Statistics
| Branch: | Revision:

root / target-i386 / kvm.c @ 719f66a7

History | View | Annotate | Download (22.5 kB)

1
/*
2
 * QEMU KVM support
3
 *
4
 * Copyright (C) 2006-2008 Qumranet Technologies
5
 * Copyright IBM, Corp. 2008
6
 *
7
 * Authors:
8
 *  Anthony Liguori   <aliguori@us.ibm.com>
9
 *
10
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11
 * See the COPYING file in the top-level directory.
12
 *
13
 */
14

    
15
#include <sys/types.h>
16
#include <sys/ioctl.h>
17
#include <sys/mman.h>
18

    
19
#include <linux/kvm.h>
20

    
21
#include "qemu-common.h"
22
#include "sysemu.h"
23
#include "kvm.h"
24
#include "cpu.h"
25
#include "gdbstub.h"
26

    
27
//#define DEBUG_KVM
28

    
29
#ifdef DEBUG_KVM
30
#define dprintf(fmt, ...) \
31
    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
32
#else
33
#define dprintf(fmt, ...) \
34
    do { } while (0)
35
#endif
36

    
37
int kvm_arch_init_vcpu(CPUState *env)
38
{
39
    struct {
40
        struct kvm_cpuid2 cpuid;
41
        struct kvm_cpuid_entry2 entries[100];
42
    } __attribute__((packed)) cpuid_data;
43
    uint32_t limit, i, j, cpuid_i;
44
    uint32_t unused;
45

    
46
    cpuid_i = 0;
47

    
48
    cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
49

    
50
    for (i = 0; i <= limit; i++) {
51
        struct kvm_cpuid_entry2 *c = &cpuid_data.entries[cpuid_i++];
52

    
53
        switch (i) {
54
        case 2: {
55
            /* Keep reading function 2 till all the input is received */
56
            int times;
57

    
58
            c->function = i;
59
            c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
60
                       KVM_CPUID_FLAG_STATE_READ_NEXT;
61
            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
62
            times = c->eax & 0xff;
63

    
64
            for (j = 1; j < times; ++j) {
65
                c = &cpuid_data.entries[cpuid_i++];
66
                c->function = i;
67
                c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
68
                cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
69
            }
70
            break;
71
        }
72
        case 4:
73
        case 0xb:
74
        case 0xd:
75
            for (j = 0; ; j++) {
76
                c->function = i;
77
                c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
78
                c->index = j;
79
                cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
80

    
81
                if (i == 4 && c->eax == 0)
82
                    break;
83
                if (i == 0xb && !(c->ecx & 0xff00))
84
                    break;
85
                if (i == 0xd && c->eax == 0)
86
                    break;
87

    
88
                c = &cpuid_data.entries[cpuid_i++];
89
            }
90
            break;
91
        default:
92
            c->function = i;
93
            c->flags = 0;
94
            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
95
            break;
96
        }
97
    }
98
    cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
99

    
100
    for (i = 0x80000000; i <= limit; i++) {
101
        struct kvm_cpuid_entry2 *c = &cpuid_data.entries[cpuid_i++];
102

    
103
        c->function = i;
104
        c->flags = 0;
105
        cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
106
    }
107

    
108
    cpuid_data.cpuid.nent = cpuid_i;
109

    
110
    return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
111
}
112

    
113
static int kvm_has_msr_star(CPUState *env)
114
{
115
    static int has_msr_star;
116
    int ret;
117

    
118
    /* first time */
119
    if (has_msr_star == 0) {        
120
        struct kvm_msr_list msr_list, *kvm_msr_list;
121

    
122
        has_msr_star = -1;
123

    
124
        /* Obtain MSR list from KVM.  These are the MSRs that we must
125
         * save/restore */
126
        msr_list.nmsrs = 0;
127
        ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, &msr_list);
128
        if (ret < 0)
129
            return 0;
130

    
131
        kvm_msr_list = qemu_mallocz(sizeof(msr_list) +
132
                                    msr_list.nmsrs * sizeof(msr_list.indices[0]));
133

    
134
        kvm_msr_list->nmsrs = msr_list.nmsrs;
135
        ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
136
        if (ret >= 0) {
137
            int i;
138

    
139
            for (i = 0; i < kvm_msr_list->nmsrs; i++) {
140
                if (kvm_msr_list->indices[i] == MSR_STAR) {
141
                    has_msr_star = 1;
142
                    break;
143
                }
144
            }
145
        }
146

    
147
        free(kvm_msr_list);
148
    }
149

    
150
    if (has_msr_star == 1)
151
        return 1;
152
    return 0;
153
}
154

    
155
int kvm_arch_init(KVMState *s, int smp_cpus)
156
{
157
    int ret;
158

    
159
    /* create vm86 tss.  KVM uses vm86 mode to emulate 16-bit code
160
     * directly.  In order to use vm86 mode, a TSS is needed.  Since this
161
     * must be part of guest physical memory, we need to allocate it.  Older
162
     * versions of KVM just assumed that it would be at the end of physical
163
     * memory but that doesn't work with more than 4GB of memory.  We simply
164
     * refuse to work with those older versions of KVM. */
165
    ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_SET_TSS_ADDR);
166
    if (ret <= 0) {
167
        fprintf(stderr, "kvm does not support KVM_CAP_SET_TSS_ADDR\n");
168
        return ret;
169
    }
170

    
171
    /* this address is 3 pages before the bios, and the bios should present
172
     * as unavaible memory.  FIXME, need to ensure the e820 map deals with
173
     * this?
174
     */
175
    return kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, 0xfffbd000);
176
}
177
                    
178
static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
179
{
180
    lhs->selector = rhs->selector;
181
    lhs->base = rhs->base;
182
    lhs->limit = rhs->limit;
183
    lhs->type = 3;
184
    lhs->present = 1;
185
    lhs->dpl = 3;
186
    lhs->db = 0;
187
    lhs->s = 1;
188
    lhs->l = 0;
189
    lhs->g = 0;
190
    lhs->avl = 0;
191
    lhs->unusable = 0;
192
}
193

    
194
static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
195
{
196
    unsigned flags = rhs->flags;
197
    lhs->selector = rhs->selector;
198
    lhs->base = rhs->base;
199
    lhs->limit = rhs->limit;
200
    lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
201
    lhs->present = (flags & DESC_P_MASK) != 0;
202
    lhs->dpl = rhs->selector & 3;
203
    lhs->db = (flags >> DESC_B_SHIFT) & 1;
204
    lhs->s = (flags & DESC_S_MASK) != 0;
205
    lhs->l = (flags >> DESC_L_SHIFT) & 1;
206
    lhs->g = (flags & DESC_G_MASK) != 0;
207
    lhs->avl = (flags & DESC_AVL_MASK) != 0;
208
    lhs->unusable = 0;
209
}
210

    
211
static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
212
{
213
    lhs->selector = rhs->selector;
214
    lhs->base = rhs->base;
215
    lhs->limit = rhs->limit;
216
    lhs->flags =
217
        (rhs->type << DESC_TYPE_SHIFT)
218
        | (rhs->present * DESC_P_MASK)
219
        | (rhs->dpl << DESC_DPL_SHIFT)
220
        | (rhs->db << DESC_B_SHIFT)
221
        | (rhs->s * DESC_S_MASK)
222
        | (rhs->l << DESC_L_SHIFT)
223
        | (rhs->g * DESC_G_MASK)
224
        | (rhs->avl * DESC_AVL_MASK);
225
}
226

    
227
static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
228
{
229
    if (set)
230
        *kvm_reg = *qemu_reg;
231
    else
232
        *qemu_reg = *kvm_reg;
233
}
234

    
235
static int kvm_getput_regs(CPUState *env, int set)
236
{
237
    struct kvm_regs regs;
238
    int ret = 0;
239

    
240
    if (!set) {
241
        ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
242
        if (ret < 0)
243
            return ret;
244
    }
245

    
246
    kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
247
    kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
248
    kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
249
    kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
250
    kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
251
    kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
252
    kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
253
    kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
254
#ifdef TARGET_X86_64
255
    kvm_getput_reg(&regs.r8, &env->regs[8], set);
256
    kvm_getput_reg(&regs.r9, &env->regs[9], set);
257
    kvm_getput_reg(&regs.r10, &env->regs[10], set);
258
    kvm_getput_reg(&regs.r11, &env->regs[11], set);
259
    kvm_getput_reg(&regs.r12, &env->regs[12], set);
260
    kvm_getput_reg(&regs.r13, &env->regs[13], set);
261
    kvm_getput_reg(&regs.r14, &env->regs[14], set);
262
    kvm_getput_reg(&regs.r15, &env->regs[15], set);
263
#endif
264

    
265
    kvm_getput_reg(&regs.rflags, &env->eflags, set);
266
    kvm_getput_reg(&regs.rip, &env->eip, set);
267

    
268
    if (set)
269
        ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
270

    
271
    return ret;
272
}
273

    
274
static int kvm_put_fpu(CPUState *env)
275
{
276
    struct kvm_fpu fpu;
277
    int i;
278

    
279
    memset(&fpu, 0, sizeof fpu);
280
    fpu.fsw = env->fpus & ~(7 << 11);
281
    fpu.fsw |= (env->fpstt & 7) << 11;
282
    fpu.fcw = env->fpuc;
283
    for (i = 0; i < 8; ++i)
284
        fpu.ftwx |= (!env->fptags[i]) << i;
285
    memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
286
    memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
287
    fpu.mxcsr = env->mxcsr;
288

    
289
    return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
290
}
291

    
292
static int kvm_put_sregs(CPUState *env)
293
{
294
    struct kvm_sregs sregs;
295

    
296
    memcpy(sregs.interrupt_bitmap,
297
           env->interrupt_bitmap,
298
           sizeof(sregs.interrupt_bitmap));
299

    
300
    if ((env->eflags & VM_MASK)) {
301
            set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
302
            set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
303
            set_v8086_seg(&sregs.es, &env->segs[R_ES]);
304
            set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
305
            set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
306
            set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
307
    } else {
308
            set_seg(&sregs.cs, &env->segs[R_CS]);
309
            set_seg(&sregs.ds, &env->segs[R_DS]);
310
            set_seg(&sregs.es, &env->segs[R_ES]);
311
            set_seg(&sregs.fs, &env->segs[R_FS]);
312
            set_seg(&sregs.gs, &env->segs[R_GS]);
313
            set_seg(&sregs.ss, &env->segs[R_SS]);
314

    
315
            if (env->cr[0] & CR0_PE_MASK) {
316
                /* force ss cpl to cs cpl */
317
                sregs.ss.selector = (sregs.ss.selector & ~3) |
318
                        (sregs.cs.selector & 3);
319
                sregs.ss.dpl = sregs.ss.selector & 3;
320
            }
321
    }
322

    
323
    set_seg(&sregs.tr, &env->tr);
324
    set_seg(&sregs.ldt, &env->ldt);
325

    
326
    sregs.idt.limit = env->idt.limit;
327
    sregs.idt.base = env->idt.base;
328
    sregs.gdt.limit = env->gdt.limit;
329
    sregs.gdt.base = env->gdt.base;
330

    
331
    sregs.cr0 = env->cr[0];
332
    sregs.cr2 = env->cr[2];
333
    sregs.cr3 = env->cr[3];
334
    sregs.cr4 = env->cr[4];
335

    
336
    sregs.cr8 = cpu_get_apic_tpr(env);
337
    sregs.apic_base = cpu_get_apic_base(env);
338

    
339
    sregs.efer = env->efer;
340

    
341
    return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
342
}
343

    
344
static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
345
                              uint32_t index, uint64_t value)
346
{
347
    entry->index = index;
348
    entry->data = value;
349
}
350

    
351
static int kvm_put_msrs(CPUState *env)
352
{
353
    struct {
354
        struct kvm_msrs info;
355
        struct kvm_msr_entry entries[100];
356
    } msr_data;
357
    struct kvm_msr_entry *msrs = msr_data.entries;
358
    int n = 0;
359

    
360
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
361
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
362
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
363
    if (kvm_has_msr_star(env))
364
        kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
365
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
366
#ifdef TARGET_X86_64
367
    /* FIXME if lm capable */
368
    kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
369
    kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
370
    kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
371
    kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
372
#endif
373
    msr_data.info.nmsrs = n;
374

    
375
    return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
376

    
377
}
378

    
379

    
380
static int kvm_get_fpu(CPUState *env)
381
{
382
    struct kvm_fpu fpu;
383
    int i, ret;
384

    
385
    ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
386
    if (ret < 0)
387
        return ret;
388

    
389
    env->fpstt = (fpu.fsw >> 11) & 7;
390
    env->fpus = fpu.fsw;
391
    env->fpuc = fpu.fcw;
392
    for (i = 0; i < 8; ++i)
393
        env->fptags[i] = !((fpu.ftwx >> i) & 1);
394
    memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
395
    memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
396
    env->mxcsr = fpu.mxcsr;
397

    
398
    return 0;
399
}
400

    
401
static int kvm_get_sregs(CPUState *env)
402
{
403
    struct kvm_sregs sregs;
404
    uint32_t hflags;
405
    int ret;
406

    
407
    ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
408
    if (ret < 0)
409
        return ret;
410

    
411
    memcpy(env->interrupt_bitmap, 
412
           sregs.interrupt_bitmap,
413
           sizeof(sregs.interrupt_bitmap));
414

    
415
    get_seg(&env->segs[R_CS], &sregs.cs);
416
    get_seg(&env->segs[R_DS], &sregs.ds);
417
    get_seg(&env->segs[R_ES], &sregs.es);
418
    get_seg(&env->segs[R_FS], &sregs.fs);
419
    get_seg(&env->segs[R_GS], &sregs.gs);
420
    get_seg(&env->segs[R_SS], &sregs.ss);
421

    
422
    get_seg(&env->tr, &sregs.tr);
423
    get_seg(&env->ldt, &sregs.ldt);
424

    
425
    env->idt.limit = sregs.idt.limit;
426
    env->idt.base = sregs.idt.base;
427
    env->gdt.limit = sregs.gdt.limit;
428
    env->gdt.base = sregs.gdt.base;
429

    
430
    env->cr[0] = sregs.cr0;
431
    env->cr[2] = sregs.cr2;
432
    env->cr[3] = sregs.cr3;
433
    env->cr[4] = sregs.cr4;
434

    
435
    cpu_set_apic_base(env, sregs.apic_base);
436

    
437
    env->efer = sregs.efer;
438
    //cpu_set_apic_tpr(env, sregs.cr8);
439

    
440
#define HFLAG_COPY_MASK ~( \
441
                        HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
442
                        HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
443
                        HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
444
                        HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
445

    
446

    
447

    
448
    hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
449
    hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
450
    hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
451
            (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
452
    hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
453
    hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
454
            (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
455

    
456
    if (env->efer & MSR_EFER_LMA) {
457
        hflags |= HF_LMA_MASK;
458
    }
459

    
460
    if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
461
        hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
462
    } else {
463
        hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
464
                (DESC_B_SHIFT - HF_CS32_SHIFT);
465
        hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
466
                (DESC_B_SHIFT - HF_SS32_SHIFT);
467
        if (!(env->cr[0] & CR0_PE_MASK) ||
468
                   (env->eflags & VM_MASK) ||
469
                   !(hflags & HF_CS32_MASK)) {
470
                hflags |= HF_ADDSEG_MASK;
471
            } else {
472
                hflags |= ((env->segs[R_DS].base |
473
                                env->segs[R_ES].base |
474
                                env->segs[R_SS].base) != 0) <<
475
                    HF_ADDSEG_SHIFT;
476
            }
477
    }
478
    env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
479

    
480
    return 0;
481
}
482

    
483
static int kvm_get_msrs(CPUState *env)
484
{
485
    struct {
486
        struct kvm_msrs info;
487
        struct kvm_msr_entry entries[100];
488
    } msr_data;
489
    struct kvm_msr_entry *msrs = msr_data.entries;
490
    int ret, i, n;
491

    
492
    n = 0;
493
    msrs[n++].index = MSR_IA32_SYSENTER_CS;
494
    msrs[n++].index = MSR_IA32_SYSENTER_ESP;
495
    msrs[n++].index = MSR_IA32_SYSENTER_EIP;
496
    if (kvm_has_msr_star(env))
497
        msrs[n++].index = MSR_STAR;
498
    msrs[n++].index = MSR_IA32_TSC;
499
#ifdef TARGET_X86_64
500
    /* FIXME lm_capable_kernel */
501
    msrs[n++].index = MSR_CSTAR;
502
    msrs[n++].index = MSR_KERNELGSBASE;
503
    msrs[n++].index = MSR_FMASK;
504
    msrs[n++].index = MSR_LSTAR;
505
#endif
506
    msr_data.info.nmsrs = n;
507
    ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
508
    if (ret < 0)
509
        return ret;
510

    
511
    for (i = 0; i < ret; i++) {
512
        switch (msrs[i].index) {
513
        case MSR_IA32_SYSENTER_CS:
514
            env->sysenter_cs = msrs[i].data;
515
            break;
516
        case MSR_IA32_SYSENTER_ESP:
517
            env->sysenter_esp = msrs[i].data;
518
            break;
519
        case MSR_IA32_SYSENTER_EIP:
520
            env->sysenter_eip = msrs[i].data;
521
            break;
522
        case MSR_STAR:
523
            env->star = msrs[i].data;
524
            break;
525
#ifdef TARGET_X86_64
526
        case MSR_CSTAR:
527
            env->cstar = msrs[i].data;
528
            break;
529
        case MSR_KERNELGSBASE:
530
            env->kernelgsbase = msrs[i].data;
531
            break;
532
        case MSR_FMASK:
533
            env->fmask = msrs[i].data;
534
            break;
535
        case MSR_LSTAR:
536
            env->lstar = msrs[i].data;
537
            break;
538
#endif
539
        case MSR_IA32_TSC:
540
            env->tsc = msrs[i].data;
541
            break;
542
        }
543
    }
544

    
545
    return 0;
546
}
547

    
548
int kvm_arch_put_registers(CPUState *env)
549
{
550
    int ret;
551

    
552
    ret = kvm_getput_regs(env, 1);
553
    if (ret < 0)
554
        return ret;
555

    
556
    ret = kvm_put_fpu(env);
557
    if (ret < 0)
558
        return ret;
559

    
560
    ret = kvm_put_sregs(env);
561
    if (ret < 0)
562
        return ret;
563

    
564
    ret = kvm_put_msrs(env);
565
    if (ret < 0)
566
        return ret;
567

    
568
    return 0;
569
}
570

    
571
int kvm_arch_get_registers(CPUState *env)
572
{
573
    int ret;
574

    
575
    ret = kvm_getput_regs(env, 0);
576
    if (ret < 0)
577
        return ret;
578

    
579
    ret = kvm_get_fpu(env);
580
    if (ret < 0)
581
        return ret;
582

    
583
    ret = kvm_get_sregs(env);
584
    if (ret < 0)
585
        return ret;
586

    
587
    ret = kvm_get_msrs(env);
588
    if (ret < 0)
589
        return ret;
590

    
591
    return 0;
592
}
593

    
594
int kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
595
{
596
    /* Try to inject an interrupt if the guest can accept it */
597
    if (run->ready_for_interrupt_injection &&
598
        (env->interrupt_request & CPU_INTERRUPT_HARD) &&
599
        (env->eflags & IF_MASK)) {
600
        int irq;
601

    
602
        env->interrupt_request &= ~CPU_INTERRUPT_HARD;
603
        irq = cpu_get_pic_interrupt(env);
604
        if (irq >= 0) {
605
            struct kvm_interrupt intr;
606
            intr.irq = irq;
607
            /* FIXME: errors */
608
            dprintf("injected interrupt %d\n", irq);
609
            kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
610
        }
611
    }
612

    
613
    /* If we have an interrupt but the guest is not ready to receive an
614
     * interrupt, request an interrupt window exit.  This will
615
     * cause a return to userspace as soon as the guest is ready to
616
     * receive interrupts. */
617
    if ((env->interrupt_request & CPU_INTERRUPT_HARD))
618
        run->request_interrupt_window = 1;
619
    else
620
        run->request_interrupt_window = 0;
621

    
622
    dprintf("setting tpr\n");
623
    run->cr8 = cpu_get_apic_tpr(env);
624

    
625
    return 0;
626
}
627

    
628
int kvm_arch_post_run(CPUState *env, struct kvm_run *run)
629
{
630
    if (run->if_flag)
631
        env->eflags |= IF_MASK;
632
    else
633
        env->eflags &= ~IF_MASK;
634
    
635
    cpu_set_apic_tpr(env, run->cr8);
636
    cpu_set_apic_base(env, run->apic_base);
637

    
638
    return 0;
639
}
640

    
641
static int kvm_handle_halt(CPUState *env)
642
{
643
    if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
644
          (env->eflags & IF_MASK)) &&
645
        !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
646
        env->halted = 1;
647
        env->exception_index = EXCP_HLT;
648
        return 0;
649
    }
650

    
651
    return 1;
652
}
653

    
654
int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
655
{
656
    int ret = 0;
657

    
658
    switch (run->exit_reason) {
659
    case KVM_EXIT_HLT:
660
        dprintf("handle_hlt\n");
661
        ret = kvm_handle_halt(env);
662
        break;
663
    }
664

    
665
    return ret;
666
}
667

    
668
#ifdef KVM_CAP_SET_GUEST_DEBUG
669
int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
670
{
671
    const static uint8_t int3 = 0xcc;
672

    
673
    if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
674
        cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1))
675
        return -EINVAL;
676
    return 0;
677
}
678

    
679
int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
680
{
681
    uint8_t int3;
682

    
683
    if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
684
        cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1))
685
        return -EINVAL;
686
    return 0;
687
}
688

    
689
static struct {
690
    target_ulong addr;
691
    int len;
692
    int type;
693
} hw_breakpoint[4];
694

    
695
static int nb_hw_breakpoint;
696

    
697
static int find_hw_breakpoint(target_ulong addr, int len, int type)
698
{
699
    int n;
700

    
701
    for (n = 0; n < nb_hw_breakpoint; n++)
702
        if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
703
            (hw_breakpoint[n].len == len || len == -1))
704
            return n;
705
    return -1;
706
}
707

    
708
int kvm_arch_insert_hw_breakpoint(target_ulong addr,
709
                                  target_ulong len, int type)
710
{
711
    switch (type) {
712
    case GDB_BREAKPOINT_HW:
713
        len = 1;
714
        break;
715
    case GDB_WATCHPOINT_WRITE:
716
    case GDB_WATCHPOINT_ACCESS:
717
        switch (len) {
718
        case 1:
719
            break;
720
        case 2:
721
        case 4:
722
        case 8:
723
            if (addr & (len - 1))
724
                return -EINVAL;
725
            break;
726
        default:
727
            return -EINVAL;
728
        }
729
        break;
730
    default:
731
        return -ENOSYS;
732
    }
733

    
734
    if (nb_hw_breakpoint == 4)
735
        return -ENOBUFS;
736

    
737
    if (find_hw_breakpoint(addr, len, type) >= 0)
738
        return -EEXIST;
739

    
740
    hw_breakpoint[nb_hw_breakpoint].addr = addr;
741
    hw_breakpoint[nb_hw_breakpoint].len = len;
742
    hw_breakpoint[nb_hw_breakpoint].type = type;
743
    nb_hw_breakpoint++;
744

    
745
    return 0;
746
}
747

    
748
int kvm_arch_remove_hw_breakpoint(target_ulong addr,
749
                                  target_ulong len, int type)
750
{
751
    int n;
752

    
753
    n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
754
    if (n < 0)
755
        return -ENOENT;
756

    
757
    nb_hw_breakpoint--;
758
    hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
759

    
760
    return 0;
761
}
762

    
763
void kvm_arch_remove_all_hw_breakpoints(void)
764
{
765
    nb_hw_breakpoint = 0;
766
}
767

    
768
static CPUWatchpoint hw_watchpoint;
769

    
770
int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info)
771
{
772
    int handle = 0;
773
    int n;
774

    
775
    if (arch_info->exception == 1) {
776
        if (arch_info->dr6 & (1 << 14)) {
777
            if (cpu_single_env->singlestep_enabled)
778
                handle = 1;
779
        } else {
780
            for (n = 0; n < 4; n++)
781
                if (arch_info->dr6 & (1 << n))
782
                    switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
783
                    case 0x0:
784
                        handle = 1;
785
                        break;
786
                    case 0x1:
787
                        handle = 1;
788
                        cpu_single_env->watchpoint_hit = &hw_watchpoint;
789
                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
790
                        hw_watchpoint.flags = BP_MEM_WRITE;
791
                        break;
792
                    case 0x3:
793
                        handle = 1;
794
                        cpu_single_env->watchpoint_hit = &hw_watchpoint;
795
                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
796
                        hw_watchpoint.flags = BP_MEM_ACCESS;
797
                        break;
798
                    }
799
        }
800
    } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc))
801
        handle = 1;
802

    
803
    if (!handle)
804
        kvm_update_guest_debug(cpu_single_env,
805
                        (arch_info->exception == 1) ?
806
                        KVM_GUESTDBG_INJECT_DB : KVM_GUESTDBG_INJECT_BP);
807

    
808
    return handle;
809
}
810

    
811
void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
812
{
813
    const uint8_t type_code[] = {
814
        [GDB_BREAKPOINT_HW] = 0x0,
815
        [GDB_WATCHPOINT_WRITE] = 0x1,
816
        [GDB_WATCHPOINT_ACCESS] = 0x3
817
    };
818
    const uint8_t len_code[] = {
819
        [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
820
    };
821
    int n;
822

    
823
    if (kvm_sw_breakpoints_active(env))
824
        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
825

    
826
    if (nb_hw_breakpoint > 0) {
827
        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
828
        dbg->arch.debugreg[7] = 0x0600;
829
        for (n = 0; n < nb_hw_breakpoint; n++) {
830
            dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
831
            dbg->arch.debugreg[7] |= (2 << (n * 2)) |
832
                (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
833
                (len_code[hw_breakpoint[n].len] << (18 + n*4));
834
        }
835
    }
836
}
837
#endif /* KVM_CAP_SET_GUEST_DEBUG */