
1212
#endif
1213
    act.sa_handler = host_alarm_handler;
1214

    
1215
    sigaction(SIGIO, &act, NULL);
1216
    fcntl(fd, F_SETFL, O_ASYNC);
1217
    fcntl(fd, F_SETOWN, getpid());
1218
}
1219

    
1220
static int hpet_start_timer(struct qemu_alarm_timer *t)
1221
{
1222
    struct hpet_info info;
1223
    int r, fd;
1224

    
1225
    fd = open("/dev/hpet", O_RDONLY);
1226
    if (fd < 0)
1227
        return -1;
1228

    
1229
    /* Set frequency */
1230
    r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
1231
    if (r < 0) {
1232
        fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1233
                "error, but for better emulation accuracy type:\n"
1234
                "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1235
        goto fail;
1236
    }
1237

    
1238
    /* Check capabilities */
1239
    r = ioctl(fd, HPET_INFO, &info);
1240
    if (r < 0)
1241
        goto fail;
1242

    
1243
    /* Enable periodic mode */
1244
    r = ioctl(fd, HPET_EPI, 0);
1245
    if (info.hi_flags && (r < 0))
1246
        goto fail;
1247

    
1248
    /* Enable interrupt */
1249
    r = ioctl(fd, HPET_IE_ON, 0);
1250
    if (r < 0)
1251
        goto fail;
1252

    
1253
    enable_sigio_timer(fd);
1254
    t->priv = (void *)(long)fd;
1255

    
1256
    return 0;
1257
fail:
1258
    close(fd);
1259
    return -1;
1260
}
1261

    
1262
static void hpet_stop_timer(struct qemu_alarm_timer *t)
1263
{
1264
    int fd = (long)t->priv;
1265

    
1266
    close(fd);
1267
}
1268

    
1269
static int rtc_start_timer(struct qemu_alarm_timer *t)
1270
{
1271
    int rtc_fd;
1272

    
1273
    TFR(rtc_fd = open("/dev/rtc", O_RDONLY));
1274
    if (rtc_fd < 0)
1275
        return -1;
1276
    if (ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1277
        fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1278
                "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1279
                "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1280
        goto fail;
1281
    }
1282
    if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1283
    fail:
1284
        close(rtc_fd);
1285
        return -1;
1286
    }
1287

    
1288
    enable_sigio_timer(rtc_fd);
1289

    
1290
    t->priv = (void *)(long)rtc_fd;
1291

    
1292
    return 0;
1293
}
1294

    
1295
static void rtc_stop_timer(struct qemu_alarm_timer *t)
1296
{
1297
    int rtc_fd = (long)t->priv;
1298

    
1299
    close(rtc_fd);
1300
}
1301

    
1302
static int dynticks_start_timer(struct qemu_alarm_timer *t)
1303
{
1304
    struct sigevent ev;
1305
    timer_t host_timer;
1306
    struct sigaction act;
1307

    
1308
    sigfillset(&act.sa_mask);
1309
    act.sa_flags = 0;
1310
#if defined(TARGET_I386) && defined(USE_CODE_COPY)
1311
    act.sa_flags |= SA_ONSTACK;
1312
#endif
1313
    act.sa_handler = host_alarm_handler;
1314

    
1315
    sigaction(SIGALRM, &act, NULL);
1316

    
1317
    ev.sigev_value.sival_int = 0;
1318
    ev.sigev_notify = SIGEV_SIGNAL;
1319
    ev.sigev_signo = SIGALRM;
1320

    
1321
    if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
1322
        perror("timer_create");
1323

    
1324
        /* disable dynticks */
1325
        fprintf(stderr, "Dynamic Ticks disabled\n");
1326

    
1327
        return -1;
1328
    }
1329

    
1330
    t->priv = (void *)host_timer;
1331

    
1332
    return 0;
1333
}
1334

    
1335
static void dynticks_stop_timer(struct qemu_alarm_timer *t)
1336
{
1337
    timer_t host_timer = (timer_t)t->priv;
1338

    
1339
    timer_delete(host_timer);
1340
}
1341

    
1342
static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
1343
{
1344
    timer_t host_timer = (timer_t)t->priv;
1345
    struct itimerspec timeout;
1346
    int64_t nearest_delta_us = INT64_MAX;
1347
    int64_t current_us;
1348

    
1349
    if (!active_timers[QEMU_TIMER_REALTIME] &&
1350
                !active_timers[QEMU_TIMER_VIRTUAL])
1351
            return;
1352

    
1353
    nearest_delta_us = qemu_next_deadline();
1354

    
1355
    /* check whether a timer is already running */
1356
    if (timer_gettime(host_timer, &timeout)) {
1357
        perror("gettime");
1358
        fprintf(stderr, "Internal timer error: aborting\n");
1359
        exit(1);
1360
    }
1361
    current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
1362
    if (current_us && current_us <= nearest_delta_us)
1363
        return;
1364

    
1365
    timeout.it_interval.tv_sec = 0;
1366
    timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
1367
    timeout.it_value.tv_sec =  nearest_delta_us / 1000000;
1368
    timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
1369
    if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
1370
        perror("settime");
1371
        fprintf(stderr, "Internal timer error: aborting\n");
1372
        exit(1);
1373
    }
1374
}
1375

    
1376
#endif /* defined(__linux__) */
1377

    
1378
static int unix_start_timer(struct qemu_alarm_timer *t)
1379
{
1380
    struct sigaction act;
1381
    struct itimerval itv;
1382
    int err;
1383

    
1384
    /* timer signal */
1385
    sigfillset(&act.sa_mask);
1386
    act.sa_flags = 0;
1387
#if defined(TARGET_I386) && defined(USE_CODE_COPY)
1388
    act.sa_flags |= SA_ONSTACK;
1389
#endif
1390
    act.sa_handler = host_alarm_handler;
1391

    
1392
    sigaction(SIGALRM, &act, NULL);
1393

    
1394
    itv.it_interval.tv_sec = 0;
1395
    /* for i386 kernel 2.6 to get 1 ms */
1396
    itv.it_interval.tv_usec = 999;
1397
    itv.it_value.tv_sec = 0;
1398
    itv.it_value.tv_usec = 10 * 1000;
1399

    
1400
    err = setitimer(ITIMER_REAL, &itv, NULL);
1401
    if (err)
1402
        return -1;
1403

    
1404
    return 0;
1405
}
1406

    
1407
static void unix_stop_timer(struct qemu_alarm_timer *t)
1408
{
1409
    struct itimerval itv;
1410

    
1411
    memset(&itv, 0, sizeof(itv));
1412
    setitimer(ITIMER_REAL, &itv, NULL);
1413
}
1414

    
1415
#endif /* !defined(_WIN32) */
1416

    
1417
#ifdef _WIN32
1418

    
1419
static int win32_start_timer(struct qemu_alarm_timer *t)
1420
{
1421
    TIMECAPS tc;
1422
    struct qemu_alarm_win32 *data = t->priv;
1423
    UINT flags;
1424

    
1425
    data->host_alarm = CreateEvent(NULL, FALSE, FALSE, NULL);
1426
    if (!data->host_alarm) {
1427
        perror("Failed CreateEvent");
1428
        return -1;
1429
    }
1430

    
1431
    memset(&tc, 0, sizeof(tc));
1432
    timeGetDevCaps(&tc, sizeof(tc));
1433

    
1434
    if (data->period < tc.wPeriodMin)
1435
        data->period = tc.wPeriodMin;
1436

    
1437
    timeBeginPeriod(data->period);
1438

    
1439
    flags = TIME_CALLBACK_FUNCTION;
1440
    if (alarm_has_dynticks(t))
1441
        flags |= TIME_ONESHOT;
1442
    else
1443
        flags |= TIME_PERIODIC;
1444

    
1445
    data->timerId = timeSetEvent(1,         // interval (ms)
1446
                        data->period,       // resolution
1447
                        host_alarm_handler, // function
1448
                        (DWORD)t,           // parameter
1449
                        flags);
1450

    
1451
    if (!data->timerId) {
1452
        perror("Failed to initialize win32 alarm timer");
1453

    
1454
        timeEndPeriod(data->period);
1455
        CloseHandle(data->host_alarm);
1456
        return -1;
1457
    }
1458

    
1459
    qemu_add_wait_object(data->host_alarm, NULL, NULL);
1460

    
1461
    return 0;
1462
}
1463

    
1464
static void win32_stop_timer(struct qemu_alarm_timer *t)
1465
{
1466
    struct qemu_alarm_win32 *data = t->priv;
1467

    
1468
    timeKillEvent(data->timerId);
1469
    timeEndPeriod(data->period);
1470

    
1471
    CloseHandle(data->host_alarm);
1472
}
1473

    
1474
static void win32_rearm_timer(struct qemu_alarm_timer *t)
1475
{
1476
    struct qemu_alarm_win32 *data = t->priv;
1477
    uint64_t nearest_delta_us;
1478

    
1479
    if (!active_timers[QEMU_TIMER_REALTIME] &&
1480
                !active_timers[QEMU_TIMER_VIRTUAL])
1481
            return;
1482

    
1483
    nearest_delta_us = qemu_next_deadline();
1484
    nearest_delta_us /= 1000;
1485

    
1486
    timeKillEvent(data->timerId);
1487

    
1488
    data->timerId = timeSetEvent(1,
1489
                        data->period,
1490
                        host_alarm_handler,
1491
                        (DWORD)t,
1492
                        TIME_ONESHOT | TIME_PERIODIC);
1493

    
1494
    if (!data->timerId) {
1495
        perror("Failed to re-arm win32 alarm timer");
1496

    
1497
        timeEndPeriod(data->period);
1498
        CloseHandle(data->host_alarm);
1499
        exit(1);
1500
    }
1501
}
1502

    
1503
#endif /* _WIN32 */
1504

    
1505
static void init_timer_alarm(void)
1506
{
1507
    struct qemu_alarm_timer *t;
1508
    int i, err = -1;
1509

    
1510
    for (i = 0; alarm_timers[i].name; i++) {
1511
        t = &alarm_timers[i];
1512

    
1513
        err = t->start(t);
1514
        if (!err)
1515
            break;
1516
    }
1517

    
1518
    if (err) {
1519
        fprintf(stderr, "Unable to find any suitable alarm timer.\n");
1520
        fprintf(stderr, "Terminating\n");
1521
        exit(1);
1522
    }
1523

    
1524
    alarm_timer = t;
1525
}
1526

    
1527
void quit_timers(void)
1528
{
1529
    alarm_timer->stop(alarm_timer);
1530
    alarm_timer = NULL;
1531
}
1532

    
1533
/***********************************************************/
1534
/* character device */
1535

    
1536
static void qemu_chr_event(CharDriverState *s, int event)
1537
{
1538
    if (!s->chr_event)
1539
        return;
1540
    s->chr_event(s->handler_opaque, event);
1541
}
1542

    
1543
static void qemu_chr_reset_bh(void *opaque)
1544
{
1545
    CharDriverState *s = opaque;
1546
    qemu_chr_event(s, CHR_EVENT_RESET);
1547
    qemu_bh_delete(s->bh);
1548
    s->bh = NULL;
1549
}
1550

    
1551
void qemu_chr_reset(CharDriverState *s)
1552
{
1553
    if (s->bh == NULL) {
1554
        s->bh = qemu_bh_new(qemu_chr_reset_bh, s);
1555
        qemu_bh_schedule(s->bh);
1556
    }
1557
}
1558

    
1559
int qemu_chr_write(CharDriverState *s, const uint8_t *buf, int len)
1560
{
1561
    return s->chr_write(s, buf, len);
1562
}
1563

    
1564
int qemu_chr_ioctl(CharDriverState *s, int cmd, void *arg)
1565
{
1566
    if (!s->chr_ioctl)
1567
        return -ENOTSUP;
1568
    return s->chr_ioctl(s, cmd, arg);
1569
}
1570

    
1571
int qemu_chr_can_read(CharDriverState *s)
1572
{
1573
    if (!s->chr_can_read)
1574
        return 0;
1575
    return s->chr_can_read(s->handler_opaque);
1576
}
1577

    
1578
void qemu_chr_read(CharDriverState *s, uint8_t *buf, int len)
1579
{
1580
    s->chr_read(s->handler_opaque, buf, len);
1581
}
1582

    
1583

    
1584
void qemu_chr_printf(CharDriverState *s, const char *fmt, ...)
1585
{
1586
    char buf[4096];
1587
    va_list ap;
1588
    va_start(ap, fmt);
1589
    vsnprintf(buf, sizeof(buf), fmt, ap);
1590
    qemu_chr_write(s, buf, strlen(buf));
1591
    va_end(ap);
1592
}
1593

    
1594
void qemu_chr_send_event(CharDriverState *s, int event)
1595
{
1596
    if (s->chr_send_event)
1597
        s->chr_send_event(s, event);
1598
}
1599

    
1600
void qemu_chr_add_handlers(CharDriverState *s, 
1601
                           IOCanRWHandler *fd_can_read, 
1602
                           IOReadHandler *fd_read,
1603
                           IOEventHandler *fd_event,
1604
                           void *opaque)
1605
{
1606
    s->chr_can_read = fd_can_read;
1607
    s->chr_read = fd_read;
1608
    s->chr_event = fd_event;
1609
    s->handler_opaque = opaque;
1610
    if (s->chr_update_read_handler)
1611
        s->chr_update_read_handler(s);
1612
}
1613
             
1614
static int null_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1615
{
1616
    return len;
1617
}
1618

    
1619
static CharDriverState *qemu_chr_open_null(void)
1620
{
1621
    CharDriverState *chr;
1622

    
1623
    chr = qemu_mallocz(sizeof(CharDriverState));
1624
    if (!chr)
1625
        return NULL;
1626
    chr->chr_write = null_chr_write;
1627
    return chr;
1628
}
1629

    
1630
/* MUX driver for serial I/O splitting */
1631
static int term_timestamps;
1632
static int64_t term_timestamps_start;
1633
#define MAX_MUX 4
1634
typedef struct {
1635
    IOCanRWHandler *chr_can_read[MAX_MUX];
1636
    IOReadHandler *chr_read[MAX_MUX];
1637
    IOEventHandler *chr_event[MAX_MUX];
1638
    void *ext_opaque[MAX_MUX];
1639
    CharDriverState *drv;
1640
    int mux_cnt;
1641
    int term_got_escape;
1642
    int max_size;
1643
} MuxDriver;
1644

    
1645

    
1646
static int mux_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1647
{
1648
    MuxDriver *d = chr->opaque;
1649
    int ret;
1650
    if (!term_timestamps) {
1651
        ret = d->drv->chr_write(d->drv, buf, len);
1652
    } else {
1653
        int i;
1654

    
1655
        ret = 0;
1656
        for(i = 0; i < len; i++) {
1657
            ret += d->drv->chr_write(d->drv, buf+i, 1);
1658
            if (buf[i] == '\n') {
1659
                char buf1[64];
1660
                int64_t ti;
1661
                int secs;
1662

    
1663
                ti = get_clock();
1664
                if (term_timestamps_start == -1)
1665
                    term_timestamps_start = ti;
1666
                ti -= term_timestamps_start;
1667
                secs = ti / 1000000000;
1668
                snprintf(buf1, sizeof(buf1),
1669
                         "[%02d:%02d:%02d.%03d] ",
1670
                         secs / 3600,
1671
                         (secs / 60) % 60,
1672
                         secs % 60,
1673
                         (int)((ti / 1000000) % 1000));
1674
                d->drv->chr_write(d->drv, buf1, strlen(buf1));
1675
            }
1676
        }
1677
    }
1678
    return ret;
1679
}
1680

    
1681
static char *mux_help[] = {
1682
    "% h    print this help\n\r",
1683
    "% x    exit emulator\n\r",
1684
    "% s    save disk data back to file (if -snapshot)\n\r",
1685
    "% t    toggle console timestamps\n\r"
1686
    "% b    send break (magic sysrq)\n\r",
1687
    "% c    switch between console and monitor\n\r",
1688
    "% %  sends %\n\r",
1689
    NULL
1690
};
1691

    
1692
static int term_escape_char = 0x01; /* ctrl-a is used for escape */
1693
static void mux_print_help(CharDriverState *chr)
1694
{
1695
    int i, j;
1696
    char ebuf[15] = "Escape-Char";
1697
    char cbuf[50] = "\n\r";
1698

    
1699
    if (term_escape_char > 0 && term_escape_char < 26) {
1700
        sprintf(cbuf,"\n\r");
1701
        sprintf(ebuf,"C-%c", term_escape_char - 1 + 'a');
1702
    } else {
1703
        sprintf(cbuf,"\n\rEscape-Char set to Ascii: 0x%02x\n\r\n\r", term_escape_char);
1704
    }
1705
    chr->chr_write(chr, cbuf, strlen(cbuf));
1706
    for (i = 0; mux_help[i] != NULL; i++) {
1707
        for (j=0; mux_help[i][j] != '\0'; j++) {
1708
            if (mux_help[i][j] == '%')
1709
                chr->chr_write(chr, ebuf, strlen(ebuf));
1710
            else
1711
                chr->chr_write(chr, &mux_help[i][j], 1);
1712
        }
1713
    }
1714
}
1715

    
1716
static int mux_proc_byte(CharDriverState *chr, MuxDriver *d, int ch)
1717
{
1718
    if (d->term_got_escape) {
1719
        d->term_got_escape = 0;
1720
        if (ch == term_escape_char)
1721
            goto send_char;
1722
        switch(ch) {
1723
        case '?':
1724
        case 'h':
1725
            mux_print_help(chr);
1726
            break;
1727
        case 'x':
1728
            {
1729
                 char *term =  "QEMU: Terminated\n\r";
1730
                 chr->chr_write(chr,term,strlen(term));
1731
                 exit(0);
1732
                 break;
1733
            }
1734
        case 's':
1735
            {
1736
                int i;
1737
                for (i = 0; i < MAX_DISKS; i++) {
1738
                    if (bs_table[i])
1739
                        bdrv_commit(bs_table[i]);
1740
                }
1741
                if (mtd_bdrv)
1742
                    bdrv_commit(mtd_bdrv);
1743
            }
1744
            break;
1745
        case 'b':
1746
            qemu_chr_event(chr, CHR_EVENT_BREAK);
1747
            break;
1748
        case 'c':
1749
            /* Switch to the next registered device */
1750
            chr->focus++;
1751
            if (chr->focus >= d->mux_cnt)
1752
                chr->focus = 0;
1753
            break;
1754
       case 't':
1755
           term_timestamps = !term_timestamps;
1756
           term_timestamps_start = -1;
1757
           break;
1758
        }
1759
    } else if (ch == term_escape_char) {
1760
        d->term_got_escape = 1;
1761
    } else {
1762
    send_char:
1763
        return 1;
1764
    }
1765
    return 0;
1766
}
1767

    
1768
static int mux_chr_can_read(void *opaque)
1769
{
1770
    CharDriverState *chr = opaque;
1771
    MuxDriver *d = chr->opaque;
1772
    if (d->chr_can_read[chr->focus])
1773
       return d->chr_can_read[chr->focus](d->ext_opaque[chr->focus]);
1774
    return 0;
1775
}
1776

    
1777
static void mux_chr_read(void *opaque, const uint8_t *buf, int size)
1778
{
1779
    CharDriverState *chr = opaque;
1780
    MuxDriver *d = chr->opaque;
1781
    int i;
1782
    for(i = 0; i < size; i++)
1783
        if (mux_proc_byte(chr, d, buf[i]))
1784
            d->chr_read[chr->focus](d->ext_opaque[chr->focus], &buf[i], 1);
1785
}
1786

    
1787
static void mux_chr_event(void *opaque, int event)
1788
{
1789
    CharDriverState *chr = opaque;
1790
    MuxDriver *d = chr->opaque;
1791
    int i;
1792

    
1793
    /* Send the event to all registered listeners */
1794
    for (i = 0; i < d->mux_cnt; i++)
1795
        if (d->chr_event[i])
1796
            d->chr_event[i](d->ext_opaque[i], event);
1797
}
1798

    
1799
static void mux_chr_update_read_handler(CharDriverState *chr)
1800
{
1801
    MuxDriver *d = chr->opaque;
1802

    
1803
    if (d->mux_cnt >= MAX_MUX) {
1804
        fprintf(stderr, "Cannot add I/O handlers, MUX array is full\n");
1805
        return;
1806
    }
1807
    d->ext_opaque[d->mux_cnt] = chr->handler_opaque;
1808
    d->chr_can_read[d->mux_cnt] = chr->chr_can_read;
1809
    d->chr_read[d->mux_cnt] = chr->chr_read;
1810
    d->chr_event[d->mux_cnt] = chr->chr_event;
1811
    /* Fix up the real driver with mux routines */
1812
    if (d->mux_cnt == 0) {
1813
        qemu_chr_add_handlers(d->drv, mux_chr_can_read, mux_chr_read,
1814
                              mux_chr_event, chr);
1815
    }
1816
    chr->focus = d->mux_cnt;
1817
    d->mux_cnt++;
1818
}
1819

    
1820
CharDriverState *qemu_chr_open_mux(CharDriverState *drv)
1821
{
1822
    CharDriverState *chr;
1823
    MuxDriver *d;
1824

    
1825
    chr = qemu_mallocz(sizeof(CharDriverState));
1826
    if (!chr)
1827
        return NULL;
1828
    d = qemu_mallocz(sizeof(MuxDriver));
1829
    if (!d) {
1830
        free(chr);
1831
        return NULL;
1832
    }
1833

    
1834
    chr->opaque = d;
1835
    d->drv = drv;
1836
    chr->focus = -1;
1837
    chr->chr_write = mux_chr_write;
1838
    chr->chr_update_read_handler = mux_chr_update_read_handler;
1839
    return chr;
1840
}
1841

    
1842

    
1843
#ifdef _WIN32
1844

    
1845
static void socket_cleanup(void)
1846
{
1847
    WSACleanup();
1848
}
1849

    
1850
static int socket_init(void)
1851
{
1852
    WSADATA Data;
1853
    int ret, err;
1854

    
1855
    ret = WSAStartup(MAKEWORD(2,2), &Data);
1856
    if (ret != 0) {
1857
        err = WSAGetLastError();
1858
        fprintf(stderr, "WSAStartup: %d\n", err);
1859
        return -1;
1860
    }
1861
    atexit(socket_cleanup);
1862
    return 0;
1863
}
1864

    
1865
static int send_all(int fd, const uint8_t *buf, int len1)
1866
{
1867
    int ret, len;
1868
    
1869
    len = len1;
1870
    while (len > 0) {
1871
        ret = send(fd, buf, len, 0);
1872
        if (ret < 0) {
1873
            int errno;
1874
            errno = WSAGetLastError();
1875
            if (errno != WSAEWOULDBLOCK) {
1876
                return -1;
1877
            }
1878
        } else if (ret == 0) {
1879
            break;
1880
        } else {
1881
            buf += ret;
1882
            len -= ret;
1883
        }
1884
    }
1885
    return len1 - len;
1886
}
1887

    
1888
void socket_set_nonblock(int fd)
1889
{
1890
    unsigned long opt = 1;
1891
    ioctlsocket(fd, FIONBIO, &opt);
1892
}
1893

    
1894
#else
1895

    
1896
static int unix_write(int fd, const uint8_t *buf, int len1)
1897
{
1898
    int ret, len;
1899

    
1900
    len = len1;
1901
    while (len > 0) {
1902
        ret = write(fd, buf, len);
1903
        if (ret < 0) {
1904
            if (errno != EINTR && errno != EAGAIN)
1905
                return -1;
1906
        } else if (ret == 0) {
1907
            break;
1908
        } else {
1909
            buf += ret;
1910
            len -= ret;
1911
        }
1912
    }
1913
    return len1 - len;
1914
}
1915

    
1916
static inline int send_all(int fd, const uint8_t *buf, int len1)
1917
{
1918
    return unix_write(fd, buf, len1);
1919
}
1920

    
1921
void socket_set_nonblock(int fd)
1922
{
1923
    fcntl(fd, F_SETFL, O_NONBLOCK);
1924
}
1925
#endif /* !_WIN32 */
1926

    
1927
#ifndef _WIN32
1928

    
1929
typedef struct {
1930
    int fd_in, fd_out;
1931
    int max_size;
1932
} FDCharDriver;
1933

    
1934
#define STDIO_MAX_CLIENTS 1
1935
static int stdio_nb_clients = 0;
1936

    
1937
static int fd_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1938
{
1939
    FDCharDriver *s = chr->opaque;
1940
    return unix_write(s->fd_out, buf, len);
1941
}
1942

    
1943
static int fd_chr_read_poll(void *opaque)
1944
{
1945
    CharDriverState *chr = opaque;
1946
    FDCharDriver *s = chr->opaque;
1947

    
1948
    s->max_size = qemu_chr_can_read(chr);
1949
    return s->max_size;
1950
}
1951

    
1952
static void fd_chr_read(void *opaque)
1953
{
1954
    CharDriverState *chr = opaque;
1955
    FDCharDriver *s = chr->opaque;
1956
    int size, len;
1957
    uint8_t buf[1024];
1958
    
1959
    len = sizeof(buf);
1960
    if (len > s->max_size)
1961
        len = s->max_size;
1962
    if (len == 0)
1963
        return;
1964
    size = read(s->fd_in, buf, len);
1965
    if (size == 0) {
1966
        /* FD has been closed. Remove it from the active list.  */
1967
        qemu_set_fd_handler2(s->fd_in, NULL, NULL, NULL, NULL);
1968
        return;
1969
    }
1970
    if (size > 0) {
1971
        qemu_chr_read(chr, buf, size);
1972
    }
1973
}
1974

    
1975
static void fd_chr_update_read_handler(CharDriverState *chr)
1976
{
1977
    FDCharDriver *s = chr->opaque;
1978

    
1979
    if (s->fd_in >= 0) {
1980
        if (nographic && s->fd_in == 0) {
1981
        } else {
1982
            qemu_set_fd_handler2(s->fd_in, fd_chr_read_poll, 
1983
                                 fd_chr_read, NULL, chr);
1984
        }
1985
    }
1986
}
1987

    
1988
/* open a character device to a unix fd */
1989
static CharDriverState *qemu_chr_open_fd(int fd_in, int fd_out)
1990
{
1991
    CharDriverState *chr;
1992
    FDCharDriver *s;
1993

    
1994
    chr = qemu_mallocz(sizeof(CharDriverState));
1995
    if (!chr)
1996
        return NULL;
1997
    s = qemu_mallocz(sizeof(FDCharDriver));
1998
    if (!s) {
1999
        free(chr);
2000
        return NULL;
2001
    }
2002
    s->fd_in = fd_in;
2003
    s->fd_out = fd_out;
2004
    chr->opaque = s;
2005
    chr->chr_write = fd_chr_write;
2006
    chr->chr_update_read_handler = fd_chr_update_read_handler;
2007

    
2008
    qemu_chr_reset(chr);
2009

    
2010
    return chr;
2011
}
2012

    
2013
static CharDriverState *qemu_chr_open_file_out(const char *file_out)
2014
{
2015
    int fd_out;
2016

    
2017
    TFR(fd_out = open(file_out, O_WRONLY | O_TRUNC | O_CREAT | O_BINARY, 0666));
2018
    if (fd_out < 0)
2019
        return NULL;
2020
    return qemu_chr_open_fd(-1, fd_out);
2021
}
2022

    
2023
static CharDriverState *qemu_chr_open_pipe(const char *filename)
2024
{
2025
    int fd_in, fd_out;
2026
    char filename_in[256], filename_out[256];
2027

    
2028
    snprintf(filename_in, 256, "%s.in", filename);
2029
    snprintf(filename_out, 256, "%s.out", filename);
2030
    TFR(fd_in = open(filename_in, O_RDWR | O_BINARY));
2031
    TFR(fd_out = open(filename_out, O_RDWR | O_BINARY));
2032
    if (fd_in < 0 || fd_out < 0) {
2033
        if (fd_in >= 0)
2034
            close(fd_in);
2035
        if (fd_out >= 0)
2036
            close(fd_out);
2037
        TFR(fd_in = fd_out = open(filename, O_RDWR | O_BINARY));
2038
        if (fd_in < 0)
2039
            return NULL;
2040
    }
2041
    return qemu_chr_open_fd(fd_in, fd_out);
2042
}
2043

    
2044

    
2045
/* for STDIO, we handle the case where several clients use it
2046
   (nographic mode) */
2047

    
2048
#define TERM_FIFO_MAX_SIZE 1
2049

    
2050
static uint8_t term_fifo[TERM_FIFO_MAX_SIZE];
2051
static int term_fifo_size;
2052

    
2053
static int stdio_read_poll(void *opaque)
2054
{
2055
    CharDriverState *chr = opaque;
2056

    
2057
    /* try to flush the queue if needed */
2058
    if (term_fifo_size != 0 && qemu_chr_can_read(chr) > 0) {
2059
        qemu_chr_read(chr, term_fifo, 1);
2060
        term_fifo_size = 0;
2061
    }
2062
    /* see if we can absorb more chars */
2063
    if (term_fifo_size == 0)
2064
        return 1;
2065
    else
2066
        return 0;
2067
}
2068

    
2069
static void stdio_read(void *opaque)
2070
{
2071
    int size;
2072
    uint8_t buf[1];
2073
    CharDriverState *chr = opaque;
2074

    
2075
    size = read(0, buf, 1);
2076
    if (size == 0) {
2077
        /* stdin has been closed. Remove it from the active list.  */
2078
        qemu_set_fd_handler2(0, NULL, NULL, NULL, NULL);
2079
        return;
2080
    }
2081
    if (size > 0) {
2082
        if (qemu_chr_can_read(chr) > 0) {
2083
            qemu_chr_read(chr, buf, 1);
2084
        } else if (term_fifo_size == 0) {
2085
            term_fifo[term_fifo_size++] = buf[0];
2086
        }
2087
    }
2088
}
2089

    
2090
/* init terminal so that we can grab keys */
2091
static struct termios oldtty;
2092
static int old_fd0_flags;
2093

    
2094
static void term_exit(void)
2095
{
2096
    tcsetattr (0, TCSANOW, &oldtty);
2097
    fcntl(0, F_SETFL, old_fd0_flags);
2098
}
2099

    
2100
static void term_init(void)
2101
{
2102
    struct termios tty;
2103

    
2104
    tcgetattr (0, &tty);
2105
    oldtty = tty;
2106
    old_fd0_flags = fcntl(0, F_GETFL);
2107

    
2108
    tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
2109
                          |INLCR|IGNCR|ICRNL|IXON);
2110
    tty.c_oflag |= OPOST;
2111
    tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN);
2112
    /* if graphical mode, we allow Ctrl-C handling */
2113
    if (nographic)
2114
        tty.c_lflag &= ~ISIG;
2115
    tty.c_cflag &= ~(CSIZE|PARENB);
2116
    tty.c_cflag |= CS8;
2117
    tty.c_cc[VMIN] = 1;
2118
    tty.c_cc[VTIME] = 0;
2119
    
2120
    tcsetattr (0, TCSANOW, &tty);
2121

    
2122
    atexit(term_exit);
2123

    
2124
    fcntl(0, F_SETFL, O_NONBLOCK);
2125
}
2126

    
2127
static CharDriverState *qemu_chr_open_stdio(void)
2128
{
2129
    CharDriverState *chr;
2130

    
2131
    if (stdio_nb_clients >= STDIO_MAX_CLIENTS)
2132
        return NULL;
2133
    chr = qemu_chr_open_fd(0, 1);
2134
    qemu_set_fd_handler2(0, stdio_read_poll, stdio_read, NULL, chr);
2135
    stdio_nb_clients++;
2136
    term_init();
2137

    
2138
    return chr;
2139
}
2140

    
2141
#if defined(__linux__) || defined(__sun__)
2142
static CharDriverState *qemu_chr_open_pty(void)
2143
{
2144
    struct termios tty;
2145
    char slave_name[1024];
2146
    int master_fd, slave_fd;
2147
    
2148
#if defined(__linux__)
2149
    /* Not satisfying */
2150
    if (openpty(&master_fd, &slave_fd, slave_name, NULL, NULL) < 0) {
2151
        return NULL;
2152
    }
2153
#endif
2154
    
2155
    /* Disabling local echo and line-buffered output */
2156
    tcgetattr (master_fd, &tty);
2157
    tty.c_lflag &= ~(ECHO|ICANON|ISIG);
2158
    tty.c_cc[VMIN] = 1;
2159
    tty.c_cc[VTIME] = 0;
2160
    tcsetattr (master_fd, TCSAFLUSH, &tty);
2161

    
2162
    fprintf(stderr, "char device redirected to %s\n", slave_name);
2163
    return qemu_chr_open_fd(master_fd, master_fd);
2164
}
2165

    
2166
static void tty_serial_init(int fd, int speed, 
2167
                            int parity, int data_bits, int stop_bits)
2168
{
2169
    struct termios tty;
2170
    speed_t spd;
2171

    
2172
#if 0
2173
    printf("tty_serial_init: speed=%d parity=%c data=%d stop=%d\n", 
2174
           speed, parity, data_bits, stop_bits);
2175
#endif
2176
    tcgetattr (fd, &tty);
2177

    
2178
    switch(speed) {
2179
    case 50:
2180
        spd = B50;
2181
        break;
2182
    case 75:
2183
        spd = B75;
2184
        break;
2185
    case 300:
2186
        spd = B300;
2187
        break;
2188
    case 600:
2189
        spd = B600;
2190
        break;
2191
    case 1200:
2192
        spd = B1200;
2193
        break;
2194
    case 2400:
2195
        spd = B2400;
2196
        break;
2197
    case 4800:
2198
        spd = B4800;
2199
        break;
2200
    case 9600:
2201
        spd = B9600;
2202
        break;
2203
    case 19200:
2204
        spd = B19200;
2205
        break;
2206
    case 38400:
2207
        spd = B38400;
2208
        break;
2209
    case 57600:
2210
        spd = B57600;
2211
        break;
2212
    default:
2213
    case 115200:
2214
        spd = B115200;
2215
        break;
2216
    }
2217

    
2218
    cfsetispeed(&tty, spd);
2219
    cfsetospeed(&tty, spd);
2220

    
2221
    tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
2222
                          |INLCR|IGNCR|ICRNL|IXON);
2223
    tty.c_oflag |= OPOST;
2224
    tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN|ISIG);
2225
    tty.c_cflag &= ~(CSIZE|PARENB|PARODD|CRTSCTS|CSTOPB);
2226
    switch(data_bits) {
2227
    default:
2228
    case 8:
2229
        tty.c_cflag |= CS8;
2230
        break;
2231
    case 7:
2232
        tty.c_cflag |= CS7;
2233
        break;
2234
    case 6:
2235
        tty.c_cflag |= CS6;
2236
        break;
2237
    case 5:
2238
        tty.c_cflag |= CS5;
2239
        break;
2240
    }
2241
    switch(parity) {
2242
    default:
2243
    case 'N':
2244
        break;
2245
    case 'E':
2246
        tty.c_cflag |= PARENB;
2247
        break;
2248
    case 'O':
2249
        tty.c_cflag |= PARENB | PARODD;
2250
        break;
2251
    }
2252
    if (stop_bits == 2)
2253
        tty.c_cflag |= CSTOPB;
2254
    
2255
    tcsetattr (fd, TCSANOW, &tty);
2256
}
2257

    
2258
static int tty_serial_ioctl(CharDriverState *chr, int cmd, void *arg)
2259
{
2260
    FDCharDriver *s = chr->opaque;
2261
    
2262
    switch(cmd) {
2263
    case CHR_IOCTL_SERIAL_SET_PARAMS:
2264
        {
2265
            QEMUSerialSetParams *ssp = arg;
2266
            tty_serial_init(s->fd_in, ssp->speed, ssp->parity, 
2267
                            ssp->data_bits, ssp->stop_bits);
2268
        }
2269
        break;
2270
    case CHR_IOCTL_SERIAL_SET_BREAK:
2271
        {
2272
            int enable = *(int *)arg;
2273
            if (enable)
2274
                tcsendbreak(s->fd_in, 1);
2275
        }
2276
        break;
2277
    default:
2278
        return -ENOTSUP;
2279
    }
2280
    return 0;
2281
}
2282

    
2283
static CharDriverState *qemu_chr_open_tty(const char *filename)
2284
{
2285
    CharDriverState *chr;
2286
    int fd;
2287

    
2288
    TFR(fd = open(filename, O_RDWR | O_NONBLOCK));
2289
    fcntl(fd, F_SETFL, O_NONBLOCK);
2290
    tty_serial_init(fd, 115200, 'N', 8, 1);
2291
    chr = qemu_chr_open_fd(fd, fd);
2292
    if (!chr) {
2293
        close(fd);
2294
        return NULL;
2295
    }
2296
    chr->chr_ioctl = tty_serial_ioctl;
2297
    qemu_chr_reset(chr);
2298
    return chr;
2299
}
2300
#else  /* ! __linux__ && ! __sun__ */
2301
static CharDriverState *qemu_chr_open_pty(void)
2302
{
2303
    return NULL;
2304
}
2305
#endif /* __linux__ || __sun__ */
2306

    
2307
#if defined(__linux__)
2308
typedef struct {
2309
    int fd;
2310
    int mode;
2311
} ParallelCharDriver;
2312

    
2313
static int pp_hw_mode(ParallelCharDriver *s, uint16_t mode)
2314
{
2315
    if (s->mode != mode) {
2316
        int m = mode;
2317
        if (ioctl(s->fd, PPSETMODE, &m) < 0)
2318
            return 0;
2319
        s->mode = mode;
2320
    }
2321
    return 1;
2322
}
2323

    
2324
static int pp_ioctl(CharDriverState *chr, int cmd, void *arg)
2325
{
2326
    ParallelCharDriver *drv = chr->opaque;
2327
    int fd = drv->fd;
2328
    uint8_t b;
2329

    
2330
    switch(cmd) {
2331
    case CHR_IOCTL_PP_READ_DATA:
2332
        if (ioctl(fd, PPRDATA, &b) < 0)
2333
            return -ENOTSUP;
2334
        *(uint8_t *)arg = b;
2335
        break;
2336
    case CHR_IOCTL_PP_WRITE_DATA:
2337
        b = *(uint8_t *)arg;
2338
        if (ioctl(fd, PPWDATA, &b) < 0)
2339
            return -ENOTSUP;
2340
        break;
2341
    case CHR_IOCTL_PP_READ_CONTROL:
2342
        if (ioctl(fd, PPRCONTROL, &b) < 0)
2343
            return -ENOTSUP;
2344
        /* Linux gives only the lowest bits, and no way to know data
2345
           direction! For better compatibility set the fixed upper
2346
           bits. */
2347
        *(uint8_t *)arg = b | 0xc0;
2348
        break;
2349
    case CHR_IOCTL_PP_WRITE_CONTROL:
2350
        b = *(uint8_t *)arg;
2351
        if (ioctl(fd, PPWCONTROL, &b) < 0)
2352
            return -ENOTSUP;
2353
        break;
2354
    case CHR_IOCTL_PP_READ_STATUS:
2355
        if (ioctl(fd, PPRSTATUS, &b) < 0)
2356
            return -ENOTSUP;
2357
        *(uint8_t *)arg = b;
2358
        break;
2359
    case CHR_IOCTL_PP_EPP_READ_ADDR:
2360
        if (pp_hw_mode(drv, IEEE1284_MODE_EPP|IEEE1284_ADDR)) {
2361
            struct ParallelIOArg *parg = arg;
2362
            int n = read(fd, parg->buffer, parg->count);
2363
            if (n != parg->count) {
2364
                return -EIO;
2365
            }
2366
        }
2367
        break;
2368
    case CHR_IOCTL_PP_EPP_READ:
2369
        if (pp_hw_mode(drv, IEEE1284_MODE_EPP)) {
2370
            struct ParallelIOArg *parg = arg;
2371
            int n = read(fd, parg->buffer, parg->count);
2372
            if (n != parg->count) {
2373
                return -EIO;
2374
            }
2375
        }
2376
        break;
2377
    case CHR_IOCTL_PP_EPP_WRITE_ADDR:
2378
        if (pp_hw_mode(drv, IEEE1284_MODE_EPP|IEEE1284_ADDR)) {
2379
            struct ParallelIOArg *parg = arg;
2380
            int n = write(fd, parg->buffer, parg->count);
2381
            if (n != parg->count) {
2382
                return -EIO;
2383
            }
2384
        }
2385
        break;
2386
    case CHR_IOCTL_PP_EPP_WRITE:
2387
        if (pp_hw_mode(drv, IEEE1284_MODE_EPP)) {
2388
            struct ParallelIOArg *parg = arg;
2389
            int n = write(fd, parg->buffer, parg->count);
2390
            if (n != parg->count) {
2391
                return -EIO;
2392
            }
2393
        }
2394
        break;
2395
    default:
2396
        return -ENOTSUP;
2397
    }
2398
    return 0;
2399
}
2400

    
2401
static void pp_close(CharDriverState *chr)
2402
{
2403
    ParallelCharDriver *drv = chr->opaque;
2404
    int fd = drv->fd;
2405

    
2406
    pp_hw_mode(drv, IEEE1284_MODE_COMPAT);
2407
    ioctl(fd, PPRELEASE);
2408
    close(fd);
2409
    qemu_free(drv);
2410
}
2411

    
2412
static CharDriverState *qemu_chr_open_pp(const char *filename)
2413
{
2414
    CharDriverState *chr;
2415
    ParallelCharDriver *drv;
2416
    int fd;
2417

    
2418
    TFR(fd = open(filename, O_RDWR));
2419
    if (fd < 0)
2420
        return NULL;
2421

    
2422
    if (ioctl(fd, PPCLAIM) < 0) {
2423
        close(fd);
2424
        return NULL;
2425
    }
2426

    
2427
    drv = qemu_mallocz(sizeof(ParallelCharDriver));
2428
    if (!drv) {
2429
        close(fd);
2430
        return NULL;
2431
    }
2432
    drv->fd = fd;
2433
    drv->mode = IEEE1284_MODE_COMPAT;
2434

    
2435
    chr = qemu_mallocz(sizeof(CharDriverState));
2436
    if (!chr) {
2437
        qemu_free(drv);
2438
        close(fd);
2439
        return NULL;
2440
    }
2441
    chr->chr_write = null_chr_write;
2442
    chr->chr_ioctl = pp_ioctl;
2443
    chr->chr_close = pp_close;
2444
    chr->opaque = drv;
2445

    
2446
    qemu_chr_reset(chr);
2447

    
2448
    return chr;
2449
}
2450
#endif /* __linux__ */
2451

    
2452
#else /* _WIN32 */
2453

    
2454
typedef struct {
2455
    int max_size;
2456
    HANDLE hcom, hrecv, hsend;
2457
    OVERLAPPED orecv, osend;
2458
    BOOL fpipe;
2459
    DWORD len;
2460
} WinCharState;
2461

    
2462
#define NSENDBUF 2048
2463
#define NRECVBUF 2048
2464
#define MAXCONNECT 1
2465
#define NTIMEOUT 5000
2466

    
2467
static int win_chr_poll(void *opaque);
2468
static int win_chr_pipe_poll(void *opaque);
2469

    
2470
static void win_chr_close(CharDriverState *chr)
2471
{
2472
    WinCharState *s = chr->opaque;
2473

    
2474
    if (s->hsend) {
2475
        CloseHandle(s->hsend);
2476
        s->hsend = NULL;
2477
    }
2478
    if (s->hrecv) {
2479
        CloseHandle(s->hrecv);
2480
        s->hrecv = NULL;
2481
    }
2482
    if (s->hcom) {
2483
        CloseHandle(s->hcom);
2484
        s->hcom = NULL;
2485
    }
2486
    if (s->fpipe)
2487
        qemu_del_polling_cb(win_chr_pipe_poll, chr);
2488
    else
2489
        qemu_del_polling_cb(win_chr_poll, chr);
2490
}
2491

    
2492
static int win_chr_init(CharDriverState *chr, const char *filename)
2493
{
2494
    WinCharState *s = chr->opaque;
2495
    COMMCONFIG comcfg;
2496
    COMMTIMEOUTS cto = { 0, 0, 0, 0, 0};
2497
    COMSTAT comstat;
2498
    DWORD size;
2499
    DWORD err;
2500
    
2501
    s->hsend = CreateEvent(NULL, TRUE, FALSE, NULL);
2502
    if (!s->hsend) {
2503
        fprintf(stderr, "Failed CreateEvent\n");
2504
        goto fail;
2505
    }
2506
    s->hrecv = CreateEvent(NULL, TRUE, FALSE, NULL);
2507
    if (!s->hrecv) {
2508
        fprintf(stderr, "Failed CreateEvent\n");
2509
        goto fail;
2510
    }
2511

    
2512
    s->hcom = CreateFile(filename, GENERIC_READ|GENERIC_WRITE, 0, NULL,
2513
                      OPEN_EXISTING, FILE_FLAG_OVERLAPPED, 0);
2514
    if (s->hcom == INVALID_HANDLE_VALUE) {
2515
        fprintf(stderr, "Failed CreateFile (%lu)\n", GetLastError());
2516
        s->hcom = NULL;
2517
        goto fail;
2518
    }
2519
    
2520
    if (!SetupComm(s->hcom, NRECVBUF, NSENDBUF)) {
2521
        fprintf(stderr, "Failed SetupComm\n");
2522
        goto fail;
2523
    }
2524
    
2525
    ZeroMemory(&comcfg, sizeof(COMMCONFIG));
2526
    size = sizeof(COMMCONFIG);
2527
    GetDefaultCommConfig(filename, &comcfg, &size);
2528
    comcfg.dcb.DCBlength = sizeof(DCB);
2529
    CommConfigDialog(filename, NULL, &comcfg);
2530

    
2531
    if (!SetCommState(s->hcom, &comcfg.dcb)) {
2532
        fprintf(stderr, "Failed SetCommState\n");
2533
        goto fail;
2534
    }
2535

    
2536
    if (!SetCommMask(s->hcom, EV_ERR)) {
2537
        fprintf(stderr, "Failed SetCommMask\n");
2538
        goto fail;
2539
    }
2540

    
2541
    cto.ReadIntervalTimeout = MAXDWORD;
2542
    if (!SetCommTimeouts(s->hcom, &cto)) {
2543
        fprintf(stderr, "Failed SetCommTimeouts\n");
2544
        goto fail;
2545
    }
2546
    
2547
    if (!ClearCommError(s->hcom, &err, &comstat)) {
2548
        fprintf(stderr, "Failed ClearCommError\n");
2549
        goto fail;
2550
    }
2551
    qemu_add_polling_cb(win_chr_poll, chr);
2552
    return 0;
2553

    
2554
 fail:
2555
    win_chr_close(chr);
2556
    return -1;
2557
}
2558

    
2559
static int win_chr_write(CharDriverState *chr, const uint8_t *buf, int len1)
2560
{
2561
    WinCharState *s = chr->opaque;
2562
    DWORD len, ret, size, err;
2563

    
2564
    len = len1;
2565
    ZeroMemory(&s->osend, sizeof(s->osend));
2566
    s->osend.hEvent = s->hsend;
2567
    while (len > 0) {
2568
        if (s->hsend)
2569
            ret = WriteFile(s->hcom, buf, len, &size, &s->osend);
2570
        else
2571
            ret = WriteFile(s->hcom, buf, len, &size, NULL);
2572
        if (!ret) {
2573
            err = GetLastError();
2574
            if (err == ERROR_IO_PENDING) {
2575
                ret = GetOverlappedResult(s->hcom, &s->osend, &size, TRUE);
2576
                if (ret) {
2577
                    buf += size;
2578
                    len -= size;
2579
                } else {
2580
                    break;
2581
                }
2582
            } else {
2583
                break;
2584
            }
2585
        } else {
2586
            buf += size;
2587
            len -= size;
2588
        }
2589
    }
2590
    return len1 - len;
2591
}
2592

    
2593
static int win_chr_read_poll(CharDriverState *chr)
2594
{
2595
    WinCharState *s = chr->opaque;
2596

    
2597
    s->max_size = qemu_chr_can_read(chr);
2598
    return s->max_size;
2599
}
2600

    
2601
static void win_chr_readfile(CharDriverState *chr)
2602
{
2603
    WinCharState *s = chr->opaque;
2604
    int ret, err;
2605
    uint8_t buf[1024];
2606
    DWORD size;
2607
    
2608
    ZeroMemory(&s->orecv, sizeof(s->orecv));
2609
    s->orecv.hEvent = s->hrecv;
2610
    ret = ReadFile(s->hcom, buf, s->len, &size, &s->orecv);
2611
    if (!ret) {
2612
        err = GetLastError();
2613
        if (err == ERROR_IO_PENDING) {
2614
            ret = GetOverlappedResult(s->hcom, &s->orecv, &size, TRUE);
2615
        }
2616
    }
2617

    
2618
    if (size > 0) {
2619
        qemu_chr_read(chr, buf, size);
2620
    }
2621
}
2622

    
2623
static void win_chr_read(CharDriverState *chr)
2624
{
2625
    WinCharState *s = chr->opaque;
2626

    
2627
    if (s->len > s->max_size)
2628
        s->len = s->max_size;
2629
    if (s->len == 0)
2630
        return;
2631
    
2632
    win_chr_readfile(chr);
2633
}
2634

    
2635
static int win_chr_poll(void *opaque)
2636
{
2637
    CharDriverState *chr = opaque;
2638
    WinCharState *s = chr->opaque;
2639
    COMSTAT status;
2640
    DWORD comerr;
2641
    
2642
    ClearCommError(s->hcom, &comerr, &status);
2643
    if (status.cbInQue > 0) {
2644
        s->len = status.cbInQue;
2645
        win_chr_read_poll(chr);
2646
        win_chr_read(chr);
2647
        return 1;
2648
    }
2649
    return 0;
2650
}
2651

    
2652
static CharDriverState *qemu_chr_open_win(const char *filename)
2653
{
2654
    CharDriverState *chr;
2655
    WinCharState *s;
2656
    
2657
    chr = qemu_mallocz(sizeof(CharDriverState));
2658
    if (!chr)
2659
        return NULL;
2660
    s = qemu_mallocz(sizeof(WinCharState));
2661
    if (!s) {
2662
        free(chr);
2663
        return NULL;
2664
    }
2665
    chr->opaque = s;
2666
    chr->chr_write = win_chr_write;
2667
    chr->chr_close = win_chr_close;
2668

    
2669
    if (win_chr_init(chr, filename) < 0) {
2670
        free(s);
2671
        free(chr);
2672
        return NULL;
2673
    }
2674
    qemu_chr_reset(chr);
2675
    return chr;
2676
}
2677

    
2678
static int win_chr_pipe_poll(void *opaque)
2679
{
2680
    CharDriverState *chr = opaque;
2681
    WinCharState *s = chr->opaque;
2682
    DWORD size;
2683

    
2684
    PeekNamedPipe(s->hcom, NULL, 0, NULL, &size, NULL);
2685
    if (size > 0) {
2686
        s->len = size;
2687
        win_chr_read_poll(chr);
2688
        win_chr_read(chr);
2689
        return 1;
2690
    }
2691
    return 0;
2692
}
2693

    
2694
static int win_chr_pipe_init(CharDriverState *chr, const char *filename)
2695
{
2696
    WinCharState *s = chr->opaque;
2697
    OVERLAPPED ov;
2698
    int ret;
2699
    DWORD size;
2700
    char openname[256];
2701
    
2702
    s->fpipe = TRUE;
2703

    
2704
    s->hsend = CreateEvent(NULL, TRUE, FALSE, NULL);
2705
    if (!s->hsend) {
2706
        fprintf(stderr, "Failed CreateEvent\n");
2707
        goto fail;
2708
    }
2709
    s->hrecv = CreateEvent(NULL, TRUE, FALSE, NULL);
2710
    if (!s->hrecv) {
2711
        fprintf(stderr, "Failed CreateEvent\n");
2712
        goto fail;
2713
    }
2714
    
2715
    snprintf(openname, sizeof(openname), "\\\\.\\pipe\\%s", filename);
2716
    s->hcom = CreateNamedPipe(openname, PIPE_ACCESS_DUPLEX | FILE_FLAG_OVERLAPPED,
2717
                              PIPE_TYPE_BYTE | PIPE_READMODE_BYTE |
2718
                              PIPE_WAIT,
2719
                              MAXCONNECT, NSENDBUF, NRECVBUF, NTIMEOUT, NULL);
2720
    if (s->hcom == INVALID_HANDLE_VALUE) {
2721
        fprintf(stderr, "Failed CreateNamedPipe (%lu)\n", GetLastError());
2722
        s->hcom = NULL;
2723
        goto fail;
2724
    }
2725

    
2726
    ZeroMemory(&ov, sizeof(ov));
2727
    ov.hEvent = CreateEvent(NULL, TRUE, FALSE, NULL);
2728
    ret = ConnectNamedPipe(s->hcom, &ov);
2729
    if (ret) {
2730
        fprintf(stderr, "Failed ConnectNamedPipe\n");
2731
        goto fail;
2732
    }
2733

    
2734
    ret = GetOverlappedResult(s->hcom, &ov, &size, TRUE);
2735
    if (!ret) {
2736
        fprintf(stderr, "Failed GetOverlappedResult\n");
2737
        if (ov.hEvent) {
2738
            CloseHandle(ov.hEvent);
2739
            ov.hEvent = NULL;
2740
        }
2741
        goto fail;
2742
    }
2743

    
2744
    if (ov.hEvent) {
2745
        CloseHandle(ov.hEvent);
2746
        ov.hEvent = NULL;
2747
    }
2748
    qemu_add_polling_cb(win_chr_pipe_poll, chr);
2749
    return 0;
2750

    
2751
 fail:
2752
    win_chr_close(chr);
2753
    return -1;
2754
}
2755

    
2756

    
2757
static CharDriverState *qemu_chr_open_win_pipe(const char *filename)
2758
{
2759
    CharDriverState *chr;
2760
    WinCharState *s;
2761

    
2762
    chr = qemu_mallocz(sizeof(CharDriverState));
2763
    if (!chr)
2764
        return NULL;
2765
    s = qemu_mallocz(sizeof(WinCharState));
2766
    if (!s) {
2767
        free(chr);
2768
        return NULL;
2769
    }
2770
    chr->opaque = s;
2771
    chr->chr_write = win_chr_write;
2772
    chr->chr_close = win_chr_close;
2773
    
2774
    if (win_chr_pipe_init(chr, filename) < 0) {
2775
        free(s);
2776
        free(chr);
2777
        return NULL;
2778
    }
2779
    qemu_chr_reset(chr);
2780
    return chr;
2781
}
2782

    
2783
static CharDriverState *qemu_chr_open_win_file(HANDLE fd_out)
2784
{
2785
    CharDriverState *chr;
2786
    WinCharState *s;
2787

    
2788
    chr = qemu_mallocz(sizeof(CharDriverState));
2789
    if (!chr)
2790
        return NULL;
2791
    s = qemu_mallocz(sizeof(WinCharState));
2792
    if (!s) {
2793
        free(chr);
2794
        return NULL;
2795
    }
2796
    s->hcom = fd_out;
2797
    chr->opaque = s;
2798
    chr->chr_write = win_chr_write;
2799
    qemu_chr_reset(chr);
2800
    return chr;
2801
}
2802

    
2803
static CharDriverState *qemu_chr_open_win_con(const char *filename)
2804
{
2805
    return qemu_chr_open_win_file(GetStdHandle(STD_OUTPUT_HANDLE));
2806
}
2807

    
2808
static CharDriverState *qemu_chr_open_win_file_out(const char *file_out)
2809
{
2810
    HANDLE fd_out;
2811
    
2812
    fd_out = CreateFile(file_out, GENERIC_WRITE, FILE_SHARE_READ, NULL,
2813
                        OPEN_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
2814
    if (fd_out == INVALID_HANDLE_VALUE)
2815
        return NULL;
2816

    
2817
    return qemu_chr_open_win_file(fd_out);
2818
}
2819
#endif /* !_WIN32 */
2820

    
2821
/***********************************************************/
2822
/* UDP Net console */
2823

    
2824
typedef struct {
2825
    int fd;
2826
    struct sockaddr_in daddr;
2827
    char buf[1024];
2828
    int bufcnt;
2829
    int bufptr;
2830
    int max_size;
2831
} NetCharDriver;
2832

    
2833
static int udp_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
2834
{
2835
    NetCharDriver *s = chr->opaque;
2836

    
2837
    return sendto(s->fd, buf, len, 0,
2838
                  (struct sockaddr *)&s->daddr, sizeof(struct sockaddr_in));
2839
}
2840

    
2841
static int udp_chr_read_poll(void *opaque)
2842
{
2843
    CharDriverState *chr = opaque;
2844
    NetCharDriver *s = chr->opaque;
2845

    
2846
    s->max_size = qemu_chr_can_read(chr);
2847

    
2848
    /* If there were any stray characters in the queue process them
2849
     * first
2850
     */
2851
    while (s->max_size > 0 && s->bufptr < s->bufcnt) {
2852
        qemu_chr_read(chr, &s->buf[s->bufptr], 1);
2853
        s->bufptr++;
2854
        s->max_size = qemu_chr_can_read(chr);
2855
    }
2856
    return s->max_size;
2857
}
2858

    
2859
static void udp_chr_read(void *opaque)
2860
{
2861
    CharDriverState *chr = opaque;
2862
    NetCharDriver *s = chr->opaque;
2863

    
2864
    if (s->max_size == 0)
2865
        return;
2866
    s->bufcnt = recv(s->fd, s->buf, sizeof(s->buf), 0);
2867
    s->bufptr = s->bufcnt;
2868
    if (s->bufcnt <= 0)
2869
        return;
2870

    
2871
    s->bufptr = 0;
2872
    while (s->max_size > 0 && s->bufptr < s->bufcnt) {
2873
        qemu_chr_read(chr, &s->buf[s->bufptr], 1);
2874
        s->bufptr++;
2875
        s->max_size = qemu_chr_can_read(chr);
2876
    }
2877
}
2878

    
2879
static void udp_chr_update_read_handler(CharDriverState *chr)
2880
{
2881
    NetCharDriver *s = chr->opaque;
2882

    
2883
    if (s->fd >= 0) {
2884
        qemu_set_fd_handler2(s->fd, udp_chr_read_poll,
2885
                             udp_chr_read, NULL, chr);
2886
    }
2887
}
2888

    
2889
int parse_host_port(struct sockaddr_in *saddr, const char *str);
2890
#ifndef _WIN32
2891
static int parse_unix_path(struct sockaddr_un *uaddr, const char *str);
2892
#endif
2893
int parse_host_src_port(struct sockaddr_in *haddr,
2894
                        struct sockaddr_in *saddr,
2895
                        const char *str);
2896

    
2897
static CharDriverState *qemu_chr_open_udp(const char *def)
2898
{
2899
    CharDriverState *chr = NULL;
2900
    NetCharDriver *s = NULL;
2901
    int fd = -1;
2902
    struct sockaddr_in saddr;
2903

    
2904
    chr = qemu_mallocz(sizeof(CharDriverState));
2905
    if (!chr)
2906
        goto return_err;
2907
    s = qemu_mallocz(sizeof(NetCharDriver));
2908
    if (!s)
2909
        goto return_err;
2910

    
2911
    fd = socket(PF_INET, SOCK_DGRAM, 0);
2912
    if (fd < 0) {
2913
        perror("socket(PF_INET, SOCK_DGRAM)");
2914
        goto return_err;
2915
    }
2916

    
2917
    if (parse_host_src_port(&s->daddr, &saddr, def) < 0) {
2918
        printf("Could not parse: %s\n", def);
2919
        goto return_err;
2920
    }
2921

    
2922
    if (bind(fd, (struct sockaddr *)&saddr, sizeof(saddr)) < 0)
2923
    {
2924
        perror("bind");
2925
        goto return_err;
2926
    }
2927

    
2928
    s->fd = fd;
2929
    s->bufcnt = 0;
2930
    s->bufptr = 0;
2931
    chr->opaque = s;
2932
    chr->chr_write = udp_chr_write;
2933
    chr->chr_update_read_handler = udp_chr_update_read_handler;
2934
    return chr;
2935

    
2936
return_err:
2937
    if (chr)
2938
        free(chr);
2939
    if (s)
2940
        free(s);
2941
    if (fd >= 0)
2942
        closesocket(fd);
2943
    return NULL;
2944
}
2945

    
2946
/***********************************************************/
2947
/* TCP Net console */
2948

    
2949
typedef struct {
2950
    int fd, listen_fd;
2951
    int connected;
2952
    int max_size;
2953
    int do_telnetopt;
2954
    int do_nodelay;
2955
    int is_unix;
2956
} TCPCharDriver;
2957

    
2958
static void tcp_chr_accept(void *opaque);
2959

    
2960
static int tcp_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
2961
{
2962
    TCPCharDriver *s = chr->opaque;
2963
    if (s->connected) {
2964
        return send_all(s->fd, buf, len);
2965
    } else {
2966
        /* XXX: indicate an error ? */
2967
        return len;
2968
    }
2969
}
2970

    
2971
static int tcp_chr_read_poll(void *opaque)
2972
{
2973
    CharDriverState *chr = opaque;
2974
    TCPCharDriver *s = chr->opaque;
2975
    if (!s->connected)
2976
        return 0;
2977
    s->max_size = qemu_chr_can_read(chr);
2978
    return s->max_size;
2979
}
2980

    
2981
#define IAC 255
2982
#define IAC_BREAK 243
2983
static void tcp_chr_process_IAC_bytes(CharDriverState *chr,
2984
                                      TCPCharDriver *s,
2985
                                      char *buf, int *size)
2986
{
2987
    /* Handle any telnet client's basic IAC options to satisfy char by
2988
     * char mode with no echo.  All IAC options will be removed from
2989
     * the buf and the do_telnetopt variable will be used to track the
2990
     * state of the width of the IAC information.
2991
     *
2992
     * IAC commands come in sets of 3 bytes with the exception of the
2993
     * "IAC BREAK" command and the double IAC.
2994
     */
2995

    
2996
    int i;
2997
    int j = 0;
2998

    
2999
    for (i = 0; i < *size; i++) {
3000
        if (s->do_telnetopt > 1) {
3001
            if ((unsigned char)buf[i] == IAC && s->do_telnetopt == 2) {
3002
                /* Double IAC means send an IAC */
3003
                if (j != i)
3004
                    buf[j] = buf[i];
3005
                j++;
3006
                s->do_telnetopt = 1;
3007
            } else {
3008
                if ((unsigned char)buf[i] == IAC_BREAK && s->do_telnetopt == 2) {
3009
                    /* Handle IAC break commands by sending a serial break */
3010
                    qemu_chr_event(chr, CHR_EVENT_BREAK);
3011
                    s->do_telnetopt++;
3012
                }
3013
                s->do_telnetopt++;
3014
            }
3015
            if (s->do_telnetopt >= 4) {
3016
                s->do_telnetopt = 1;
3017
            }
3018
        } else {
3019
            if ((unsigned char)buf[i] == IAC) {
3020
                s->do_telnetopt = 2;
3021
            } else {
3022
                if (j != i)
3023
                    buf[j] = buf[i];
3024
                j++;
3025
            }
3026
        }
3027
    }
3028
    *size = j;
3029
}
3030

    
3031
static void tcp_chr_read(void *opaque)
3032
{
3033
    CharDriverState *chr = opaque;
3034
    TCPCharDriver *s = chr->opaque;
3035
    uint8_t buf[1024];
3036
    int len, size;
3037

    
3038
    if (!s->connected || s->max_size <= 0)
3039
        return;
3040
    len = sizeof(buf);
3041
    if (len > s->max_size)
3042
        len = s->max_size;
3043
    size = recv(s->fd, buf, len, 0);
3044
    if (size == 0) {
3045
        /* connection closed */
3046
        s->connected = 0;
3047
        if (s->listen_fd >= 0) {
3048
            qemu_set_fd_handler(s->listen_fd, tcp_chr_accept, NULL, chr);
3049
        }
3050
        qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
3051
        closesocket(s->fd);
3052
        s->fd = -1;
3053
    } else if (size > 0) {
3054
        if (s->do_telnetopt)
3055
            tcp_chr_process_IAC_bytes(chr, s, buf, &size);
3056
        if (size > 0)
3057
            qemu_chr_read(chr, buf, size);
3058
    }
3059
}
3060

    
3061
static void tcp_chr_connect(void *opaque)
3062
{
3063
    CharDriverState *chr = opaque;
3064
    TCPCharDriver *s = chr->opaque;
3065

    
3066
    s->connected = 1;
3067
    qemu_set_fd_handler2(s->fd, tcp_chr_read_poll,
3068
                         tcp_chr_read, NULL, chr);
3069
    qemu_chr_reset(chr);
3070
}
3071

    
3072
#define IACSET(x,a,b,c) x[0] = a; x[1] = b; x[2] = c;
3073
static void tcp_chr_telnet_init(int fd)
3074
{
3075
    char buf[3];
3076
    /* Send the telnet negotion to put telnet in binary, no echo, single char mode */
3077
    IACSET(buf, 0xff, 0xfb, 0x01);  /* IAC WILL ECHO */
3078
    send(fd, (char *)buf, 3, 0);
3079
    IACSET(buf, 0xff, 0xfb, 0x03);  /* IAC WILL Suppress go ahead */
3080
    send(fd, (char *)buf, 3, 0);
3081
    IACSET(buf, 0xff, 0xfb, 0x00);  /* IAC WILL Binary */
3082
    send(fd, (char *)buf, 3, 0);
3083
    IACSET(buf, 0xff, 0xfd, 0x00);  /* IAC DO Binary */
3084
    send(fd, (char *)buf, 3, 0);
3085
}
3086

    
3087
static void socket_set_nodelay(int fd)
3088
{
3089
    int val = 1;
3090
    setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val));
3091
}
3092

    
3093
static void tcp_chr_accept(void *opaque)
3094
{
3095
    CharDriverState *chr = opaque;
3096
    TCPCharDriver *s = chr->opaque;
3097
    struct sockaddr_in saddr;
3098
#ifndef _WIN32
3099
    struct sockaddr_un uaddr;
3100
#endif
3101
    struct sockaddr *addr;
3102
    socklen_t len;
3103
    int fd;
3104

    
3105
    for(;;) {
3106
#ifndef _WIN32
3107
        if (s->is_unix) {
3108
            len = sizeof(uaddr);
3109
            addr = (struct sockaddr *)&uaddr;
3110
        } else
3111
#endif
3112
        {
3113
            len = sizeof(saddr);
3114
            addr = (struct sockaddr *)&saddr;
3115
        }
3116
        fd = accept(s->listen_fd, addr, &len);
3117
        if (fd < 0 && errno != EINTR) {
3118
            return;
3119
        } else if (fd >= 0) {
3120
            if (s->do_telnetopt)
3121
                tcp_chr_telnet_init(fd);
3122
            break;
3123
        }
3124
    }
3125
    socket_set_nonblock(fd);
3126
    if (s->do_nodelay)
3127
        socket_set_nodelay(fd);
3128
    s->fd = fd;
3129
    qemu_set_fd_handler(s->listen_fd, NULL, NULL, NULL);
3130
    tcp_chr_connect(chr);
3131
}
3132

    
3133
static void tcp_chr_close(CharDriverState *chr)
3134
{
3135
    TCPCharDriver *s = chr->opaque;
3136
    if (s->fd >= 0)
3137
        closesocket(s->fd);
3138
    if (s->listen_fd >= 0)
3139
        closesocket(s->listen_fd);
3140
    qemu_free(s);
3141
}
3142

    
3143
static CharDriverState *qemu_chr_open_tcp(const char *host_str, 
3144
                                          int is_telnet,
3145
                                          int is_unix)
3146
{
3147
    CharDriverState *chr = NULL;
3148
    TCPCharDriver *s = NULL;
3149
    int fd = -1, ret, err, val;
3150
    int is_listen = 0;
3151
    int is_waitconnect = 1;
3152
    int do_nodelay = 0;
3153
    const char *ptr;
3154
    struct sockaddr_in saddr;
3155
#ifndef _WIN32
3156
    struct sockaddr_un uaddr;
3157
#endif
3158
    struct sockaddr *addr;
3159
    socklen_t addrlen;
3160

    
3161
#ifndef _WIN32
3162
    if (is_unix) {
3163
        addr = (struct sockaddr *)&uaddr;
3164
        addrlen = sizeof(uaddr);
3165
        if (parse_unix_path(&uaddr, host_str) < 0)
3166
            goto fail;
3167
    } else
3168
#endif
3169
    {
3170
        addr = (struct sockaddr *)&saddr;
3171
        addrlen = sizeof(saddr);
3172
        if (parse_host_port(&saddr, host_str) < 0)
3173
            goto fail;
3174
    }
3175

    
3176
    ptr = host_str;
3177
    while((ptr = strchr(ptr,','))) {
3178
        ptr++;
3179
        if (!strncmp(ptr,"server",6)) {
3180
            is_listen = 1;
3181
        } else if (!strncmp(ptr,"nowait",6)) {
3182
            is_waitconnect = 0;
3183
        } else if (!strncmp(ptr,"nodelay",6)) {
3184
            do_nodelay = 1;
3185
        } else {
3186
            printf("Unknown option: %s\n", ptr);
3187
            goto fail;
3188
        }
3189
    }
3190
    if (!is_listen)
3191
        is_waitconnect = 0;
3192

    
3193
    chr = qemu_mallocz(sizeof(CharDriverState));
3194
    if (!chr)
3195
        goto fail;
3196
    s = qemu_mallocz(sizeof(TCPCharDriver));
3197
    if (!s)
3198
        goto fail;
3199

    
3200
#ifndef _WIN32
3201
    if (is_unix)
3202
        fd = socket(PF_UNIX, SOCK_STREAM, 0);
3203
    else
3204
#endif
3205
        fd = socket(PF_INET, SOCK_STREAM, 0);
3206
        
3207
    if (fd < 0) 
3208
        goto fail;
3209

    
3210
    if (!is_waitconnect)
3211
        socket_set_nonblock(fd);
3212

    
3213
    s->connected = 0;
3214
    s->fd = -1;
3215
    s->listen_fd = -1;
3216
    s->is_unix = is_unix;
3217
    s->do_nodelay = do_nodelay && !is_unix;
3218

    
3219
    chr->opaque = s;
3220
    chr->chr_write = tcp_chr_write;
3221
    chr->chr_close = tcp_chr_close;
3222

    
3223
    if (is_listen) {
3224
        /* allow fast reuse */
3225
#ifndef _WIN32
3226
        if (is_unix) {
3227
            char path[109];
3228
            strncpy(path, uaddr.sun_path, 108);
3229
            path[108] = 0;
3230
            unlink(path);
3231
        } else
3232
#endif
3233
        {
3234
            val = 1;
3235
            setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (const char *)&val, sizeof(val));
3236
        }
3237
        
3238
        ret = bind(fd, addr, addrlen);
3239
        if (ret < 0)
3240
            goto fail;
3241

    
3242
        ret = listen(fd, 0);
3243
        if (ret < 0)
3244
            goto fail;
3245

    
3246
        s->listen_fd = fd;
3247
        qemu_set_fd_handler(s->listen_fd, tcp_chr_accept, NULL, chr);
3248
        if (is_telnet)
3249
            s->do_telnetopt = 1;
3250
    } else {
3251
        for(;;) {
3252
            ret = connect(fd, addr, addrlen);
3253
            if (ret < 0) {
3254
                err = socket_error();
3255
                if (err == EINTR || err == EWOULDBLOCK) {
3256
                } else if (err == EINPROGRESS) {
3257
                    break;
3258
#ifdef _WIN32
3259
                } else if (err == WSAEALREADY) {
3260
                    break;
3261
#endif
3262
                } else {
3263
                    goto fail;
3264
                }
3265
            } else {
3266
                s->connected = 1;
3267
                break;
3268
            }
3269
        }
3270
        s->fd = fd;
3271
        socket_set_nodelay(fd);
3272
        if (s->connected)
3273
            tcp_chr_connect(chr);
3274
        else
3275
            qemu_set_fd_handler(s->fd, NULL, tcp_chr_connect, chr);
3276
    }
3277
    
3278
    if (is_listen && is_waitconnect) {
3279
        printf("QEMU waiting for connection on: %s\n", host_str);
3280
        tcp_chr_accept(chr);
3281
        socket_set_nonblock(s->listen_fd);
3282
    }
3283

    
3284
    return chr;
3285
 fail:
3286
    if (fd >= 0)
3287
        closesocket(fd);
3288
    qemu_free(s);
3289
    qemu_free(chr);
3290
    return NULL;
3291
}
3292

    
3293
CharDriverState *qemu_chr_open(const char *filename)
3294
{
3295
    const char *p;
3296

    
3297
    if (!strcmp(filename, "vc")) {
3298
        return text_console_init(&display_state, 0);
3299
    } else if (strstart(filename, "vc:", &p)) {
3300
        return text_console_init(&display_state, p);
3301
    } else if (!strcmp(filename, "null")) {
3302
        return qemu_chr_open_null();
3303
    } else 
3304
    if (strstart(filename, "tcp:", &p)) {
3305
        return qemu_chr_open_tcp(p, 0, 0);
3306
    } else
3307
    if (strstart(filename, "telnet:", &p)) {
3308
        return qemu_chr_open_tcp(p, 1, 0);
3309
    } else
3310
    if (strstart(filename, "udp:", &p)) {
3311
        return qemu_chr_open_udp(p);
3312
    } else
3313
    if (strstart(filename, "mon:", &p)) {
3314
        CharDriverState *drv = qemu_chr_open(p);
3315
        if (drv) {
3316
            drv = qemu_chr_open_mux(drv);
3317
            monitor_init(drv, !nographic);
3318
            return drv;
3319
        }
3320
        printf("Unable to open driver: %s\n", p);
3321
        return 0;
3322
    } else
3323
#ifndef _WIN32
3324
    if (strstart(filename, "unix:", &p)) {
3325
        return qemu_chr_open_tcp(p, 0, 1);
3326
    } else if (strstart(filename, "file:", &p)) {
3327
        return qemu_chr_open_file_out(p);
3328
    } else if (strstart(filename, "pipe:", &p)) {
3329
        return qemu_chr_open_pipe(p);
3330
    } else if (!strcmp(filename, "pty")) {
3331
        return qemu_chr_open_pty();
3332
    } else if (!strcmp(filename, "stdio")) {
3333
        return qemu_chr_open_stdio();
3334
    } else 
3335
#if defined(__linux__)
3336
    if (strstart(filename, "/dev/parport", NULL)) {
3337
        return qemu_chr_open_pp(filename);
3338
    } else 
3339
#endif
3340
#if defined(__linux__) || defined(__sun__)
3341
    if (strstart(filename, "/dev/", NULL)) {
3342
        return qemu_chr_open_tty(filename);
3343
    } else
3344
#endif
3345
#else /* !_WIN32 */
3346
    if (strstart(filename, "COM", NULL)) {
3347
        return qemu_chr_open_win(filename);
3348
    } else
3349
    if (strstart(filename, "pipe:", &p)) {
3350
        return qemu_chr_open_win_pipe(p);
3351
    } else
3352
    if (strstart(filename, "con:", NULL)) {
3353
        return qemu_chr_open_win_con(filename);
3354
    } else
3355
    if (strstart(filename, "file:", &p)) {
3356
        return qemu_chr_open_win_file_out(p);
3357
    }
3358
#endif
3359
    {
3360
        return NULL;
3361
    }
3362
}
3363

    
3364
void qemu_chr_close(CharDriverState *chr)
3365
{
3366
    if (chr->chr_close)
3367
        chr->chr_close(chr);
3368
}
3369

    
3370
/***********************************************************/
3371
/* network device redirectors */
3372

    
3373
void hex_dump(FILE *f, const uint8_t *buf, int size)
3374
{
3375
    int len, i, j, c;
3376

    
3377
    for(i=0;i<size;i+=16) {
3378
        len = size - i;
3379
        if (len > 16)
3380
            len = 16;
3381
        fprintf(f, "%08x ", i);
3382
        for(j=0;j<16;j++) {
3383
            if (j < len)
3384
                fprintf(f, " %02x", buf[i+j]);
3385
            else
3386
                fprintf(f, "   ");
3387
        }
3388
        fprintf(f, " ");
3389
        for(j=0;j<len;j++) {
3390
            c = buf[i+j];
3391
            if (c < ' ' || c > '~')
3392
                c = '.';
3393
            fprintf(f, "%c", c);
3394
        }
3395
        fprintf(f, "\n");
3396
    }
3397
}
3398

    
3399
static int parse_macaddr(uint8_t *macaddr, const char *p)
3400
{
3401
    int i;
3402
    for(i = 0; i < 6; i++) {
3403
        macaddr[i] = strtol(p, (char **)&p, 16);
3404
        if (i == 5) {
3405
            if (*p != '\0') 
3406
                return -1;
3407
        } else {
3408
            if (*p != ':') 
3409
                return -1;
3410
            p++;
3411
        }
3412
    }
3413
    return 0;
3414
}
3415

    
3416
static int get_str_sep(char *buf, int buf_size, const char **pp, int sep)
3417
{
3418
    const char *p, *p1;
3419
    int len;
3420
    p = *pp;
3421
    p1 = strchr(p, sep);
3422
    if (!p1)
3423
        return -1;
3424
    len = p1 - p;
3425
    p1++;
3426
    if (buf_size > 0) {
3427
        if (len > buf_size - 1)
3428
            len = buf_size - 1;
3429
        memcpy(buf, p, len);
3430
        buf[len] = '\0';
3431
    }
3432
    *pp = p1;
3433
    return 0;
3434
}
3435

    
3436
int parse_host_src_port(struct sockaddr_in *haddr,
3437
                        struct sockaddr_in *saddr,
3438
                        const char *input_str)
3439
{
3440
    char *str = strdup(input_str);
3441
    char *host_str = str;
3442
    char *src_str;
3443
    char *ptr;
3444

    
3445
    /*
3446
     * Chop off any extra arguments at the end of the string which
3447
     * would start with a comma, then fill in the src port information
3448
     * if it was provided else use the "any address" and "any port".
3449
     */
3450
    if ((ptr = strchr(str,',')))
3451
        *ptr = '\0';
3452

    
3453
    if ((src_str = strchr(input_str,'@'))) {
3454
        *src_str = '\0';
3455
        src_str++;
3456
    }
3457

    
3458
    if (parse_host_port(haddr, host_str) < 0)
3459
        goto fail;
3460

    
3461
    if (!src_str || *src_str == '\0')
3462
        src_str = ":0";
3463

    
3464
    if (parse_host_port(saddr, src_str) < 0)
3465
        goto fail;
3466

    
3467
    free(str);
3468
    return(0);
3469

    
3470
fail:
3471
    free(str);
3472
    return -1;
3473
}
3474

    
3475
int parse_host_port(struct sockaddr_in *saddr, const char *str)
3476
{
3477
    char buf[512];
3478
    struct hostent *he;
3479
    const char *p, *r;
3480
    int port;
3481

    
3482
    p = str;
3483
    if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3484
        return -1;
3485
    saddr->sin_family = AF_INET;
3486
    if (buf[0] == '\0') {
3487
        saddr->sin_addr.s_addr = 0;
3488
    } else {
3489
        if (isdigit(buf[0])) {
3490
            if (!inet_aton(buf, &saddr->sin_addr))
3491
                return -1;
3492
        } else {
3493
            if ((he = gethostbyname(buf)) == NULL)
3494
                return - 1;
3495
            saddr->sin_addr = *(struct in_addr *)he->h_addr;
3496
        }
3497
    }
3498
    port = strtol(p, (char **)&r, 0);
3499
    if (r == p)
3500
        return -1;
3501
    saddr->sin_port = htons(port);
3502
    return 0;
3503
}
3504

    
3505
#ifndef _WIN32
3506
static int parse_unix_path(struct sockaddr_un *uaddr, const char *str)
3507
{
3508
    const char *p;
3509
    int len;
3510

    
3511
    len = MIN(108, strlen(str));
3512
    p = strchr(str, ',');
3513
    if (p)
3514
        len = MIN(len, p - str);
3515

    
3516
    memset(uaddr, 0, sizeof(*uaddr));
3517

    
3518
    uaddr->sun_family = AF_UNIX;
3519
    memcpy(uaddr->sun_path, str, len);
3520

    
3521
    return 0;
3522
}
3523
#endif
3524

    
3525
/* find or alloc a new VLAN */
3526
VLANState *qemu_find_vlan(int id)
3527
{
3528
    VLANState **pvlan, *vlan;
3529
    for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
3530
        if (vlan->id == id)
3531
            return vlan;
3532
    }
3533
    vlan = qemu_mallocz(sizeof(VLANState));
3534
    if (!vlan)
3535
        return NULL;
3536
    vlan->id = id;
3537
    vlan->next = NULL;
3538
    pvlan = &first_vlan;
3539
    while (*pvlan != NULL)
3540
        pvlan = &(*pvlan)->next;
3541
    *pvlan = vlan;
3542
    return vlan;
3543
}
3544

    
3545
VLANClientState *qemu_new_vlan_client(VLANState *vlan,
3546
                                      IOReadHandler *fd_read,
3547
                                      IOCanRWHandler *fd_can_read,
3548
                                      void *opaque)
3549
{
3550
    VLANClientState *vc, **pvc;
3551
    vc = qemu_mallocz(sizeof(VLANClientState));
3552
    if (!vc)
3553
        return NULL;
3554
    vc->fd_read = fd_read;
3555
    vc->fd_can_read = fd_can_read;
3556
    vc->opaque = opaque;
3557
    vc->vlan = vlan;
3558

    
3559
    vc->next = NULL;
3560
    pvc = &vlan->first_client;
3561
    while (*pvc != NULL)
3562
        pvc = &(*pvc)->next;
3563
    *pvc = vc;
3564
    return vc;
3565
}
3566

    
3567
int qemu_can_send_packet(VLANClientState *vc1)
3568
{
3569
    VLANState *vlan = vc1->vlan;
3570
    VLANClientState *vc;
3571

    
3572
    for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
3573
        if (vc != vc1) {
3574
            if (vc->fd_can_read && vc->fd_can_read(vc->opaque))
3575
                return 1;
3576
        }
3577
    }
3578
    return 0;
3579
}
3580

    
3581
void qemu_send_packet(VLANClientState *vc1, const uint8_t *buf, int size)
3582
{
3583
    VLANState *vlan = vc1->vlan;
3584
    VLANClientState *vc;
3585

    
3586
#if 0
3587
    printf("vlan %d send:\n", vlan->id);
3588
    hex_dump(stdout, buf, size);
3589
#endif
3590
    for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
3591
        if (vc != vc1) {
3592
            vc->fd_read(vc->opaque, buf, size);
3593
        }
3594
    }
3595
}
3596

    
3597
#if defined(CONFIG_SLIRP)
3598

    
3599
/* slirp network adapter */
3600

    
3601
static int slirp_inited;
3602
static VLANClientState *slirp_vc;
3603

    
3604
int slirp_can_output(void)
3605
{
3606
    return !slirp_vc || qemu_can_send_packet(slirp_vc);
3607
}
3608

    
3609
void slirp_output(const uint8_t *pkt, int pkt_len)
3610
{
3611
#if 0
3612
    printf("slirp output:\n");
3613
    hex_dump(stdout, pkt, pkt_len);
3614
#endif
3615
    if (!slirp_vc)
3616
        return;
3617
    qemu_send_packet(slirp_vc, pkt, pkt_len);
3618
}
3619

    
3620
static void slirp_receive(void *opaque, const uint8_t *buf, int size)
3621
{
3622
#if 0
3623
    printf("slirp input:\n");
3624
    hex_dump(stdout, buf, size);
3625
#endif
3626
    slirp_input(buf, size);
3627
}
3628

    
3629
static int net_slirp_init(VLANState *vlan)
3630
{
3631
    if (!slirp_inited) {
3632
        slirp_inited = 1;
3633
        slirp_init();
3634
    }
3635
    slirp_vc = qemu_new_vlan_client(vlan, 
3636
                                    slirp_receive, NULL, NULL);
3637
    snprintf(slirp_vc->info_str, sizeof(slirp_vc->info_str), "user redirector");
3638
    return 0;
3639
}
3640

    
3641
static void net_slirp_redir(const char *redir_str)
3642
{
3643
    int is_udp;
3644
    char buf[256], *r;
3645
    const char *p;
3646
    struct in_addr guest_addr;
3647
    int host_port, guest_port;
3648
    
3649
    if (!slirp_inited) {
3650
        slirp_inited = 1;
3651
        slirp_init();
3652
    }
3653

    
3654
    p = redir_str;
3655
    if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3656
        goto fail;
3657
    if (!strcmp(buf, "tcp")) {
3658
        is_udp = 0;
3659
    } else if (!strcmp(buf, "udp")) {
3660
        is_udp = 1;
3661
    } else {
3662
        goto fail;
3663
    }
3664

    
3665
    if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3666
        goto fail;
3667
    host_port = strtol(buf, &r, 0);
3668
    if (r == buf)
3669
        goto fail;
3670

    
3671
    if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3672
        goto fail;
3673
    if (buf[0] == '\0') {
3674
        pstrcpy(buf, sizeof(buf), "10.0.2.15");
3675
    }
3676
    if (!inet_aton(buf, &guest_addr))
3677
        goto fail;
3678
    
3679
    guest_port = strtol(p, &r, 0);
3680
    if (r == p)
3681
        goto fail;
3682
    
3683
    if (slirp_redir(is_udp, host_port, guest_addr, guest_port) < 0) {
3684
        fprintf(stderr, "qemu: could not set up redirection\n");
3685
        exit(1);
3686
    }
3687
    return;
3688
 fail:
3689
    fprintf(stderr, "qemu: syntax: -redir [tcp|udp]:host-port:[guest-host]:guest-port\n");
3690
    exit(1);
3691
}
3692
    
3693
#ifndef _WIN32
3694

    
3695
char smb_dir[1024];
3696

    
3697
static void smb_exit(void)
3698
{
3699
    DIR *d;
3700
    struct dirent *de;
3701
    char filename[1024];
3702

    
3703
    /* erase all the files in the directory */
3704
    d = opendir(smb_dir);
3705
    for(;;) {
3706
        de = readdir(d);
3707
        if (!de)
3708
            break;
3709
        if (strcmp(de->d_name, ".") != 0 &&
3710
            strcmp(de->d_name, "..") != 0) {
3711
            snprintf(filename, sizeof(filename), "%s/%s", 
3712
                     smb_dir, de->d_name);
3713
            unlink(filename);
3714
        }
3715
    }
3716
    closedir(d);
3717
    rmdir(smb_dir);
3718
}
3719

    
3720
/* automatic user mode samba server configuration */
3721
void net_slirp_smb(const char *exported_dir)
3722
{
3723
    char smb_conf[1024];
3724
    char smb_cmdline[1024];
3725
    FILE *f;
3726

    
3727
    if (!slirp_inited) {
3728
        slirp_inited = 1;
3729
        slirp_init();
3730
    }
3731

    
3732
    /* XXX: better tmp dir construction */
3733
    snprintf(smb_dir, sizeof(smb_dir), "/tmp/qemu-smb.%d", getpid());
3734
    if (mkdir(smb_dir, 0700) < 0) {
3735
        fprintf(stderr, "qemu: could not create samba server dir '%s'\n", smb_dir);
3736
        exit(1);
3737
    }
3738
    snprintf(smb_conf, sizeof(smb_conf), "%s/%s", smb_dir, "smb.conf");
3739
    
3740
    f = fopen(smb_conf, "w");
3741
    if (!f) {
3742
        fprintf(stderr, "qemu: could not create samba server configuration file '%s'\n", smb_conf);
3743
        exit(1);
3744
    }
3745
    fprintf(f, 
3746
            "[global]\n"
3747
            "private dir=%s\n"
3748
            "smb ports=0\n"
3749
            "socket address=127.0.0.1\n"
3750
            "pid directory=%s\n"
3751
            "lock directory=%s\n"
3752
            "log file=%s/log.smbd\n"
3753
            "smb passwd file=%s/smbpasswd\n"
3754
            "security = share\n"
3755
            "[qemu]\n"
3756
            "path=%s\n"
3757
            "read only=no\n"
3758
            "guest ok=yes\n",
3759
            smb_dir,
3760
            smb_dir,
3761
            smb_dir,
3762
            smb_dir,
3763
            smb_dir,
3764
            exported_dir
3765
            );
3766
    fclose(f);
3767
    atexit(smb_exit);
3768

    
3769
    snprintf(smb_cmdline, sizeof(smb_cmdline), "%s -s %s",
3770
             SMBD_COMMAND, smb_conf);
3771
    
3772
    slirp_add_exec(0, smb_cmdline, 4, 139);
3773
}
3774

    
3775
#endif /* !defined(_WIN32) */
3776

    
3777
#endif /* CONFIG_SLIRP */
3778

    
3779
#if !defined(_WIN32)
3780

    
3781
typedef struct TAPState {
3782
    VLANClientState *vc;
3783
    int fd;
3784
} TAPState;
3785

    
3786
static void tap_receive(void *opaque, const uint8_t *buf, int size)
3787
{
3788
    TAPState *s = opaque;
3789
    int ret;
3790
    for(;;) {
3791
        ret = write(s->fd, buf, size);
3792
        if (ret < 0 && (errno == EINTR || errno == EAGAIN)) {
3793
        } else {
3794
            break;
3795
        }
3796
    }
3797
}
3798

    
3799
static void tap_send(void *opaque)
3800
{
3801
    TAPState *s = opaque;
3802
    uint8_t buf[4096];
3803
    int size;
3804

    
3805
#ifdef __sun__
3806
    struct strbuf sbuf;
3807
    int f = 0;
3808
    sbuf.maxlen = sizeof(buf);
3809
    sbuf.buf = buf;
3810
    size = getmsg(s->fd, NULL, &sbuf, &f) >=0 ? sbuf.len : -1;
3811
#else
3812
    size = read(s->fd, buf, sizeof(buf));
3813
#endif
3814
    if (size > 0) {
3815
        qemu_send_packet(s->vc, buf, size);
3816
    }
3817
}
3818

    
3819
/* fd support */
3820

    
3821
static TAPState *net_tap_fd_init(VLANState *vlan, int fd)
3822
{
3823
    TAPState *s;
3824

    
3825
    s = qemu_mallocz(sizeof(TAPState));
3826
    if (!s)
3827
        return NULL;
3828
    s->fd = fd;
3829
    s->vc = qemu_new_vlan_client(vlan, tap_receive, NULL, s);
3830
    qemu_set_fd_handler(s->fd, tap_send, NULL, s);
3831
    snprintf(s->vc->info_str, sizeof(s->vc->info_str), "tap: fd=%d", fd);
3832
    return s;
3833
}
3834

    
3835
#if defined (_BSD) || defined (__FreeBSD_kernel__)
3836
static int tap_open(char *ifname, int ifname_size)
3837
{
3838
    int fd;
3839
    char *dev;
3840
    struct stat s;
3841

    
3842
    TFR(fd = open("/dev/tap", O_RDWR));
3843
    if (fd < 0) {
3844
        fprintf(stderr, "warning: could not open /dev/tap: no virtual network emulation\n");
3845
        return -1;
3846
    }
3847

    
3848
    fstat(fd, &s);
3849
    dev = devname(s.st_rdev, S_IFCHR);
3850
    pstrcpy(ifname, ifname_size, dev);
3851

    
3852
    fcntl(fd, F_SETFL, O_NONBLOCK);
3853
    return fd;
3854
}
3855
#elif defined(__sun__)
3856
#define TUNNEWPPA       (('T'<<16) | 0x0001)
3857
/* 
3858
 * Allocate TAP device, returns opened fd. 
3859
 * Stores dev name in the first arg(must be large enough).
3860
 */  
3861
int tap_alloc(char *dev)
3862
{
3863
    int tap_fd, if_fd, ppa = -1;
3864
    static int ip_fd = 0;
3865
    char *ptr;
3866

    
3867
    static int arp_fd = 0;
3868
    int ip_muxid, arp_muxid;
3869
    struct strioctl  strioc_if, strioc_ppa;
3870
    int link_type = I_PLINK;;
3871
    struct lifreq ifr;
3872
    char actual_name[32] = "";
3873

    
3874
    memset(&ifr, 0x0, sizeof(ifr));
3875

    
3876
    if( *dev ){
3877
       ptr = dev;        
3878
       while( *ptr && !isdigit((int)*ptr) ) ptr++; 
3879
       ppa = atoi(ptr);
3880
    }
3881

    
3882
    /* Check if IP device was opened */
3883
    if( ip_fd )
3884
       close(ip_fd);
3885

    
3886
    TFR(ip_fd = open("/dev/udp", O_RDWR, 0));
3887
    if (ip_fd < 0) {
3888
       syslog(LOG_ERR, "Can't open /dev/ip (actually /dev/udp)");
3889
       return -1;
3890
    }
3891

    
3892
    TFR(tap_fd = open("/dev/tap", O_RDWR, 0));
3893
    if (tap_fd < 0) {
3894
       syslog(LOG_ERR, "Can't open /dev/tap");
3895
       return -1;
3896
    }
3897

    
3898
    /* Assign a new PPA and get its unit number. */
3899
    strioc_ppa.ic_cmd = TUNNEWPPA;
3900
    strioc_ppa.ic_timout = 0;
3901
    strioc_ppa.ic_len = sizeof(ppa);
3902
    strioc_ppa.ic_dp = (char *)&ppa;
3903
    if ((ppa = ioctl (tap_fd, I_STR, &strioc_ppa)) < 0)
3904
       syslog (LOG_ERR, "Can't assign new interface");
3905

    
3906
    TFR(if_fd = open("/dev/tap", O_RDWR, 0));
3907
    if (if_fd < 0) {
3908
       syslog(LOG_ERR, "Can't open /dev/tap (2)");
3909
       return -1;
3910
    }
3911
    if(ioctl(if_fd, I_PUSH, "ip") < 0){
3912
       syslog(LOG_ERR, "Can't push IP module");
3913
       return -1;
3914
    }
3915

    
3916
    if (ioctl(if_fd, SIOCGLIFFLAGS, &ifr) < 0)
3917
        syslog(LOG_ERR, "Can't get flags\n");
3918

    
3919
    snprintf (actual_name, 32, "tap%d", ppa);
3920
    strncpy (ifr.lifr_name, actual_name, sizeof (ifr.lifr_name));
3921

    
3922
    ifr.lifr_ppa = ppa;
3923
    /* Assign ppa according to the unit number returned by tun device */
3924

    
3925
    if (ioctl (if_fd, SIOCSLIFNAME, &ifr) < 0)
3926
        syslog (LOG_ERR, "Can't set PPA %d", ppa);
3927
    if (ioctl(if_fd, SIOCGLIFFLAGS, &ifr) <0)
3928
        syslog (LOG_ERR, "Can't get flags\n");
3929
    /* Push arp module to if_fd */
3930
    if (ioctl (if_fd, I_PUSH, "arp") < 0)
3931
        syslog (LOG_ERR, "Can't push ARP module (2)");
3932

    
3933
    /* Push arp module to ip_fd */
3934
    if (ioctl (ip_fd, I_POP, NULL) < 0)
3935
        syslog (LOG_ERR, "I_POP failed\n");
3936
    if (ioctl (ip_fd, I_PUSH, "arp") < 0)
3937
        syslog (LOG_ERR, "Can't push ARP module (3)\n");
3938
    /* Open arp_fd */
3939
    TFR(arp_fd = open ("/dev/tap", O_RDWR, 0));
3940
    if (arp_fd < 0)
3941
       syslog (LOG_ERR, "Can't open %s\n", "/dev/tap");
3942

    
3943
    /* Set ifname to arp */
3944
    strioc_if.ic_cmd = SIOCSLIFNAME;
3945
    strioc_if.ic_timout = 0;
3946
    strioc_if.ic_len = sizeof(ifr);
3947
    strioc_if.ic_dp = (char *)&ifr;
3948
    if (ioctl(arp_fd, I_STR, &strioc_if) < 0){
3949
        syslog (LOG_ERR, "Can't set ifname to arp\n");
3950
    }
3951

    
3952
    if((ip_muxid = ioctl(ip_fd, I_LINK, if_fd)) < 0){
3953
       syslog(LOG_ERR, "Can't link TAP device to IP");
3954
       return -1;
3955
    }
3956

    
3957
    if ((arp_muxid = ioctl (ip_fd, link_type, arp_fd)) < 0)
3958
        syslog (LOG_ERR, "Can't link TAP device to ARP");
3959

    
3960
    close (if_fd);
3961

    
3962
    memset(&ifr, 0x0, sizeof(ifr));
3963
    strncpy (ifr.lifr_name, actual_name, sizeof (ifr.lifr_name));
3964
    ifr.lifr_ip_muxid  = ip_muxid;
3965
    ifr.lifr_arp_muxid = arp_muxid;
3966

    
3967
    if (ioctl (ip_fd, SIOCSLIFMUXID, &ifr) < 0)
3968
    {
3969
      ioctl (ip_fd, I_PUNLINK , arp_muxid);
3970
      ioctl (ip_fd, I_PUNLINK, ip_muxid);
3971
      syslog (LOG_ERR, "Can't set multiplexor id");
3972
    }
3973

    
3974
    sprintf(dev, "tap%d", ppa);
3975
    return tap_fd;
3976
}
3977

    
3978
static int tap_open(char *ifname, int ifname_size)
3979
{
3980
    char  dev[10]="";
3981
    int fd;
3982
    if( (fd = tap_alloc(dev)) < 0 ){
3983
       fprintf(stderr, "Cannot allocate TAP device\n");
3984
       return -1;
3985
    }
3986
    pstrcpy(ifname, ifname_size, dev);
3987
    fcntl(fd, F_SETFL, O_NONBLOCK);
3988
    return fd;
3989
}
3990
#else
3991
static int tap_open(char *ifname, int ifname_size)
3992
{
3993
    struct ifreq ifr;
3994
    int fd, ret;
3995
    
3996
    TFR(fd = open("/dev/net/tun", O_RDWR));
3997
    if (fd < 0) {
3998
        fprintf(stderr, "warning: could not open /dev/net/tun: no virtual network emulation\n");
3999
        return -1;
4000
    }
4001
    memset(&ifr, 0, sizeof(ifr));
4002
    ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
4003
    if (ifname[0] != '\0')
4004
        pstrcpy(ifr.ifr_name, IFNAMSIZ, ifname);
4005
    else
4006
        pstrcpy(ifr.ifr_name, IFNAMSIZ, "tap%d");
4007
    ret = ioctl(fd, TUNSETIFF, (void *) &ifr);
4008
    if (ret != 0) {
4009
        fprintf(stderr, "warning: could not configure /dev/net/tun: no virtual network emulation\n");
4010
        close(fd);
4011
        return -1;
4012
    }
4013
    pstrcpy(ifname, ifname_size, ifr.ifr_name);
4014
    fcntl(fd, F_SETFL, O_NONBLOCK);
4015
    return fd;
4016
}
4017
#endif
4018

    
4019
static int net_tap_init(VLANState *vlan, const char *ifname1,
4020
                        const char *setup_script)
4021
{
4022
    TAPState *s;
4023
    int pid, status, fd;
4024
    char *args[3];
4025
    char **parg;
4026
    char ifname[128];
4027

    
4028
    if (ifname1 != NULL)
4029
        pstrcpy(ifname, sizeof(ifname), ifname1);
4030
    else
4031
        ifname[0] = '\0';
4032
    TFR(fd = tap_open(ifname, sizeof(ifname)));
4033
    if (fd < 0)
4034
        return -1;
4035

    
4036
    if (!setup_script || !strcmp(setup_script, "no"))
4037
        setup_script = "";
4038
    if (setup_script[0] != '\0') {
4039
        /* try to launch network init script */
4040
        pid = fork();
4041
        if (pid >= 0) {
4042
            if (pid == 0) {
4043
                int open_max = sysconf (_SC_OPEN_MAX), i;
4044
                for (i = 0; i < open_max; i++)
4045
                    if (i != STDIN_FILENO &&
4046
                        i != STDOUT_FILENO &&
4047
                        i != STDERR_FILENO &&
4048
                        i != fd)
4049
                        close(i);
4050

    
4051
                parg = args;
4052
                *parg++ = (char *)setup_script;
4053
                *parg++ = ifname;
4054
                *parg++ = NULL;
4055
                execv(setup_script, args);
4056
                _exit(1);
4057
            }
4058
            while (waitpid(pid, &status, 0) != pid);
4059
            if (!WIFEXITED(status) ||
4060
                WEXITSTATUS(status) != 0) {
4061
                fprintf(stderr, "%s: could not launch network script\n",
4062
                        setup_script);
4063
                return -1;
4064
            }
4065
        }
4066
    }
4067
    s = net_tap_fd_init(vlan, fd);
4068
    if (!s)
4069
        return -1;
4070
    snprintf(s->vc->info_str, sizeof(s->vc->info_str), 
4071
             "tap: ifname=%s setup_script=%s", ifname, setup_script);
4072
    return 0;
4073
}
4074

    
4075
#endif /* !_WIN32 */
4076

    
4077
/* network connection */
4078
typedef struct NetSocketState {
4079
    VLANClientState *vc;
4080
    int fd;
4081
    int state; /* 0 = getting length, 1 = getting data */
4082
    int index;
4083
    int packet_len;
4084
    uint8_t buf[4096];
4085
    struct sockaddr_in dgram_dst; /* contains inet host and port destination iff connectionless (SOCK_DGRAM) */
4086
} NetSocketState;
4087

    
4088
typedef struct NetSocketListenState {
4089
    VLANState *vlan;
4090
    int fd;
4091
} NetSocketListenState;
4092

    
4093
/* XXX: we consider we can send the whole packet without blocking */
4094
static void net_socket_receive(void *opaque, const uint8_t *buf, int size)
4095
{
4096
    NetSocketState *s = opaque;
4097
    uint32_t len;
4098
    len = htonl(size);
4099

    
4100
    send_all(s->fd, (const uint8_t *)&len, sizeof(len));
4101
    send_all(s->fd, buf, size);
4102
}
4103

    
4104
static void net_socket_receive_dgram(void *opaque, const uint8_t *buf, int size)
4105
{
4106
    NetSocketState *s = opaque;
4107
    sendto(s->fd, buf, size, 0, 
4108
           (struct sockaddr *)&s->dgram_dst, sizeof(s->dgram_dst));
4109
}
4110

    
4111
static void net_socket_send(void *opaque)
4112
{
4113
    NetSocketState *s = opaque;
4114
    int l, size, err;
4115
    uint8_t buf1[4096];
4116
    const uint8_t *buf;
4117

    
4118
    size = recv(s->fd, buf1, sizeof(buf1), 0);
4119
    if (size < 0) {
4120
        err = socket_error();
4121
        if (err != EWOULDBLOCK) 
4122
            goto eoc;
4123
    } else if (size == 0) {
4124
        /* end of connection */
4125
    eoc:
4126
        qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
4127
        closesocket(s->fd);
4128
        return;
4129
    }
4130
    buf = buf1;
4131
    while (size > 0) {
4132
        /* reassemble a packet from the network */
4133
        switch(s->state) {
4134
        case 0:
4135
            l = 4 - s->index;
4136
            if (l > size)
4137
                l = size;
4138
            memcpy(s->buf + s->index, buf, l);
4139
            buf += l;
4140
            size -= l;
4141
            s->index += l;
4142
            if (s->index == 4) {
4143
                /* got length */
4144
                s->packet_len = ntohl(*(uint32_t *)s->buf);
4145
                s->index = 0;
4146
                s->state = 1;
4147
            }
4148
            break;
4149
        case 1:
4150
            l = s->packet_len - s->index;
4151
            if (l > size)
4152
                l = size;
4153
            memcpy(s->buf + s->index, buf, l);
4154
            s->index += l;
4155
            buf += l;
4156
            size -= l;
4157
            if (s->index >= s->packet_len) {
4158
                qemu_send_packet(s->vc, s->buf, s->packet_len);
4159
                s->index = 0;
4160
                s->state = 0;
4161
            }
4162
            break;
4163
        }
4164
    }
4165
}
4166

    
4167
static void net_socket_send_dgram(void *opaque)
4168
{
4169
    NetSocketState *s = opaque;
4170
    int size;
4171

    
4172
    size = recv(s->fd, s->buf, sizeof(s->buf), 0);
4173
    if (size < 0) 
4174
        return;
4175
    if (size == 0) {
4176
        /* end of connection */
4177
        qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
4178
        return;
4179
    }
4180
    qemu_send_packet(s->vc, s->buf, size);
4181
}
4182

    
4183
static int net_socket_mcast_create(struct sockaddr_in *mcastaddr)
4184
{
4185
    struct ip_mreq imr;
4186
    int fd;
4187
    int val, ret;
4188
    if (!IN_MULTICAST(ntohl(mcastaddr->sin_addr.s_addr))) {
4189
        fprintf(stderr, "qemu: error: specified mcastaddr \"%s\" (0x%08x) does not contain a multicast address\n",
4190
                inet_ntoa(mcastaddr->sin_addr), 
4191
                (int)ntohl(mcastaddr->sin_addr.s_addr));
4192
        return -1;
4193

    
4194
    }
4195
    fd = socket(PF_INET, SOCK_DGRAM, 0);
4196
    if (fd < 0) {
4197
        perror("socket(PF_INET, SOCK_DGRAM)");
4198
        return -1;
4199
    }
4200

    
4201
    val = 1;
4202
    ret=setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, 
4203
                   (const char *)&val, sizeof(val));
4204
    if (ret < 0) {
4205
        perror("setsockopt(SOL_SOCKET, SO_REUSEADDR)");
4206
        goto fail;
4207
    }
4208

    
4209
    ret = bind(fd, (struct sockaddr *)mcastaddr, sizeof(*mcastaddr));
4210
    if (ret < 0) {
4211
        perror("bind");
4212
        goto fail;
4213
    }
4214
    
4215
    /* Add host to multicast group */
4216
    imr.imr_multiaddr = mcastaddr->sin_addr;
4217
    imr.imr_interface.s_addr = htonl(INADDR_ANY);
4218

    
4219
    ret = setsockopt(fd, IPPROTO_IP, IP_ADD_MEMBERSHIP, 
4220
                     (const char *)&imr, sizeof(struct ip_mreq));
4221
    if (ret < 0) {
4222
        perror("setsockopt(IP_ADD_MEMBERSHIP)");
4223
        goto fail;
4224
    }
4225

    
4226
    /* Force mcast msgs to loopback (eg. several QEMUs in same host */
4227
    val = 1;
4228
    ret=setsockopt(fd, IPPROTO_IP, IP_MULTICAST_LOOP, 
4229
                   (const char *)&val, sizeof(val));
4230
    if (ret < 0) {
4231
        perror("setsockopt(SOL_IP, IP_MULTICAST_LOOP)");
4232
        goto fail;
4233
    }
4234

    
4235
    socket_set_nonblock(fd);
4236
    return fd;
4237
fail:
4238
    if (fd >= 0) 
4239
        closesocket(fd);
4240
    return -1;
4241
}
4242

    
4243
static NetSocketState *net_socket_fd_init_dgram(VLANState *vlan, int fd, 
4244
                                          int is_connected)
4245
{
4246
    struct sockaddr_in saddr;
4247
    int newfd;
4248
    socklen_t saddr_len;
4249
    NetSocketState *s;
4250

    
4251
    /* fd passed: multicast: "learn" dgram_dst address from bound address and save it
4252
     * Because this may be "shared" socket from a "master" process, datagrams would be recv() 
4253
     * by ONLY ONE process: we must "clone" this dgram socket --jjo
4254
     */
4255

    
4256
    if (is_connected) {
4257
        if (getsockname(fd, (struct sockaddr *) &saddr, &saddr_len) == 0) {
4258
            /* must be bound */
4259
            if (saddr.sin_addr.s_addr==0) {
4260
                fprintf(stderr, "qemu: error: init_dgram: fd=%d unbound, cannot setup multicast dst addr\n",
4261
                        fd);
4262
                return NULL;
4263
            }
4264
            /* clone dgram socket */
4265
            newfd = net_socket_mcast_create(&saddr);
4266
            if (newfd < 0) {
4267
                /* error already reported by net_socket_mcast_create() */
4268
                close(fd);
4269
                return NULL;
4270
            }
4271
            /* clone newfd to fd, close newfd */
4272
            dup2(newfd, fd);
4273
            close(newfd);
4274
        
4275
        } else {
4276
            fprintf(stderr, "qemu: error: init_dgram: fd=%d failed getsockname(): %s\n",
4277
                    fd, strerror(errno));
4278
            return NULL;
4279
        }
4280
    }
4281

    
4282
    s = qemu_mallocz(sizeof(NetSocketState));
4283
    if (!s)
4284
        return NULL;
4285
    s->fd = fd;
4286

    
4287
    s->vc = qemu_new_vlan_client(vlan, net_socket_receive_dgram, NULL, s);
4288
    qemu_set_fd_handler(s->fd, net_socket_send_dgram, NULL, s);
4289

    
4290
    /* mcast: save bound address as dst */
4291
    if (is_connected) s->dgram_dst=saddr;
4292

    
4293
    snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4294
            "socket: fd=%d (%s mcast=%s:%d)", 
4295
            fd, is_connected? "cloned" : "",
4296
            inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4297
    return s;
4298
}
4299

    
4300
static void net_socket_connect(void *opaque)
4301
{
4302
    NetSocketState *s = opaque;
4303
    qemu_set_fd_handler(s->fd, net_socket_send, NULL, s);
4304
}
4305

    
4306
static NetSocketState *net_socket_fd_init_stream(VLANState *vlan, int fd, 
4307
                                          int is_connected)
4308
{
4309
    NetSocketState *s;
4310
    s = qemu_mallocz(sizeof(NetSocketState));
4311
    if (!s)
4312
        return NULL;
4313
    s->fd = fd;
4314
    s->vc = qemu_new_vlan_client(vlan, 
4315
                                 net_socket_receive, NULL, s);
4316
    snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4317
             "socket: fd=%d", fd);
4318
    if (is_connected) {
4319
        net_socket_connect(s);
4320
    } else {
4321
        qemu_set_fd_handler(s->fd, NULL, net_socket_connect, s);
4322
    }
4323
    return s;
4324
}
4325

    
4326
static NetSocketState *net_socket_fd_init(VLANState *vlan, int fd, 
4327
                                          int is_connected)
4328
{
4329
    int so_type=-1, optlen=sizeof(so_type);
4330

    
4331
    if(getsockopt(fd, SOL_SOCKET, SO_TYPE, (char *)&so_type, &optlen)< 0) {
4332
        fprintf(stderr, "qemu: error: getsockopt(SO_TYPE) for fd=%d failed\n", fd);
4333
        return NULL;
4334
    }
4335
    switch(so_type) {
4336
    case SOCK_DGRAM:
4337
        return net_socket_fd_init_dgram(vlan, fd, is_connected);
4338
    case SOCK_STREAM:
4339
        return net_socket_fd_init_stream(vlan, fd, is_connected);
4340
    default:
4341
        /* who knows ... this could be a eg. a pty, do warn and continue as stream */
4342
        fprintf(stderr, "qemu: warning: socket type=%d for fd=%d is not SOCK_DGRAM or SOCK_STREAM\n", so_type, fd);
4343
        return net_socket_fd_init_stream(vlan, fd, is_connected);
4344
    }
4345
    return NULL;
4346
}
4347

    
4348
static void net_socket_accept(void *opaque)
4349
{
4350
    NetSocketListenState *s = opaque;    
4351
    NetSocketState *s1;
4352
    struct sockaddr_in saddr;
4353
    socklen_t len;
4354
    int fd;
4355

    
4356
    for(;;) {
4357
        len = sizeof(saddr);
4358
        fd = accept(s->fd, (struct sockaddr *)&saddr, &len);
4359
        if (fd < 0 && errno != EINTR) {
4360
            return;
4361
        } else if (fd >= 0) {
4362
            break;
4363
        }
4364
    }
4365
    s1 = net_socket_fd_init(s->vlan, fd, 1); 
4366
    if (!s1) {
4367
        closesocket(fd);
4368
    } else {
4369
        snprintf(s1->vc->info_str, sizeof(s1->vc->info_str),
4370
                 "socket: connection from %s:%d", 
4371
                 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4372
    }
4373
}
4374

    
4375
static int net_socket_listen_init(VLANState *vlan, const char *host_str)
4376
{
4377
    NetSocketListenState *s;
4378
    int fd, val, ret;
4379
    struct sockaddr_in saddr;
4380

    
4381
    if (parse_host_port(&saddr, host_str) < 0)
4382
        return -1;
4383
    
4384
    s = qemu_mallocz(sizeof(NetSocketListenState));
4385
    if (!s)
4386
        return -1;
4387

    
4388
    fd = socket(PF_INET, SOCK_STREAM, 0);
4389
    if (fd < 0) {
4390
        perror("socket");
4391
        return -1;
4392
    }
4393
    socket_set_nonblock(fd);
4394

    
4395
    /* allow fast reuse */
4396
    val = 1;
4397
    setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (const char *)&val, sizeof(val));
4398
    
4399
    ret = bind(fd, (struct sockaddr *)&saddr, sizeof(saddr));
4400
    if (ret < 0) {
4401
        perror("bind");
4402
        return -1;
4403
    }
4404
    ret = listen(fd, 0);
4405
    if (ret < 0) {
4406
        perror("listen");
4407
        return -1;
4408
    }
4409
    s->vlan = vlan;
4410
    s->fd = fd;
4411
    qemu_set_fd_handler(fd, net_socket_accept, NULL, s);
4412
    return 0;
4413
}
4414

    
4415
static int net_socket_connect_init(VLANState *vlan, const char *host_str)
4416
{
4417
    NetSocketState *s;
4418
    int fd, connected, ret, err;
4419
    struct sockaddr_in saddr;
4420

    
4421
    if (parse_host_port(&saddr, host_str) < 0)
4422
        return -1;
4423

    
4424
    fd = socket(PF_INET, SOCK_STREAM, 0);
4425
    if (fd < 0) {
4426
        perror("socket");
4427
        return -1;
4428
    }
4429
    socket_set_nonblock(fd);
4430

    
4431
    connected = 0;
4432
    for(;;) {
4433
        ret = connect(fd, (struct sockaddr *)&saddr, sizeof(saddr));
4434
        if (ret < 0) {
4435
            err = socket_error();
4436
            if (err == EINTR || err == EWOULDBLOCK) {
4437
            } else if (err == EINPROGRESS) {
4438
                break;
4439
#ifdef _WIN32
4440
            } else if (err == WSAEALREADY) {
4441
                break;
4442
#endif
4443
            } else {
4444
                perror("connect");
4445
                closesocket(fd);
4446
                return -1;
4447
            }
4448
        } else {
4449
            connected = 1;
4450
            break;
4451
        }
4452
    }
4453
    s = net_socket_fd_init(vlan, fd, connected);
4454
    if (!s)
4455
        return -1;
4456
    snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4457
             "socket: connect to %s:%d", 
4458
             inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4459
    return 0;
4460
}
4461

    
4462
static int net_socket_mcast_init(VLANState *vlan, const char *host_str)
4463
{
4464
    NetSocketState *s;
4465
    int fd;
4466
    struct sockaddr_in saddr;
4467

    
4468
    if (parse_host_port(&saddr, host_str) < 0)
4469
        return -1;
4470

    
4471

    
4472
    fd = net_socket_mcast_create(&saddr);
4473
    if (fd < 0)
4474
        return -1;
4475

    
4476
    s = net_socket_fd_init(vlan, fd, 0);
4477
    if (!s)
4478
        return -1;
4479

    
4480
    s->dgram_dst = saddr;
4481
    
4482
    snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4483
             "socket: mcast=%s:%d", 
4484
             inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4485
    return 0;
4486

    
4487
}
4488

    
4489
static int get_param_value(char *buf, int buf_size,
4490
                           const char *tag, const char *str)
4491
{
4492
    const char *p;
4493
    char *q;
4494
    char option[128];
4495

    
4496
    p = str;
4497
    for(;;) {
4498
        q = option;
4499
        while (*p != '\0' && *p != '=') {
4500
            if ((q - option) < sizeof(option) - 1)
4501
                *q++ = *p;
4502
            p++;
4503
        }
4504
        *q = '\0';
4505
        if (*p != '=')
4506
            break;
4507
        p++;
4508
        if (!strcmp(tag, option)) {
4509
            q = buf;
4510
            while (*p != '\0' && *p != ',') {
4511
                if ((q - buf) < buf_size - 1)
4512
                    *q++ = *p;
4513
                p++;
4514
            }
4515
            *q = '\0';
4516
            return q - buf;
4517
        } else {
4518
            while (*p != '\0' && *p != ',') {
4519
                p++;
4520
            }
4521
        }
4522
        if (*p != ',')
4523
            break;
4524
        p++;
4525
    }
4526
    return 0;
4527
}
4528

    
4529
static int net_client_init(const char *str)
4530
{
4531
    const char *p;
4532
    char *q;
4533
    char device[64];
4534
    char buf[1024];
4535
    int vlan_id, ret;
4536
    VLANState *vlan;
4537

    
4538
    p = str;
4539
    q = device;
4540
    while (*p != '\0' && *p != ',') {
4541
        if ((q - device) < sizeof(device) - 1)
4542
            *q++ = *p;
4543
        p++;
4544
    }
4545
    *q = '\0';
4546
    if (*p == ',')
4547
        p++;
4548
    vlan_id = 0;
4549
    if (get_param_value(buf, sizeof(buf), "vlan", p)) {
4550
        vlan_id = strtol(buf, NULL, 0);
4551
    }
4552
    vlan = qemu_find_vlan(vlan_id);
4553
    if (!vlan) {
4554
        fprintf(stderr, "Could not create vlan %d\n", vlan_id);
4555
        return -1;
4556
    }
4557
    if (!strcmp(device, "nic")) {
4558
        NICInfo *nd;
4559
        uint8_t *macaddr;
4560

    
4561
        if (nb_nics >= MAX_NICS) {
4562
            fprintf(stderr, "Too Many NICs\n");
4563
            return -1;
4564
        }
4565
        nd = &nd_table[nb_nics];
4566
        macaddr = nd->macaddr;
4567
        macaddr[0] = 0x52;
4568
        macaddr[1] = 0x54;
4569
        macaddr[2] = 0x00;
4570
        macaddr[3] = 0x12;
4571
        macaddr[4] = 0x34;
4572
        macaddr[5] = 0x56 + nb_nics;
4573

    
4574
        if (get_param_value(buf, sizeof(buf), "macaddr", p)) {
4575
            if (parse_macaddr(macaddr, buf) < 0) {
4576
                fprintf(stderr, "invalid syntax for ethernet address\n");
4577
                return -1;
4578
            }
4579
        }
4580
        if (get_param_value(buf, sizeof(buf), "model", p)) {
4581
            nd->model = strdup(buf);
4582
        }
4583
        nd->vlan = vlan;
4584
        nb_nics++;
4585
        vlan->nb_guest_devs++;
4586
        ret = 0;
4587
    } else
4588
    if (!strcmp(device, "none")) {
4589
        /* does nothing. It is needed to signal that no network cards
4590
           are wanted */
4591
        ret = 0;
4592
    } else
4593
#ifdef CONFIG_SLIRP
4594
    if (!strcmp(device, "user")) {
4595
        if (get_param_value(buf, sizeof(buf), "hostname", p)) {
4596
            pstrcpy(slirp_hostname, sizeof(slirp_hostname), buf);
4597
        }
4598
        vlan->nb_host_devs++;
4599
        ret = net_slirp_init(vlan);
4600
    } else
4601
#endif
4602
#ifdef _WIN32
4603
    if (!strcmp(device, "tap")) {
4604
        char ifname[64];
4605
        if (get_param_value(ifname, sizeof(ifname), "ifname", p) <= 0) {
4606
            fprintf(stderr, "tap: no interface name\n");
4607
            return -1;
4608
        }
4609
        vlan->nb_host_devs++;
4610
        ret = tap_win32_init(vlan, ifname);
4611
    } else
4612
#else
4613
    if (!strcmp(device, "tap")) {
4614
        char ifname[64];
4615
        char setup_script[1024];
4616
        int fd;
4617
        vlan->nb_host_devs++;
4618
        if (get_param_value(buf, sizeof(buf), "fd", p) > 0) {
4619
            fd = strtol(buf, NULL, 0);
4620
            ret = -1;
4621
            if (net_tap_fd_init(vlan, fd))
4622
                ret = 0;
4623
        } else {
4624
            if (get_param_value(ifname, sizeof(ifname), "ifname", p) <= 0) {
4625
                ifname[0] = '\0';
4626
            }
4627
            if (get_param_value(setup_script, sizeof(setup_script), "script", p) == 0) {
4628
                pstrcpy(setup_script, sizeof(setup_script), DEFAULT_NETWORK_SCRIPT);
4629
            }
4630
            ret = net_tap_init(vlan, ifname, setup_script);
4631
        }
4632
    } else
4633
#endif
4634
    if (!strcmp(device, "socket")) {
4635
        if (get_param_value(buf, sizeof(buf), "fd", p) > 0) {
4636
            int fd;
4637
            fd = strtol(buf, NULL, 0);
4638
            ret = -1;
4639
            if (net_socket_fd_init(vlan, fd, 1))
4640
                ret = 0;
4641
        } else if (get_param_value(buf, sizeof(buf), "listen", p) > 0) {
4642
            ret = net_socket_listen_init(vlan, buf);
4643
        } else if (get_param_value(buf, sizeof(buf), "connect", p) > 0) {
4644
            ret = net_socket_connect_init(vlan, buf);
4645
        } else if (get_param_value(buf, sizeof(buf), "mcast", p) > 0) {
4646
            ret = net_socket_mcast_init(vlan, buf);
4647
        } else {
4648
            fprintf(stderr, "Unknown socket options: %s\n", p);
4649
            return -1;
4650
        }
4651
        vlan->nb_host_devs++;
4652
    } else
4653
    {
4654
        fprintf(stderr, "Unknown network device: %s\n", device);
4655
        return -1;
4656
    }
4657
    if (ret < 0) {
4658
        fprintf(stderr, "Could not initialize device '%s'\n", device);
4659
    }
4660
    
4661
    return ret;
4662
}
4663

    
4664
void do_info_network(void)
4665
{
4666
    VLANState *vlan;
4667
    VLANClientState *vc;
4668

    
4669
    for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
4670
        term_printf("VLAN %d devices:\n", vlan->id);
4671
        for(vc = vlan->first_client; vc != NULL; vc = vc->next)
4672
            term_printf("  %s\n", vc->info_str);
4673
    }
4674
}
4675

    
4676
/***********************************************************/
4677
/* USB devices */
4678

    
4679
static USBPort *used_usb_ports;
4680
static USBPort *free_usb_ports;
4681

    
4682
/* ??? Maybe change this to register a hub to keep track of the topology.  */
4683
void qemu_register_usb_port(USBPort *port, void *opaque, int index,
4684
                            usb_attachfn attach)
4685
{
4686
    port->opaque = opaque;
4687
    port->index = index;
4688
    port->attach = attach;
4689
    port->next = free_usb_ports;
4690
    free_usb_ports = port;
4691
}
4692

    
4693
static int usb_device_add(const char *devname)
4694
{
4695
    const char *p;
4696
    USBDevice *dev;
4697
    USBPort *port;
4698

    
4699
    if (!free_usb_ports)
4700
        return -1;
4701

    
4702
    if (strstart(devname, "host:", &p)) {
4703
        dev = usb_host_device_open(p);
4704
    } else if (!strcmp(devname, "mouse")) {
4705
        dev = usb_mouse_init();
4706
    } else if (!strcmp(devname, "tablet")) {
4707
        dev = usb_tablet_init();
4708
    } else if (!strcmp(devname, "keyboard")) {
4709
        dev = usb_keyboard_init();
4710
    } else if (strstart(devname, "disk:", &p)) {
4711
        dev = usb_msd_init(p);
4712
    } else if (!strcmp(devname, "wacom-tablet")) {
4713
        dev = usb_wacom_init();
4714
    } else {
4715
        return -1;
4716
    }
4717
    if (!dev)
4718
        return -1;
4719

    
4720
    /* Find a USB port to add the device to.  */
4721
    port = free_usb_ports;
4722
    if (!port->next) {
4723
        USBDevice *hub;
4724

    
4725
        /* Create a new hub and chain it on.  */
4726
        free_usb_ports = NULL;
4727
        port->next = used_usb_ports;
4728
        used_usb_ports = port;
4729

    
4730
        hub = usb_hub_init(VM_USB_HUB_SIZE);
4731
        usb_attach(port, hub);
4732
        port = free_usb_ports;
4733
    }
4734

    
4735
    free_usb_ports = port->next;
4736
    port->next = used_usb_ports;
4737
    used_usb_ports = port;
4738
    usb_attach(port, dev);
4739
    return 0;
4740
}
4741

    
4742
static int usb_device_del(const char *devname)
4743
{
4744
    USBPort *port;
4745
    USBPort **lastp;
4746
    USBDevice *dev;
4747
    int bus_num, addr;
4748
    const char *p;
4749

    
4750
    if (!used_usb_ports)
4751
        return -1;
4752

    
4753
    p = strchr(devname, '.');
4754
    if (!p) 
4755
        return -1;
4756
    bus_num = strtoul(devname, NULL, 0);
4757
    addr = strtoul(p + 1, NULL, 0);
4758
    if (bus_num != 0)
4759
        return -1;
4760

    
4761
    lastp = &used_usb_ports;
4762
    port = used_usb_ports;
4763
    while (port && port->dev->addr != addr) {
4764
        lastp = &port->next;
4765
        port = port->next;
4766
    }
4767

    
4768
    if (!port)
4769
        return -1;
4770

    
4771
    dev = port->dev;
4772
    *lastp = port->next;
4773
    usb_attach(port, NULL);
4774
    dev->handle_destroy(dev);
4775
    port->next = free_usb_ports;
4776
    free_usb_ports = port;
4777
    return 0;
4778
}
4779

    
4780
void do_usb_add(const char *devname)
4781
{
4782
    int ret;
4783
    ret = usb_device_add(devname);
4784
    if (ret < 0) 
4785
        term_printf("Could not add USB device '%s'\n", devname);
4786
}
4787

    
4788
void do_usb_del(const char *devname)
4789
{
4790
    int ret;
4791
    ret = usb_device_del(devname);
4792
    if (ret < 0) 
4793
        term_printf("Could not remove USB device '%s'\n", devname);
4794
}
4795

    
4796
void usb_info(void)
4797
{
4798
    USBDevice *dev;
4799
    USBPort *port;
4800
    const char *speed_str;
4801

    
4802
    if (!usb_enabled) {
4803
        term_printf("USB support not enabled\n");
4804
        return;
4805
    }
4806

    
4807
    for (port = used_usb_ports; port; port = port->next) {
4808
        dev = port->dev;
4809
        if (!dev)
4810
            continue;
4811
        switch(dev->speed) {
4812
        case USB_SPEED_LOW: 
4813
            speed_str = "1.5"; 
4814
            break;
4815
        case USB_SPEED_FULL: 
4816
            speed_str = "12"; 
4817
            break;
4818
        case USB_SPEED_HIGH: 
4819
            speed_str = "480"; 
4820
            break;
4821
        default:
4822
            speed_str = "?"; 
4823
            break;
4824
        }
4825
        term_printf("  Device %d.%d, Speed %s Mb/s, Product %s\n", 
4826
                    0, dev->addr, speed_str, dev->devname);
4827
    }
4828
}
4829

    
4830
/***********************************************************/
4831
/* PCMCIA/Cardbus */
4832

    
4833
static struct pcmcia_socket_entry_s {
4834
    struct pcmcia_socket_s *socket;
4835
    struct pcmcia_socket_entry_s *next;
4836
} *pcmcia_sockets = 0;
4837

    
4838
void pcmcia_socket_register(struct pcmcia_socket_s *socket)
4839
{
4840
    struct pcmcia_socket_entry_s *entry;
4841

    
4842
    entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
4843
    entry->socket = socket;
4844
    entry->next = pcmcia_sockets;
4845
    pcmcia_sockets = entry;
4846
}
4847

    
4848
void pcmcia_socket_unregister(struct pcmcia_socket_s *socket)
4849
{
4850
    struct pcmcia_socket_entry_s *entry, **ptr;
4851

    
4852
    ptr = &pcmcia_sockets;
4853
    for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
4854
        if (entry->socket == socket) {
4855
            *ptr = entry->next;
4856
            qemu_free(entry);
4857
        }
4858
}
4859

    
4860
void pcmcia_info(void)
4861
{
4862
    struct pcmcia_socket_entry_s *iter;
4863
    if (!pcmcia_sockets)
4864
        term_printf("No PCMCIA sockets\n");
4865

    
4866
    for (iter = pcmcia_sockets; iter; iter = iter->next)
4867
        term_printf("%s: %s\n", iter->socket->slot_string,
4868
                    iter->socket->attached ? iter->socket->card_string :
4869
                    "Empty");
4870
}
4871

    
4872
/***********************************************************/
4873
/* dumb display */
4874

    
4875
static void dumb_update(DisplayState *ds, int x, int y, int w, int h)
4876
{
4877
}
4878

    
4879
static void dumb_resize(DisplayState *ds, int w, int h)
4880
{
4881
}
4882

    
4883
static void dumb_refresh(DisplayState *ds)
4884
{
4885
#if defined(CONFIG_SDL)
4886
    vga_hw_update();
4887
#endif
4888
}
4889

    
4890
static void dumb_display_init(DisplayState *ds)
4891
{
4892
    ds->data = NULL;
4893
    ds->linesize = 0;
4894
    ds->depth = 0;
4895
    ds->dpy_update = dumb_update;
4896
    ds->dpy_resize = dumb_resize;
4897
    ds->dpy_refresh = dumb_refresh;
4898
}
4899

    
4900
/***********************************************************/
4901
/* I/O handling */
4902

    
4903
#define MAX_IO_HANDLERS 64
4904

    
4905
typedef struct IOHandlerRecord {
4906
    int fd;
4907
    IOCanRWHandler *fd_read_poll;
4908
    IOHandler *fd_read;
4909
    IOHandler *fd_write;
4910
    int deleted;
4911
    void *opaque;
4912
    /* temporary data */
4913
    struct pollfd *ufd;
4914
    struct IOHandlerRecord *next;
4915
} IOHandlerRecord;
4916

    
4917
static IOHandlerRecord *first_io_handler;
4918

    
4919
/* XXX: fd_read_poll should be suppressed, but an API change is
4920
   necessary in the character devices to suppress fd_can_read(). */
4921
int qemu_set_fd_handler2(int fd, 
4922
                         IOCanRWHandler *fd_read_poll, 
4923
                         IOHandler *fd_read, 
4924
                         IOHandler *fd_write, 
4925
                         void *opaque)
4926
{
4927
    IOHandlerRecord **pioh, *ioh;
4928

    
4929
    if (!fd_read && !fd_write) {
4930
        pioh = &first_io_handler;
4931
        for(;;) {
4932
            ioh = *pioh;
4933
            if (ioh == NULL)
4934
                break;
4935
            if (ioh->fd == fd) {
4936
                ioh->deleted = 1;
4937
                break;
4938
            }
4939
            pioh = &ioh->next;
4940
        }
4941
    } else {
4942
        for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
4943
            if (ioh->fd == fd)
4944
                goto found;
4945
        }
4946
        ioh = qemu_mallocz(sizeof(IOHandlerRecord));
4947
        if (!ioh)
4948
            return -1;
4949
        ioh->next = first_io_handler;
4950
        first_io_handler = ioh;
4951
    found:
4952
        ioh->fd = fd;
4953
        ioh->fd_read_poll = fd_read_poll;
4954
        ioh->fd_read = fd_read;
4955
        ioh->fd_write = fd_write;
4956
        ioh->opaque = opaque;
4957
        ioh->deleted = 0;
4958
    }
4959
    return 0;
4960
}
4961

    
4962
int qemu_set_fd_handler(int fd, 
4963
                        IOHandler *fd_read, 
4964
                        IOHandler *fd_write, 
4965
                        void *opaque)
4966
{
4967
    return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
4968
}
4969

    
4970
/***********************************************************/
4971
/* Polling handling */
4972

    
4973
typedef struct PollingEntry {
4974
    PollingFunc *func;
4975
    void *opaque;
4976
    struct PollingEntry *next;
4977
} PollingEntry;
4978

    
4979
static PollingEntry *first_polling_entry;
4980

    
4981
int qemu_add_polling_cb(PollingFunc *func, void *opaque)
4982
{
4983
    PollingEntry **ppe, *pe;
4984
    pe = qemu_mallocz(sizeof(PollingEntry));
4985
    if (!pe)
4986
        return -1;
4987
    pe->func = func;
4988
    pe->opaque = opaque;
4989
    for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
4990
    *ppe = pe;
4991
    return 0;
4992
}
4993

    
4994
void qemu_del_polling_cb(PollingFunc *func, void *opaque)
4995
{
4996
    PollingEntry **ppe, *pe;
4997
    for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
4998
        pe = *ppe;
4999
        if (pe->func == func && pe->opaque == opaque) {
5000
            *ppe = pe->next;
5001
            qemu_free(pe);
5002
            break;
5003
        }
5004
    }
5005
}
5006

    
5007
#ifdef _WIN32
5008
/***********************************************************/
5009
/* Wait objects support */
5010
typedef struct WaitObjects {
5011
    int num;
5012
    HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
5013
    WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
5014
    void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
5015
} WaitObjects;
5016

    
5017
static WaitObjects wait_objects = {0};
5018
    
5019
int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
5020
{
5021
    WaitObjects *w = &wait_objects;
5022

    
5023
    if (w->num >= MAXIMUM_WAIT_OBJECTS)
5024
        return -1;
5025
    w->events[w->num] = handle;
5026
    w->func[w->num] = func;
5027
    w->opaque[w->num] = opaque;
5028
    w->num++;
5029
    return 0;
5030
}
5031

    
5032
void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
5033
{
5034
    int i, found;
5035
    WaitObjects *w = &wait_objects;
5036

    
5037
    found = 0;
5038
    for (i = 0; i < w->num; i++) {
5039
        if (w->events[i] == handle)
5040
            found = 1;
5041
        if (found) {
5042
            w->events[i] = w->events[i + 1];
5043
            w->func[i] = w->func[i + 1];
5044
            w->opaque[i] = w->opaque[i + 1];
5045
        }            
5046
    }
5047
    if (found)
5048
        w->num--;
5049
}
5050
#endif
5051

    
5052
/***********************************************************/
5053
/* savevm/loadvm support */
5054

    
5055
#define IO_BUF_SIZE 32768
5056

    
5057
struct QEMUFile {
5058
    FILE *outfile;
5059
    BlockDriverState *bs;
5060
    int is_file;
5061
    int is_writable;
5062
    int64_t base_offset;
5063
    int64_t buf_offset; /* start of buffer when writing, end of buffer
5064
                           when reading */
5065
    int buf_index;
5066
    int buf_size; /* 0 when writing */
5067
    uint8_t buf[IO_BUF_SIZE];
5068
};
5069

    
5070
QEMUFile *qemu_fopen(const char *filename, const char *mode)
5071
{
5072
    QEMUFile *f;
5073

    
5074
    f = qemu_mallocz(sizeof(QEMUFile));
5075
    if (!f)
5076
        return NULL;
5077
    if (!strcmp(mode, "wb")) {
5078
        f->is_writable = 1;
5079
    } else if (!strcmp(mode, "rb")) {
5080
        f->is_writable = 0;
5081
    } else {
5082
        goto fail;
5083
    }
5084
    f->outfile = fopen(filename, mode);
5085
    if (!f->outfile)
5086
        goto fail;
5087
    f->is_file = 1;
5088
    return f;
5089
 fail:
5090
    if (f->outfile)
5091
        fclose(f->outfile);
5092
    qemu_free(f);
5093
    return NULL;
5094
}
5095

    
5096
QEMUFile *qemu_fopen_bdrv(BlockDriverState *bs, int64_t offset, int is_writable)
5097
{
5098
    QEMUFile *f;
5099

    
5100
    f = qemu_mallocz(sizeof(QEMUFile));
5101
    if (!f)
5102
        return NULL;
5103
    f->is_file = 0;
5104
    f->bs = bs;
5105
    f->is_writable = is_writable;
5106
    f->base_offset = offset;
5107
    return f;
5108
}
5109

    
5110
void qemu_fflush(QEMUFile *f)
5111
{
5112
    if (!f->is_writable)
5113
        return;
5114
    if (f->buf_index > 0) {
5115
        if (f->is_file) {
5116
            fseek(f->outfile, f->buf_offset, SEEK_SET);
5117
            fwrite(f->buf, 1, f->buf_index, f->outfile);
5118
        } else {
5119
            bdrv_pwrite(f->bs, f->base_offset + f->buf_offset, 
5120
                        f->buf, f->buf_index);
5121
        }
5122
        f->buf_offset += f->buf_index;
5123
        f->buf_index = 0;
5124
    }
5125
}
5126

    
5127
static void qemu_fill_buffer(QEMUFile *f)
5128
{
5129
    int len;
5130

    
5131
    if (f->is_writable)
5132
        return;
5133
    if (f->is_file) {
5134
        fseek(f->outfile, f->buf_offset, SEEK_SET);
5135
        len = fread(f->buf, 1, IO_BUF_SIZE, f->outfile);
5136
        if (len < 0)
5137
            len = 0;
5138
    } else {
5139
        len = bdrv_pread(f->bs, f->base_offset + f->buf_offset, 
5140
                         f->buf, IO_BUF_SIZE);
5141
        if (len < 0)
5142
            len = 0;
5143
    }
5144
    f->buf_index = 0;
5145
    f->buf_size = len;
5146
    f->buf_offset += len;
5147
}
5148

    
5149
void qemu_fclose(QEMUFile *f)
5150
{
5151
    if (f->is_writable)
5152
        qemu_fflush(f);
5153
    if (f->is_file) {
5154
        fclose(f->outfile);
5155
    }
5156
    qemu_free(f);
5157
}
5158

    
5159
void qemu_put_buffer(QEMUFile *f, const uint8_t *buf, int size)
5160
{
5161
    int l;
5162
    while (size > 0) {
5163
        l = IO_BUF_SIZE - f->buf_index;
5164
        if (l > size)
5165
            l = size;
5166
        memcpy(f->buf + f->buf_index, buf, l);
5167
        f->buf_index += l;
5168
        buf += l;
5169
        size -= l;
5170
        if (f->buf_index >= IO_BUF_SIZE)
5171
            qemu_fflush(f);
5172
    }
5173
}
5174

    
5175
void qemu_put_byte(QEMUFile *f, int v)
5176
{
5177
    f->buf[f->buf_index++] = v;
5178
    if (f->buf_index >= IO_BUF_SIZE)
5179
        qemu_fflush(f);
5180
}
5181

    
5182
int qemu_get_buffer(QEMUFile *f, uint8_t *buf, int size1)
5183
{
5184
    int size, l;
5185

    
5186
    size = size1;
5187
    while (size > 0) {
5188
        l = f->buf_size - f->buf_index;
5189
        if (l == 0) {
5190
            qemu_fill_buffer(f);
5191
            l = f->buf_size - f->buf_index;
5192
            if (l == 0)
5193
                break;
5194
        }
5195
        if (l > size)
5196
            l = size;
5197
        memcpy(buf, f->buf + f->buf_index, l);
5198
        f->buf_index += l;
5199
        buf += l;
5200
        size -= l;
5201
    }
5202
    return size1 - size;
5203
}
5204

    
5205
int qemu_get_byte(QEMUFile *f)
5206
{
5207
    if (f->buf_index >= f->buf_size) {
5208
        qemu_fill_buffer(f);
5209
        if (f->buf_index >= f->buf_size)
5210
            return 0;
5211
    }
5212
    return f->buf[f->buf_index++];
5213
}
5214

    
5215
int64_t qemu_ftell(QEMUFile *f)
5216
{
5217
    return f->buf_offset - f->buf_size + f->buf_index;
5218
}
5219

    
5220
int64_t qemu_fseek(QEMUFile *f, int64_t pos, int whence)
5221
{
5222
    if (whence == SEEK_SET) {
5223
        /* nothing to do */
5224
    } else if (whence == SEEK_CUR) {
5225
        pos += qemu_ftell(f);
5226
    } else {
5227
        /* SEEK_END not supported */
5228
        return -1;
5229
    }
5230
    if (f->is_writable) {
5231
        qemu_fflush(f);
5232
        f->buf_offset = pos;
5233
    } else {
5234
        f->buf_offset = pos;
5235
        f->buf_index = 0;
5236
        f->buf_size = 0;
5237
    }
5238
    return pos;
5239
}
5240

    
5241
void qemu_put_be16(QEMUFile *f, unsigned int v)
5242
{
5243
    qemu_put_byte(f, v >> 8);
5244
    qemu_put_byte(f, v);
5245
}
5246

    
5247
void qemu_put_be32(QEMUFile *f, unsigned int v)
5248
{
5249
    qemu_put_byte(f, v >> 24);
5250
    qemu_put_byte(f, v >> 16);
5251
    qemu_put_byte(f, v >> 8);
5252
    qemu_put_byte(f, v);
5253
}
5254

    
5255
void qemu_put_be64(QEMUFile *f, uint64_t v)
5256
{
5257
    qemu_put_be32(f, v >> 32);
5258
    qemu_put_be32(f, v);
5259
}
5260

    
5261
unsigned int qemu_get_be16(QEMUFile *f)
5262
{
5263
    unsigned int v;
5264
    v = qemu_get_byte(f) << 8;
5265
    v |= qemu_get_byte(f);
5266
    return v;
5267
}
5268

    
5269
unsigned int qemu_get_be32(QEMUFile *f)
5270
{
5271
    unsigned int v;
5272
    v = qemu_get_byte(f) << 24;
5273
    v |= qemu_get_byte(f) << 16;
5274
    v |= qemu_get_byte(f) << 8;
5275
    v |= qemu_get_byte(f);
5276
    return v;
5277
}
5278

    
5279
uint64_t qemu_get_be64(QEMUFile *f)
5280
{
5281
    uint64_t v;
5282
    v = (uint64_t)qemu_get_be32(f) << 32;
5283
    v |= qemu_get_be32(f);
5284
    return v;
5285
}
5286

    
5287
typedef struct SaveStateEntry {
5288
    char idstr[256];
5289
    int instance_id;
5290
    int version_id;
5291
    SaveStateHandler *save_state;
5292
    LoadStateHandler *load_state;
5293
    void *opaque;
5294
    struct SaveStateEntry *next;
5295
} SaveStateEntry;
5296

    
5297
static SaveStateEntry *first_se;
5298

    
5299
int register_savevm(const char *idstr, 
5300
                    int instance_id, 
5301
                    int version_id,
5302
                    SaveStateHandler *save_state,
5303
                    LoadStateHandler *load_state,
5304
                    void *opaque)
5305
{
5306
    SaveStateEntry *se, **pse;
5307

    
5308
    se = qemu_malloc(sizeof(SaveStateEntry));
5309
    if (!se)
5310
        return -1;
5311
    pstrcpy(se->idstr, sizeof(se->idstr), idstr);
5312
    se->instance_id = instance_id;
5313
    se->version_id = version_id;
5314
    se->save_state = save_state;
5315
    se->load_state = load_state;
5316
    se->opaque = opaque;
5317
    se->next = NULL;
5318

    
5319
    /* add at the end of list */
5320
    pse = &first_se;
5321
    while (*pse != NULL)
5322
        pse = &(*pse)->next;
5323
    *pse = se;
5324
    return 0;
5325
}
5326

    
5327
#define QEMU_VM_FILE_MAGIC   0x5145564d
5328
#define QEMU_VM_FILE_VERSION 0x00000002
5329

    
5330
int qemu_savevm_state(QEMUFile *f)
5331
{
5332
    SaveStateEntry *se;
5333
    int len, ret;
5334
    int64_t cur_pos, len_pos, total_len_pos;
5335

    
5336
    qemu_put_be32(f, QEMU_VM_FILE_MAGIC);
5337
    qemu_put_be32(f, QEMU_VM_FILE_VERSION);
5338
    total_len_pos = qemu_ftell(f);
5339
    qemu_put_be64(f, 0); /* total size */
5340

    
5341
    for(se = first_se; se != NULL; se = se->next) {
5342
        /* ID string */
5343
        len = strlen(se->idstr);
5344
        qemu_put_byte(f, len);
5345
        qemu_put_buffer(f, se->idstr, len);
5346

    
5347
        qemu_put_be32(f, se->instance_id);
5348
        qemu_put_be32(f, se->version_id);
5349

    
5350
        /* record size: filled later */
5351
        len_pos = qemu_ftell(f);
5352
        qemu_put_be32(f, 0);
5353
        
5354
        se->save_state(f, se->opaque);
5355

    
5356
        /* fill record size */
5357
        cur_pos = qemu_ftell(f);
5358
        len = cur_pos - len_pos - 4;
5359
        qemu_fseek(f, len_pos, SEEK_SET);
5360
        qemu_put_be32(f, len);
5361
        qemu_fseek(f, cur_pos, SEEK_SET);
5362
    }
5363
    cur_pos = qemu_ftell(f);
5364
    qemu_fseek(f, total_len_pos, SEEK_SET);
5365
    qemu_put_be64(f, cur_pos - total_len_pos - 8);
5366
    qemu_fseek(f, cur_pos, SEEK_SET);
5367

    
5368
    ret = 0;
5369
    return ret;
5370
}
5371

    
5372
static SaveStateEntry *find_se(const char *idstr, int instance_id)
5373
{
5374
    SaveStateEntry *se;
5375

    
5376
    for(se = first_se; se != NULL; se = se->next) {
5377
        if (!strcmp(se->idstr, idstr) && 
5378
            instance_id == se->instance_id)
5379
            return se;
5380
    }
5381
    return NULL;
5382
}
5383

    
5384
int qemu_loadvm_state(QEMUFile *f)
5385
{
5386
    SaveStateEntry *se;
5387
    int len, ret, instance_id, record_len, version_id;
5388
    int64_t total_len, end_pos, cur_pos;
5389
    unsigned int v;
5390
    char idstr[256];
5391
    
5392
    v = qemu_get_be32(f);
5393
    if (v != QEMU_VM_FILE_MAGIC)
5394
        goto fail;
5395
    v = qemu_get_be32(f);
5396
    if (v != QEMU_VM_FILE_VERSION) {
5397
    fail:
5398
        ret = -1;
5399
        goto the_end;
5400
    }
5401
    total_len = qemu_get_be64(f);
5402
    end_pos = total_len + qemu_ftell(f);
5403
    for(;;) {
5404
        if (qemu_ftell(f) >= end_pos)
5405
            break;
5406
        len = qemu_get_byte(f);
5407
        qemu_get_buffer(f, idstr, len);
5408
        idstr[len] = '\0';
5409
        instance_id = qemu_get_be32(f);
5410
        version_id = qemu_get_be32(f);
5411
        record_len = qemu_get_be32(f);
5412
#if 0
5413
        printf("idstr=%s instance=0x%x version=%d len=%d\n", 
5414
               idstr, instance_id, version_id, record_len);
5415
#endif
5416
        cur_pos = qemu_ftell(f);
5417
        se = find_se(idstr, instance_id);
5418
        if (!se) {
5419
            fprintf(stderr, "qemu: warning: instance 0x%x of device '%s' not present in current VM\n", 
5420
                    instance_id, idstr);
5421
        } else {
5422
            ret = se->load_state(f, se->opaque, version_id);
5423
            if (ret < 0) {
5424
                fprintf(stderr, "qemu: warning: error while loading state for instance 0x%x of device '%s'\n", 
5425
                        instance_id, idstr);
5426
            }
5427
        }
5428
        /* always seek to exact end of record */
5429
        qemu_fseek(f, cur_pos + record_len, SEEK_SET);
5430
    }
5431
    ret = 0;
5432
 the_end:
5433
    return ret;
5434
}
5435

    
5436
/* device can contain snapshots */
5437
static int bdrv_can_snapshot(BlockDriverState *bs)
5438
{
5439
    return (bs &&
5440
            !bdrv_is_removable(bs) &&
5441
            !bdrv_is_read_only(bs));
5442
}
5443

    
5444
/* device must be snapshots in order to have a reliable snapshot */
5445
static int bdrv_has_snapshot(BlockDriverState *bs)
5446
{
5447
    return (bs &&
5448
            !bdrv_is_removable(bs) &&
5449
            !bdrv_is_read_only(bs));
5450
}
5451

    
5452
static BlockDriverState *get_bs_snapshots(void)
5453
{
5454
    BlockDriverState *bs;
5455
    int i;
5456

    
5457
    if (bs_snapshots)
5458
        return bs_snapshots;
5459
    for(i = 0; i <= MAX_DISKS; i++) {
5460
        bs = bs_table[i];
5461
        if (bdrv_can_snapshot(bs))
5462
            goto ok;
5463
    }
5464
    return NULL;
5465
 ok:
5466
    bs_snapshots = bs;
5467
    return bs;
5468
}
5469

    
5470
static int bdrv_snapshot_find(BlockDriverState *bs, QEMUSnapshotInfo *sn_info,
5471
                              const char *name)
5472
{
5473
    QEMUSnapshotInfo *sn_tab, *sn;
5474
    int nb_sns, i, ret;
5475
    
5476
    ret = -ENOENT;
5477
    nb_sns = bdrv_snapshot_list(bs, &sn_tab);
5478
    if (nb_sns < 0)
5479
        return ret;
5480
    for(i = 0; i < nb_sns; i++) {
5481
        sn = &sn_tab[i];
5482
        if (!strcmp(sn->id_str, name) || !strcmp(sn->name, name)) {
5483
            *sn_info = *sn;
5484
            ret = 0;
5485
            break;
5486
        }
5487
    }
5488
    qemu_free(sn_tab);
5489
    return ret;
5490
}
5491

    
5492
void do_savevm(const char *name)
5493
{
5494
    BlockDriverState *bs, *bs1;
5495
    QEMUSnapshotInfo sn1, *sn = &sn1, old_sn1, *old_sn = &old_sn1;
5496
    int must_delete, ret, i;
5497
    BlockDriverInfo bdi1, *bdi = &bdi1;
5498
    QEMUFile *f;
5499
    int saved_vm_running;
5500
#ifdef _WIN32
5501
    struct _timeb tb;
5502
#else
5503
    struct timeval tv;
5504
#endif
5505

    
5506
    bs = get_bs_snapshots();
5507
    if (!bs) {
5508
        term_printf("No block device can accept snapshots\n");
5509
        return;
5510
    }
5511

    
5512
    /* ??? Should this occur after vm_stop?  */
5513
    qemu_aio_flush();
5514

    
5515
    saved_vm_running = vm_running;
5516
    vm_stop(0);
5517
    
5518
    must_delete = 0;
5519
    if (name) {
5520
        ret = bdrv_snapshot_find(bs, old_sn, name);
5521
        if (ret >= 0) {
5522
            must_delete = 1;
5523
        }
5524
    }
5525
    memset(sn, 0, sizeof(*sn));
5526
    if (must_delete) {
5527
        pstrcpy(sn->name, sizeof(sn->name), old_sn->name);
5528
        pstrcpy(sn->id_str, sizeof(sn->id_str), old_sn->id_str);
5529
    } else {
5530
        if (name)
5531
            pstrcpy(sn->name, sizeof(sn->name), name);
5532
    }
5533

    
5534
    /* fill auxiliary fields */
5535
#ifdef _WIN32
5536
    _ftime(&tb);
5537
    sn->date_sec = tb.time;
5538
    sn->date_nsec = tb.millitm * 1000000;
5539
#else
5540
    gettimeofday(&tv, NULL);
5541
    sn->date_sec = tv.tv_sec;
5542
    sn->date_nsec = tv.tv_usec * 1000;
5543
#endif
5544
    sn->vm_clock_nsec = qemu_get_clock(vm_clock);
5545
    
5546
    if (bdrv_get_info(bs, bdi) < 0 || bdi->vm_state_offset <= 0) {
5547
        term_printf("Device %s does not support VM state snapshots\n",
5548
                    bdrv_get_device_name(bs));
5549
        goto the_end;
5550
    }
5551
    
5552
    /* save the VM state */
5553
    f = qemu_fopen_bdrv(bs, bdi->vm_state_offset, 1);
5554
    if (!f) {
5555
        term_printf("Could not open VM state file\n");
5556
        goto the_end;
5557
    }
5558
    ret = qemu_savevm_state(f);
5559
    sn->vm_state_size = qemu_ftell(f);
5560
    qemu_fclose(f);
5561
    if (ret < 0) {
5562
        term_printf("Error %d while writing VM\n", ret);
5563
        goto the_end;
5564
    }
5565
    
5566
    /* create the snapshots */
5567

    
5568
    for(i = 0; i < MAX_DISKS; i++) {
5569
        bs1 = bs_table[i];
5570
        if (bdrv_has_snapshot(bs1)) {
5571
            if (must_delete) {
5572
                ret = bdrv_snapshot_delete(bs1, old_sn->id_str);
5573
                if (ret < 0) {
5574
                    term_printf("Error while deleting snapshot on '%s'\n",
5575
                                bdrv_get_device_name(bs1));
5576
                }
5577
            }
5578
            ret = bdrv_snapshot_create(bs1, sn);
5579
            if (ret < 0) {
5580
                term_printf("Error while creating snapshot on '%s'\n",
5581
                            bdrv_get_device_name(bs1));
5582
            }
5583
        }
5584
    }
5585

    
5586
 the_end:
5587
    if (saved_vm_running)
5588
        vm_start();
5589
}
5590

    
5591
void do_loadvm(const char *name)
5592
{
5593
    BlockDriverState *bs, *bs1;
5594
    BlockDriverInfo bdi1, *bdi = &bdi1;
5595
    QEMUFile *f;
5596
    int i, ret;
5597
    int saved_vm_running;
5598

    
5599
    bs = get_bs_snapshots();
5600
    if (!bs) {
5601
        term_printf("No block device supports snapshots\n");
5602
        return;
5603
    }
5604
    
5605
    /* Flush all IO requests so they don't interfere with the new state.  */
5606
    qemu_aio_flush();
5607

    
5608
    saved_vm_running = vm_running;
5609
    vm_stop(0);
5610

    
5611
    for(i = 0; i <= MAX_DISKS; i++) {
5612
        bs1 = bs_table[i];
5613
        if (bdrv_has_snapshot(bs1)) {
5614
            ret = bdrv_snapshot_goto(bs1, name);
5615
            if (ret < 0) {
5616
                if (bs != bs1)
5617
                    term_printf("Warning: ");
5618
                switch(ret) {
5619
                case -ENOTSUP:
5620
                    term_printf("Snapshots not supported on device '%s'\n",
5621
                                bdrv_get_device_name(bs1));
5622
                    break;
5623
                case -ENOENT:
5624
                    term_printf("Could not find snapshot '%s' on device '%s'\n",
5625
                                name, bdrv_get_device_name(bs1));
5626
                    break;
5627
                default:
5628
                    term_printf("Error %d while activating snapshot on '%s'\n",
5629
                                ret, bdrv_get_device_name(bs1));
5630
                    break;
5631
                }
5632
                /* fatal on snapshot block device */
5633
                if (bs == bs1)
5634
                    goto the_end;
5635
            }
5636
        }
5637
    }
5638

    
5639
    if (bdrv_get_info(bs, bdi) < 0 || bdi->vm_state_offset <= 0) {
5640
        term_printf("Device %s does not support VM state snapshots\n",
5641
                    bdrv_get_device_name(bs));
5642
        return;
5643
    }
5644
    
5645
    /* restore the VM state */
5646
    f = qemu_fopen_bdrv(bs, bdi->vm_state_offset, 0);
5647
    if (!f) {
5648
        term_printf("Could not open VM state file\n");
5649
        goto the_end;
5650
    }
5651
    ret = qemu_loadvm_state(f);
5652
    qemu_fclose(f);
5653
    if (ret < 0) {
5654
        term_printf("Error %d while loading VM state\n", ret);
5655
    }
5656
 the_end:
5657
    if (saved_vm_running)
5658
        vm_start();
5659
}
5660

    
5661
void do_delvm(const char *name)
5662
{
5663
    BlockDriverState *bs, *bs1;
5664
    int i, ret;
5665

    
5666
    bs = get_bs_snapshots();
5667
    if (!bs) {
5668
        term_printf("No block device supports snapshots\n");
5669
        return;
5670
    }
5671
    
5672
    for(i = 0; i <= MAX_DISKS; i++) {
5673
        bs1 = bs_table[i];
5674
        if (bdrv_has_snapshot(bs1)) {
5675
            ret = bdrv_snapshot_delete(bs1, name);
5676
            if (ret < 0) {
5677
                if (ret == -ENOTSUP)
5678
                    term_printf("Snapshots not supported on device '%s'\n",
5679
                                bdrv_get_device_name(bs1));
5680
                else
5681
                    term_printf("Error %d while deleting snapshot on '%s'\n",
5682
                                ret, bdrv_get_device_name(bs1));
5683
            }
5684
        }
5685
    }
5686
}
5687

    
5688
void do_info_snapshots(void)
5689
{
5690
    BlockDriverState *bs, *bs1;
5691
    QEMUSnapshotInfo *sn_tab, *sn;
5692
    int nb_sns, i;
5693
    char buf[256];
5694

    
5695
    bs = get_bs_snapshots();
5696
    if (!bs) {
5697
        term_printf("No available block device supports snapshots\n");
5698
        return;
5699
    }
5700
    term_printf("Snapshot devices:");
5701
    for(i = 0; i <= MAX_DISKS; i++) {
5702
        bs1 = bs_table[i];
5703
        if (bdrv_has_snapshot(bs1)) {
5704
            if (bs == bs1)
5705
                term_printf(" %s", bdrv_get_device_name(bs1));
5706
        }
5707
    }
5708
    term_printf("\n");
5709

    
5710
    nb_sns = bdrv_snapshot_list(bs, &sn_tab);
5711
    if (nb_sns < 0) {
5712
        term_printf("bdrv_snapshot_list: error %d\n", nb_sns);
5713
        return;
5714
    }
5715
    term_printf("Snapshot list (from %s):\n", bdrv_get_device_name(bs));
5716
    term_printf("%s\n", bdrv_snapshot_dump(buf, sizeof(buf), NULL));
5717
    for(i = 0; i < nb_sns; i++) {
5718
        sn = &sn_tab[i];
5719
        term_printf("%s\n", bdrv_snapshot_dump(buf, sizeof(buf), sn));
5720
    }
5721
    qemu_free(sn_tab);
5722
}
5723

    
5724
/***********************************************************/
5725
/* cpu save/restore */
5726

    
5727
#if defined(TARGET_I386)
5728

    
5729
static void cpu_put_seg(QEMUFile *f, SegmentCache *dt)
5730
{
5731
    qemu_put_be32(f, dt->selector);
5732
    qemu_put_betl(f, dt->base);
5733
    qemu_put_be32(f, dt->limit);
5734
    qemu_put_be32(f, dt->flags);
5735
}
5736

    
5737
static void cpu_get_seg(QEMUFile *f, SegmentCache *dt)
5738
{
5739
    dt->selector = qemu_get_be32(f);
5740
    dt->base = qemu_get_betl(f);
5741
    dt->limit = qemu_get_be32(f);
5742
    dt->flags = qemu_get_be32(f);
5743
}
5744

    
5745
void cpu_save(QEMUFile *f, void *opaque)
5746
{
5747
    CPUState *env = opaque;
5748
    uint16_t fptag, fpus, fpuc, fpregs_format;
5749
    uint32_t hflags;
5750
    int i;
5751
    
5752
    for(i = 0; i < CPU_NB_REGS; i++)
5753
        qemu_put_betls(f, &env->regs[i]);
5754
    qemu_put_betls(f, &env->eip);
5755
    qemu_put_betls(f, &env->eflags);
5756
    hflags = env->hflags; /* XXX: suppress most of the redundant hflags */
5757
    qemu_put_be32s(f, &hflags);
5758
    
5759
    /* FPU */
5760
    fpuc = env->fpuc;
5761
    fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
5762
    fptag = 0;
5763
    for(i = 0; i < 8; i++) {
5764
        fptag |= ((!env->fptags[i]) << i);
5765
    }
5766
    
5767
    qemu_put_be16s(f, &fpuc);
5768
    qemu_put_be16s(f, &fpus);
5769
    qemu_put_be16s(f, &fptag);
5770

    
5771
#ifdef USE_X86LDOUBLE
5772
    fpregs_format = 0;
5773
#else
5774
    fpregs_format = 1;
5775
#endif
5776
    qemu_put_be16s(f, &fpregs_format);
5777
    
5778
    for(i = 0; i < 8; i++) {
5779
#ifdef USE_X86LDOUBLE
5780
        {
5781
            uint64_t mant;
5782
            uint16_t exp;
5783
            /* we save the real CPU data (in case of MMX usage only 'mant'
5784
               contains the MMX register */
5785
            cpu_get_fp80(&mant, &exp, env->fpregs[i].d);
5786
            qemu_put_be64(f, mant);
5787
            qemu_put_be16(f, exp);
5788
        }
5789
#else
5790
        /* if we use doubles for float emulation, we save the doubles to
5791
           avoid losing information in case of MMX usage. It can give
5792
           problems if the image is restored on a CPU where long
5793
           doubles are used instead. */
5794
        qemu_put_be64(f, env->fpregs[i].mmx.MMX_Q(0));
5795
#endif
5796
    }
5797

    
5798
    for(i = 0; i < 6; i++)
5799
        cpu_put_seg(f, &env->segs[i]);
5800
    cpu_put_seg(f, &env->ldt);
5801
    cpu_put_seg(f, &env->tr);
5802
    cpu_put_seg(f, &env->gdt);
5803
    cpu_put_seg(f, &env->idt);
5804
    
5805
    qemu_put_be32s(f, &env->sysenter_cs);
5806
    qemu_put_be32s(f, &env->sysenter_esp);
5807
    qemu_put_be32s(f, &env->sysenter_eip);
5808
    
5809
    qemu_put_betls(f, &env->cr[0]);
5810
    qemu_put_betls(f, &env->cr[2]);
5811
    qemu_put_betls(f, &env->cr[3]);
5812
    qemu_put_betls(f, &env->cr[4]);
5813
    
5814
    for(i = 0; i < 8; i++)
5815
        qemu_put_betls(f, &env->dr[i]);
5816

    
5817
    /* MMU */
5818
    qemu_put_be32s(f, &env->a20_mask);
5819

    
5820
    /* XMM */
5821
    qemu_put_be32s(f, &env->mxcsr);
5822
    for(i = 0; i < CPU_NB_REGS; i++) {
5823
        qemu_put_be64s(f, &env->xmm_regs[i].XMM_Q(0));
5824
        qemu_put_be64s(f, &env->xmm_regs[i].XMM_Q(1));
5825
    }
5826

    
5827
#ifdef TARGET_X86_64
5828
    qemu_put_be64s(f, &env->efer);
5829
    qemu_put_be64s(f, &env->star);
5830
    qemu_put_be64s(f, &env->lstar);
5831
    qemu_put_be64s(f, &env->cstar);
5832
    qemu_put_be64s(f, &env->fmask);
5833
    qemu_put_be64s(f, &env->kernelgsbase);
5834
#endif
5835
    qemu_put_be32s(f, &env->smbase);
5836
}
5837

    
5838
#ifdef USE_X86LDOUBLE
5839
/* XXX: add that in a FPU generic layer */
5840
union x86_longdouble {
5841
    uint64_t mant;
5842
    uint16_t exp;
5843
};
5844

    
5845
#define MANTD1(fp)        (fp & ((1LL << 52) - 1))
5846
#define EXPBIAS1 1023
5847
#define EXPD1(fp)        ((fp >> 52) & 0x7FF)
5848
#define SIGND1(fp)        ((fp >> 32) & 0x80000000)
5849

    
5850
static void fp64_to_fp80(union x86_longdouble *p, uint64_t temp)
5851
{
5852
    int e;
5853
    /* mantissa */
5854
    p->mant = (MANTD1(temp) << 11) | (1LL << 63);
5855
    /* exponent + sign */
5856
    e = EXPD1(temp) - EXPBIAS1 + 16383;
5857
    e |= SIGND1(temp) >> 16;
5858
    p->exp = e;
5859
}
5860
#endif
5861

    
5862
int cpu_load(QEMUFile *f, void *opaque, int version_id)
5863
{
5864
    CPUState *env = opaque;
5865
    int i, guess_mmx;
5866
    uint32_t hflags;
5867
    uint16_t fpus, fpuc, fptag, fpregs_format;
5868

    
5869
    if (version_id != 3 && version_id != 4)
5870
        return -EINVAL;
5871
    for(i = 0; i < CPU_NB_REGS; i++)
5872
        qemu_get_betls(f, &env->regs[i]);
5873
    qemu_get_betls(f, &env->eip);
5874
    qemu_get_betls(f, &env->eflags);
5875
    qemu_get_be32s(f, &hflags);
5876

    
5877
    qemu_get_be16s(f, &fpuc);
5878
    qemu_get_be16s(f, &fpus);
5879
    qemu_get_be16s(f, &fptag);
5880
    qemu_get_be16s(f, &fpregs_format);
5881
    
5882
    /* NOTE: we cannot always restore the FPU state if the image come
5883
       from a host with a different 'USE_X86LDOUBLE' define. We guess
5884
       if we are in an MMX state to restore correctly in that case. */
5885
    guess_mmx = ((fptag == 0xff) && (fpus & 0x3800) == 0);
5886
    for(i = 0; i < 8; i++) {
5887
        uint64_t mant;
5888
        uint16_t exp;
5889
        
5890
        switch(fpregs_format) {
5891
        case 0:
5892
            mant = qemu_get_be64(f);
5893
            exp = qemu_get_be16(f);
5894
#ifdef USE_X86LDOUBLE
5895
            env->fpregs[i].d = cpu_set_fp80(mant, exp);
5896
#else
5897
            /* difficult case */
5898
            if (guess_mmx)
5899
                env->fpregs[i].mmx.MMX_Q(0) = mant;
5900
            else
5901
                env->fpregs[i].d = cpu_set_fp80(mant, exp);
5902
#endif
5903
            break;
5904
        case 1:
5905
            mant = qemu_get_be64(f);
5906
#ifdef USE_X86LDOUBLE
5907
            {
5908
                union x86_longdouble *p;
5909
                /* difficult case */
5910
                p = (void *)&env->fpregs[i];
5911
                if (guess_mmx) {
5912
                    p->mant = mant;
5913
                    p->exp = 0xffff;
5914
                } else {
5915
                    fp64_to_fp80(p, mant);
5916
                }
5917
            }
5918
#else
5919
            env->fpregs[i].mmx.MMX_Q(0) = mant;
5920
#endif            
5921
            break;
5922
        default:
5923
            return -EINVAL;
5924
        }
5925
    }
5926

    
5927
    env->fpuc = fpuc;
5928
    /* XXX: restore FPU round state */
5929
    env->fpstt = (fpus >> 11) & 7;
5930
    env->fpus = fpus & ~0x3800;
5931
    fptag ^= 0xff;
5932
    for(i = 0; i < 8; i++) {
5933
        env->fptags[i] = (fptag >> i) & 1;
5934
    }
5935
    
5936
    for(i = 0; i < 6; i++)
5937
        cpu_get_seg(f, &env->segs[i]);
5938
    cpu_get_seg(f, &env->ldt);
5939
    cpu_get_seg(f, &env->tr);
5940
    cpu_get_seg(f, &env->gdt);
5941
    cpu_get_seg(f, &env->idt);
5942
    
5943
    qemu_get_be32s(f, &env->sysenter_cs);
5944
    qemu_get_be32s(f, &env->sysenter_esp);
5945
    qemu_get_be32s(f, &env->sysenter_eip);
5946
    
5947
    qemu_get_betls(f, &env->cr[0]);
5948
    qemu_get_betls(f, &env->cr[2]);
5949
    qemu_get_betls(f, &env->cr[3]);
5950
    qemu_get_betls(f, &env->cr[4]);
5951
    
5952
    for(i = 0; i < 8; i++)
5953
        qemu_get_betls(f, &env->dr[i]);
5954

    
5955
    /* MMU */
5956
    qemu_get_be32s(f, &env->a20_mask);
5957

    
5958
    qemu_get_be32s(f, &env->mxcsr);
5959
    for(i = 0; i < CPU_NB_REGS; i++) {
5960
        qemu_get_be64s(f, &env->xmm_regs[i].XMM_Q(0));
5961
        qemu_get_be64s(f, &env->xmm_regs[i].XMM_Q(1));
5962
    }
5963

    
5964
#ifdef TARGET_X86_64
5965
    qemu_get_be64s(f, &env->efer);
5966
    qemu_get_be64s(f, &env->star);
5967
    qemu_get_be64s(f, &env->lstar);
5968
    qemu_get_be64s(f, &env->cstar);
5969
    qemu_get_be64s(f, &env->fmask);
5970
    qemu_get_be64s(f, &env->kernelgsbase);
5971
#endif
5972
    if (version_id >= 4) 
5973
        qemu_get_be32s(f, &env->smbase);
5974

    
5975
    /* XXX: compute hflags from scratch, except for CPL and IIF */
5976
    env->hflags = hflags;
5977
    tlb_flush(env, 1);
5978
    return 0;
5979
}
5980

    
5981
#elif defined(TARGET_PPC)
5982
void cpu_save(QEMUFile *f, void *opaque)
5983
{
5984
}
5985

    
5986
int cpu_load(QEMUFile *f, void *opaque, int version_id)
5987
{
5988
    return 0;
5989
}
5990

    
5991
#elif defined(TARGET_MIPS)
5992
void cpu_save(QEMUFile *f, void *opaque)
5993
{
5994
}
5995

    
5996
int cpu_load(QEMUFile *f, void *opaque, int version_id)
5997
{
5998
    return 0;
5999
}
6000

    
6001
#elif defined(TARGET_SPARC)
6002
void cpu_save(QEMUFile *f, void *opaque)
6003
{
6004
    CPUState *env = opaque;
6005
    int i;
6006
    uint32_t tmp;
6007

    
6008
    for(i = 0; i < 8; i++)
6009
        qemu_put_betls(f, &env->gregs[i]);
6010
    for(i = 0; i < NWINDOWS * 16; i++)
6011
        qemu_put_betls(f, &env->regbase[i]);
6012

    
6013
    /* FPU */
6014
    for(i = 0; i < TARGET_FPREGS; i++) {
6015
        union {
6016
            float32 f;
6017
            uint32_t i;
6018
        } u;
6019
        u.f = env->fpr[i];
6020
        qemu_put_be32(f, u.i);
6021
    }
6022

    
6023
    qemu_put_betls(f, &env->pc);
6024
    qemu_put_betls(f, &env->npc);
6025
    qemu_put_betls(f, &env->y);
6026
    tmp = GET_PSR(env);
6027
    qemu_put_be32(f, tmp);
6028
    qemu_put_betls(f, &env->fsr);
6029
    qemu_put_betls(f, &env->tbr);
6030
#ifndef TARGET_SPARC64
6031
    qemu_put_be32s(f, &env->wim);
6032
    /* MMU */
6033
    for(i = 0; i < 16; i++)
6034
        qemu_put_be32s(f, &env->mmuregs[i]);
6035
#endif
6036
}
6037

    
6038
int cpu_load(QEMUFile *f, void *opaque, int version_id)
6039
{
6040
    CPUState *env = opaque;
6041
    int i;
6042
    uint32_t tmp;
6043

    
6044
    for(i = 0; i < 8; i++)
6045
        qemu_get_betls(f, &env->gregs[i]);
6046
    for(i = 0; i < NWINDOWS * 16; i++)
6047
        qemu_get_betls(f, &env->regbase[i]);
6048

    
6049
    /* FPU */
6050
    for(i = 0; i < TARGET_FPREGS; i++) {
6051
        union {
6052
            float32 f;
6053
            uint32_t i;
6054
        } u;
6055
        u.i = qemu_get_be32(f);
6056
        env->fpr[i] = u.f;
6057
    }
6058

    
6059
    qemu_get_betls(f, &env->pc);
6060
    qemu_get_betls(f, &env->npc);
6061
    qemu_get_betls(f, &env->y);
6062
    tmp = qemu_get_be32(f);
6063
    env->cwp = 0; /* needed to ensure that the wrapping registers are
6064
                     correctly updated */
6065
    PUT_PSR(env, tmp);
6066
    qemu_get_betls(f, &env->fsr);
6067
    qemu_get_betls(f, &env->tbr);
6068
#ifndef TARGET_SPARC64
6069
    qemu_get_be32s(f, &env->wim);
6070
    /* MMU */
6071
    for(i = 0; i < 16; i++)
6072
        qemu_get_be32s(f, &env->mmuregs[i]);
6073
#endif
6074
    tlb_flush(env, 1);
6075
    return 0;
6076
}
6077

    
6078
#elif defined(TARGET_ARM)
6079

    
6080
void cpu_save(QEMUFile *f, void *opaque)
6081
{
6082
    int i;
6083
    CPUARMState *env = (CPUARMState *)opaque;
6084

    
6085
    for (i = 0; i < 16; i++) {
6086
        qemu_put_be32(f, env->regs[i]);
6087
    }
6088
    qemu_put_be32(f, cpsr_read(env));
6089
    qemu_put_be32(f, env->spsr);
6090
    for (i = 0; i < 6; i++) {
6091
        qemu_put_be32(f, env->banked_spsr[i]);
6092
        qemu_put_be32(f, env->banked_r13[i]);
6093
        qemu_put_be32(f, env->banked_r14[i]);
6094
    }
6095
    for (i = 0; i < 5; i++) {
6096
        qemu_put_be32(f, env->usr_regs[i]);
6097
        qemu_put_be32(f, env->fiq_regs[i]);
6098
    }
6099
    qemu_put_be32(f, env->cp15.c0_cpuid);
6100
    qemu_put_be32(f, env->cp15.c0_cachetype);
6101
    qemu_put_be32(f, env->cp15.c1_sys);
6102
    qemu_put_be32(f, env->cp15.c1_coproc);
6103
    qemu_put_be32(f, env->cp15.c1_xscaleauxcr);
6104
    qemu_put_be32(f, env->cp15.c2_base);
6105
    qemu_put_be32(f, env->cp15.c2_data);
6106
    qemu_put_be32(f, env->cp15.c2_insn);
6107
    qemu_put_be32(f, env->cp15.c3);
6108
    qemu_put_be32(f, env->cp15.c5_insn);
6109
    qemu_put_be32(f, env->cp15.c5_data);
6110
    for (i = 0; i < 8; i++) {
6111
        qemu_put_be32(f, env->cp15.c6_region[i]);
6112
    }
6113
    qemu_put_be32(f, env->cp15.c6_insn);
6114
    qemu_put_be32(f, env->cp15.c6_data);
6115
    qemu_put_be32(f, env->cp15.c9_insn);
6116
    qemu_put_be32(f, env->cp15.c9_data);
6117
    qemu_put_be32(f, env->cp15.c13_fcse);
6118
    qemu_put_be32(f, env->cp15.c13_context);
6119
    qemu_put_be32(f, env->cp15.c15_cpar);
6120

    
6121
    qemu_put_be32(f, env->features);
6122

    
6123
    if (arm_feature(env, ARM_FEATURE_VFP)) {
6124
        for (i = 0;  i < 16; i++) {
6125
            CPU_DoubleU u;
6126
            u.d = env->vfp.regs[i];
6127
            qemu_put_be32(f, u.l.upper);
6128
            qemu_put_be32(f, u.l.lower);
6129
        }
6130
        for (i = 0; i < 16; i++) {
6131
            qemu_put_be32(f, env->vfp.xregs[i]);
6132
        }
6133

    
6134
        /* TODO: Should use proper FPSCR access functions.  */
6135
        qemu_put_be32(f, env->vfp.vec_len);
6136
        qemu_put_be32(f, env->vfp.vec_stride);
6137
    }
6138

    
6139
    if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
6140
        for (i = 0; i < 16; i++) {
6141
            qemu_put_be64(f, env->iwmmxt.regs[i]);
6142
        }
6143
        for (i = 0; i < 16; i++) {
6144
            qemu_put_be32(f, env->iwmmxt.cregs[i]);
6145
        }
6146
    }
6147
}
6148

    
6149
int cpu_load(QEMUFile *f, void *opaque, int version_id)
6150
{
6151
    CPUARMState *env = (CPUARMState *)opaque;
6152
    int i;
6153

    
6154
    if (version_id != 0)
6155
        return -EINVAL;
6156

    
6157
    for (i = 0; i < 16; i++) {
6158
        env->regs[i] = qemu_get_be32(f);
6159
    }
6160
    cpsr_write(env, qemu_get_be32(f), 0xffffffff);
6161
    env->spsr = qemu_get_be32(f);
6162
    for (i = 0; i < 6; i++) {
6163
        env->banked_spsr[i] = qemu_get_be32(f);
6164
        env->banked_r13[i] = qemu_get_be32(f);
6165
        env->banked_r14[i] = qemu_get_be32(f);
6166
    }
6167
    for (i = 0; i < 5; i++) {
6168
        env->usr_regs[i] = qemu_get_be32(f);
6169
        env->fiq_regs[i] = qemu_get_be32(f);
6170
    }
6171
    env->cp15.c0_cpuid = qemu_get_be32(f);
6172
    env->cp15.c0_cachetype = qemu_get_be32(f);
6173
    env->cp15.c1_sys = qemu_get_be32(f);
6174
    env->cp15.c1_coproc = qemu_get_be32(f);
6175
    env->cp15.c1_xscaleauxcr = qemu_get_be32(f);
6176
    env->cp15.c2_base = qemu_get_be32(f);
6177
    env->cp15.c2_data = qemu_get_be32(f);
6178
    env->cp15.c2_insn = qemu_get_be32(f);
6179
    env->cp15.c3 = qemu_get_be32(f);
6180
    env->cp15.c5_insn = qemu_get_be32(f);
6181
    env->cp15.c5_data = qemu_get_be32(f);
6182
    for (i = 0; i < 8; i++) {
6183
        env->cp15.c6_region[i] = qemu_get_be32(f);
6184
    }
6185
    env->cp15.c6_insn = qemu_get_be32(f);
6186
    env->cp15.c6_data = qemu_get_be32(f);
6187
    env->cp15.c9_insn = qemu_get_be32(f);
6188
    env->cp15.c9_data = qemu_get_be32(f);
6189
    env->cp15.c13_fcse = qemu_get_be32(f);
6190
    env->cp15.c13_context = qemu_get_be32(f);
6191
    env->cp15.c15_cpar = qemu_get_be32(f);
6192

    
6193
    env->features = qemu_get_be32(f);
6194

    
6195
    if (arm_feature(env, ARM_FEATURE_VFP)) {
6196
        for (i = 0;  i < 16; i++) {
6197
            CPU_DoubleU u;
6198
            u.l.upper = qemu_get_be32(f);
6199
            u.l.lower = qemu_get_be32(f);
6200
            env->vfp.regs[i] = u.d;
6201
        }
6202
        for (i = 0; i < 16; i++) {
6203
            env->vfp.xregs[i] = qemu_get_be32(f);
6204
        }
6205

    
6206
        /* TODO: Should use proper FPSCR access functions.  */
6207
        env->vfp.vec_len = qemu_get_be32(f);
6208
        env->vfp.vec_stride = qemu_get_be32(f);
6209
    }
6210

    
6211
    if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
6212
        for (i = 0; i < 16; i++) {
6213
            env->iwmmxt.regs[i] = qemu_get_be64(f);
6214
        }
6215
        for (i = 0; i < 16; i++) {
6216
            env->iwmmxt.cregs[i] = qemu_get_be32(f);
6217
        }
6218
    }
6219

    
6220
    return 0;
6221
}
6222

    
6223
#else
6224

    
6225
#warning No CPU save/restore functions
6226

    
6227
#endif
6228

    
6229
/***********************************************************/
6230
/* ram save/restore */
6231

    
6232
static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
6233
{
6234
    int v;
6235

    
6236
    v = qemu_get_byte(f);
6237
    switch(v) {
6238
    case 0:
6239
        if (qemu_get_buffer(f, buf, len) != len)
6240
            return -EIO;
6241
        break;
6242
    case 1:
6243
        v = qemu_get_byte(f);
6244
        memset(buf, v, len);
6245
        break;
6246
    default:
6247
        return -EINVAL;
6248
    }
6249
    return 0;
6250
}
6251

    
6252
static int ram_load_v1(QEMUFile *f, void *opaque)
6253
{
6254
    int i, ret;
6255

    
6256
    if (qemu_get_be32(f) != phys_ram_size)
6257
        return -EINVAL;
6258
    for(i = 0; i < phys_ram_size; i+= TARGET_PAGE_SIZE) {
6259
        ret = ram_get_page(f, phys_ram_base + i, TARGET_PAGE_SIZE);
6260
        if (ret)
6261
            return ret;
6262
    }
6263
    return 0;
6264
}
6265

    
6266
#define BDRV_HASH_BLOCK_SIZE 1024
6267
#define IOBUF_SIZE 4096
6268
#define RAM_CBLOCK_MAGIC 0xfabe
6269

    
6270
typedef struct RamCompressState {
6271
    z_stream zstream;
6272
    QEMUFile *f;
6273
    uint8_t buf[IOBUF_SIZE];
6274
} RamCompressState;
6275

    
6276
static int ram_compress_open(RamCompressState *s, QEMUFile *f)
6277
{
6278
    int ret;
6279
    memset(s, 0, sizeof(*s));
6280
    s->f = f;
6281
    ret = deflateInit2(&s->zstream, 1,
6282
                       Z_DEFLATED, 15, 
6283
                       9, Z_DEFAULT_STRATEGY);
6284
    if (ret != Z_OK)
6285
        return -1;
6286
    s->zstream.avail_out = IOBUF_SIZE;
6287
    s->zstream.next_out = s->buf;
6288
    return 0;
6289
}
6290

    
6291
static void ram_put_cblock(RamCompressState *s, const uint8_t *buf, int len)
6292
{
6293
    qemu_put_be16(s->f, RAM_CBLOCK_MAGIC);
6294
    qemu_put_be16(s->f, len);
6295
    qemu_put_buffer(s->f, buf, len);
6296
}
6297

    
6298
static int ram_compress_buf(RamCompressState *s, const uint8_t *buf, int len)
6299
{
6300
    int ret;
6301

    
6302
    s->zstream.avail_in = len;
6303
    s->zstream.next_in = (uint8_t *)buf;
6304
    while (s->zstream.avail_in > 0) {
6305
        ret = deflate(&s->zstream, Z_NO_FLUSH);
6306
        if (ret != Z_OK)
6307
            return -1;
6308
        if (s->zstream.avail_out == 0) {
6309
            ram_put_cblock(s, s->buf, IOBUF_SIZE);
6310
            s->zstream.avail_out = IOBUF_SIZE;
6311
            s->zstream.next_out = s->buf;
6312
        }
6313
    }
6314
    return 0;
6315
}
6316

    
6317
static void ram_compress_close(RamCompressState *s)
6318
{
6319
    int len, ret;
6320

    
6321
    /* compress last bytes */
6322
    for(;;) {
6323
        ret = deflate(&s->zstream, Z_FINISH);
6324
        if (ret == Z_OK || ret == Z_STREAM_END) {
6325
            len = IOBUF_SIZE - s->zstream.avail_out;
6326
            if (len > 0) {
6327
                ram_put_cblock(s, s->buf, len);
6328
            }
6329
            s->zstream.avail_out = IOBUF_SIZE;
6330
            s->zstream.next_out = s->buf;
6331
            if (ret == Z_STREAM_END)
6332
                break;
6333
        } else {
6334
            goto fail;
6335
        }
6336
    }
6337
fail:
6338
    deflateEnd(&s->zstream);
6339
}
6340

    
6341
typedef struct RamDecompressState {
6342
    z_stream zstream;
6343
    QEMUFile *f;
6344
    uint8_t buf[IOBUF_SIZE];
6345
} RamDecompressState;
6346

    
6347
static int ram_decompress_open(RamDecompressState *s, QEMUFile *f)
6348
{
6349
    int ret;
6350
    memset(s, 0, sizeof(*s));
6351
    s->f = f;
6352
    ret = inflateInit(&s->zstream);
6353
    if (ret != Z_OK)
6354
        return -1;
6355
    return 0;
6356
}
6357

    
6358
static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len)
6359
{
6360
    int ret, clen;
6361

    
6362
    s->zstream.avail_out = len;
6363
    s->zstream.next_out = buf;
6364
    while (s->zstream.avail_out > 0) {
6365
        if (s->zstream.avail_in == 0) {
6366
            if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC)
6367
                return -1;
6368
            clen = qemu_get_be16(s->f);
6369
            if (clen > IOBUF_SIZE)
6370
                return -1;
6371
            qemu_get_buffer(s->f, s->buf, clen);
6372
            s->zstream.avail_in = clen;
6373
            s->zstream.next_in = s->buf;
6374
        }
6375
        ret = inflate(&s->zstream, Z_PARTIAL_FLUSH);
6376
        if (ret != Z_OK && ret != Z_STREAM_END) {
6377
            return -1;
6378
        }
6379
    }
6380
    return 0;
6381
}
6382

    
6383
static void ram_decompress_close(RamDecompressState *s)
6384
{
6385
    inflateEnd(&s->zstream);
6386
}
6387

    
6388
static void ram_save(QEMUFile *f, void *opaque)
6389
{
6390
    int i;
6391
    RamCompressState s1, *s = &s1;
6392
    uint8_t buf[10];
6393
    
6394
    qemu_put_be32(f, phys_ram_size);
6395
    if (ram_compress_open(s, f) < 0)
6396
        return;
6397
    for(i = 0; i < phys_ram_size; i+= BDRV_HASH_BLOCK_SIZE) {
6398
#if 0
6399
        if (tight_savevm_enabled) {
6400
            int64_t sector_num;
6401
            int j;
6402

6403
            /* find if the memory block is available on a virtual
6404
               block device */
6405
            sector_num = -1;
6406
            for(j = 0; j < MAX_DISKS; j++) {
6407
                if (bs_table[j]) {
6408
                    sector_num = bdrv_hash_find(bs_table[j], 
6409
                                                phys_ram_base + i, BDRV_HASH_BLOCK_SIZE);
6410
                    if (sector_num >= 0)
6411
                        break;
6412
                }
6413
            }
6414
            if (j == MAX_DISKS)
6415
                goto normal_compress;
6416
            buf[0] = 1;
6417
            buf[1] = j;
6418
            cpu_to_be64wu((uint64_t *)(buf + 2), sector_num);
6419
            ram_compress_buf(s, buf, 10);
6420
        } else 
6421
#endif
6422
        {
6423
            //        normal_compress:
6424
            buf[0] = 0;
6425
            ram_compress_buf(s, buf, 1);
6426
            ram_compress_buf(s, phys_ram_base + i, BDRV_HASH_BLOCK_SIZE);
6427
        }
6428
    }
6429
    ram_compress_close(s);
6430
}
6431

    
6432
static int ram_load(QEMUFile *f, void *opaque, int version_id)
6433
{
6434
    RamDecompressState s1, *s = &s1;
6435
    uint8_t buf[10];
6436
    int i;
6437

    
6438
    if (version_id == 1)
6439
        return ram_load_v1(f, opaque);
6440
    if (version_id != 2)
6441
        return -EINVAL;
6442
    if (qemu_get_be32(f) != phys_ram_size)
6443
        return -EINVAL;
6444
    if (ram_decompress_open(s, f) < 0)
6445
        return -EINVAL;
6446
    for(i = 0; i < phys_ram_size; i+= BDRV_HASH_BLOCK_SIZE) {
6447
        if (ram_decompress_buf(s, buf, 1) < 0) {
6448
            fprintf(stderr, "Error while reading ram block header\n");
6449
            goto error;
6450
        }
6451
        if (buf[0] == 0) {
6452
            if (ram_decompress_buf(s, phys_ram_base + i, BDRV_HASH_BLOCK_SIZE) < 0) {
6453
                fprintf(stderr, "Error while reading ram block address=0x%08x", i);
6454
                goto error;
6455
            }
6456
        } else 
6457
#if 0
6458
        if (buf[0] == 1) {
6459
            int bs_index;
6460
            int64_t sector_num;
6461

6462
            ram_decompress_buf(s, buf + 1, 9);
6463
            bs_index = buf[1];
6464
            sector_num = be64_to_cpupu((const uint64_t *)(buf + 2));
6465
            if (bs_index >= MAX_DISKS || bs_table[bs_index] == NULL) {
6466
                fprintf(stderr, "Invalid block device index %d\n", bs_index);
6467
                goto error;
6468
            }
6469
            if (bdrv_read(bs_table[bs_index], sector_num, phys_ram_base + i, 
6470
                          BDRV_HASH_BLOCK_SIZE / 512) < 0) {
6471
                fprintf(stderr, "Error while reading sector %d:%" PRId64 "\n", 
6472
                        bs_index, sector_num);
6473
                goto error;
6474
            }
6475
        } else 
6476
#endif
6477
        {
6478
        error:
6479
            printf("Error block header\n");
6480
            return -EINVAL;
6481
        }
6482
    }
6483
    ram_decompress_close(s);
6484
    return 0;
6485
}
6486

    
6487
/***********************************************************/
6488
/* bottom halves (can be seen as timers which expire ASAP) */
6489

    
6490
struct QEMUBH {
6491
    QEMUBHFunc *cb;
6492
    void *opaque;
6493
    int scheduled;
6494
    QEMUBH *next;
6495
};
6496

    
6497
static QEMUBH *first_bh = NULL;
6498

    
6499
QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
6500
{
6501
    QEMUBH *bh;
6502
    bh = qemu_mallocz(sizeof(QEMUBH));
6503
    if (!bh)
6504
        return NULL;
6505
    bh->cb = cb;
6506
    bh->opaque = opaque;
6507
    return bh;
6508
}
6509

    
6510
int qemu_bh_poll(void)
6511
{
6512
    QEMUBH *bh, **pbh;
6513
    int ret;
6514

    
6515
    ret = 0;
6516
    for(;;) {
6517
        pbh = &first_bh;
6518
        bh = *pbh;
6519
        if (!bh)
6520
            break;
6521
        ret = 1;
6522
        *pbh = bh->next;
6523
        bh->scheduled = 0;
6524
        bh->cb(bh->opaque);
6525
    }
6526
    return ret;
6527
}
6528

    
6529
void qemu_bh_schedule(QEMUBH *bh)
6530
{
6531
    CPUState *env = cpu_single_env;
6532
    if (bh->scheduled)
6533
        return;
6534
    bh->scheduled = 1;
6535
    bh->next = first_bh;
6536
    first_bh = bh;
6537

    
6538
    /* stop the currently executing CPU to execute the BH ASAP */
6539
    if (env) {
6540
        cpu_interrupt(env, CPU_INTERRUPT_EXIT);
6541
    }
6542
}
6543

    
6544
void qemu_bh_cancel(QEMUBH *bh)
6545
{
6546
    QEMUBH **pbh;
6547
    if (bh->scheduled) {
6548
        pbh = &first_bh;
6549
        while (*pbh != bh)
6550
            pbh = &(*pbh)->next;
6551
        *pbh = bh->next;
6552
        bh->scheduled = 0;
6553
    }
6554
}
6555

    
6556
void qemu_bh_delete(QEMUBH *bh)
6557
{
6558
    qemu_bh_cancel(bh);
6559
    qemu_free(bh);
6560
}
6561

    
6562
/***********************************************************/
6563
/* machine registration */
6564

    
6565
QEMUMachine *first_machine = NULL;
6566

    
6567
int qemu_register_machine(QEMUMachine *m)
6568
{
6569
    QEMUMachine **pm;
6570
    pm = &first_machine;
6571
    while (*pm != NULL)
6572
        pm = &(*pm)->next;
6573
    m->next = NULL;
6574
    *pm = m;
6575
    return 0;
6576
}
6577

    
6578
QEMUMachine *find_machine(const char *name)
6579
{
6580
    QEMUMachine *m;
6581

    
6582
    for(m = first_machine; m != NULL; m = m->next) {
6583
        if (!strcmp(m->name, name))
6584
            return m;
6585
    }
6586
    return NULL;
6587
}
6588

    
6589
/***********************************************************/
6590
/* main execution loop */
6591

    
6592
void gui_update(void *opaque)
6593
{
6594
    DisplayState *ds = opaque;
6595
    ds->dpy_refresh(ds);
6596
    qemu_mod_timer(ds->gui_timer, GUI_REFRESH_INTERVAL + qemu_get_clock(rt_clock));
6597
}
6598

    
6599
struct vm_change_state_entry {
6600
    VMChangeStateHandler *cb;
6601
    void *opaque;
6602
    LIST_ENTRY (vm_change_state_entry) entries;
6603
};
6604

    
6605
static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
6606

    
6607
VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
6608
                                                     void *opaque)
6609
{
6610
    VMChangeStateEntry *e;
6611

    
6612
    e = qemu_mallocz(sizeof (*e));
6613
    if (!e)
6614
        return NULL;
6615

    
6616
    e->cb = cb;
6617
    e->opaque = opaque;
6618
    LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
6619
    return e;
6620
}
6621

    
6622
void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
6623
{
6624
    LIST_REMOVE (e, entries);
6625
    qemu_free (e);
6626
}
6627

    
6628
static void vm_state_notify(int running)
6629
{
6630
    VMChangeStateEntry *e;
6631

    
6632
    for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
6633
        e->cb(e->opaque, running);
6634
    }
6635
}
6636

    
6637
/* XXX: support several handlers */
6638
static VMStopHandler *vm_stop_cb;
6639
static void *vm_stop_opaque;
6640

    
6641
int qemu_add_vm_stop_handler(VMStopHandler *cb, void *opaque)
6642
{
6643
    vm_stop_cb = cb;
6644
    vm_stop_opaque = opaque;
6645
    return 0;
6646
}
6647

    
6648
void qemu_del_vm_stop_handler(VMStopHandler *cb, void *opaque)
6649
{
6650
    vm_stop_cb = NULL;
6651
}
6652

    
6653
void vm_start(void)
6654
{
6655
    if (!vm_running) {
6656
        cpu_enable_ticks();
6657
        vm_running = 1;
6658
        vm_state_notify(1);
6659
        qemu_rearm_alarm_timer(alarm_timer);
6660
    }
6661
}
6662

    
6663
void vm_stop(int reason) 
6664
{
6665
    if (vm_running) {
6666
        cpu_disable_ticks();
6667
        vm_running = 0;
6668
        if (reason != 0) {
6669
            if (vm_stop_cb) {
6670
                vm_stop_cb(vm_stop_opaque, reason);
6671
            }
6672
        }
6673
        vm_state_notify(0);
6674
    }
6675
}
6676

    
6677
/* reset/shutdown handler */
6678

    
6679
typedef struct QEMUResetEntry {
6680
    QEMUResetHandler *func;
6681
    void *opaque;
6682
    struct QEMUResetEntry *next;
6683
} QEMUResetEntry;
6684

    
6685
static QEMUResetEntry *first_reset_entry;
6686
static int reset_requested;
6687
static int shutdown_requested;
6688
static int powerdown_requested;
6689

    
6690
void qemu_register_reset(QEMUResetHandler *func, void *opaque)
6691
{
6692
    QEMUResetEntry **pre, *re;
6693

    
6694
    pre = &first_reset_entry;
6695
    while (*pre != NULL)
6696
        pre = &(*pre)->next;
6697
    re = qemu_mallocz(sizeof(QEMUResetEntry));
6698
    re->func = func;
6699
    re->opaque = opaque;
6700
    re->next = NULL;
6701
    *pre = re;
6702
}
6703

    
6704
static void qemu_system_reset(void)
6705
{
6706
    QEMUResetEntry *re;
6707

    
6708
    /* reset all devices */
6709
    for(re = first_reset_entry; re != NULL; re = re->next) {
6710
        re->func(re->opaque);
6711
    }
6712
}
6713

    
6714
void qemu_system_reset_request(void)
6715
{
6716
    if (no_reboot) {
6717
        shutdown_requested = 1;
6718
    } else {
6719
        reset_requested = 1;
6720
    }
6721
    if (cpu_single_env)
6722
        cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
6723
}
6724

    
6725
void qemu_system_shutdown_request(void)
6726
{
6727
    shutdown_requested = 1;
6728
    if (cpu_single_env)
6729
        cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
6730
}
6731

    
6732
void qemu_system_powerdown_request(void)
6733
{
6734
    powerdown_requested = 1;
6735
    if (cpu_single_env)
6736
        cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
6737
}
6738

    
6739
void main_loop_wait(int timeout)
6740
{
6741
    IOHandlerRecord *ioh;
6742
    fd_set rfds, wfds, xfds;
6743
    int ret, nfds;
6744
#ifdef _WIN32
6745
    int ret2, i;
6746
#endif
6747
    struct timeval tv;
6748
    PollingEntry *pe;
6749

    
6750

    
6751
    /* XXX: need to suppress polling by better using win32 events */
6752
    ret = 0;
6753
    for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
6754
        ret |= pe->func(pe->opaque);
6755
    }
6756
#ifdef _WIN32
6757
    if (ret == 0) {
6758
        int err;
6759
        WaitObjects *w = &wait_objects;
6760
        
6761
        ret = WaitForMultipleObjects(w->num, w->events, FALSE, timeout);
6762
        if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
6763
            if (w->func[ret - WAIT_OBJECT_0])
6764
                w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
6765
                
6766
            /* Check for additional signaled events */ 
6767
            for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
6768
                                
6769
                /* Check if event is signaled */
6770
                ret2 = WaitForSingleObject(w->events[i], 0);
6771
                if(ret2 == WAIT_OBJECT_0) {
6772
                    if (w->func[i])
6773
                        w->func[i](w->opaque[i]);
6774
                } else if (ret2 == WAIT_TIMEOUT) {
6775
                } else {
6776
                    err = GetLastError();
6777
                    fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
6778
                }                
6779
            }                 
6780
        } else if (ret == WAIT_TIMEOUT) {
6781
        } else {
6782
            err = GetLastError();
6783
            fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
6784
        }
6785
    }
6786
#endif
6787
    /* poll any events */
6788
    /* XXX: separate device handlers from system ones */
6789
    nfds = -1;
6790
    FD_ZERO(&rfds);
6791
    FD_ZERO(&wfds);
6792
    FD_ZERO(&xfds);
6793
    for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
6794
        if (ioh->deleted)
6795
            continue;
6796
        if (ioh->fd_read &&
6797
            (!ioh->fd_read_poll ||
6798
             ioh->fd_read_poll(ioh->opaque) != 0)) {
6799
            FD_SET(ioh->fd, &rfds);
6800
            if (ioh->fd > nfds)
6801
                nfds = ioh->fd;
6802
        }
6803
        if (ioh->fd_write) {
6804
            FD_SET(ioh->fd, &wfds);
6805
            if (ioh->fd > nfds)
6806
                nfds = ioh->fd;
6807
        }
6808
    }
6809
    
6810
    tv.tv_sec = 0;
6811
#ifdef _WIN32
6812
    tv.tv_usec = 0;
6813
#else
6814
    tv.tv_usec = timeout * 1000;
6815
#endif
6816
#if defined(CONFIG_SLIRP)
6817
    if (slirp_inited) {
6818
        slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
6819
    }
6820
#endif
6821
    ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
6822
    if (ret > 0) {
6823
        IOHandlerRecord **pioh;
6824

    
6825
        for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
6826
            if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
6827
                ioh->fd_read(ioh->opaque);
6828
            }
6829
            if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
6830
                ioh->fd_write(ioh->opaque);
6831
            }
6832
        }
6833

    
6834
        /* remove deleted IO handlers */
6835
        pioh = &first_io_handler;
6836
        while (*pioh) {
6837
            ioh = *pioh;
6838
            if (ioh->deleted) {
6839
                *pioh = ioh->next;
6840
                qemu_free(ioh);
6841
            } else 
6842
                pioh = &ioh->next;
6843
        }
6844
    }
6845
#if defined(CONFIG_SLIRP)
6846
    if (slirp_inited) {
6847
        if (ret < 0) {
6848
            FD_ZERO(&rfds);
6849
            FD_ZERO(&wfds);
6850
            FD_ZERO(&xfds);
6851
        }
6852
        slirp_select_poll(&rfds, &wfds, &xfds);
6853
    }
6854
#endif
6855
    qemu_aio_poll();
6856

    
6857
    if (vm_running) {
6858
        qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL], 
6859
                        qemu_get_clock(vm_clock));
6860
        /* run dma transfers, if any */
6861
        DMA_run();
6862
    }
6863

    
6864
    /* real time timers */
6865
    qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME], 
6866
                    qemu_get_clock(rt_clock));
6867

    
6868
    /* Check bottom-halves last in case any of the earlier events triggered
6869
       them.  */
6870
    qemu_bh_poll();
6871
    
6872
}
6873

    
6874
static CPUState *cur_cpu;
6875

    
6876
int main_loop(void)
6877
{
6878
    int ret, timeout;
6879
#ifdef CONFIG_PROFILER
6880
    int64_t ti;
6881
#endif
6882
    CPUState *env;
6883

    
6884
    cur_cpu = first_cpu;
6885
    for(;;) {
6886
        if (vm_running) {
6887

    
6888
            env = cur_cpu;
6889
            for(;;) {
6890
                /* get next cpu */
6891
                env = env->next_cpu;
6892
                if (!env)
6893
                    env = first_cpu;
6894
#ifdef CONFIG_PROFILER
6895
                ti = profile_getclock();
6896
#endif
6897
                ret = cpu_exec(env);
6898
#ifdef CONFIG_PROFILER
6899
                qemu_time += profile_getclock() - ti;
6900
#endif
6901
                if (ret == EXCP_HLT) {
6902
                    /* Give the next CPU a chance to run.  */
6903
                    cur_cpu = env;
6904
                    continue;
6905
                }
6906
                if (ret != EXCP_HALTED)
6907
                    break;
6908
                /* all CPUs are halted ? */
6909
                if (env == cur_cpu)
6910
                    break;
6911
            }
6912
            cur_cpu = env;
6913

    
6914
            if (shutdown_requested) {
6915
                ret = EXCP_INTERRUPT;
6916
                break;
6917
            }
6918
            if (reset_requested) {
6919
                reset_requested = 0;
6920
                qemu_system_reset();
6921
                ret = EXCP_INTERRUPT;
6922
            }
6923
            if (powerdown_requested) {
6924
                powerdown_requested = 0;
6925
                qemu_system_powerdown();
6926
                ret = EXCP_INTERRUPT;
6927
            }
6928
            if (ret == EXCP_DEBUG) {
6929
                vm_stop(EXCP_DEBUG);
6930
            }
6931
            /* If all cpus are halted then wait until the next IRQ */
6932
            /* XXX: use timeout computed from timers */
6933
            if (ret == EXCP_HALTED)
6934
                timeout = 10;
6935
            else
6936
                timeout = 0;
6937
        } else {
6938
            timeout = 10;
6939
        }
6940
#ifdef CONFIG_PROFILER
6941
        ti = profile_getclock();
6942
#endif
6943
        main_loop_wait(timeout);
6944
#ifdef CONFIG_PROFILER
6945
        dev_time += profile_getclock() - ti;
6946
#endif
6947
    }
6948
    cpu_disable_ticks();
6949
    return ret;
6950
}
6951

    
6952
static void help(int exitcode)
6953
{
6954
    printf("QEMU PC emulator version " QEMU_VERSION ", Copyright (c) 2003-2007 Fabrice Bellard\n"
6955
           "usage: %s [options] [disk_image]\n"
6956
           "\n"
6957
           "'disk_image' is a raw hard image image for IDE hard disk 0\n"
6958
           "\n"
6959
           "Standard options:\n"
6960
           "-M machine      select emulated machine (-M ? for list)\n"
6961
           "-cpu cpu        select CPU (-cpu ? for list)\n"
6962
           "-fda/-fdb file  use 'file' as floppy disk 0/1 image\n"
6963
           "-hda/-hdb file  use 'file' as IDE hard disk 0/1 image\n"
6964
           "-hdc/-hdd file  use 'file' as IDE hard disk 2/3 image\n"
6965
           "-cdrom file     use 'file' as IDE cdrom image (cdrom is ide1 master)\n"
6966
           "-mtdblock file  use 'file' as on-board Flash memory image\n"
6967
           "-sd file        use 'file' as SecureDigital card image\n"
6968
           "-pflash file    use 'file' as a parallel flash image\n"
6969
           "-boot [a|c|d|n] boot on floppy (a), hard disk (c), CD-ROM (d), or network (n)\n"
6970
           "-snapshot       write to temporary files instead of disk image files\n"
6971
#ifdef CONFIG_SDL
6972
           "-no-frame       open SDL window without a frame and window decorations\n"
6973
           "-alt-grab       use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt)\n"
6974
           "-no-quit        disable SDL window close capability\n"
6975
#endif
6976
#ifdef TARGET_I386
6977
           "-no-fd-bootchk  disable boot signature checking for floppy disks\n"
6978
#endif
6979
           "-m megs         set virtual RAM size to megs MB [default=%d]\n"
6980
           "-smp n          set the number of CPUs to 'n' [default=1]\n"
6981
           "-nographic      disable graphical output and redirect serial I/Os to console\n"
6982
           "-portrait       rotate graphical output 90 deg left (only PXA LCD)\n"
6983
#ifndef _WIN32
6984
           "-k language     use keyboard layout (for example \"fr\" for French)\n"
6985
#endif
6986
#ifdef HAS_AUDIO
6987
           "-audio-help     print list of audio drivers and their options\n"
6988
           "-soundhw c1,... enable audio support\n"
6989
           "                and only specified sound cards (comma separated list)\n"
6990
           "                use -soundhw ? to get the list of supported cards\n"
6991
           "                use -soundhw all to enable all of them\n"
6992
#endif
6993
           "-localtime      set the real time clock to local time [default=utc]\n"
6994
           "-full-screen    start in full screen\n"
6995
#ifdef TARGET_I386
6996
           "-win2k-hack     use it when installing Windows 2000 to avoid a disk full bug\n"
6997
#endif
6998
           "-usb            enable the USB driver (will be the default soon)\n"
6999
           "-usbdevice name add the host or guest USB device 'name'\n"
7000
#if defined(TARGET_PPC) || defined(TARGET_SPARC)
7001
           "-g WxH[xDEPTH]  Set the initial graphical resolution and depth\n"
7002
#endif
7003
           "-name string    set the name of the guest\n"
7004
           "\n"
7005
           "Network options:\n"
7006
           "-net nic[,vlan=n][,macaddr=addr][,model=type]\n"
7007
           "                create a new Network Interface Card and connect it to VLAN 'n'\n"
7008
#ifdef CONFIG_SLIRP
7009
           "-net user[,vlan=n][,hostname=host]\n"
7010
           "                connect the user mode network stack to VLAN 'n' and send\n"
7011
           "                hostname 'host' to DHCP clients\n"
7012
#endif
7013
#ifdef _WIN32
7014
           "-net tap[,vlan=n],ifname=name\n"
7015
           "                connect the host TAP network interface to VLAN 'n'\n"
7016
#else
7017
           "-net tap[,vlan=n][,fd=h][,ifname=name][,script=file]\n"
7018
           "                connect the host TAP network interface to VLAN 'n' and use\n"
7019
           "                the network script 'file' (default=%s);\n"
7020
           "                use 'script=no' to disable script execution;\n"
7021
           "                use 'fd=h' to connect to an already opened TAP interface\n"
7022
#endif
7023
           "-net socket[,vlan=n][,fd=h][,listen=[host]:port][,connect=host:port]\n"
7024
           "                connect the vlan 'n' to another VLAN using a socket connection\n"
7025
           "-net socket[,vlan=n][,fd=h][,mcast=maddr:port]\n"
7026
           "                connect the vlan 'n' to multicast maddr and port\n"
7027
           "-net none       use it alone to have zero network devices; if no -net option\n"
7028
           "                is provided, the default is '-net nic -net user'\n"
7029
           "\n"
7030
#ifdef CONFIG_SLIRP
7031
           "-tftp dir       allow tftp access to files in dir [-net user]\n"
7032
           "-bootp file     advertise file in BOOTP replies\n"
7033
#ifndef _WIN32
7034
           "-smb dir        allow SMB access to files in 'dir' [-net user]\n"
7035
#endif
7036
           "-redir [tcp|udp]:host-port:[guest-host]:guest-port\n"
7037
           "                redirect TCP or UDP connections from host to guest [-net user]\n"
7038
#endif
7039
           "\n"
7040
           "Linux boot specific:\n"
7041
           "-kernel bzImage use 'bzImage' as kernel image\n"
7042
           "-append cmdline use 'cmdline' as kernel command line\n"
7043
           "-initrd file    use 'file' as initial ram disk\n"
7044
           "\n"
7045
           "Debug/Expert options:\n"
7046
           "-monitor dev    redirect the monitor to char device 'dev'\n"
7047
           "-serial dev     redirect the serial port to char device 'dev'\n"
7048
           "-parallel dev   redirect the parallel port to char device 'dev'\n"
7049
           "-pidfile file   Write PID to 'file'\n"
7050
           "-S              freeze CPU at startup (use 'c' to start execution)\n"
7051
           "-s              wait gdb connection to port\n"
7052
           "-p port         set gdb connection port [default=%s]\n"
7053
           "-d item1,...    output log to %s (use -d ? for a list of log items)\n"
7054
           "-hdachs c,h,s[,t]  force hard disk 0 physical geometry and the optional BIOS\n"
7055
           "                translation (t=none or lba) (usually qemu can guess them)\n"
7056
           "-L path         set the directory for the BIOS, VGA BIOS and keymaps\n"
7057
#ifdef USE_KQEMU
7058
           "-kernel-kqemu   enable KQEMU full virtualization (default is user mode only)\n"
7059
           "-no-kqemu       disable KQEMU kernel module usage\n"
7060
#endif
7061
#ifdef USE_CODE_COPY
7062
           "-no-code-copy   disable code copy acceleration\n"
7063
#endif
7064
#ifdef TARGET_I386
7065
           "-std-vga        simulate a standard VGA card with VESA Bochs Extensions\n"
7066
           "                (default is CL-GD5446 PCI VGA)\n"
7067
           "-no-acpi        disable ACPI\n"
7068
#endif
7069
           "-no-reboot      exit instead of rebooting\n"
7070
           "-loadvm file    start right away with a saved state (loadvm in monitor)\n"
7071
           "-vnc display    start a VNC server on display\n"
7072
#ifndef _WIN32
7073
           "-daemonize      daemonize QEMU after initializing\n"
7074
#endif
7075
           "-option-rom rom load a file, rom, into the option ROM space\n"
7076
#ifdef TARGET_SPARC
7077
           "-prom-env variable=value  set OpenBIOS nvram variables\n"
7078
#endif
7079
           "-clock          force the use of the given methods for timer alarm.\n"
7080
           "                To see what timers are available use -clock help\n"
7081
           "\n"
7082
           "During emulation, the following keys are useful:\n"
7083
           "ctrl-alt-f      toggle full screen\n"
7084
           "ctrl-alt-n      switch to virtual console 'n'\n"
7085
           "ctrl-alt        toggle mouse and keyboard grab\n"
7086
           "\n"
7087
           "When using -nographic, press 'ctrl-a h' to get some help.\n"
7088
           ,
7089
           "qemu",
7090
           DEFAULT_RAM_SIZE,
7091
#ifndef _WIN32
7092
           DEFAULT_NETWORK_SCRIPT,
7093
#endif
7094
           DEFAULT_GDBSTUB_PORT,
7095
           "/tmp/qemu.log");
7096
    exit(exitcode);
7097
}
7098

    
7099
#define HAS_ARG 0x0001
7100

    
7101
enum {
7102
    QEMU_OPTION_h,
7103

    
7104
    QEMU_OPTION_M,
7105
    QEMU_OPTION_cpu,
7106
    QEMU_OPTION_fda,
7107
    QEMU_OPTION_fdb,
7108
    QEMU_OPTION_hda,
7109
    QEMU_OPTION_hdb,
7110
    QEMU_OPTION_hdc,
7111
    QEMU_OPTION_hdd,
7112
    QEMU_OPTION_cdrom,
7113
    QEMU_OPTION_mtdblock,
7114
    QEMU_OPTION_sd,
7115
    QEMU_OPTION_pflash,
7116
    QEMU_OPTION_boot,
7117
    QEMU_OPTION_snapshot,
7118
#ifdef TARGET_I386
7119
    QEMU_OPTION_no_fd_bootchk,
7120
#endif
7121
    QEMU_OPTION_m,
7122
    QEMU_OPTION_nographic,
7123
    QEMU_OPTION_portrait,
7124
#ifdef HAS_AUDIO
7125
    QEMU_OPTION_audio_help,
7126
    QEMU_OPTION_soundhw,
7127
#endif
7128

    
7129
    QEMU_OPTION_net,
7130
    QEMU_OPTION_tftp,
7131
    QEMU_OPTION_bootp,
7132
    QEMU_OPTION_smb,
7133
    QEMU_OPTION_redir,
7134

    
7135
    QEMU_OPTION_kernel,
7136
    QEMU_OPTION_append,
7137
    QEMU_OPTION_initrd,
7138

    
7139
    QEMU_OPTION_S,
7140
    QEMU_OPTION_s,
7141
    QEMU_OPTION_p,
7142
    QEMU_OPTION_d,
7143
    QEMU_OPTION_hdachs,
7144
    QEMU_OPTION_L,
7145
    QEMU_OPTION_no_code_copy,
7146
    QEMU_OPTION_k,
7147
    QEMU_OPTION_localtime,
7148
    QEMU_OPTION_cirrusvga,
7149
    QEMU_OPTION_vmsvga,
7150
    QEMU_OPTION_g,
7151
    QEMU_OPTION_std_vga,
7152
    QEMU_OPTION_echr,
7153
    QEMU_OPTION_monitor,
7154
    QEMU_OPTION_serial,
7155
    QEMU_OPTION_parallel,
7156
    QEMU_OPTION_loadvm,
7157
    QEMU_OPTION_full_screen,
7158
    QEMU_OPTION_no_frame,
7159
    QEMU_OPTION_alt_grab,
7160
    QEMU_OPTION_no_quit,
7161
    QEMU_OPTION_pidfile,
7162
    QEMU_OPTION_no_kqemu,
7163
    QEMU_OPTION_kernel_kqemu,
7164
    QEMU_OPTION_win2k_hack,
7165
    QEMU_OPTION_usb,
7166
    QEMU_OPTION_usbdevice,
7167
    QEMU_OPTION_smp,
7168
    QEMU_OPTION_vnc,
7169
    QEMU_OPTION_no_acpi,
7170
    QEMU_OPTION_no_reboot,
7171
    QEMU_OPTION_show_cursor,
7172
    QEMU_OPTION_daemonize,
7173
    QEMU_OPTION_option_rom,
7174
    QEMU_OPTION_semihosting,
7175
    QEMU_OPTION_name,
7176
    QEMU_OPTION_prom_env,
7177
    QEMU_OPTION_old_param,
7178
    QEMU_OPTION_clock,
7179
};
7180

    
7181
typedef struct QEMUOption {
7182
    const char *name;
7183
    int flags;
7184
    int index;
7185
} QEMUOption;
7186

    
7187
const QEMUOption qemu_options[] = {
7188
    { "h", 0, QEMU_OPTION_h },
7189
    { "help", 0, QEMU_OPTION_h },
7190

    
7191
    { "M", HAS_ARG, QEMU_OPTION_M },
7192
    { "cpu", HAS_ARG, QEMU_OPTION_cpu },
7193
    { "fda", HAS_ARG, QEMU_OPTION_fda },
7194
    { "fdb", HAS_ARG, QEMU_OPTION_fdb },
7195
    { "hda", HAS_ARG, QEMU_OPTION_hda },
7196
    { "hdb", HAS_ARG, QEMU_OPTION_hdb },
7197
    { "hdc", HAS_ARG, QEMU_OPTION_hdc },
7198
    { "hdd", HAS_ARG, QEMU_OPTION_hdd },
7199
    { "cdrom", HAS_ARG, QEMU_OPTION_cdrom },
7200
    { "mtdblock", HAS_ARG, QEMU_OPTION_mtdblock },
7201
    { "sd", HAS_ARG, QEMU_OPTION_sd },
7202
    { "pflash", HAS_ARG, QEMU_OPTION_pflash },
7203
    { "boot", HAS_ARG, QEMU_OPTION_boot },
7204
    { "snapshot", 0, QEMU_OPTION_snapshot },
7205
#ifdef TARGET_I386
7206
    { "no-fd-bootchk", 0, QEMU_OPTION_no_fd_bootchk },
7207
#endif
7208
    { "m", HAS_ARG, QEMU_OPTION_m },
7209
    { "nographic", 0, QEMU_OPTION_nographic },
7210
    { "portrait", 0, QEMU_OPTION_portrait },
7211
    { "k", HAS_ARG, QEMU_OPTION_k },
7212
#ifdef HAS_AUDIO
7213
    { "audio-help", 0, QEMU_OPTION_audio_help },
7214
    { "soundhw", HAS_ARG, QEMU_OPTION_soundhw },
7215
#endif
7216

    
7217
    { "net", HAS_ARG, QEMU_OPTION_net},
7218
#ifdef CONFIG_SLIRP
7219
    { "tftp", HAS_ARG, QEMU_OPTION_tftp },
7220
    { "bootp", HAS_ARG, QEMU_OPTION_bootp },
7221
#ifndef _WIN32
7222
    { "smb", HAS_ARG, QEMU_OPTION_smb },
7223
#endif
7224
    { "redir", HAS_ARG, QEMU_OPTION_redir },
7225
#endif
7226

    
7227
    { "kernel", HAS_ARG, QEMU_OPTION_kernel },
7228
    { "append", HAS_ARG, QEMU_OPTION_append },
7229
    { "initrd", HAS_ARG, QEMU_OPTION_initrd },
7230

    
7231
    { "S", 0, QEMU_OPTION_S },
7232
    { "s", 0, QEMU_OPTION_s },
7233
    { "p", HAS_ARG, QEMU_OPTION_p },
7234
    { "d", HAS_ARG, QEMU_OPTION_d },
7235
    { "hdachs", HAS_ARG, QEMU_OPTION_hdachs },
7236
    { "L", HAS_ARG, QEMU_OPTION_L },
7237
    { "no-code-copy", 0, QEMU_OPTION_no_code_copy },
7238
#ifdef USE_KQEMU
7239
    { "no-kqemu", 0, QEMU_OPTION_no_kqemu },
7240
    { "kernel-kqemu", 0, QEMU_OPTION_kernel_kqemu },
7241
#endif
7242
#if defined(TARGET_PPC) || defined(TARGET_SPARC)
7243
    { "g", 1, QEMU_OPTION_g },
7244
#endif
7245
    { "localtime", 0, QEMU_OPTION_localtime },
7246
    { "std-vga", 0, QEMU_OPTION_std_vga },
7247
    { "echr", HAS_ARG, QEMU_OPTION_echr },
7248
    { "monitor", HAS_ARG, QEMU_OPTION_monitor },
7249
    { "serial", HAS_ARG, QEMU_OPTION_serial },
7250
    { "parallel", HAS_ARG, QEMU_OPTION_parallel },
7251
    { "loadvm", HAS_ARG, QEMU_OPTION_loadvm },
7252
    { "full-screen", 0, QEMU_OPTION_full_screen },
7253
#ifdef CONFIG_SDL
7254
    { "no-frame", 0, QEMU_OPTION_no_frame },
7255
    { "alt-grab", 0, QEMU_OPTION_alt_grab },
7256
    { "no-quit", 0, QEMU_OPTION_no_quit },
7257
#endif
7258
    { "pidfile", HAS_ARG, QEMU_OPTION_pidfile },
7259
    { "win2k-hack", 0, QEMU_OPTION_win2k_hack },
7260
    { "usbdevice", HAS_ARG, QEMU_OPTION_usbdevice },
7261
    { "smp", HAS_ARG, QEMU_OPTION_smp },
7262
    { "vnc", HAS_ARG, QEMU_OPTION_vnc },
7263

    
7264
    /* temporary options */
7265
    { "usb", 0, QEMU_OPTION_usb },
7266
    { "cirrusvga", 0, QEMU_OPTION_cirrusvga },
7267
    { "vmwarevga", 0, QEMU_OPTION_vmsvga },
7268
    { "no-acpi", 0, QEMU_OPTION_no_acpi },
7269
    { "no-reboot", 0, QEMU_OPTION_no_reboot },
7270
    { "show-cursor", 0, QEMU_OPTION_show_cursor },
7271
    { "daemonize", 0, QEMU_OPTION_daemonize },
7272
    { "option-rom", HAS_ARG, QEMU_OPTION_option_rom },
7273
#if defined(TARGET_ARM) || defined(TARGET_M68K)
7274
    { "semihosting", 0, QEMU_OPTION_semihosting },
7275
#endif
7276
    { "name", HAS_ARG, QEMU_OPTION_name },
7277
#if defined(TARGET_SPARC)
7278
    { "prom-env", HAS_ARG, QEMU_OPTION_prom_env },
7279
#endif
7280
#if defined(TARGET_ARM)
7281
    { "old-param", 0, QEMU_OPTION_old_param },
7282
#endif
7283
    { "clock", HAS_ARG, QEMU_OPTION_clock },
7284
    { NULL },
7285
};
7286

    
7287
#if defined (TARGET_I386) && defined(USE_CODE_COPY)
7288

    
7289
/* this stack is only used during signal handling */
7290
#define SIGNAL_STACK_SIZE 32768
7291

    
7292
static uint8_t *signal_stack;
7293

    
7294
#endif
7295

    
7296
/* password input */
7297

    
7298
int qemu_key_check(BlockDriverState *bs, const char *name)
7299
{
7300
    char password[256];
7301
    int i;
7302

    
7303
    if (!bdrv_is_encrypted(bs))
7304
        return 0;
7305

    
7306
    term_printf("%s is encrypted.\n", name);
7307
    for(i = 0; i < 3; i++) {
7308
        monitor_readline("Password: ", 1, password, sizeof(password));
7309
        if (bdrv_set_key(bs, password) == 0)
7310
            return 0;
7311
        term_printf("invalid password\n");
7312
    }
7313
    return -EPERM;
7314
}
7315

    
7316
static BlockDriverState *get_bdrv(int index)
7317
{
7318
    BlockDriverState *bs;
7319

    
7320
    if (index < 4) {
7321
        bs = bs_table[index];
7322
    } else if (index < 6) {
7323
        bs = fd_table[index - 4];
7324
    } else {
7325
        bs = NULL;
7326
    }
7327
    return bs;
7328
}
7329

    
7330
static void read_passwords(void)
7331
{
7332
    BlockDriverState *bs;
7333
    int i;
7334

    
7335
    for(i = 0; i < 6; i++) {
7336
        bs = get_bdrv(i);
7337
        if (bs)
7338
            qemu_key_check(bs, bdrv_get_device_name(bs));
7339
    }
7340
}
7341

    
7342
/* XXX: currently we cannot use simultaneously different CPUs */
7343
void register_machines(void)
7344
{
7345
#if defined(TARGET_I386)
7346
    qemu_register_machine(&pc_machine);
7347
    qemu_register_machine(&isapc_machine);
7348
#elif defined(TARGET_PPC)
7349
    qemu_register_machine(&heathrow_machine);
7350
    qemu_register_machine(&core99_machine);
7351
    qemu_register_machine(&prep_machine);
7352
    qemu_register_machine(&ref405ep_machine);
7353
    qemu_register_machine(&taihu_machine);
7354
#elif defined(TARGET_MIPS)
7355
    qemu_register_machine(&mips_machine);
7356
    qemu_register_machine(&mips_malta_machine);
7357
    qemu_register_machine(&mips_pica61_machine);
7358
#elif defined(TARGET_SPARC)
7359
#ifdef TARGET_SPARC64
7360
    qemu_register_machine(&sun4u_machine);
7361
#else
7362
    qemu_register_machine(&ss5_machine);
7363
    qemu_register_machine(&ss10_machine);
7364
#endif
7365
#elif defined(TARGET_ARM)
7366
    qemu_register_machine(&integratorcp_machine);
7367
    qemu_register_machine(&versatilepb_machine);
7368
    qemu_register_machine(&versatileab_machine);
7369
    qemu_register_machine(&realview_machine);
7370
    qemu_register_machine(&akitapda_machine);
7371
    qemu_register_machine(&spitzpda_machine);
7372
    qemu_register_machine(&borzoipda_machine);
7373
    qemu_register_machine(&terrierpda_machine);
7374
    qemu_register_machine(&palmte_machine);
7375
#elif defined(TARGET_SH4)
7376
    qemu_register_machine(&shix_machine);
7377
#elif defined(TARGET_ALPHA)
7378
    /* XXX: TODO */
7379
#elif defined(TARGET_M68K)
7380
    qemu_register_machine(&mcf5208evb_machine);
7381
    qemu_register_machine(&an5206_machine);
7382
#else
7383
#error unsupported CPU
7384
#endif
7385
}
7386

    
7387
#ifdef HAS_AUDIO
7388
struct soundhw soundhw[] = {
7389
#ifdef HAS_AUDIO_CHOICE
7390
#ifdef TARGET_I386
7391
    {
7392
        "pcspk",
7393
        "PC speaker",
7394
        0,
7395
        1,
7396
        { .init_isa = pcspk_audio_init }
7397
    },
7398
#endif
7399
    {
7400
        "sb16",
7401
        "Creative Sound Blaster 16",
7402
        0,
7403
        1,
7404
        { .init_isa = SB16_init }
7405
    },
7406

    
7407
#ifdef CONFIG_ADLIB
7408
    {
7409
        "adlib",
7410
#ifdef HAS_YMF262
7411
        "Yamaha YMF262 (OPL3)",
7412
#else
7413
        "Yamaha YM3812 (OPL2)",
7414
#endif
7415
        0,
7416
        1,
7417
        { .init_isa = Adlib_init }
7418
    },
7419
#endif
7420

    
7421
#ifdef CONFIG_GUS
7422
    {
7423
        "gus",
7424
        "Gravis Ultrasound GF1",
7425
        0,
7426
        1,
7427
        { .init_isa = GUS_init }
7428
    },
7429
#endif
7430

    
7431
    {
7432
        "es1370",
7433
        "ENSONIQ AudioPCI ES1370",
7434
        0,
7435
        0,
7436
        { .init_pci = es1370_init }
7437
    },
7438
#endif
7439

    
7440
    { NULL, NULL, 0, 0, { NULL } }
7441
};
7442

    
7443
static void select_soundhw (const char *optarg)
7444
{
7445
    struct soundhw *c;
7446

    
7447
    if (*optarg == '?') {
7448
    show_valid_cards:
7449

    
7450
        printf ("Valid sound card names (comma separated):\n");
7451
        for (c = soundhw; c->name; ++c) {
7452
            printf ("%-11s %s\n", c->name, c->descr);
7453
        }
7454
        printf ("\n-soundhw all will enable all of the above\n");
7455
        exit (*optarg != '?');
7456
    }
7457
    else {
7458
        size_t l;
7459
        const char *p;
7460
        char *e;
7461
        int bad_card = 0;
7462

    
7463
        if (!strcmp (optarg, "all")) {
7464
            for (c = soundhw; c->name; ++c) {
7465
                c->enabled = 1;
7466
            }
7467
            return;
7468
        }
7469

    
7470
        p = optarg;
7471
        while (*p) {
7472
            e = strchr (p, ',');
7473
            l = !e ? strlen (p) : (size_t) (e - p);
7474

    
7475
            for (c = soundhw; c->name; ++c) {
7476
                if (!strncmp (c->name, p, l)) {
7477
                    c->enabled = 1;
7478
                    break;
7479
                }
7480
            }
7481

    
7482
            if (!c->name) {
7483
                if (l > 80) {
7484
                    fprintf (stderr,
7485
                             "Unknown sound card name (too big to show)\n");
7486
                }
7487
                else {
7488
                    fprintf (stderr, "Unknown sound card name `%.*s'\n",
7489
                             (int) l, p);
7490
                }
7491
                bad_card = 1;
7492
            }
7493
            p += l + (e != NULL);
7494
        }
7495

    
7496
        if (bad_card)
7497
            goto show_valid_cards;
7498
    }
7499
}
7500
#endif
7501

    
7502
#ifdef _WIN32
7503
static BOOL WINAPI qemu_ctrl_handler(DWORD type)
7504
{
7505
    exit(STATUS_CONTROL_C_EXIT);
7506
    return TRUE;
7507
}
7508
#endif
7509

    
7510
#define MAX_NET_CLIENTS 32
7511

    
7512
int main(int argc, char **argv)
7513
{
7514
#ifdef CONFIG_GDBSTUB
7515
    int use_gdbstub;
7516
    const char *gdbstub_port;
7517
#endif
7518
    int i, cdrom_index, pflash_index;
7519
    int snapshot, linux_boot;
7520
    const char *initrd_filename;
7521
    const char *hd_filename[MAX_DISKS], *fd_filename[MAX_FD];
7522
    const char *pflash_filename[MAX_PFLASH];
7523
    const char *sd_filename;
7524
    const char *mtd_filename;
7525
    const char *kernel_filename, *kernel_cmdline;
7526
    DisplayState *ds = &display_state;
7527
    int cyls, heads, secs, translation;
7528
    char net_clients[MAX_NET_CLIENTS][256];
7529
    int nb_net_clients;
7530
    int optind;
7531
    const char *r, *optarg;
7532
    CharDriverState *monitor_hd;
7533
    char monitor_device[128];
7534
    char serial_devices[MAX_SERIAL_PORTS][128];
7535
    int serial_device_index;
7536
    char parallel_devices[MAX_PARALLEL_PORTS][128];
7537
    int parallel_device_index;
7538
    const char *loadvm = NULL;
7539
    QEMUMachine *machine;
7540
    const char *cpu_model;
7541
    char usb_devices[MAX_USB_CMDLINE][128];
7542
    int usb_devices_index;
7543
    int fds[2];
7544
    const char *pid_file = NULL;
7545
    VLANState *vlan;
7546

    
7547
    LIST_INIT (&vm_change_state_head);
7548
#ifndef _WIN32
7549
    {
7550
        struct sigaction act;
7551
        sigfillset(&act.sa_mask);
7552
        act.sa_flags = 0;
7553
        act.sa_handler = SIG_IGN;
7554
        sigaction(SIGPIPE, &act, NULL);
7555
    }
7556
#else
7557
    SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
7558
    /* Note: cpu_interrupt() is currently not SMP safe, so we force
7559
       QEMU to run on a single CPU */
7560
    {
7561
        HANDLE h;
7562
        DWORD mask, smask;
7563
        int i;
7564
        h = GetCurrentProcess();
7565
        if (GetProcessAffinityMask(h, &mask, &smask)) {
7566
            for(i = 0; i < 32; i++) {
7567
                if (mask & (1 << i))
7568
                    break;
7569
            }
7570
            if (i != 32) {
7571
                mask = 1 << i;
7572
                SetProcessAffinityMask(h, mask);
7573
            }
7574
        }
7575
    }
7576
#endif
7577

    
7578
    register_machines();
7579
    machine = first_machine;
7580
    cpu_model = NULL;
7581
    initrd_filename = NULL;
7582
    for(i = 0; i < MAX_FD; i++)
7583
        fd_filename[i] = NULL;
7584
    for(i = 0; i < MAX_DISKS; i++)
7585
        hd_filename[i] = NULL;
7586
    for(i = 0; i < MAX_PFLASH; i++)
7587
        pflash_filename[i] = NULL;
7588
    pflash_index = 0;
7589
    sd_filename = NULL;
7590
    mtd_filename = NULL;
7591
    ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
7592
    vga_ram_size = VGA_RAM_SIZE;
7593
#ifdef CONFIG_GDBSTUB
7594
    use_gdbstub = 0;
7595
    gdbstub_port = DEFAULT_GDBSTUB_PORT;
7596
#endif
7597
    snapshot = 0;
7598
    nographic = 0;
7599
    kernel_filename = NULL;
7600
    kernel_cmdline = "";
7601
#ifdef TARGET_PPC
7602
    cdrom_index = 1;
7603
#else
7604
    cdrom_index = 2;
7605
#endif
7606
    cyls = heads = secs = 0;
7607
    translation = BIOS_ATA_TRANSLATION_AUTO;
7608
    pstrcpy(monitor_device, sizeof(monitor_device), "vc");
7609

    
7610
    pstrcpy(serial_devices[0], sizeof(serial_devices[0]), "vc");
7611
    for(i = 1; i < MAX_SERIAL_PORTS; i++)
7612
        serial_devices[i][0] = '\0';
7613
    serial_device_index = 0;
7614
    
7615
    pstrcpy(parallel_devices[0], sizeof(parallel_devices[0]), "vc");
7616
    for(i = 1; i < MAX_PARALLEL_PORTS; i++)
7617
        parallel_devices[i][0] = '\0';
7618
    parallel_device_index = 0;
7619
    
7620
    usb_devices_index = 0;
7621
    
7622
    nb_net_clients = 0;
7623

    
7624
    nb_nics = 0;
7625
    /* default mac address of the first network interface */
7626
    
7627
    optind = 1;
7628
    for(;;) {
7629
        if (optind >= argc)
7630
            break;
7631
        r = argv[optind];
7632
        if (r[0] != '-') {
7633
            hd_filename[0] = argv[optind++];
7634
        } else {
7635
            const QEMUOption *popt;
7636

    
7637
            optind++;
7638
            /* Treat --foo the same as -foo.  */
7639
            if (r[1] == '-')
7640
                r++;
7641
            popt = qemu_options;
7642
            for(;;) {
7643
                if (!popt->name) {
7644
                    fprintf(stderr, "%s: invalid option -- '%s'\n", 
7645
                            argv[0], r);
7646
                    exit(1);
7647
                }
7648
                if (!strcmp(popt->name, r + 1))
7649
                    break;
7650
                popt++;
7651
            }
7652
            if (popt->flags & HAS_ARG) {
7653
                if (optind >= argc) {
7654
                    fprintf(stderr, "%s: option '%s' requires an argument\n",
7655
                            argv[0], r);
7656
                    exit(1);
7657
                }
7658
                optarg = argv[optind++];
7659
            } else {
7660
                optarg = NULL;
7661
            }
7662

    
7663
            switch(popt->index) {
7664
            case QEMU_OPTION_M:
7665
                machine = find_machine(optarg);
7666
                if (!machine) {
7667
                    QEMUMachine *m;
7668
                    printf("Supported machines are:\n");
7669
                    for(m = first_machine; m != NULL; m = m->next) {
7670
                        printf("%-10s %s%s\n",
7671
                               m->name, m->desc, 
7672
                               m == first_machine ? " (default)" : "");
7673
                    }
7674
                    exit(*optarg != '?');
7675
                }
7676
                break;
7677
            case QEMU_OPTION_cpu:
7678
                /* hw initialization will check this */
7679
                if (*optarg == '?') {
7680
#if defined(TARGET_PPC)
7681
                    ppc_cpu_list(stdout, &fprintf);
7682
#elif defined(TARGET_ARM)
7683
                    arm_cpu_list();
7684
#elif defined(TARGET_MIPS)
7685
                    mips_cpu_list(stdout, &fprintf);
7686
#elif defined(TARGET_SPARC)
7687
                    sparc_cpu_list(stdout, &fprintf);
7688
#endif
7689
                    exit(0);
7690
                } else {
7691
                    cpu_model = optarg;
7692
                }
7693
                break;
7694
            case QEMU_OPTION_initrd:
7695
                initrd_filename = optarg;
7696
                break;
7697
            case QEMU_OPTION_hda:
7698
            case QEMU_OPTION_hdb:
7699
            case QEMU_OPTION_hdc:
7700
            case QEMU_OPTION_hdd:
7701
                {
7702
                    int hd_index;
7703
                    hd_index = popt->index - QEMU_OPTION_hda;
7704
                    hd_filename[hd_index] = optarg;
7705
                    if (hd_index == cdrom_index)
7706
                        cdrom_index = -1;
7707
                }
7708
                break;
7709
            case QEMU_OPTION_mtdblock:
7710
                mtd_filename = optarg;
7711
                break;
7712
            case QEMU_OPTION_sd:
7713
                sd_filename = optarg;
7714
                break;
7715
            case QEMU_OPTION_pflash:
7716
                if (pflash_index >= MAX_PFLASH) {
7717
                    fprintf(stderr, "qemu: too many parallel flash images\n");
7718
                    exit(1);
7719
                }
7720
                pflash_filename[pflash_index++] = optarg;
7721
                break;
7722
            case QEMU_OPTION_snapshot:
7723
                snapshot = 1;
7724
                break;
7725
            case QEMU_OPTION_hdachs:
7726
                {
7727
                    const char *p;
7728
                    p = optarg;
7729
                    cyls = strtol(p, (char **)&p, 0);
7730
                    if (cyls < 1 || cyls > 16383)
7731
                        goto chs_fail;
7732
                    if (*p != ',')
7733
                        goto chs_fail;
7734
                    p++;
7735
                    heads = strtol(p, (char **)&p, 0);
7736
                    if (heads < 1 || heads > 16)
7737
                        goto chs_fail;
7738
                    if (*p != ',')
7739
                        goto chs_fail;
7740
                    p++;
7741
                    secs = strtol(p, (char **)&p, 0);
7742
                    if (secs < 1 || secs > 63)
7743
                        goto chs_fail;
7744
                    if (*p == ',') {
7745
                        p++;
7746
                        if (!strcmp(p, "none"))
7747
                            translation = BIOS_ATA_TRANSLATION_NONE;
7748
                        else if (!strcmp(p, "lba"))
7749
                            translation = BIOS_ATA_TRANSLATION_LBA;
7750
                        else if (!strcmp(p, "auto"))
7751
                            translation = BIOS_ATA_TRANSLATION_AUTO;
7752
                        else
7753
                            goto chs_fail;
7754
                    } else if (*p != '\0') {
7755
                    chs_fail:
7756
                        fprintf(stderr, "qemu: invalid physical CHS format\n");
7757
                        exit(1);
7758
                    }
7759
                }
7760
                break;
7761
            case QEMU_OPTION_nographic:
7762
                pstrcpy(serial_devices[0], sizeof(serial_devices[0]), "stdio");
7763
                pstrcpy(parallel_devices[0], sizeof(parallel_devices[0]), "null");
7764
                pstrcpy(monitor_device, sizeof(monitor_device), "stdio");
7765
                nographic = 1;
7766
                break;
7767
            case QEMU_OPTION_portrait:
7768
                graphic_rotate = 1;
7769
                break;
7770
            case QEMU_OPTION_kernel:
7771
                kernel_filename = optarg;
7772
                break;
7773
            case QEMU_OPTION_append:
7774
                kernel_cmdline = optarg;
7775
                break;
7776
            case QEMU_OPTION_cdrom:
7777
                if (cdrom_index >= 0) {
7778
                    hd_filename[cdrom_index] = optarg;
7779
                }
7780
                break;
7781
            case QEMU_OPTION_boot:
7782
                boot_device = optarg[0];
7783
                if (boot_device != 'a' && 
7784
#if defined(TARGET_SPARC) || defined(TARGET_I386)
7785
                    // Network boot
7786
                    boot_device != 'n' &&
7787
#endif
7788
                    boot_device != 'c' && boot_device != 'd') {
7789
                    fprintf(stderr, "qemu: invalid boot device '%c'\n", boot_device);
7790
                    exit(1);
7791
                }
7792
                break;
7793
            case QEMU_OPTION_fda:
7794
                fd_filename[0] = optarg;
7795
                break;
7796
            case QEMU_OPTION_fdb:
7797
                fd_filename[1] = optarg;
7798
                break;
7799
#ifdef TARGET_I386
7800
            case QEMU_OPTION_no_fd_bootchk:
7801
                fd_bootchk = 0;
7802
                break;
7803
#endif
7804
            case QEMU_OPTION_no_code_copy:
7805
                code_copy_enabled = 0;
7806
                break;
7807
            case QEMU_OPTION_net:
7808
                if (nb_net_clients >= MAX_NET_CLIENTS) {
7809
                    fprintf(stderr, "qemu: too many network clients\n");
7810
                    exit(1);
7811
                }
7812
                pstrcpy(net_clients[nb_net_clients],
7813
                        sizeof(net_clients[0]),
7814
                        optarg);
7815
                nb_net_clients++;
7816
                break;
7817
#ifdef CONFIG_SLIRP
7818
            case QEMU_OPTION_tftp:
7819
                tftp_prefix = optarg;
7820
                break;
7821
            case QEMU_OPTION_bootp:
7822
                bootp_filename = optarg;
7823
                break;
7824
#ifndef _WIN32
7825
            case QEMU_OPTION_smb:
7826
                net_slirp_smb(optarg);
7827
                break;
7828
#endif
7829
            case QEMU_OPTION_redir:
7830
                net_slirp_redir(optarg);                
7831
                break;
7832
#endif
7833
#ifdef HAS_AUDIO
7834
            case QEMU_OPTION_audio_help:
7835
                AUD_help ();
7836
                exit (0);
7837
                break;
7838
            case QEMU_OPTION_soundhw:
7839
                select_soundhw (optarg);
7840
                break;
7841
#endif
7842
            case QEMU_OPTION_h:
7843
                help(0);
7844
                break;
7845
            case QEMU_OPTION_m:
7846
                ram_size = atoi(optarg) * 1024 * 1024;
7847
                if (ram_size <= 0)
7848
                    help(1);
7849
                if (ram_size > PHYS_RAM_MAX_SIZE) {
7850
                    fprintf(stderr, "qemu: at most %d MB RAM can be simulated\n",
7851
                            PHYS_RAM_MAX_SIZE / (1024 * 1024));
7852
                    exit(1);
7853
                }
7854
                break;
7855
            case QEMU_OPTION_d:
7856
                {
7857
                    int mask;
7858
                    CPULogItem *item;
7859
                    
7860
                    mask = cpu_str_to_log_mask(optarg);
7861
                    if (!mask) {
7862
                        printf("Log items (comma separated):\n");
7863
                    for(item = cpu_log_items; item->mask != 0; item++) {
7864
                        printf("%-10s %s\n", item->name, item->help);
7865
                    }
7866
                    exit(1);
7867
                    }
7868
                    cpu_set_log(mask);
7869
                }
7870
                break;
7871
#ifdef CONFIG_GDBSTUB
7872
            case QEMU_OPTION_s:
7873
                use_gdbstub = 1;
7874
                break;
7875
            case QEMU_OPTION_p:
7876
                gdbstub_port = optarg;
7877
                break;
7878
#endif
7879
            case QEMU_OPTION_L:
7880
                bios_dir = optarg;
7881
                break;
7882
            case QEMU_OPTION_S:
7883
                autostart = 0;
7884
                break;
7885
            case QEMU_OPTION_k:
7886
                keyboard_layout = optarg;
7887
                break;
7888
            case QEMU_OPTION_localtime:
7889
                rtc_utc = 0;
7890
                break;
7891
            case QEMU_OPTION_cirrusvga:
7892
                cirrus_vga_enabled = 1;
7893
                vmsvga_enabled = 0;
7894
                break;
7895
            case QEMU_OPTION_vmsvga:
7896
                cirrus_vga_enabled = 0;
7897
                vmsvga_enabled = 1;
7898
                break;
7899
            case QEMU_OPTION_std_vga:
7900
                cirrus_vga_enabled = 0;
7901
                vmsvga_enabled = 0;
7902
                break;
7903
            case QEMU_OPTION_g:
7904
                {
7905
                    const char *p;
7906
                    int w, h, depth;
7907
                    p = optarg;
7908
                    w = strtol(p, (char **)&p, 10);
7909
                    if (w <= 0) {
7910
                    graphic_error:
7911
                        fprintf(stderr, "qemu: invalid resolution or depth\n");
7912
                        exit(1);
7913
                    }
7914
                    if (*p != 'x')
7915
                        goto graphic_error;
7916
                    p++;
7917
                    h = strtol(p, (char **)&p, 10);
7918
                    if (h <= 0)
7919
                        goto graphic_error;
7920
                    if (*p == 'x') {
7921
                        p++;
7922
                        depth = strtol(p, (char **)&p, 10);
7923
                        if (depth != 8 && depth != 15 && depth != 16 && 
7924
                            depth != 24 && depth != 32)
7925
                            goto graphic_error;
7926
                    } else if (*p == '\0') {
7927
                        depth = graphic_depth;
7928
                    } else {
7929
                        goto graphic_error;
7930
                    }
7931
                    
7932
                    graphic_width = w;
7933
                    graphic_height = h;
7934
                    graphic_depth = depth;
7935
                }
7936
                break;
7937
            case QEMU_OPTION_echr:
7938
                {
7939
                    char *r;
7940
                    term_escape_char = strtol(optarg, &r, 0);
7941
                    if (r == optarg)
7942
                        printf("Bad argument to echr\n");
7943
                    break;
7944
                }
7945
            case QEMU_OPTION_monitor:
7946
                pstrcpy(monitor_device, sizeof(monitor_device), optarg);
7947
                break;
7948
            case QEMU_OPTION_serial:
7949
                if (serial_device_index >= MAX_SERIAL_PORTS) {
7950
                    fprintf(stderr, "qemu: too many serial ports\n");
7951
                    exit(1);
7952
                }
7953
                pstrcpy(serial_devices[serial_device_index], 
7954
                        sizeof(serial_devices[0]), optarg);
7955
                serial_device_index++;
7956
                break;
7957
            case QEMU_OPTION_parallel:
7958
                if (parallel_device_index >= MAX_PARALLEL_PORTS) {
7959
                    fprintf(stderr, "qemu: too many parallel ports\n");
7960
                    exit(1);
7961
                }
7962
                pstrcpy(parallel_devices[parallel_device_index], 
7963
                        sizeof(parallel_devices[0]), optarg);
7964
                parallel_device_index++;
7965
                break;
7966
            case QEMU_OPTION_loadvm:
7967
                loadvm = optarg;
7968
                break;
7969
            case QEMU_OPTION_full_screen:
7970
                full_screen = 1;
7971
                break;
7972
#ifdef CONFIG_SDL
7973
            case QEMU_OPTION_no_frame:
7974
                no_frame = 1;
7975
                break;
7976
            case QEMU_OPTION_alt_grab:
7977
                alt_grab = 1;
7978
                break;
7979
            case QEMU_OPTION_no_quit:
7980
                no_quit = 1;
7981
                break;
7982
#endif
7983
            case QEMU_OPTION_pidfile:
7984
                pid_file = optarg;
7985
                break;
7986
#ifdef TARGET_I386
7987
            case QEMU_OPTION_win2k_hack:
7988
                win2k_install_hack = 1;
7989
                break;
7990
#endif
7991
#ifdef USE_KQEMU
7992
            case QEMU_OPTION_no_kqemu:
7993
                kqemu_allowed = 0;
7994
                break;
7995
            case QEMU_OPTION_kernel_kqemu:
7996
                kqemu_allowed = 2;
7997
                break;
7998
#endif
7999
            case QEMU_OPTION_usb:
8000
                usb_enabled = 1;
8001
                break;
8002
            case QEMU_OPTION_usbdevice:
8003
                usb_enabled = 1;
8004
                if (usb_devices_index >= MAX_USB_CMDLINE) {
8005
                    fprintf(stderr, "Too many USB devices\n");
8006
                    exit(1);
8007
                }
8008
                pstrcpy(usb_devices[usb_devices_index],
8009
                        sizeof(usb_devices[usb_devices_index]),
8010
                        optarg);
8011
                usb_devices_index++;
8012
                break;
8013
            case QEMU_OPTION_smp:
8014
                smp_cpus = atoi(optarg);
8015
                if (smp_cpus < 1 || smp_cpus > MAX_CPUS) {
8016
                    fprintf(stderr, "Invalid number of CPUs\n");
8017
                    exit(1);
8018
                }
8019
                break;
8020
            case QEMU_OPTION_vnc:
8021
                vnc_display = optarg;
8022
                break;
8023
            case QEMU_OPTION_no_acpi:
8024
                acpi_enabled = 0;
8025
                break;
8026
            case QEMU_OPTION_no_reboot:
8027
                no_reboot = 1;
8028
                break;
8029
            case QEMU_OPTION_show_cursor:
8030
                cursor_hide = 0;
8031
                break;
8032
            case QEMU_OPTION_daemonize:
8033
                daemonize = 1;
8034
                break;
8035
            case QEMU_OPTION_option_rom:
8036
                if (nb_option_roms >= MAX_OPTION_ROMS) {
8037
                    fprintf(stderr, "Too many option ROMs\n");
8038
                    exit(1);
8039
                }
8040
                option_rom[nb_option_roms] = optarg;
8041
                nb_option_roms++;
8042
                break;
8043
            case QEMU_OPTION_semihosting:
8044
                semihosting_enabled = 1;
8045
                break;
8046
            case QEMU_OPTION_name:
8047
                qemu_name = optarg;
8048
                break;
8049
#ifdef TARGET_SPARC
8050
            case QEMU_OPTION_prom_env:
8051
                if (nb_prom_envs >= MAX_PROM_ENVS) {
8052
                    fprintf(stderr, "Too many prom variables\n");
8053
                    exit(1);
8054
                }
8055
                prom_envs[nb_prom_envs] = optarg;
8056
                nb_prom_envs++;
8057
                break;
8058
#endif
8059
#ifdef TARGET_ARM
8060
            case QEMU_OPTION_old_param:
8061
                old_param = 1;
8062
#endif
8063
            case QEMU_OPTION_clock:
8064
                configure_alarms(optarg);
8065
                break;
8066
            }
8067
        }
8068
    }
8069

    
8070
#ifndef _WIN32
8071
    if (daemonize && !nographic && vnc_display == NULL) {
8072
        fprintf(stderr, "Can only daemonize if using -nographic or -vnc\n");
8073
        daemonize = 0;
8074
    }
8075

    
8076
    if (daemonize) {
8077
        pid_t pid;
8078

    
8079
        if (pipe(fds) == -1)
8080
            exit(1);
8081

    
8082
        pid = fork();
8083
        if (pid > 0) {
8084
            uint8_t status;
8085
            ssize_t len;
8086

    
8087
            close(fds[1]);
8088

    
8089
        again:
8090
            len = read(fds[0], &status, 1);
8091
            if (len == -1 && (errno == EINTR))
8092
                goto again;
8093

    
8094
            if (len != 1)
8095
                exit(1);
8096
            else if (status == 1) {
8097
                fprintf(stderr, "Could not acquire pidfile\n");
8098
                exit(1);
8099
            } else
8100
                exit(0);
8101
        } else if (pid < 0)
8102
            exit(1);
8103

    
8104
        setsid();
8105

    
8106
        pid = fork();
8107
        if (pid > 0)
8108
            exit(0);
8109
        else if (pid < 0)
8110
            exit(1);
8111

    
8112
        umask(027);
8113
        chdir("/");
8114

    
8115
        signal(SIGTSTP, SIG_IGN);
8116
        signal(SIGTTOU, SIG_IGN);
8117
        signal(SIGTTIN, SIG_IGN);
8118
    }
8119
#endif
8120

    
8121
    if (pid_file && qemu_create_pidfile(pid_file) != 0) {
8122
        if (daemonize) {
8123
            uint8_t status = 1;
8124
            write(fds[1], &status, 1);
8125
        } else
8126
            fprintf(stderr, "Could not acquire pid file\n");
8127
        exit(1);
8128
    }
8129

    
8130
#ifdef USE_KQEMU
8131
    if (smp_cpus > 1)
8132
        kqemu_allowed = 0;
8133
#endif
8134
    linux_boot = (kernel_filename != NULL);
8135

    
8136
    if (!linux_boot &&
8137
        boot_device != 'n' &&
8138
        hd_filename[0] == '\0' && 
8139
        (cdrom_index >= 0 && hd_filename[cdrom_index] == '\0') &&
8140
        fd_filename[0] == '\0')
8141
        help(1);
8142

    
8143
    /* boot to floppy or the default cd if no hard disk defined yet */
8144
    if (hd_filename[0] == '\0' && boot_device == 'c') {
8145
        if (fd_filename[0] != '\0')
8146
            boot_device = 'a';
8147
        else
8148
            boot_device = 'd';
8149
    }
8150

    
8151
    setvbuf(stdout, NULL, _IOLBF, 0);
8152
    
8153
    init_timers();
8154
    init_timer_alarm();
8155
    qemu_aio_init();
8156

    
8157
#ifdef _WIN32
8158
    socket_init();
8159
#endif
8160

    
8161
    /* init network clients */
8162
    if (nb_net_clients == 0) {
8163
        /* if no clients, we use a default config */
8164
        pstrcpy(net_clients[0], sizeof(net_clients[0]),
8165
                "nic");
8166
        pstrcpy(net_clients[1], sizeof(net_clients[0]),
8167
                "user");
8168
        nb_net_clients = 2;
8169
    }
8170

    
8171
    for(i = 0;i < nb_net_clients; i++) {
8172
        if (net_client_init(net_clients[i]) < 0)
8173
            exit(1);
8174
    }
8175
    for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
8176
        if (vlan->nb_guest_devs == 0 && vlan->nb_host_devs == 0)
8177
            continue;
8178
        if (vlan->nb_guest_devs == 0) {
8179
            fprintf(stderr, "Invalid vlan (%d) with no nics\n", vlan->id);
8180
            exit(1);
8181
        }
8182
        if (vlan->nb_host_devs == 0)
8183
            fprintf(stderr,
8184
                    "Warning: vlan %d is not connected to host network\n",
8185
                    vlan->id);
8186
    }
8187

    
8188
#ifdef TARGET_I386
8189
    if (boot_device == 'n') {
8190
        for (i = 0; i < nb_nics; i++) {
8191
            const char *model = nd_table[i].model;
8192
            char buf[1024];
8193
            if (model == NULL)
8194
                model = "ne2k_pci";
8195
            snprintf(buf, sizeof(buf), "%s/pxe-%s.bin", bios_dir, model);
8196
            if (get_image_size(buf) > 0) {
8197
                option_rom[nb_option_roms] = strdup(buf);
8198
                nb_option_roms++;
8199
                break;
8200
            }
8201
        }
8202
        if (i == nb_nics) {
8203
            fprintf(stderr, "No valid PXE rom found for network device\n");
8204
            exit(1);
8205
        }
8206
        boot_device = 'c'; /* to prevent confusion by the BIOS */
8207
    }
8208
#endif
8209

    
8210
    /* init the memory */
8211
    phys_ram_size = ram_size + vga_ram_size + MAX_BIOS_SIZE;
8212

    
8213
    phys_ram_base = qemu_vmalloc(phys_ram_size);
8214
    if (!phys_ram_base) {
8215
        fprintf(stderr, "Could not allocate physical memory\n");
8216
        exit(1);
8217
    }
8218

    
8219
    /* we always create the cdrom drive, even if no disk is there */
8220
    bdrv_init();
8221
    if (cdrom_index >= 0) {
8222
        bs_table[cdrom_index] = bdrv_new("cdrom");
8223
        bdrv_set_type_hint(bs_table[cdrom_index], BDRV_TYPE_CDROM);
8224
    }
8225

    
8226
    /* open the virtual block devices */
8227
    for(i = 0; i < MAX_DISKS; i++) {
8228
        if (hd_filename[i]) {
8229
            if (!bs_table[i]) {
8230
                char buf[64];
8231
                snprintf(buf, sizeof(buf), "hd%c", i + 'a');
8232
                bs_table[i] = bdrv_new(buf);
8233
            }
8234
            if (bdrv_open(bs_table[i], hd_filename[i], snapshot ? BDRV_O_SNAPSHOT : 0) < 0) {
8235
                fprintf(stderr, "qemu: could not open hard disk image '%s'\n",
8236
                        hd_filename[i]);
8237
                exit(1);
8238
            }
8239
            if (i == 0 && cyls != 0) {
8240
                bdrv_set_geometry_hint(bs_table[i], cyls, heads, secs);
8241
                bdrv_set_translation_hint(bs_table[i], translation);
8242
            }
8243
        }
8244
    }
8245

    
8246
    /* we always create at least one floppy disk */
8247
    fd_table[0] = bdrv_new("fda");
8248
    bdrv_set_type_hint(fd_table[0], BDRV_TYPE_FLOPPY);
8249

    
8250
    for(i = 0; i < MAX_FD; i++) {
8251
        if (fd_filename[i]) {
8252
            if (!fd_table[i]) {
8253
                char buf[64];
8254
                snprintf(buf, sizeof(buf), "fd%c", i + 'a');
8255
                fd_table[i] = bdrv_new(buf);
8256
                bdrv_set_type_hint(fd_table[i], BDRV_TYPE_FLOPPY);
8257
            }
8258
            if (fd_filename[i][0] != '\0') {
8259
                if (bdrv_open(fd_table[i], fd_filename[i],
8260
                              snapshot ? BDRV_O_SNAPSHOT : 0) < 0) {
8261
                    fprintf(stderr, "qemu: could not open floppy disk image '%s'\n",
8262
                            fd_filename[i]);
8263
                    exit(1);
8264
                }
8265
            }
8266
        }
8267
    }
8268

    
8269
    /* Open the virtual parallel flash block devices */
8270
    for(i = 0; i < MAX_PFLASH; i++) {
8271
        if (pflash_filename[i]) {
8272
            if (!pflash_table[i]) {
8273
                char buf[64];
8274
                snprintf(buf, sizeof(buf), "fl%c", i + 'a');
8275
                pflash_table[i] = bdrv_new(buf);
8276
            }
8277
            if (bdrv_open(pflash_table[i], pflash_filename[i],
8278
                          snapshot ? BDRV_O_SNAPSHOT : 0) < 0) {
8279
                fprintf(stderr, "qemu: could not open flash image '%s'\n",
8280
                        pflash_filename[i]);
8281
                exit(1);
8282
            }
8283
        }
8284
    }
8285

    
8286
    sd_bdrv = bdrv_new ("sd");
8287
    /* FIXME: This isn't really a floppy, but it's a reasonable
8288
       approximation.  */
8289
    bdrv_set_type_hint(sd_bdrv, BDRV_TYPE_FLOPPY);
8290
    if (sd_filename) {
8291
        if (bdrv_open(sd_bdrv, sd_filename,
8292
                      snapshot ? BDRV_O_SNAPSHOT : 0) < 0) {
8293
            fprintf(stderr, "qemu: could not open SD card image %s\n",
8294
                    sd_filename);
8295
        } else
8296
            qemu_key_check(sd_bdrv, sd_filename);
8297
    }
8298

    
8299
    if (mtd_filename) {
8300
        mtd_bdrv = bdrv_new ("mtd");
8301
        if (bdrv_open(mtd_bdrv, mtd_filename,
8302
                      snapshot ? BDRV_O_SNAPSHOT : 0) < 0 ||
8303
            qemu_key_check(mtd_bdrv, mtd_filename)) {
8304
            fprintf(stderr, "qemu: could not open Flash image %s\n",
8305
                    mtd_filename);
8306
            bdrv_delete(mtd_bdrv);
8307
            mtd_bdrv = 0;
8308
        }
8309
    }
8310

    
8311
    register_savevm("timer", 0, 2, timer_save, timer_load, NULL);
8312
    register_savevm("ram", 0, 2, ram_save, ram_load, NULL);
8313

    
8314
    init_ioports();
8315

    
8316
    /* terminal init */
8317
    memset(&display_state, 0, sizeof(display_state));
8318
    if (nographic) {
8319
        /* nearly nothing to do */
8320
        dumb_display_init(ds);
8321
    } else if (vnc_display != NULL) {
8322
        vnc_display_init(ds);
8323
        if (vnc_display_open(ds, vnc_display) < 0)
8324
            exit(1);
8325
    } else {
8326
#if defined(CONFIG_SDL)
8327
        sdl_display_init(ds, full_screen, no_frame);
8328
#elif defined(CONFIG_COCOA)
8329
        cocoa_display_init(ds, full_screen);
8330
#endif
8331
    }
8332

    
8333
    /* Maintain compatibility with multiple stdio monitors */
8334
    if (!strcmp(monitor_device,"stdio")) {
8335
        for (i = 0; i < MAX_SERIAL_PORTS; i++) {
8336
            if (!strcmp(serial_devices[i],"mon:stdio")) {
8337
                monitor_device[0] = '\0';
8338
                break;
8339
            } else if (!strcmp(serial_devices[i],"stdio")) {
8340
                monitor_device[0] = '\0';
8341
                pstrcpy(serial_devices[0], sizeof(serial_devices[0]), "mon:stdio");
8342
                break;
8343
            }
8344
        }
8345
    }
8346
    if (monitor_device[0] != '\0') {
8347
        monitor_hd = qemu_chr_open(monitor_device);
8348
        if (!monitor_hd) {
8349
            fprintf(stderr, "qemu: could not open monitor device '%s'\n", monitor_device);
8350
            exit(1);
8351
        }
8352
        monitor_init(monitor_hd, !nographic);
8353
    }
8354

    
8355
    for(i = 0; i < MAX_SERIAL_PORTS; i++) {
8356
        const char *devname = serial_devices[i];
8357
        if (devname[0] != '\0' && strcmp(devname, "none")) {
8358
            serial_hds[i] = qemu_chr_open(devname);
8359
            if (!serial_hds[i]) {
8360
                fprintf(stderr, "qemu: could not open serial device '%s'\n", 
8361
                        devname);
8362
                exit(1);
8363
            }
8364
            if (strstart(devname, "vc", 0))
8365
                qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
8366
        }
8367
    }
8368

    
8369
    for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
8370
        const char *devname = parallel_devices[i];
8371
        if (devname[0] != '\0' && strcmp(devname, "none")) {
8372
            parallel_hds[i] = qemu_chr_open(devname);
8373
            if (!parallel_hds[i]) {
8374
                fprintf(stderr, "qemu: could not open parallel device '%s'\n", 
8375
                        devname);
8376
                exit(1);
8377
            }
8378
            if (strstart(devname, "vc", 0))
8379
                qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
8380
        }
8381
    }
8382

    
8383
    machine->init(ram_size, vga_ram_size, boot_device,
8384
                  ds, fd_filename, snapshot,
8385
                  kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
8386

    
8387
    /* init USB devices */
8388
    if (usb_enabled) {
8389
        for(i = 0; i < usb_devices_index; i++) {
8390
            if (usb_device_add(usb_devices[i]) < 0) {
8391
                fprintf(stderr, "Warning: could not add USB device %s\n",
8392
                        usb_devices[i]);
8393
            }
8394
        }
8395
    }
8396

    
8397
    if (display_state.dpy_refresh) {
8398
        display_state.gui_timer = qemu_new_timer(rt_clock, gui_update, &display_state);
8399
        qemu_mod_timer(display_state.gui_timer, qemu_get_clock(rt_clock));
8400
    }
8401

    
8402
#ifdef CONFIG_GDBSTUB
8403
    if (use_gdbstub) {
8404
        /* XXX: use standard host:port notation and modify options
8405
           accordingly. */
8406
        if (gdbserver_start(gdbstub_port) < 0) {
8407
            fprintf(stderr, "qemu: could not open gdbstub device on port '%s'\n",
8408
                    gdbstub_port);
8409
            exit(1);
8410
        }
8411
    }
8412
#endif
8413

    
8414
    if (loadvm)
8415
        do_loadvm(loadvm);
8416

    
8417
    {
8418
        /* XXX: simplify init */
8419
        read_passwords();
8420
        if (autostart) {
8421
            vm_start();
8422
        }
8423
    }
8424

    
8425
    if (daemonize) {
8426
        uint8_t status = 0;
8427
        ssize_t len;
8428
        int fd;
8429

    
8430
    again1:
8431
        len = write(fds[1], &status, 1);
8432
        if (len == -1 && (errno == EINTR))
8433
            goto again1;
8434

    
8435
        if (len != 1)
8436
            exit(1);
8437

    
8438
        TFR(fd = open("/dev/null", O_RDWR));
8439
        if (fd == -1)
8440
            exit(1);
8441

    
8442
        dup2(fd, 0);
8443
        dup2(fd, 1);
8444
        dup2(fd, 2);
8445

    
8446
        close(fd);
8447
    }
8448

    
8449
    main_loop();
8450
    quit_timers();
8451
    return 0;
8452
}