Statistics
| Branch: | Revision:

root / hw / ne2000.c @ 71be0fc3

History | View | Annotate | Download (20.9 kB)

1
/*
2
 * QEMU NE2000 emulation
3
 * 
4
 * Copyright (c) 2003-2004 Fabrice Bellard
5
 * 
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "vl.h"
25

    
26
/* debug NE2000 card */
27
//#define DEBUG_NE2000
28

    
29
#define MAX_ETH_FRAME_SIZE 1514
30

    
31
#define E8390_CMD        0x00  /* The command register (for all pages) */
32
/* Page 0 register offsets. */
33
#define EN0_CLDALO        0x01        /* Low byte of current local dma addr  RD */
34
#define EN0_STARTPG        0x01        /* Starting page of ring bfr WR */
35
#define EN0_CLDAHI        0x02        /* High byte of current local dma addr  RD */
36
#define EN0_STOPPG        0x02        /* Ending page +1 of ring bfr WR */
37
#define EN0_BOUNDARY        0x03        /* Boundary page of ring bfr RD WR */
38
#define EN0_TSR                0x04        /* Transmit status reg RD */
39
#define EN0_TPSR        0x04        /* Transmit starting page WR */
40
#define EN0_NCR                0x05        /* Number of collision reg RD */
41
#define EN0_TCNTLO        0x05        /* Low  byte of tx byte count WR */
42
#define EN0_FIFO        0x06        /* FIFO RD */
43
#define EN0_TCNTHI        0x06        /* High byte of tx byte count WR */
44
#define EN0_ISR                0x07        /* Interrupt status reg RD WR */
45
#define EN0_CRDALO        0x08        /* low byte of current remote dma address RD */
46
#define EN0_RSARLO        0x08        /* Remote start address reg 0 */
47
#define EN0_CRDAHI        0x09        /* high byte, current remote dma address RD */
48
#define EN0_RSARHI        0x09        /* Remote start address reg 1 */
49
#define EN0_RCNTLO        0x0a        /* Remote byte count reg WR */
50
#define EN0_RCNTHI        0x0b        /* Remote byte count reg WR */
51
#define EN0_RSR                0x0c        /* rx status reg RD */
52
#define EN0_RXCR        0x0c        /* RX configuration reg WR */
53
#define EN0_TXCR        0x0d        /* TX configuration reg WR */
54
#define EN0_COUNTER0        0x0d        /* Rcv alignment error counter RD */
55
#define EN0_DCFG        0x0e        /* Data configuration reg WR */
56
#define EN0_COUNTER1        0x0e        /* Rcv CRC error counter RD */
57
#define EN0_IMR                0x0f        /* Interrupt mask reg WR */
58
#define EN0_COUNTER2        0x0f        /* Rcv missed frame error counter RD */
59

    
60
#define EN1_PHYS        0x11
61
#define EN1_CURPAG      0x17
62
#define EN1_MULT        0x18
63

    
64
#define EN2_STARTPG        0x21        /* Starting page of ring bfr RD */
65
#define EN2_STOPPG        0x22        /* Ending page +1 of ring bfr RD */
66

    
67
/*  Register accessed at EN_CMD, the 8390 base addr.  */
68
#define E8390_STOP        0x01        /* Stop and reset the chip */
69
#define E8390_START        0x02        /* Start the chip, clear reset */
70
#define E8390_TRANS        0x04        /* Transmit a frame */
71
#define E8390_RREAD        0x08        /* Remote read */
72
#define E8390_RWRITE        0x10        /* Remote write  */
73
#define E8390_NODMA        0x20        /* Remote DMA */
74
#define E8390_PAGE0        0x00        /* Select page chip registers */
75
#define E8390_PAGE1        0x40        /* using the two high-order bits */
76
#define E8390_PAGE2        0x80        /* Page 3 is invalid. */
77

    
78
/* Bits in EN0_ISR - Interrupt status register */
79
#define ENISR_RX        0x01        /* Receiver, no error */
80
#define ENISR_TX        0x02        /* Transmitter, no error */
81
#define ENISR_RX_ERR        0x04        /* Receiver, with error */
82
#define ENISR_TX_ERR        0x08        /* Transmitter, with error */
83
#define ENISR_OVER        0x10        /* Receiver overwrote the ring */
84
#define ENISR_COUNTERS        0x20        /* Counters need emptying */
85
#define ENISR_RDC        0x40        /* remote dma complete */
86
#define ENISR_RESET        0x80        /* Reset completed */
87
#define ENISR_ALL        0x3f        /* Interrupts we will enable */
88

    
89
/* Bits in received packet status byte and EN0_RSR*/
90
#define ENRSR_RXOK        0x01        /* Received a good packet */
91
#define ENRSR_CRC        0x02        /* CRC error */
92
#define ENRSR_FAE        0x04        /* frame alignment error */
93
#define ENRSR_FO        0x08        /* FIFO overrun */
94
#define ENRSR_MPA        0x10        /* missed pkt */
95
#define ENRSR_PHY        0x20        /* physical/multicast address */
96
#define ENRSR_DIS        0x40        /* receiver disable. set in monitor mode */
97
#define ENRSR_DEF        0x80        /* deferring */
98

    
99
/* Transmitted packet status, EN0_TSR. */
100
#define ENTSR_PTX 0x01        /* Packet transmitted without error */
101
#define ENTSR_ND  0x02        /* The transmit wasn't deferred. */
102
#define ENTSR_COL 0x04        /* The transmit collided at least once. */
103
#define ENTSR_ABT 0x08  /* The transmit collided 16 times, and was deferred. */
104
#define ENTSR_CRS 0x10        /* The carrier sense was lost. */
105
#define ENTSR_FU  0x20  /* A "FIFO underrun" occurred during transmit. */
106
#define ENTSR_CDH 0x40        /* The collision detect "heartbeat" signal was lost. */
107
#define ENTSR_OWC 0x80  /* There was an out-of-window collision. */
108

    
109
#define NE2000_PMEM_SIZE    (32*1024)
110
#define NE2000_PMEM_START   (16*1024)
111
#define NE2000_PMEM_END     (NE2000_PMEM_SIZE+NE2000_PMEM_START)
112
#define NE2000_MEM_SIZE     NE2000_PMEM_END
113

    
114
typedef struct NE2000State {
115
    uint8_t cmd;
116
    uint32_t start;
117
    uint32_t stop;
118
    uint8_t boundary;
119
    uint8_t tsr;
120
    uint8_t tpsr;
121
    uint16_t tcnt;
122
    uint16_t rcnt;
123
    uint32_t rsar;
124
    uint8_t rsr;
125
    uint8_t isr;
126
    uint8_t dcfg;
127
    uint8_t imr;
128
    uint8_t phys[6]; /* mac address */
129
    uint8_t curpag;
130
    uint8_t mult[8]; /* multicast mask array */
131
    int irq;
132
    PCIDevice *pci_dev;
133
    NetDriverState *nd;
134
    uint8_t mem[NE2000_MEM_SIZE];
135
} NE2000State;
136

    
137
static void ne2000_reset(NE2000State *s)
138
{
139
    int i;
140

    
141
    s->isr = ENISR_RESET;
142
    memcpy(s->mem, s->nd->macaddr, 6);
143
    s->mem[14] = 0x57;
144
    s->mem[15] = 0x57;
145

    
146
    /* duplicate prom data */
147
    for(i = 15;i >= 0; i--) {
148
        s->mem[2 * i] = s->mem[i];
149
        s->mem[2 * i + 1] = s->mem[i];
150
    }
151
}
152

    
153
static void ne2000_update_irq(NE2000State *s)
154
{
155
    int isr;
156
    isr = (s->isr & s->imr) & 0x7f;
157
#if defined(DEBUG_NE2000)
158
    printf("NE2000: Set IRQ line %d to %d (%02x %02x)\n",
159
           s->irq, isr ? 1 : 0, s->isr, s->imr);
160
#endif
161
    if (s->irq == 16) {
162
        /* PCI irq */
163
        pci_set_irq(s->pci_dev, 0, (isr != 0));
164
    } else {
165
        /* ISA irq */
166
        pic_set_irq(s->irq, (isr != 0));
167
    }
168
}
169

    
170
/* return the max buffer size if the NE2000 can receive more data */
171
static int ne2000_can_receive(void *opaque)
172
{
173
    NE2000State *s = opaque;
174
    int avail, index, boundary;
175
    
176
    if (s->cmd & E8390_STOP)
177
        return 0;
178
    index = s->curpag << 8;
179
    boundary = s->boundary << 8;
180
    if (index < boundary)
181
        avail = boundary - index;
182
    else
183
        avail = (s->stop - s->start) - (index - boundary);
184
    if (avail < (MAX_ETH_FRAME_SIZE + 4))
185
        return 0;
186
    return MAX_ETH_FRAME_SIZE;
187
}
188

    
189
#define MIN_BUF_SIZE 60
190

    
191
static void ne2000_receive(void *opaque, const uint8_t *buf, int size)
192
{
193
    NE2000State *s = opaque;
194
    uint8_t *p;
195
    int total_len, next, avail, len, index;
196
    uint8_t buf1[60];
197
    
198
#if defined(DEBUG_NE2000)
199
    printf("NE2000: received len=%d\n", size);
200
#endif
201

    
202
    /* if too small buffer, then expand it */
203
    if (size < MIN_BUF_SIZE) {
204
        memcpy(buf1, buf, size);
205
        memset(buf1 + size, 0, MIN_BUF_SIZE - size);
206
        buf = buf1;
207
        size = MIN_BUF_SIZE;
208
    }
209

    
210
    index = s->curpag << 8;
211
    /* 4 bytes for header */
212
    total_len = size + 4;
213
    /* address for next packet (4 bytes for CRC) */
214
    next = index + ((total_len + 4 + 255) & ~0xff);
215
    if (next >= s->stop)
216
        next -= (s->stop - s->start);
217
    /* prepare packet header */
218
    p = s->mem + index;
219
    s->rsr = ENRSR_RXOK; /* receive status */
220
    /* XXX: check this */
221
    if (buf[0] & 0x01)
222
        s->rsr |= ENRSR_PHY;
223
    p[0] = s->rsr;
224
    p[1] = next >> 8;
225
    p[2] = total_len;
226
    p[3] = total_len >> 8;
227
    index += 4;
228

    
229
    /* write packet data */
230
    while (size > 0) {
231
        avail = s->stop - index;
232
        len = size;
233
        if (len > avail)
234
            len = avail;
235
        memcpy(s->mem + index, buf, len);
236
        buf += len;
237
        index += len;
238
        if (index == s->stop)
239
            index = s->start;
240
        size -= len;
241
    }
242
    s->curpag = next >> 8;
243

    
244
    /* now we can signal we have receive something */
245
    s->isr |= ENISR_RX;
246
    ne2000_update_irq(s);
247
}
248

    
249
static void ne2000_ioport_write(void *opaque, uint32_t addr, uint32_t val)
250
{
251
    NE2000State *s = opaque;
252
    int offset, page, index;
253

    
254
    addr &= 0xf;
255
#ifdef DEBUG_NE2000
256
    printf("NE2000: write addr=0x%x val=0x%02x\n", addr, val);
257
#endif
258
    if (addr == E8390_CMD) {
259
        /* control register */
260
        s->cmd = val;
261
        if (!(val & E8390_STOP)) { /* START bit makes no sense on RTL8029... */
262
            s->isr &= ~ENISR_RESET;
263
            /* test specific case: zero length transfert */
264
            if ((val & (E8390_RREAD | E8390_RWRITE)) &&
265
                s->rcnt == 0) {
266
                s->isr |= ENISR_RDC;
267
                ne2000_update_irq(s);
268
            }
269
            if (val & E8390_TRANS) {
270
                index = (s->tpsr << 8);
271
                /* XXX: next 2 lines are a hack to make netware 3.11 work */ 
272
                if (index >= NE2000_PMEM_END)
273
                    index -= NE2000_PMEM_SIZE;
274
                /* fail safe: check range on the transmitted length  */
275
                if (index + s->tcnt <= NE2000_PMEM_END) {
276
                    qemu_send_packet(s->nd, s->mem + index, s->tcnt);
277
                }
278
                /* signal end of transfert */
279
                s->tsr = ENTSR_PTX;
280
                s->isr |= ENISR_TX;
281
                s->cmd &= ~E8390_TRANS; 
282
                ne2000_update_irq(s);
283
            }
284
        }
285
    } else {
286
        page = s->cmd >> 6;
287
        offset = addr | (page << 4);
288
        switch(offset) {
289
        case EN0_STARTPG:
290
            s->start = val << 8;
291
            break;
292
        case EN0_STOPPG:
293
            s->stop = val << 8;
294
            break;
295
        case EN0_BOUNDARY:
296
            s->boundary = val;
297
            break;
298
        case EN0_IMR:
299
            s->imr = val;
300
            ne2000_update_irq(s);
301
            break;
302
        case EN0_TPSR:
303
            s->tpsr = val;
304
            break;
305
        case EN0_TCNTLO:
306
            s->tcnt = (s->tcnt & 0xff00) | val;
307
            break;
308
        case EN0_TCNTHI:
309
            s->tcnt = (s->tcnt & 0x00ff) | (val << 8);
310
            break;
311
        case EN0_RSARLO:
312
            s->rsar = (s->rsar & 0xff00) | val;
313
            break;
314
        case EN0_RSARHI:
315
            s->rsar = (s->rsar & 0x00ff) | (val << 8);
316
            break;
317
        case EN0_RCNTLO:
318
            s->rcnt = (s->rcnt & 0xff00) | val;
319
            break;
320
        case EN0_RCNTHI:
321
            s->rcnt = (s->rcnt & 0x00ff) | (val << 8);
322
            break;
323
        case EN0_DCFG:
324
            s->dcfg = val;
325
            break;
326
        case EN0_ISR:
327
            s->isr &= ~(val & 0x7f);
328
            ne2000_update_irq(s);
329
            break;
330
        case EN1_PHYS ... EN1_PHYS + 5:
331
            s->phys[offset - EN1_PHYS] = val;
332
            break;
333
        case EN1_CURPAG:
334
            s->curpag = val;
335
            break;
336
        case EN1_MULT ... EN1_MULT + 7:
337
            s->mult[offset - EN1_MULT] = val;
338
            break;
339
        }
340
    }
341
}
342

    
343
static uint32_t ne2000_ioport_read(void *opaque, uint32_t addr)
344
{
345
    NE2000State *s = opaque;
346
    int offset, page, ret;
347

    
348
    addr &= 0xf;
349
    if (addr == E8390_CMD) {
350
        ret = s->cmd;
351
    } else {
352
        page = s->cmd >> 6;
353
        offset = addr | (page << 4);
354
        switch(offset) {
355
        case EN0_TSR:
356
            ret = s->tsr;
357
            break;
358
        case EN0_BOUNDARY:
359
            ret = s->boundary;
360
            break;
361
        case EN0_ISR:
362
            ret = s->isr;
363
            break;
364
        case EN0_RSARLO:
365
            ret = s->rsar & 0x00ff;
366
            break;
367
        case EN0_RSARHI:
368
            ret = s->rsar >> 8;
369
            break;
370
        case EN1_PHYS ... EN1_PHYS + 5:
371
            ret = s->phys[offset - EN1_PHYS];
372
            break;
373
        case EN1_CURPAG:
374
            ret = s->curpag;
375
            break;
376
        case EN1_MULT ... EN1_MULT + 7:
377
            ret = s->mult[offset - EN1_MULT];
378
            break;
379
        case EN0_RSR:
380
            ret = s->rsr;
381
            break;
382
        case EN2_STARTPG:
383
            ret = s->start >> 8;
384
            break;
385
        case EN2_STOPPG:
386
            ret = s->stop >> 8;
387
            break;
388
        default:
389
            ret = 0x00;
390
            break;
391
        }
392
    }
393
#ifdef DEBUG_NE2000
394
    printf("NE2000: read addr=0x%x val=%02x\n", addr, ret);
395
#endif
396
    return ret;
397
}
398

    
399
static inline void ne2000_mem_writeb(NE2000State *s, uint32_t addr, 
400
                                     uint32_t val)
401
{
402
    if (addr < 32 || 
403
        (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
404
        s->mem[addr] = val;
405
    }
406
}
407

    
408
static inline void ne2000_mem_writew(NE2000State *s, uint32_t addr, 
409
                                     uint32_t val)
410
{
411
    addr &= ~1; /* XXX: check exact behaviour if not even */
412
    if (addr < 32 || 
413
        (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
414
        *(uint16_t *)(s->mem + addr) = cpu_to_le16(val);
415
    }
416
}
417

    
418
static inline void ne2000_mem_writel(NE2000State *s, uint32_t addr, 
419
                                     uint32_t val)
420
{
421
    addr &= ~1; /* XXX: check exact behaviour if not even */
422
    if (addr < 32 || 
423
        (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
424
        cpu_to_le32wu((uint32_t *)(s->mem + addr), val);
425
    }
426
}
427

    
428
static inline uint32_t ne2000_mem_readb(NE2000State *s, uint32_t addr)
429
{
430
    if (addr < 32 || 
431
        (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
432
        return s->mem[addr];
433
    } else {
434
        return 0xff;
435
    }
436
}
437

    
438
static inline uint32_t ne2000_mem_readw(NE2000State *s, uint32_t addr)
439
{
440
    addr &= ~1; /* XXX: check exact behaviour if not even */
441
    if (addr < 32 || 
442
        (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
443
        return le16_to_cpu(*(uint16_t *)(s->mem + addr));
444
    } else {
445
        return 0xffff;
446
    }
447
}
448

    
449
static inline uint32_t ne2000_mem_readl(NE2000State *s, uint32_t addr)
450
{
451
    addr &= ~1; /* XXX: check exact behaviour if not even */
452
    if (addr < 32 || 
453
        (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
454
        return le32_to_cpupu((uint32_t *)(s->mem + addr));
455
    } else {
456
        return 0xffffffff;
457
    }
458
}
459

    
460
static inline void ne2000_dma_update(NE2000State *s, int len)
461
{
462
    s->rsar += len;
463
    /* wrap */
464
    /* XXX: check what to do if rsar > stop */
465
    if (s->rsar == s->stop)
466
        s->rsar = s->start;
467

    
468
    if (s->rcnt <= len) {
469
        s->rcnt = 0;
470
        /* signal end of transfert */
471
        s->isr |= ENISR_RDC;
472
        ne2000_update_irq(s);
473
    } else {
474
        s->rcnt -= len;
475
    }
476
}
477

    
478
static void ne2000_asic_ioport_write(void *opaque, uint32_t addr, uint32_t val)
479
{
480
    NE2000State *s = opaque;
481

    
482
#ifdef DEBUG_NE2000
483
    printf("NE2000: asic write val=0x%04x\n", val);
484
#endif
485
    if (s->rcnt == 0)
486
        return;
487
    if (s->dcfg & 0x01) {
488
        /* 16 bit access */
489
        ne2000_mem_writew(s, s->rsar, val);
490
        ne2000_dma_update(s, 2);
491
    } else {
492
        /* 8 bit access */
493
        ne2000_mem_writeb(s, s->rsar, val);
494
        ne2000_dma_update(s, 1);
495
    }
496
}
497

    
498
static uint32_t ne2000_asic_ioport_read(void *opaque, uint32_t addr)
499
{
500
    NE2000State *s = opaque;
501
    int ret;
502

    
503
    if (s->dcfg & 0x01) {
504
        /* 16 bit access */
505
        ret = ne2000_mem_readw(s, s->rsar);
506
        ne2000_dma_update(s, 2);
507
    } else {
508
        /* 8 bit access */
509
        ret = ne2000_mem_readb(s, s->rsar);
510
        ne2000_dma_update(s, 1);
511
    }
512
#ifdef DEBUG_NE2000
513
    printf("NE2000: asic read val=0x%04x\n", ret);
514
#endif
515
    return ret;
516
}
517

    
518
static void ne2000_asic_ioport_writel(void *opaque, uint32_t addr, uint32_t val)
519
{
520
    NE2000State *s = opaque;
521

    
522
#ifdef DEBUG_NE2000
523
    printf("NE2000: asic writel val=0x%04x\n", val);
524
#endif
525
    if (s->rcnt == 0)
526
        return;
527
    /* 32 bit access */
528
    ne2000_mem_writel(s, s->rsar, val);
529
    ne2000_dma_update(s, 4);
530
}
531

    
532
static uint32_t ne2000_asic_ioport_readl(void *opaque, uint32_t addr)
533
{
534
    NE2000State *s = opaque;
535
    int ret;
536

    
537
    /* 32 bit access */
538
    ret = ne2000_mem_readl(s, s->rsar);
539
    ne2000_dma_update(s, 4);
540
#ifdef DEBUG_NE2000
541
    printf("NE2000: asic readl val=0x%04x\n", ret);
542
#endif
543
    return ret;
544
}
545

    
546
static void ne2000_reset_ioport_write(void *opaque, uint32_t addr, uint32_t val)
547
{
548
    /* nothing to do (end of reset pulse) */
549
}
550

    
551
static uint32_t ne2000_reset_ioport_read(void *opaque, uint32_t addr)
552
{
553
    NE2000State *s = opaque;
554
    ne2000_reset(s);
555
    return 0;
556
}
557

    
558
static void ne2000_save(QEMUFile* f,void* opaque)
559
{
560
        NE2000State* s=(NE2000State*)opaque;
561

    
562
        qemu_put_8s(f, &s->cmd);
563
        qemu_put_be32s(f, &s->start);
564
        qemu_put_be32s(f, &s->stop);
565
        qemu_put_8s(f, &s->boundary);
566
        qemu_put_8s(f, &s->tsr);
567
        qemu_put_8s(f, &s->tpsr);
568
        qemu_put_be16s(f, &s->tcnt);
569
        qemu_put_be16s(f, &s->rcnt);
570
        qemu_put_be32s(f, &s->rsar);
571
        qemu_put_8s(f, &s->rsr);
572
        qemu_put_8s(f, &s->isr);
573
        qemu_put_8s(f, &s->dcfg);
574
        qemu_put_8s(f, &s->imr);
575
        qemu_put_buffer(f, s->phys, 6);
576
        qemu_put_8s(f, &s->curpag);
577
        qemu_put_buffer(f, s->mult, 8);
578
        qemu_put_be32s(f, &s->irq);
579
        qemu_put_buffer(f, s->mem, NE2000_MEM_SIZE);
580
}
581

    
582
static int ne2000_load(QEMUFile* f,void* opaque,int version_id)
583
{
584
        NE2000State* s=(NE2000State*)opaque;
585

    
586
        if (version_id != 1)
587
            return -EINVAL;
588

    
589
        qemu_get_8s(f, &s->cmd);
590
        qemu_get_be32s(f, &s->start);
591
        qemu_get_be32s(f, &s->stop);
592
        qemu_get_8s(f, &s->boundary);
593
        qemu_get_8s(f, &s->tsr);
594
        qemu_get_8s(f, &s->tpsr);
595
        qemu_get_be16s(f, &s->tcnt);
596
        qemu_get_be16s(f, &s->rcnt);
597
        qemu_get_be32s(f, &s->rsar);
598
        qemu_get_8s(f, &s->rsr);
599
        qemu_get_8s(f, &s->isr);
600
        qemu_get_8s(f, &s->dcfg);
601
        qemu_get_8s(f, &s->imr);
602
        qemu_get_buffer(f, s->phys, 6);
603
        qemu_get_8s(f, &s->curpag);
604
        qemu_get_buffer(f, s->mult, 8);
605
        qemu_get_be32s(f, &s->irq);
606
        qemu_get_buffer(f, s->mem, NE2000_MEM_SIZE);
607

    
608
        return 0;
609
}
610

    
611
void isa_ne2000_init(int base, int irq, NetDriverState *nd)
612
{
613
    NE2000State *s;
614

    
615
    s = qemu_mallocz(sizeof(NE2000State));
616
    if (!s)
617
        return;
618
    
619
    register_ioport_write(base, 16, 1, ne2000_ioport_write, s);
620
    register_ioport_read(base, 16, 1, ne2000_ioport_read, s);
621

    
622
    register_ioport_write(base + 0x10, 1, 1, ne2000_asic_ioport_write, s);
623
    register_ioport_read(base + 0x10, 1, 1, ne2000_asic_ioport_read, s);
624
    register_ioport_write(base + 0x10, 2, 2, ne2000_asic_ioport_write, s);
625
    register_ioport_read(base + 0x10, 2, 2, ne2000_asic_ioport_read, s);
626

    
627
    register_ioport_write(base + 0x1f, 1, 1, ne2000_reset_ioport_write, s);
628
    register_ioport_read(base + 0x1f, 1, 1, ne2000_reset_ioport_read, s);
629
    s->irq = irq;
630
    s->nd = nd;
631

    
632
    ne2000_reset(s);
633

    
634
    qemu_add_read_packet(nd, ne2000_can_receive, ne2000_receive, s);
635

    
636
    register_savevm("ne2000", 0, 1, ne2000_save, ne2000_load, s);
637

    
638
}
639

    
640
/***********************************************************/
641
/* PCI NE2000 definitions */
642

    
643
typedef struct PCINE2000State {
644
    PCIDevice dev;
645
    NE2000State ne2000;
646
} PCINE2000State;
647

    
648
static void ne2000_map(PCIDevice *pci_dev, int region_num, 
649
                       uint32_t addr, uint32_t size, int type)
650
{
651
    PCINE2000State *d = (PCINE2000State *)pci_dev;
652
    NE2000State *s = &d->ne2000;
653

    
654
    register_ioport_write(addr, 16, 1, ne2000_ioport_write, s);
655
    register_ioport_read(addr, 16, 1, ne2000_ioport_read, s);
656

    
657
    register_ioport_write(addr + 0x10, 1, 1, ne2000_asic_ioport_write, s);
658
    register_ioport_read(addr + 0x10, 1, 1, ne2000_asic_ioport_read, s);
659
    register_ioport_write(addr + 0x10, 2, 2, ne2000_asic_ioport_write, s);
660
    register_ioport_read(addr + 0x10, 2, 2, ne2000_asic_ioport_read, s);
661
    register_ioport_write(addr + 0x10, 4, 4, ne2000_asic_ioport_writel, s);
662
    register_ioport_read(addr + 0x10, 4, 4, ne2000_asic_ioport_readl, s);
663

    
664
    register_ioport_write(addr + 0x1f, 1, 1, ne2000_reset_ioport_write, s);
665
    register_ioport_read(addr + 0x1f, 1, 1, ne2000_reset_ioport_read, s);
666
}
667

    
668
void pci_ne2000_init(PCIBus *bus, NetDriverState *nd)
669
{
670
    PCINE2000State *d;
671
    NE2000State *s;
672
    uint8_t *pci_conf;
673
    
674
    d = (PCINE2000State *)pci_register_device(bus,
675
                                              "NE2000", sizeof(PCINE2000State),
676
                                              -1, 
677
                                              NULL, NULL);
678
    pci_conf = d->dev.config;
679
    pci_conf[0x00] = 0xec; // Realtek 8029
680
    pci_conf[0x01] = 0x10;
681
    pci_conf[0x02] = 0x29;
682
    pci_conf[0x03] = 0x80;
683
    pci_conf[0x0a] = 0x00; // ethernet network controller 
684
    pci_conf[0x0b] = 0x02;
685
    pci_conf[0x0e] = 0x00; // header_type
686
    pci_conf[0x3d] = 1; // interrupt pin 0
687
    
688
    pci_register_io_region(&d->dev, 0, 0x100, 
689
                           PCI_ADDRESS_SPACE_IO, ne2000_map);
690
    s = &d->ne2000;
691
    s->irq = 16; // PCI interrupt
692
    s->pci_dev = (PCIDevice *)d;
693
    s->nd = nd;
694
    ne2000_reset(s);
695
    qemu_add_read_packet(nd, ne2000_can_receive, ne2000_receive, s);
696

    
697
    /* XXX: instance number ? */
698
    register_savevm("ne2000", 0, 1, ne2000_save, ne2000_load, s);
699
    register_savevm("ne2000_pci", 0, 1, generic_pci_save, generic_pci_load, 
700
                    &d->dev);
701
}