Statistics
| Branch: | Revision:

root / target-ppc / op_helper.c @ 70ead434

History | View | Annotate | Download (12.9 kB)

1
/*
2
 *  PowerPC emulation helpers for qemu.
3
 * 
4
 *  Copyright (c) 2003-2005 Jocelyn Mayer
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, write to the Free Software
18
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19
 */
20
#include "exec.h"
21

    
22
#define MEMSUFFIX _raw
23
#include "op_helper_mem.h"
24
#if !defined(CONFIG_USER_ONLY)
25
#define MEMSUFFIX _user
26
#include "op_helper_mem.h"
27
#define MEMSUFFIX _kernel
28
#include "op_helper_mem.h"
29
#endif
30

    
31
//#define DEBUG_OP
32
//#define DEBUG_EXCEPTIONS
33
//#define FLUSH_ALL_TLBS
34

    
35
#define Ts0 (long)((target_long)T0)
36
#define Ts1 (long)((target_long)T1)
37
#define Ts2 (long)((target_long)T2)
38

    
39
/*****************************************************************************/
40
/* Exceptions processing helpers */
41
void cpu_loop_exit(void)
42
{
43
    longjmp(env->jmp_env, 1);
44
}
45

    
46
void do_raise_exception_err (uint32_t exception, int error_code)
47
{
48
#if 0
49
    printf("Raise exception %3x code : %d\n", exception, error_code);
50
#endif
51
    switch (exception) {
52
    case EXCP_PROGRAM:
53
        if (error_code == EXCP_FP && msr_fe0 == 0 && msr_fe1 == 0)
54
            return;
55
        break;
56
    default:
57
        break;
58
}
59
    env->exception_index = exception;
60
    env->error_code = error_code;
61
        cpu_loop_exit();
62
    }
63

    
64
void do_raise_exception (uint32_t exception)
65
{
66
    do_raise_exception_err(exception, 0);
67
}
68

    
69
/*****************************************************************************/
70
/* Fixed point operations helpers */
71
void do_addo (void)
72
{
73
    T2 = T0;
74
    T0 += T1;
75
    if (likely(!((T2 ^ T1 ^ (-1)) & (T2 ^ T0) & (1 << 31)))) {
76
        xer_ov = 0;
77
    } else {
78
        xer_so = 1;
79
        xer_ov = 1;
80
    }
81
}
82

    
83
void do_addco (void)
84
{
85
    T2 = T0;
86
    T0 += T1;
87
    if (likely(T0 >= T2)) {
88
        xer_ca = 0;
89
    } else {
90
        xer_ca = 1;
91
    }
92
    if (likely(!((T2 ^ T1 ^ (-1)) & (T2 ^ T0) & (1 << 31)))) {
93
        xer_ov = 0;
94
    } else {
95
        xer_so = 1;
96
        xer_ov = 1;
97
    }
98
}
99

    
100
void do_adde (void)
101
{
102
    T2 = T0;
103
    T0 += T1 + xer_ca;
104
    if (likely(!(T0 < T2 || (xer_ca == 1 && T0 == T2)))) {
105
        xer_ca = 0;
106
    } else {
107
        xer_ca = 1;
108
    }
109
}
110

    
111
void do_addeo (void)
112
{
113
    T2 = T0;
114
    T0 += T1 + xer_ca;
115
    if (likely(!(T0 < T2 || (xer_ca == 1 && T0 == T2)))) {
116
        xer_ca = 0;
117
    } else {
118
        xer_ca = 1;
119
    }
120
    if (likely(!((T2 ^ T1 ^ (-1)) & (T2 ^ T0) & (1 << 31)))) {
121
        xer_ov = 0;
122
    } else {
123
        xer_so = 1;
124
        xer_ov = 1;
125
    }
126
}
127

    
128
void do_addmeo (void)
129
{
130
    T1 = T0;
131
    T0 += xer_ca + (-1);
132
    if (likely(!(T1 & (T1 ^ T0) & (1 << 31)))) {
133
        xer_ov = 0;
134
    } else {
135
        xer_so = 1;
136
        xer_ov = 1;
137
    }
138
    if (likely(T1 != 0))
139
        xer_ca = 1;
140
}
141

    
142
void do_addzeo (void)
143
{
144
    T1 = T0;
145
    T0 += xer_ca;
146
    if (likely(!((T1 ^ (-1)) & (T1 ^ T0) & (1 << 31)))) {
147
        xer_ov = 0;
148
    } else {
149
        xer_so = 1;
150
        xer_ov = 1;
151
    }
152
    if (likely(T0 >= T1)) {
153
        xer_ca = 0;
154
    } else {
155
        xer_ca = 1;
156
    }
157
}
158

    
159
void do_divwo (void)
160
{
161
    if (likely(!((Ts0 == INT32_MIN && Ts1 == -1) || Ts1 == 0))) {
162
        xer_ov = 0;
163
        T0 = (Ts0 / Ts1);
164
    } else {
165
        xer_so = 1;
166
        xer_ov = 1;
167
        T0 = (-1) * ((uint32_t)T0 >> 31);
168
    }
169
}
170

    
171
void do_divwuo (void)
172
{
173
    if (likely((uint32_t)T1 != 0)) {
174
        xer_ov = 0;
175
        T0 = (uint32_t)T0 / (uint32_t)T1;
176
    } else {
177
        xer_so = 1;
178
        xer_ov = 1;
179
        T0 = 0;
180
    }
181
}
182

    
183
void do_mullwo (void)
184
{
185
    int64_t res = (int64_t)Ts0 * (int64_t)Ts1;
186

    
187
    if (likely((int32_t)res == res)) {
188
        xer_ov = 0;
189
    } else {
190
        xer_ov = 1;
191
        xer_so = 1;
192
    }
193
    T0 = (int32_t)res;
194
}
195

    
196
void do_nego (void)
197
{
198
    if (likely(T0 != INT32_MIN)) {
199
        xer_ov = 0;
200
        T0 = -Ts0;
201
    } else {
202
        xer_ov = 1;
203
        xer_so = 1;
204
    }
205
}
206

    
207
void do_subfo (void)
208
{
209
    T2 = T0;
210
    T0 = T1 - T0;
211
    if (likely(!(((~T2) ^ T1 ^ (-1)) & ((~T2) ^ T0) & (1 << 31)))) {
212
        xer_ov = 0;
213
    } else {
214
        xer_so = 1;
215
        xer_ov = 1;
216
    }
217
    RETURN();
218
}
219

    
220
void do_subfco (void)
221
{
222
    T2 = T0;
223
    T0 = T1 - T0;
224
    if (likely(T0 > T1)) {
225
        xer_ca = 0;
226
    } else {
227
        xer_ca = 1;
228
    }
229
    if (likely(!(((~T2) ^ T1 ^ (-1)) & ((~T2) ^ T0) & (1 << 31)))) {
230
        xer_ov = 0;
231
    } else {
232
        xer_so = 1;
233
        xer_ov = 1;
234
    }
235
}
236

    
237
void do_subfe (void)
238
{
239
    T0 = T1 + ~T0 + xer_ca;
240
    if (likely(T0 >= T1 && (xer_ca == 0 || T0 != T1))) {
241
        xer_ca = 0;
242
    } else {
243
        xer_ca = 1;
244
    }
245
}
246

    
247
void do_subfeo (void)
248
{
249
    T2 = T0;
250
    T0 = T1 + ~T0 + xer_ca;
251
    if (likely(!((~T2 ^ T1 ^ (-1)) & (~T2 ^ T0) & (1 << 31)))) {
252
        xer_ov = 0;
253
    } else {
254
        xer_so = 1;
255
        xer_ov = 1;
256
    }
257
    if (likely(T0 >= T1 && (xer_ca == 0 || T0 != T1))) {
258
        xer_ca = 0;
259
    } else {
260
        xer_ca = 1;
261
    }
262
}
263

    
264
void do_subfmeo (void)
265
{
266
    T1 = T0;
267
    T0 = ~T0 + xer_ca - 1;
268
    if (likely(!(~T1 & (~T1 ^ T0) & (1 << 31)))) {
269
        xer_ov = 0;
270
    } else {
271
        xer_so = 1;
272
        xer_ov = 1;
273
    }
274
    if (likely(T1 != -1))
275
        xer_ca = 1;
276
}
277

    
278
void do_subfzeo (void)
279
{
280
    T1 = T0;
281
    T0 = ~T0 + xer_ca;
282
    if (likely(!((~T1 ^ (-1)) & ((~T1) ^ T0) & (1 << 31)))) {
283
        xer_ov = 0;
284
    } else {
285
        xer_ov = 1;
286
        xer_so = 1;
287
    }
288
    if (likely(T0 >= ~T1)) {
289
        xer_ca = 0;
290
    } else {
291
        xer_ca = 1;
292
    }
293
}
294

    
295
/* shift right arithmetic helper */
296
void do_sraw (void)
297
{
298
    int32_t ret;
299

    
300
    if (likely(!(T1 & 0x20UL))) {
301
        if (likely(T1 != 0)) {
302
            ret = (int32_t)T0 >> (T1 & 0x1fUL);
303
            if (likely(ret >= 0 || ((int32_t)T0 & ((1 << T1) - 1)) == 0)) {
304
    xer_ca = 0;
305
            } else {
306
            xer_ca = 1;
307
            }
308
        } else {
309
        ret = T0;
310
            xer_ca = 0;
311
        }
312
    } else {
313
        ret = (-1) * ((uint32_t)T0 >> 31);
314
        if (likely(ret >= 0 || ((uint32_t)T0 & ~0x80000000UL) == 0)) {
315
            xer_ca = 0;
316
    } else {
317
            xer_ca = 1;
318
    }
319
    }
320
    T0 = ret;
321
}
322

    
323
/*****************************************************************************/
324
/* Floating point operations helpers */
325
void do_fctiw (void)
326
{
327
    union {
328
        double d;
329
        uint64_t i;
330
    } p;
331

    
332
    /* XXX: higher bits are not supposed to be significant.
333
     *      to make tests easier, return the same as a real PowerPC 750 (aka G3)
334
     */
335
    p.i = float64_to_int32(FT0, &env->fp_status);
336
    p.i |= 0xFFF80000ULL << 32;
337
    FT0 = p.d;
338
}
339

    
340
void do_fctiwz (void)
341
{
342
    union {
343
        double d;
344
        uint64_t i;
345
    } p;
346

    
347
    /* XXX: higher bits are not supposed to be significant.
348
     *      to make tests easier, return the same as a real PowerPC 750 (aka G3)
349
     */
350
    p.i = float64_to_int32_round_to_zero(FT0, &env->fp_status);
351
    p.i |= 0xFFF80000ULL << 32;
352
    FT0 = p.d;
353
}
354

    
355
void do_fnmadd (void)
356
{
357
    FT0 = float64_mul(FT0, FT1, &env->fp_status);
358
    FT0 = float64_add(FT0, FT2, &env->fp_status);
359
    if (likely(!isnan(FT0)))
360
        FT0 = float64_chs(FT0);
361
}
362

    
363
void do_fnmsub (void)
364
{
365
    FT0 = float64_mul(FT0, FT1, &env->fp_status);
366
    FT0 = float64_sub(FT0, FT2, &env->fp_status);
367
    if (likely(!isnan(FT0)))
368
        FT0 = float64_chs(FT0);
369
}
370

    
371
void do_fsqrt (void)
372
{
373
    FT0 = float64_sqrt(FT0, &env->fp_status);
374
}
375

    
376
void do_fres (void)
377
{
378
    union {
379
        double d;
380
        uint64_t i;
381
    } p;
382

    
383
    if (likely(isnormal(FT0))) {
384
        FT0 = (float)(1.0 / FT0);
385
    } else {
386
        p.d = FT0;
387
        if (p.i == 0x8000000000000000ULL) {
388
            p.i = 0xFFF0000000000000ULL;
389
        } else if (p.i == 0x0000000000000000ULL) {
390
            p.i = 0x7FF0000000000000ULL;
391
        } else if (isnan(FT0)) {
392
            p.i = 0x7FF8000000000000ULL;
393
        } else if (FT0 < 0.0) {
394
            p.i = 0x8000000000000000ULL;
395
        } else {
396
            p.i = 0x0000000000000000ULL;
397
        }
398
        FT0 = p.d;
399
    }
400
}
401

    
402
void do_frsqrte (void)
403
{
404
    union {
405
        double d;
406
        uint64_t i;
407
    } p;
408

    
409
    if (likely(isnormal(FT0) && FT0 > 0.0)) {
410
        FT0 = float64_sqrt(FT0, &env->fp_status);
411
        FT0 = float32_div(1.0, FT0, &env->fp_status);
412
    } else {
413
        p.d = FT0;
414
        if (p.i == 0x8000000000000000ULL) {
415
            p.i = 0xFFF0000000000000ULL;
416
        } else if (p.i == 0x0000000000000000ULL) {
417
            p.i = 0x7FF0000000000000ULL;
418
        } else if (isnan(FT0)) {
419
            if (!(p.i & 0x0008000000000000ULL))
420
                p.i |= 0x000FFFFFFFFFFFFFULL;
421
        } else if (FT0 < 0) {
422
            p.i = 0x7FF8000000000000ULL;
423
        } else {
424
            p.i = 0x0000000000000000ULL;
425
        }
426
        FT0 = p.d;
427
    }
428
}
429

    
430
void do_fsel (void)
431
{
432
    if (FT0 >= 0)
433
        FT0 = FT1;
434
    else
435
        FT0 = FT2;
436
}
437

    
438
void do_fcmpu (void)
439
{
440
    if (likely(!isnan(FT0) && !isnan(FT1))) {
441
        if (float64_lt(FT0, FT1, &env->fp_status)) {
442
            T0 = 0x08UL;
443
        } else if (!float64_le(FT0, FT1, &env->fp_status)) {
444
            T0 = 0x04UL;
445
        } else {
446
            T0 = 0x02UL;
447
        }
448
    } else {
449
        T0 = 0x01UL;
450
        env->fpscr[4] |= 0x1;
451
        env->fpscr[6] |= 0x1;
452
    }
453
    env->fpscr[3] = T0;
454
}
455

    
456
void do_fcmpo (void)
457
{
458
    env->fpscr[4] &= ~0x1;
459
    if (likely(!isnan(FT0) && !isnan(FT1))) {
460
        if (float64_lt(FT0, FT1, &env->fp_status)) {
461
            T0 = 0x08UL;
462
        } else if (!float64_le(FT0, FT1, &env->fp_status)) {
463
            T0 = 0x04UL;
464
        } else {
465
            T0 = 0x02UL;
466
        }
467
    } else {
468
        T0 = 0x01UL;
469
        env->fpscr[4] |= 0x1;
470
        /* I don't know how to test "quiet" nan... */
471
        if (0 /* || ! quiet_nan(...) */) {
472
            env->fpscr[6] |= 0x1;
473
            if (!(env->fpscr[1] & 0x8))
474
                env->fpscr[4] |= 0x8;
475
        } else {
476
            env->fpscr[4] |= 0x8;
477
        }
478
    }
479
    env->fpscr[3] = T0;
480
}
481

    
482
void do_rfi (void)
483
{
484
    env->nip = env->spr[SPR_SRR0] & ~0x00000003;
485
    T0 = env->spr[SPR_SRR1] & ~0xFFFF0000UL;
486
    do_store_msr(env, T0);
487
#if defined (DEBUG_OP)
488
    dump_rfi();
489
#endif
490
    env->interrupt_request |= CPU_INTERRUPT_EXITTB;
491
}
492

    
493
void do_tw (uint32_t cmp, int flags)
494
{
495
    if (!likely(!((Ts0 < (int32_t)cmp && (flags & 0x10)) ||
496
                  (Ts0 > (int32_t)cmp && (flags & 0x08)) ||
497
                  (Ts0 == (int32_t)cmp && (flags & 0x04)) ||
498
                  (T0 < cmp && (flags & 0x02)) ||
499
                  (T0 > cmp && (flags & 0x01)))))
500
        do_raise_exception_err(EXCP_PROGRAM, EXCP_TRAP);
501
}
502

    
503
/* Instruction cache invalidation helper */
504
void do_icbi (void)
505
{
506
    uint32_t tmp;
507
    /* Invalidate one cache line :
508
     * PowerPC specification says this is to be treated like a load
509
     * (not a fetch) by the MMU. To be sure it will be so,
510
     * do the load "by hand".
511
     */
512
#if defined(TARGET_PPC64)
513
    if (!msr_sf)
514
        T0 &= 0xFFFFFFFFULL;
515
#endif
516
    tmp = ldl_kernel(T0);
517
    T0 &= ~(ICACHE_LINE_SIZE - 1);
518
    tb_invalidate_page_range(T0, T0 + ICACHE_LINE_SIZE);
519
}
520

    
521
/*****************************************************************************/
522
/* MMU related helpers */
523
/* TLB invalidation helpers */
524
void do_tlbia (void)
525
{
526
    tlb_flush(env, 1);
527
}
528

    
529
void do_tlbie (void)
530
{
531
#if !defined(FLUSH_ALL_TLBS)
532
    tlb_flush_page(env, T0);
533
#else
534
    do_tlbia();
535
#endif
536
}
537

    
538
/*****************************************************************************/
539
/* Softmmu support */
540
#if !defined (CONFIG_USER_ONLY)
541

    
542
#define MMUSUFFIX _mmu
543
#define GETPC() (__builtin_return_address(0))
544

    
545
#define SHIFT 0
546
#include "softmmu_template.h"
547

    
548
#define SHIFT 1
549
#include "softmmu_template.h"
550

    
551
#define SHIFT 2
552
#include "softmmu_template.h"
553

    
554
#define SHIFT 3
555
#include "softmmu_template.h"
556

    
557
/* try to fill the TLB and return an exception if error. If retaddr is
558
   NULL, it means that the function was called in C code (i.e. not
559
   from generated code or from helper.c) */
560
/* XXX: fix it to restore all registers */
561
void tlb_fill (target_ulong addr, int is_write, int is_user, void *retaddr)
562
{
563
    TranslationBlock *tb;
564
    CPUState *saved_env;
565
    target_phys_addr_t pc;
566
    int ret;
567

    
568
    /* XXX: hack to restore env in all cases, even if not called from
569
       generated code */
570
    saved_env = env;
571
    env = cpu_single_env;
572
    ret = cpu_ppc_handle_mmu_fault(env, addr, is_write, is_user, 1);
573
    if (!likely(ret == 0)) {
574
        if (likely(retaddr)) {
575
            /* now we have a real cpu fault */
576
            pc = (target_phys_addr_t)retaddr;
577
            tb = tb_find_pc(pc);
578
            if (likely(tb)) {
579
                /* the PC is inside the translated code. It means that we have
580
                   a virtual CPU fault */
581
                cpu_restore_state(tb, env, pc, NULL);
582
}
583
        }
584
        do_raise_exception_err(env->exception_index, env->error_code);
585
    }
586
    env = saved_env;
587
}
588
#endif /* !CONFIG_USER_ONLY */
589