Statistics
| Branch: | Revision:

root / block-qcow2.c @ 72249e34

History | View | Annotate | Download (81.7 kB)

1
/*
2
 * Block driver for the QCOW version 2 format
3
 *
4
 * Copyright (c) 2004-2006 Fabrice Bellard
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "qemu-common.h"
25
#include "block_int.h"
26
#include <zlib.h>
27
#include "aes.h"
28
#include <assert.h>
29

    
30
/*
31
  Differences with QCOW:
32

33
  - Support for multiple incremental snapshots.
34
  - Memory management by reference counts.
35
  - Clusters which have a reference count of one have the bit
36
    QCOW_OFLAG_COPIED to optimize write performance.
37
  - Size of compressed clusters is stored in sectors to reduce bit usage
38
    in the cluster offsets.
39
  - Support for storing additional data (such as the VM state) in the
40
    snapshots.
41
  - If a backing store is used, the cluster size is not constrained
42
    (could be backported to QCOW).
43
  - L2 tables have always a size of one cluster.
44
*/
45

    
46
//#define DEBUG_ALLOC
47
//#define DEBUG_ALLOC2
48

    
49
#define QCOW_MAGIC (('Q' << 24) | ('F' << 16) | ('I' << 8) | 0xfb)
50
#define QCOW_VERSION 2
51

    
52
#define QCOW_CRYPT_NONE 0
53
#define QCOW_CRYPT_AES  1
54

    
55
#define QCOW_MAX_CRYPT_CLUSTERS 32
56

    
57
/* indicate that the refcount of the referenced cluster is exactly one. */
58
#define QCOW_OFLAG_COPIED     (1LL << 63)
59
/* indicate that the cluster is compressed (they never have the copied flag) */
60
#define QCOW_OFLAG_COMPRESSED (1LL << 62)
61

    
62
#define REFCOUNT_SHIFT 1 /* refcount size is 2 bytes */
63

    
64
typedef struct QCowHeader {
65
    uint32_t magic;
66
    uint32_t version;
67
    uint64_t backing_file_offset;
68
    uint32_t backing_file_size;
69
    uint32_t cluster_bits;
70
    uint64_t size; /* in bytes */
71
    uint32_t crypt_method;
72
    uint32_t l1_size; /* XXX: save number of clusters instead ? */
73
    uint64_t l1_table_offset;
74
    uint64_t refcount_table_offset;
75
    uint32_t refcount_table_clusters;
76
    uint32_t nb_snapshots;
77
    uint64_t snapshots_offset;
78
} QCowHeader;
79

    
80
typedef struct __attribute__((packed)) QCowSnapshotHeader {
81
    /* header is 8 byte aligned */
82
    uint64_t l1_table_offset;
83

    
84
    uint32_t l1_size;
85
    uint16_t id_str_size;
86
    uint16_t name_size;
87

    
88
    uint32_t date_sec;
89
    uint32_t date_nsec;
90

    
91
    uint64_t vm_clock_nsec;
92

    
93
    uint32_t vm_state_size;
94
    uint32_t extra_data_size; /* for extension */
95
    /* extra data follows */
96
    /* id_str follows */
97
    /* name follows  */
98
} QCowSnapshotHeader;
99

    
100
#define L2_CACHE_SIZE 16
101

    
102
typedef struct QCowSnapshot {
103
    uint64_t l1_table_offset;
104
    uint32_t l1_size;
105
    char *id_str;
106
    char *name;
107
    uint32_t vm_state_size;
108
    uint32_t date_sec;
109
    uint32_t date_nsec;
110
    uint64_t vm_clock_nsec;
111
} QCowSnapshot;
112

    
113
typedef struct BDRVQcowState {
114
    BlockDriverState *hd;
115
    int cluster_bits;
116
    int cluster_size;
117
    int cluster_sectors;
118
    int l2_bits;
119
    int l2_size;
120
    int l1_size;
121
    int l1_vm_state_index;
122
    int csize_shift;
123
    int csize_mask;
124
    uint64_t cluster_offset_mask;
125
    uint64_t l1_table_offset;
126
    uint64_t *l1_table;
127
    uint64_t *l2_cache;
128
    uint64_t l2_cache_offsets[L2_CACHE_SIZE];
129
    uint32_t l2_cache_counts[L2_CACHE_SIZE];
130
    uint8_t *cluster_cache;
131
    uint8_t *cluster_data;
132
    uint64_t cluster_cache_offset;
133

    
134
    uint64_t *refcount_table;
135
    uint64_t refcount_table_offset;
136
    uint32_t refcount_table_size;
137
    uint64_t refcount_block_cache_offset;
138
    uint16_t *refcount_block_cache;
139
    int64_t free_cluster_index;
140
    int64_t free_byte_offset;
141

    
142
    uint32_t crypt_method; /* current crypt method, 0 if no key yet */
143
    uint32_t crypt_method_header;
144
    AES_KEY aes_encrypt_key;
145
    AES_KEY aes_decrypt_key;
146

    
147
    int64_t highest_alloc; /* highest cluester allocated (in clusters) */
148
    int64_t nc_free;       /* num of free clusters below highest_alloc */
149

    
150
    uint64_t snapshots_offset;
151
    int snapshots_size;
152
    int nb_snapshots;
153
    QCowSnapshot *snapshots;
154
} BDRVQcowState;
155

    
156
static int decompress_cluster(BDRVQcowState *s, uint64_t cluster_offset);
157
static int qcow_read(BlockDriverState *bs, int64_t sector_num,
158
                     uint8_t *buf, int nb_sectors);
159
static int qcow_read_snapshots(BlockDriverState *bs);
160
static void qcow_free_snapshots(BlockDriverState *bs);
161
static int refcount_init(BlockDriverState *bs);
162
static void refcount_close(BlockDriverState *bs);
163
static int get_refcount(BlockDriverState *bs, int64_t cluster_index);
164
static int update_cluster_refcount(BlockDriverState *bs,
165
                                   int64_t cluster_index,
166
                                   int addend);
167
static void update_refcount(BlockDriverState *bs,
168
                            int64_t offset, int64_t length,
169
                            int addend);
170
static int64_t alloc_clusters(BlockDriverState *bs, int64_t size);
171
static int64_t alloc_bytes(BlockDriverState *bs, int size);
172
static void free_clusters(BlockDriverState *bs,
173
                          int64_t offset, int64_t size);
174
#ifdef DEBUG_ALLOC
175
static void check_refcounts(BlockDriverState *bs);
176
#endif
177
static void scan_refcount(BlockDriverState *bs, int64_t *high, int64_t *free);
178

    
179

    
180
static int qcow_probe(const uint8_t *buf, int buf_size, const char *filename)
181
{
182
    const QCowHeader *cow_header = (const void *)buf;
183

    
184
    if (buf_size >= sizeof(QCowHeader) &&
185
        be32_to_cpu(cow_header->magic) == QCOW_MAGIC &&
186
        be32_to_cpu(cow_header->version) == QCOW_VERSION)
187
        return 100;
188
    else
189
        return 0;
190
}
191

    
192
static int qcow_open(BlockDriverState *bs, const char *filename, int flags)
193
{
194
    BDRVQcowState *s = bs->opaque;
195
    int len, i, shift, ret;
196
    QCowHeader header;
197

    
198
    /* Performance is terrible right now with cache=writethrough due mainly
199
     * to reference count updates.  If the user does not explicitly specify
200
     * a caching type, force to writeback caching.
201
     */
202
    if ((flags & BDRV_O_CACHE_DEF)) {
203
        flags |= BDRV_O_CACHE_WB;
204
        flags &= ~BDRV_O_CACHE_DEF;
205
    }
206
    ret = bdrv_file_open(&s->hd, filename, flags);
207
    if (ret < 0)
208
        return ret;
209
    if (bdrv_pread(s->hd, 0, &header, sizeof(header)) != sizeof(header))
210
        goto fail;
211
    be32_to_cpus(&header.magic);
212
    be32_to_cpus(&header.version);
213
    be64_to_cpus(&header.backing_file_offset);
214
    be32_to_cpus(&header.backing_file_size);
215
    be64_to_cpus(&header.size);
216
    be32_to_cpus(&header.cluster_bits);
217
    be32_to_cpus(&header.crypt_method);
218
    be64_to_cpus(&header.l1_table_offset);
219
    be32_to_cpus(&header.l1_size);
220
    be64_to_cpus(&header.refcount_table_offset);
221
    be32_to_cpus(&header.refcount_table_clusters);
222
    be64_to_cpus(&header.snapshots_offset);
223
    be32_to_cpus(&header.nb_snapshots);
224

    
225
    if (header.magic != QCOW_MAGIC || header.version != QCOW_VERSION)
226
        goto fail;
227
    if (header.size <= 1 ||
228
        header.cluster_bits < 9 ||
229
        header.cluster_bits > 16)
230
        goto fail;
231
    if (header.crypt_method > QCOW_CRYPT_AES)
232
        goto fail;
233
    s->crypt_method_header = header.crypt_method;
234
    if (s->crypt_method_header)
235
        bs->encrypted = 1;
236
    s->cluster_bits = header.cluster_bits;
237
    s->cluster_size = 1 << s->cluster_bits;
238
    s->cluster_sectors = 1 << (s->cluster_bits - 9);
239
    s->l2_bits = s->cluster_bits - 3; /* L2 is always one cluster */
240
    s->l2_size = 1 << s->l2_bits;
241
    bs->total_sectors = header.size / 512;
242
    s->csize_shift = (62 - (s->cluster_bits - 8));
243
    s->csize_mask = (1 << (s->cluster_bits - 8)) - 1;
244
    s->cluster_offset_mask = (1LL << s->csize_shift) - 1;
245
    s->refcount_table_offset = header.refcount_table_offset;
246
    s->refcount_table_size =
247
        header.refcount_table_clusters << (s->cluster_bits - 3);
248

    
249
    s->snapshots_offset = header.snapshots_offset;
250
    s->nb_snapshots = header.nb_snapshots;
251

    
252
    /* read the level 1 table */
253
    s->l1_size = header.l1_size;
254
    shift = s->cluster_bits + s->l2_bits;
255
    s->l1_vm_state_index = (header.size + (1LL << shift) - 1) >> shift;
256
    /* the L1 table must contain at least enough entries to put
257
       header.size bytes */
258
    if (s->l1_size < s->l1_vm_state_index)
259
        goto fail;
260
    s->l1_table_offset = header.l1_table_offset;
261
    s->l1_table = qemu_malloc(s->l1_size * sizeof(uint64_t));
262
    if (bdrv_pread(s->hd, s->l1_table_offset, s->l1_table, s->l1_size * sizeof(uint64_t)) !=
263
        s->l1_size * sizeof(uint64_t))
264
        goto fail;
265
    for(i = 0;i < s->l1_size; i++) {
266
        be64_to_cpus(&s->l1_table[i]);
267
    }
268
    /* alloc L2 cache */
269
    s->l2_cache = qemu_malloc(s->l2_size * L2_CACHE_SIZE * sizeof(uint64_t));
270
    s->cluster_cache = qemu_malloc(s->cluster_size);
271
    /* one more sector for decompressed data alignment */
272
    s->cluster_data = qemu_malloc(QCOW_MAX_CRYPT_CLUSTERS * s->cluster_size
273
                                  + 512);
274
    s->cluster_cache_offset = -1;
275

    
276
    if (refcount_init(bs) < 0)
277
        goto fail;
278

    
279
    scan_refcount(bs, &s->highest_alloc, &s->nc_free);
280

    
281
    /* read the backing file name */
282
    if (header.backing_file_offset != 0) {
283
        len = header.backing_file_size;
284
        if (len > 1023)
285
            len = 1023;
286
        if (bdrv_pread(s->hd, header.backing_file_offset, bs->backing_file, len) != len)
287
            goto fail;
288
        bs->backing_file[len] = '\0';
289
    }
290
    if (qcow_read_snapshots(bs) < 0)
291
        goto fail;
292

    
293
#ifdef DEBUG_ALLOC
294
    check_refcounts(bs);
295
#endif
296
    return 0;
297

    
298
 fail:
299
    qcow_free_snapshots(bs);
300
    refcount_close(bs);
301
    qemu_free(s->l1_table);
302
    qemu_free(s->l2_cache);
303
    qemu_free(s->cluster_cache);
304
    qemu_free(s->cluster_data);
305
    bdrv_delete(s->hd);
306
    return -1;
307
}
308

    
309
static int qcow_set_key(BlockDriverState *bs, const char *key)
310
{
311
    BDRVQcowState *s = bs->opaque;
312
    uint8_t keybuf[16];
313
    int len, i;
314

    
315
    memset(keybuf, 0, 16);
316
    len = strlen(key);
317
    if (len > 16)
318
        len = 16;
319
    /* XXX: we could compress the chars to 7 bits to increase
320
       entropy */
321
    for(i = 0;i < len;i++) {
322
        keybuf[i] = key[i];
323
    }
324
    s->crypt_method = s->crypt_method_header;
325

    
326
    if (AES_set_encrypt_key(keybuf, 128, &s->aes_encrypt_key) != 0)
327
        return -1;
328
    if (AES_set_decrypt_key(keybuf, 128, &s->aes_decrypt_key) != 0)
329
        return -1;
330
#if 0
331
    /* test */
332
    {
333
        uint8_t in[16];
334
        uint8_t out[16];
335
        uint8_t tmp[16];
336
        for(i=0;i<16;i++)
337
            in[i] = i;
338
        AES_encrypt(in, tmp, &s->aes_encrypt_key);
339
        AES_decrypt(tmp, out, &s->aes_decrypt_key);
340
        for(i = 0; i < 16; i++)
341
            printf(" %02x", tmp[i]);
342
        printf("\n");
343
        for(i = 0; i < 16; i++)
344
            printf(" %02x", out[i]);
345
        printf("\n");
346
    }
347
#endif
348
    return 0;
349
}
350

    
351
/* The crypt function is compatible with the linux cryptoloop
352
   algorithm for < 4 GB images. NOTE: out_buf == in_buf is
353
   supported */
354
static void encrypt_sectors(BDRVQcowState *s, int64_t sector_num,
355
                            uint8_t *out_buf, const uint8_t *in_buf,
356
                            int nb_sectors, int enc,
357
                            const AES_KEY *key)
358
{
359
    union {
360
        uint64_t ll[2];
361
        uint8_t b[16];
362
    } ivec;
363
    int i;
364

    
365
    for(i = 0; i < nb_sectors; i++) {
366
        ivec.ll[0] = cpu_to_le64(sector_num);
367
        ivec.ll[1] = 0;
368
        AES_cbc_encrypt(in_buf, out_buf, 512, key,
369
                        ivec.b, enc);
370
        sector_num++;
371
        in_buf += 512;
372
        out_buf += 512;
373
    }
374
}
375

    
376
static int copy_sectors(BlockDriverState *bs, uint64_t start_sect,
377
                        uint64_t cluster_offset, int n_start, int n_end)
378
{
379
    BDRVQcowState *s = bs->opaque;
380
    int n, ret;
381

    
382
    n = n_end - n_start;
383
    if (n <= 0)
384
        return 0;
385
    ret = qcow_read(bs, start_sect + n_start, s->cluster_data, n);
386
    if (ret < 0)
387
        return ret;
388
    if (s->crypt_method) {
389
        encrypt_sectors(s, start_sect + n_start,
390
                        s->cluster_data,
391
                        s->cluster_data, n, 1,
392
                        &s->aes_encrypt_key);
393
    }
394
    ret = bdrv_write(s->hd, (cluster_offset >> 9) + n_start,
395
                     s->cluster_data, n);
396
    if (ret < 0)
397
        return ret;
398
    return 0;
399
}
400

    
401
static void l2_cache_reset(BlockDriverState *bs)
402
{
403
    BDRVQcowState *s = bs->opaque;
404

    
405
    memset(s->l2_cache, 0, s->l2_size * L2_CACHE_SIZE * sizeof(uint64_t));
406
    memset(s->l2_cache_offsets, 0, L2_CACHE_SIZE * sizeof(uint64_t));
407
    memset(s->l2_cache_counts, 0, L2_CACHE_SIZE * sizeof(uint32_t));
408
}
409

    
410
static inline int l2_cache_new_entry(BlockDriverState *bs)
411
{
412
    BDRVQcowState *s = bs->opaque;
413
    uint32_t min_count;
414
    int min_index, i;
415

    
416
    /* find a new entry in the least used one */
417
    min_index = 0;
418
    min_count = 0xffffffff;
419
    for(i = 0; i < L2_CACHE_SIZE; i++) {
420
        if (s->l2_cache_counts[i] < min_count) {
421
            min_count = s->l2_cache_counts[i];
422
            min_index = i;
423
        }
424
    }
425
    return min_index;
426
}
427

    
428
static int64_t align_offset(int64_t offset, int n)
429
{
430
    offset = (offset + n - 1) & ~(n - 1);
431
    return offset;
432
}
433

    
434
static int grow_l1_table(BlockDriverState *bs, int min_size)
435
{
436
    BDRVQcowState *s = bs->opaque;
437
    int new_l1_size, new_l1_size2, ret, i;
438
    uint64_t *new_l1_table;
439
    uint64_t new_l1_table_offset;
440
    uint8_t data[12];
441

    
442
    new_l1_size = s->l1_size;
443
    if (min_size <= new_l1_size)
444
        return 0;
445
    while (min_size > new_l1_size) {
446
        new_l1_size = (new_l1_size * 3 + 1) / 2;
447
    }
448
#ifdef DEBUG_ALLOC2
449
    printf("grow l1_table from %d to %d\n", s->l1_size, new_l1_size);
450
#endif
451

    
452
    new_l1_size2 = sizeof(uint64_t) * new_l1_size;
453
    new_l1_table = qemu_mallocz(new_l1_size2);
454
    memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t));
455

    
456
    /* write new table (align to cluster) */
457
    new_l1_table_offset = alloc_clusters(bs, new_l1_size2);
458

    
459
    for(i = 0; i < s->l1_size; i++)
460
        new_l1_table[i] = cpu_to_be64(new_l1_table[i]);
461
    ret = bdrv_pwrite(s->hd, new_l1_table_offset, new_l1_table, new_l1_size2);
462
    if (ret != new_l1_size2)
463
        goto fail;
464
    for(i = 0; i < s->l1_size; i++)
465
        new_l1_table[i] = be64_to_cpu(new_l1_table[i]);
466

    
467
    /* set new table */
468
    cpu_to_be32w((uint32_t*)data, new_l1_size);
469
    cpu_to_be64w((uint64_t*)(data + 4), new_l1_table_offset);
470
    if (bdrv_pwrite(s->hd, offsetof(QCowHeader, l1_size), data,
471
                sizeof(data)) != sizeof(data))
472
        goto fail;
473
    qemu_free(s->l1_table);
474
    free_clusters(bs, s->l1_table_offset, s->l1_size * sizeof(uint64_t));
475
    s->l1_table_offset = new_l1_table_offset;
476
    s->l1_table = new_l1_table;
477
    s->l1_size = new_l1_size;
478
    return 0;
479
 fail:
480
    qemu_free(s->l1_table);
481
    return -EIO;
482
}
483

    
484
/*
485
 * seek_l2_table
486
 *
487
 * seek l2_offset in the l2_cache table
488
 * if not found, return NULL,
489
 * if found,
490
 *   increments the l2 cache hit count of the entry,
491
 *   if counter overflow, divide by two all counters
492
 *   return the pointer to the l2 cache entry
493
 *
494
 */
495

    
496
static uint64_t *seek_l2_table(BDRVQcowState *s, uint64_t l2_offset)
497
{
498
    int i, j;
499

    
500
    for(i = 0; i < L2_CACHE_SIZE; i++) {
501
        if (l2_offset == s->l2_cache_offsets[i]) {
502
            /* increment the hit count */
503
            if (++s->l2_cache_counts[i] == 0xffffffff) {
504
                for(j = 0; j < L2_CACHE_SIZE; j++) {
505
                    s->l2_cache_counts[j] >>= 1;
506
                }
507
            }
508
            return s->l2_cache + (i << s->l2_bits);
509
        }
510
    }
511
    return NULL;
512
}
513

    
514
/*
515
 * l2_load
516
 *
517
 * Loads a L2 table into memory. If the table is in the cache, the cache
518
 * is used; otherwise the L2 table is loaded from the image file.
519
 *
520
 * Returns a pointer to the L2 table on success, or NULL if the read from
521
 * the image file failed.
522
 */
523

    
524
static uint64_t *l2_load(BlockDriverState *bs, uint64_t l2_offset)
525
{
526
    BDRVQcowState *s = bs->opaque;
527
    int min_index;
528
    uint64_t *l2_table;
529

    
530
    /* seek if the table for the given offset is in the cache */
531

    
532
    l2_table = seek_l2_table(s, l2_offset);
533
    if (l2_table != NULL)
534
        return l2_table;
535

    
536
    /* not found: load a new entry in the least used one */
537

    
538
    min_index = l2_cache_new_entry(bs);
539
    l2_table = s->l2_cache + (min_index << s->l2_bits);
540
    if (bdrv_pread(s->hd, l2_offset, l2_table, s->l2_size * sizeof(uint64_t)) !=
541
        s->l2_size * sizeof(uint64_t))
542
        return NULL;
543
    s->l2_cache_offsets[min_index] = l2_offset;
544
    s->l2_cache_counts[min_index] = 1;
545

    
546
    return l2_table;
547
}
548

    
549
/*
550
 * l2_allocate
551
 *
552
 * Allocate a new l2 entry in the file. If l1_index points to an already
553
 * used entry in the L2 table (i.e. we are doing a copy on write for the L2
554
 * table) copy the contents of the old L2 table into the newly allocated one.
555
 * Otherwise the new table is initialized with zeros.
556
 *
557
 */
558

    
559
static uint64_t *l2_allocate(BlockDriverState *bs, int l1_index)
560
{
561
    BDRVQcowState *s = bs->opaque;
562
    int min_index;
563
    uint64_t old_l2_offset, tmp;
564
    uint64_t *l2_table, l2_offset;
565

    
566
    old_l2_offset = s->l1_table[l1_index];
567

    
568
    /* allocate a new l2 entry */
569

    
570
    l2_offset = alloc_clusters(bs, s->l2_size * sizeof(uint64_t));
571

    
572
    /* update the L1 entry */
573

    
574
    s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED;
575

    
576
    tmp = cpu_to_be64(l2_offset | QCOW_OFLAG_COPIED);
577
    if (bdrv_pwrite(s->hd, s->l1_table_offset + l1_index * sizeof(tmp),
578
                    &tmp, sizeof(tmp)) != sizeof(tmp))
579
        return NULL;
580

    
581
    /* allocate a new entry in the l2 cache */
582

    
583
    min_index = l2_cache_new_entry(bs);
584
    l2_table = s->l2_cache + (min_index << s->l2_bits);
585

    
586
    if (old_l2_offset == 0) {
587
        /* if there was no old l2 table, clear the new table */
588
        memset(l2_table, 0, s->l2_size * sizeof(uint64_t));
589
    } else {
590
        /* if there was an old l2 table, read it from the disk */
591
        if (bdrv_pread(s->hd, old_l2_offset,
592
                       l2_table, s->l2_size * sizeof(uint64_t)) !=
593
            s->l2_size * sizeof(uint64_t))
594
            return NULL;
595
    }
596
    /* write the l2 table to the file */
597
    if (bdrv_pwrite(s->hd, l2_offset,
598
                    l2_table, s->l2_size * sizeof(uint64_t)) !=
599
        s->l2_size * sizeof(uint64_t))
600
        return NULL;
601

    
602
    /* update the l2 cache entry */
603

    
604
    s->l2_cache_offsets[min_index] = l2_offset;
605
    s->l2_cache_counts[min_index] = 1;
606

    
607
    return l2_table;
608
}
609

    
610
static int size_to_clusters(BDRVQcowState *s, int64_t size)
611
{
612
    return (size + (s->cluster_size - 1)) >> s->cluster_bits;
613
}
614

    
615
static int count_contiguous_clusters(uint64_t nb_clusters, int cluster_size,
616
        uint64_t *l2_table, uint64_t start, uint64_t mask)
617
{
618
    int i;
619
    uint64_t offset = be64_to_cpu(l2_table[0]) & ~mask;
620

    
621
    if (!offset)
622
        return 0;
623

    
624
    for (i = start; i < start + nb_clusters; i++)
625
        if (offset + i * cluster_size != (be64_to_cpu(l2_table[i]) & ~mask))
626
            break;
627

    
628
        return (i - start);
629
}
630

    
631
static int count_contiguous_free_clusters(uint64_t nb_clusters, uint64_t *l2_table)
632
{
633
    int i = 0;
634

    
635
    while(nb_clusters-- && l2_table[i] == 0)
636
        i++;
637

    
638
    return i;
639
}
640

    
641
/*
642
 * get_cluster_offset
643
 *
644
 * For a given offset of the disk image, return cluster offset in
645
 * qcow2 file.
646
 *
647
 * on entry, *num is the number of contiguous clusters we'd like to
648
 * access following offset.
649
 *
650
 * on exit, *num is the number of contiguous clusters we can read.
651
 *
652
 * Return 1, if the offset is found
653
 * Return 0, otherwise.
654
 *
655
 */
656

    
657
static uint64_t get_cluster_offset(BlockDriverState *bs,
658
                                   uint64_t offset, int *num)
659
{
660
    BDRVQcowState *s = bs->opaque;
661
    int l1_index, l2_index;
662
    uint64_t l2_offset, *l2_table, cluster_offset;
663
    int l1_bits, c;
664
    int index_in_cluster, nb_available, nb_needed, nb_clusters;
665

    
666
    index_in_cluster = (offset >> 9) & (s->cluster_sectors - 1);
667
    nb_needed = *num + index_in_cluster;
668

    
669
    l1_bits = s->l2_bits + s->cluster_bits;
670

    
671
    /* compute how many bytes there are between the offset and
672
     * the end of the l1 entry
673
     */
674

    
675
    nb_available = (1 << l1_bits) - (offset & ((1 << l1_bits) - 1));
676

    
677
    /* compute the number of available sectors */
678

    
679
    nb_available = (nb_available >> 9) + index_in_cluster;
680

    
681
    cluster_offset = 0;
682

    
683
    /* seek the the l2 offset in the l1 table */
684

    
685
    l1_index = offset >> l1_bits;
686
    if (l1_index >= s->l1_size)
687
        goto out;
688

    
689
    l2_offset = s->l1_table[l1_index];
690

    
691
    /* seek the l2 table of the given l2 offset */
692

    
693
    if (!l2_offset)
694
        goto out;
695

    
696
    /* load the l2 table in memory */
697

    
698
    l2_offset &= ~QCOW_OFLAG_COPIED;
699
    l2_table = l2_load(bs, l2_offset);
700
    if (l2_table == NULL)
701
        return 0;
702

    
703
    /* find the cluster offset for the given disk offset */
704

    
705
    l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
706
    cluster_offset = be64_to_cpu(l2_table[l2_index]);
707
    nb_clusters = size_to_clusters(s, nb_needed << 9);
708

    
709
    if (!cluster_offset) {
710
        /* how many empty clusters ? */
711
        c = count_contiguous_free_clusters(nb_clusters, &l2_table[l2_index]);
712
    } else {
713
        /* how many allocated clusters ? */
714
        c = count_contiguous_clusters(nb_clusters, s->cluster_size,
715
                &l2_table[l2_index], 0, QCOW_OFLAG_COPIED);
716
    }
717

    
718
   nb_available = (c * s->cluster_sectors);
719
out:
720
    if (nb_available > nb_needed)
721
        nb_available = nb_needed;
722

    
723
    *num = nb_available - index_in_cluster;
724

    
725
    return cluster_offset & ~QCOW_OFLAG_COPIED;
726
}
727

    
728
/*
729
 * free_any_clusters
730
 *
731
 * free clusters according to its type: compressed or not
732
 *
733
 */
734

    
735
static void free_any_clusters(BlockDriverState *bs,
736
                              uint64_t cluster_offset, int nb_clusters)
737
{
738
    BDRVQcowState *s = bs->opaque;
739

    
740
    /* free the cluster */
741

    
742
    if (cluster_offset & QCOW_OFLAG_COMPRESSED) {
743
        int nb_csectors;
744
        nb_csectors = ((cluster_offset >> s->csize_shift) &
745
                       s->csize_mask) + 1;
746
        free_clusters(bs, (cluster_offset & s->cluster_offset_mask) & ~511,
747
                      nb_csectors * 512);
748
        return;
749
    }
750

    
751
    free_clusters(bs, cluster_offset, nb_clusters << s->cluster_bits);
752

    
753
    return;
754
}
755

    
756
/*
757
 * get_cluster_table
758
 *
759
 * for a given disk offset, load (and allocate if needed)
760
 * the l2 table.
761
 *
762
 * the l2 table offset in the qcow2 file and the cluster index
763
 * in the l2 table are given to the caller.
764
 *
765
 */
766

    
767
static int get_cluster_table(BlockDriverState *bs, uint64_t offset,
768
                             uint64_t **new_l2_table,
769
                             uint64_t *new_l2_offset,
770
                             int *new_l2_index)
771
{
772
    BDRVQcowState *s = bs->opaque;
773
    int l1_index, l2_index, ret;
774
    uint64_t l2_offset, *l2_table;
775

    
776
    /* seek the the l2 offset in the l1 table */
777

    
778
    l1_index = offset >> (s->l2_bits + s->cluster_bits);
779
    if (l1_index >= s->l1_size) {
780
        ret = grow_l1_table(bs, l1_index + 1);
781
        if (ret < 0)
782
            return 0;
783
    }
784
    l2_offset = s->l1_table[l1_index];
785

    
786
    /* seek the l2 table of the given l2 offset */
787

    
788
    if (l2_offset & QCOW_OFLAG_COPIED) {
789
        /* load the l2 table in memory */
790
        l2_offset &= ~QCOW_OFLAG_COPIED;
791
        l2_table = l2_load(bs, l2_offset);
792
        if (l2_table == NULL)
793
            return 0;
794
    } else {
795
        if (l2_offset)
796
            free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t));
797
        l2_table = l2_allocate(bs, l1_index);
798
        if (l2_table == NULL)
799
            return 0;
800
        l2_offset = s->l1_table[l1_index] & ~QCOW_OFLAG_COPIED;
801
    }
802

    
803
    /* find the cluster offset for the given disk offset */
804

    
805
    l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
806

    
807
    *new_l2_table = l2_table;
808
    *new_l2_offset = l2_offset;
809
    *new_l2_index = l2_index;
810

    
811
    return 1;
812
}
813

    
814
/*
815
 * alloc_compressed_cluster_offset
816
 *
817
 * For a given offset of the disk image, return cluster offset in
818
 * qcow2 file.
819
 *
820
 * If the offset is not found, allocate a new compressed cluster.
821
 *
822
 * Return the cluster offset if successful,
823
 * Return 0, otherwise.
824
 *
825
 */
826

    
827
static uint64_t alloc_compressed_cluster_offset(BlockDriverState *bs,
828
                                                uint64_t offset,
829
                                                int compressed_size)
830
{
831
    BDRVQcowState *s = bs->opaque;
832
    int l2_index, ret;
833
    uint64_t l2_offset, *l2_table, cluster_offset;
834
    int nb_csectors;
835

    
836
    ret = get_cluster_table(bs, offset, &l2_table, &l2_offset, &l2_index);
837
    if (ret == 0)
838
        return 0;
839

    
840
    cluster_offset = be64_to_cpu(l2_table[l2_index]);
841
    if (cluster_offset & QCOW_OFLAG_COPIED)
842
        return cluster_offset & ~QCOW_OFLAG_COPIED;
843

    
844
    if (cluster_offset)
845
        free_any_clusters(bs, cluster_offset, 1);
846

    
847
    cluster_offset = alloc_bytes(bs, compressed_size);
848
    nb_csectors = ((cluster_offset + compressed_size - 1) >> 9) -
849
                  (cluster_offset >> 9);
850

    
851
    cluster_offset |= QCOW_OFLAG_COMPRESSED |
852
                      ((uint64_t)nb_csectors << s->csize_shift);
853

    
854
    /* update L2 table */
855

    
856
    /* compressed clusters never have the copied flag */
857

    
858
    l2_table[l2_index] = cpu_to_be64(cluster_offset);
859
    if (bdrv_pwrite(s->hd,
860
                    l2_offset + l2_index * sizeof(uint64_t),
861
                    l2_table + l2_index,
862
                    sizeof(uint64_t)) != sizeof(uint64_t))
863
        return 0;
864

    
865
    return cluster_offset;
866
}
867

    
868
typedef struct QCowL2Meta
869
{
870
    uint64_t offset;
871
    int n_start;
872
    int nb_available;
873
    int nb_clusters;
874
} QCowL2Meta;
875

    
876
static int alloc_cluster_link_l2(BlockDriverState *bs, uint64_t cluster_offset,
877
        QCowL2Meta *m)
878
{
879
    BDRVQcowState *s = bs->opaque;
880
    int i, j = 0, l2_index, ret;
881
    uint64_t *old_cluster, start_sect, l2_offset, *l2_table;
882

    
883
    if (m->nb_clusters == 0)
884
        return 0;
885

    
886
    old_cluster = qemu_malloc(m->nb_clusters * sizeof(uint64_t));
887

    
888
    /* copy content of unmodified sectors */
889
    start_sect = (m->offset & ~(s->cluster_size - 1)) >> 9;
890
    if (m->n_start) {
891
        ret = copy_sectors(bs, start_sect, cluster_offset, 0, m->n_start);
892
        if (ret < 0)
893
            goto err;
894
    }
895

    
896
    if (m->nb_available & (s->cluster_sectors - 1)) {
897
        uint64_t end = m->nb_available & ~(uint64_t)(s->cluster_sectors - 1);
898
        ret = copy_sectors(bs, start_sect + end, cluster_offset + (end << 9),
899
                m->nb_available - end, s->cluster_sectors);
900
        if (ret < 0)
901
            goto err;
902
    }
903

    
904
    ret = -EIO;
905
    /* update L2 table */
906
    if (!get_cluster_table(bs, m->offset, &l2_table, &l2_offset, &l2_index))
907
        goto err;
908

    
909
    for (i = 0; i < m->nb_clusters; i++) {
910
        if(l2_table[l2_index + i] != 0)
911
            old_cluster[j++] = l2_table[l2_index + i];
912

    
913
        l2_table[l2_index + i] = cpu_to_be64((cluster_offset +
914
                    (i << s->cluster_bits)) | QCOW_OFLAG_COPIED);
915
     }
916

    
917
    if (bdrv_pwrite(s->hd, l2_offset + l2_index * sizeof(uint64_t),
918
                l2_table + l2_index, m->nb_clusters * sizeof(uint64_t)) !=
919
            m->nb_clusters * sizeof(uint64_t))
920
        goto err;
921

    
922
    for (i = 0; i < j; i++)
923
        free_any_clusters(bs, old_cluster[i], 1);
924

    
925
    ret = 0;
926
err:
927
    qemu_free(old_cluster);
928
    return ret;
929
 }
930

    
931
/*
932
 * alloc_cluster_offset
933
 *
934
 * For a given offset of the disk image, return cluster offset in
935
 * qcow2 file.
936
 *
937
 * If the offset is not found, allocate a new cluster.
938
 *
939
 * Return the cluster offset if successful,
940
 * Return 0, otherwise.
941
 *
942
 */
943

    
944
static uint64_t alloc_cluster_offset(BlockDriverState *bs,
945
                                     uint64_t offset,
946
                                     int n_start, int n_end,
947
                                     int *num, QCowL2Meta *m)
948
{
949
    BDRVQcowState *s = bs->opaque;
950
    int l2_index, ret;
951
    uint64_t l2_offset, *l2_table, cluster_offset;
952
    int nb_clusters, i = 0;
953

    
954
    ret = get_cluster_table(bs, offset, &l2_table, &l2_offset, &l2_index);
955
    if (ret == 0)
956
        return 0;
957

    
958
    nb_clusters = size_to_clusters(s, n_end << 9);
959

    
960
    nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
961

    
962
    cluster_offset = be64_to_cpu(l2_table[l2_index]);
963

    
964
    /* We keep all QCOW_OFLAG_COPIED clusters */
965

    
966
    if (cluster_offset & QCOW_OFLAG_COPIED) {
967
        nb_clusters = count_contiguous_clusters(nb_clusters, s->cluster_size,
968
                &l2_table[l2_index], 0, 0);
969

    
970
        cluster_offset &= ~QCOW_OFLAG_COPIED;
971
        m->nb_clusters = 0;
972

    
973
        goto out;
974
    }
975

    
976
    /* for the moment, multiple compressed clusters are not managed */
977

    
978
    if (cluster_offset & QCOW_OFLAG_COMPRESSED)
979
        nb_clusters = 1;
980

    
981
    /* how many available clusters ? */
982

    
983
    while (i < nb_clusters) {
984
        i += count_contiguous_clusters(nb_clusters - i, s->cluster_size,
985
                &l2_table[l2_index], i, 0);
986

    
987
        if(be64_to_cpu(l2_table[l2_index + i]))
988
            break;
989

    
990
        i += count_contiguous_free_clusters(nb_clusters - i,
991
                &l2_table[l2_index + i]);
992

    
993
        cluster_offset = be64_to_cpu(l2_table[l2_index + i]);
994

    
995
        if ((cluster_offset & QCOW_OFLAG_COPIED) ||
996
                (cluster_offset & QCOW_OFLAG_COMPRESSED))
997
            break;
998
    }
999
    nb_clusters = i;
1000

    
1001
    /* allocate a new cluster */
1002

    
1003
    cluster_offset = alloc_clusters(bs, nb_clusters * s->cluster_size);
1004

    
1005
    /* save info needed for meta data update */
1006
    m->offset = offset;
1007
    m->n_start = n_start;
1008
    m->nb_clusters = nb_clusters;
1009

    
1010
out:
1011
    m->nb_available = MIN(nb_clusters << (s->cluster_bits - 9), n_end);
1012

    
1013
    *num = m->nb_available - n_start;
1014

    
1015
    return cluster_offset;
1016
}
1017

    
1018
static int qcow_is_allocated(BlockDriverState *bs, int64_t sector_num,
1019
                             int nb_sectors, int *pnum)
1020
{
1021
    uint64_t cluster_offset;
1022

    
1023
    *pnum = nb_sectors;
1024
    cluster_offset = get_cluster_offset(bs, sector_num << 9, pnum);
1025

    
1026
    return (cluster_offset != 0);
1027
}
1028

    
1029
static int decompress_buffer(uint8_t *out_buf, int out_buf_size,
1030
                             const uint8_t *buf, int buf_size)
1031
{
1032
    z_stream strm1, *strm = &strm1;
1033
    int ret, out_len;
1034

    
1035
    memset(strm, 0, sizeof(*strm));
1036

    
1037
    strm->next_in = (uint8_t *)buf;
1038
    strm->avail_in = buf_size;
1039
    strm->next_out = out_buf;
1040
    strm->avail_out = out_buf_size;
1041

    
1042
    ret = inflateInit2(strm, -12);
1043
    if (ret != Z_OK)
1044
        return -1;
1045
    ret = inflate(strm, Z_FINISH);
1046
    out_len = strm->next_out - out_buf;
1047
    if ((ret != Z_STREAM_END && ret != Z_BUF_ERROR) ||
1048
        out_len != out_buf_size) {
1049
        inflateEnd(strm);
1050
        return -1;
1051
    }
1052
    inflateEnd(strm);
1053
    return 0;
1054
}
1055

    
1056
static int decompress_cluster(BDRVQcowState *s, uint64_t cluster_offset)
1057
{
1058
    int ret, csize, nb_csectors, sector_offset;
1059
    uint64_t coffset;
1060

    
1061
    coffset = cluster_offset & s->cluster_offset_mask;
1062
    if (s->cluster_cache_offset != coffset) {
1063
        nb_csectors = ((cluster_offset >> s->csize_shift) & s->csize_mask) + 1;
1064
        sector_offset = coffset & 511;
1065
        csize = nb_csectors * 512 - sector_offset;
1066
        ret = bdrv_read(s->hd, coffset >> 9, s->cluster_data, nb_csectors);
1067
        if (ret < 0) {
1068
            return -1;
1069
        }
1070
        if (decompress_buffer(s->cluster_cache, s->cluster_size,
1071
                              s->cluster_data + sector_offset, csize) < 0) {
1072
            return -1;
1073
        }
1074
        s->cluster_cache_offset = coffset;
1075
    }
1076
    return 0;
1077
}
1078

    
1079
/* handle reading after the end of the backing file */
1080
static int backing_read1(BlockDriverState *bs,
1081
                         int64_t sector_num, uint8_t *buf, int nb_sectors)
1082
{
1083
    int n1;
1084
    if ((sector_num + nb_sectors) <= bs->total_sectors)
1085
        return nb_sectors;
1086
    if (sector_num >= bs->total_sectors)
1087
        n1 = 0;
1088
    else
1089
        n1 = bs->total_sectors - sector_num;
1090
    memset(buf + n1 * 512, 0, 512 * (nb_sectors - n1));
1091
    return n1;
1092
}
1093

    
1094
static int qcow_read(BlockDriverState *bs, int64_t sector_num,
1095
                     uint8_t *buf, int nb_sectors)
1096
{
1097
    BDRVQcowState *s = bs->opaque;
1098
    int ret, index_in_cluster, n, n1;
1099
    uint64_t cluster_offset;
1100

    
1101
    while (nb_sectors > 0) {
1102
        n = nb_sectors;
1103
        cluster_offset = get_cluster_offset(bs, sector_num << 9, &n);
1104
        index_in_cluster = sector_num & (s->cluster_sectors - 1);
1105
        if (!cluster_offset) {
1106
            if (bs->backing_hd) {
1107
                /* read from the base image */
1108
                n1 = backing_read1(bs->backing_hd, sector_num, buf, n);
1109
                if (n1 > 0) {
1110
                    ret = bdrv_read(bs->backing_hd, sector_num, buf, n1);
1111
                    if (ret < 0)
1112
                        return -1;
1113
                }
1114
            } else {
1115
                memset(buf, 0, 512 * n);
1116
            }
1117
        } else if (cluster_offset & QCOW_OFLAG_COMPRESSED) {
1118
            if (decompress_cluster(s, cluster_offset) < 0)
1119
                return -1;
1120
            memcpy(buf, s->cluster_cache + index_in_cluster * 512, 512 * n);
1121
        } else {
1122
            ret = bdrv_pread(s->hd, cluster_offset + index_in_cluster * 512, buf, n * 512);
1123
            if (ret != n * 512)
1124
                return -1;
1125
            if (s->crypt_method) {
1126
                encrypt_sectors(s, sector_num, buf, buf, n, 0,
1127
                                &s->aes_decrypt_key);
1128
            }
1129
        }
1130
        nb_sectors -= n;
1131
        sector_num += n;
1132
        buf += n * 512;
1133
    }
1134
    return 0;
1135
}
1136

    
1137
static int qcow_write(BlockDriverState *bs, int64_t sector_num,
1138
                     const uint8_t *buf, int nb_sectors)
1139
{
1140
    BDRVQcowState *s = bs->opaque;
1141
    int ret, index_in_cluster, n;
1142
    uint64_t cluster_offset;
1143
    int n_end;
1144
    QCowL2Meta l2meta;
1145

    
1146
    while (nb_sectors > 0) {
1147
        index_in_cluster = sector_num & (s->cluster_sectors - 1);
1148
        n_end = index_in_cluster + nb_sectors;
1149
        if (s->crypt_method &&
1150
            n_end > QCOW_MAX_CRYPT_CLUSTERS * s->cluster_sectors)
1151
            n_end = QCOW_MAX_CRYPT_CLUSTERS * s->cluster_sectors;
1152
        cluster_offset = alloc_cluster_offset(bs, sector_num << 9,
1153
                                              index_in_cluster,
1154
                                              n_end, &n, &l2meta);
1155
        if (!cluster_offset)
1156
            return -1;
1157
        if (s->crypt_method) {
1158
            encrypt_sectors(s, sector_num, s->cluster_data, buf, n, 1,
1159
                            &s->aes_encrypt_key);
1160
            ret = bdrv_pwrite(s->hd, cluster_offset + index_in_cluster * 512,
1161
                              s->cluster_data, n * 512);
1162
        } else {
1163
            ret = bdrv_pwrite(s->hd, cluster_offset + index_in_cluster * 512, buf, n * 512);
1164
        }
1165
        if (ret != n * 512 || alloc_cluster_link_l2(bs, cluster_offset, &l2meta) < 0) {
1166
            free_any_clusters(bs, cluster_offset, l2meta.nb_clusters);
1167
            return -1;
1168
        }
1169
        nb_sectors -= n;
1170
        sector_num += n;
1171
        buf += n * 512;
1172
    }
1173
    s->cluster_cache_offset = -1; /* disable compressed cache */
1174
    return 0;
1175
}
1176

    
1177
typedef struct QCowAIOCB {
1178
    BlockDriverAIOCB common;
1179
    int64_t sector_num;
1180
    uint8_t *buf;
1181
    int nb_sectors;
1182
    int n;
1183
    uint64_t cluster_offset;
1184
    uint8_t *cluster_data;
1185
    BlockDriverAIOCB *hd_aiocb;
1186
    QEMUBH *bh;
1187
    QCowL2Meta l2meta;
1188
} QCowAIOCB;
1189

    
1190
static void qcow_aio_read_cb(void *opaque, int ret);
1191
static void qcow_aio_read_bh(void *opaque)
1192
{
1193
    QCowAIOCB *acb = opaque;
1194
    qemu_bh_delete(acb->bh);
1195
    acb->bh = NULL;
1196
    qcow_aio_read_cb(opaque, 0);
1197
}
1198

    
1199
static int qcow_schedule_bh(QEMUBHFunc *cb, QCowAIOCB *acb)
1200
{
1201
    if (acb->bh)
1202
        return -EIO;
1203

    
1204
    acb->bh = qemu_bh_new(cb, acb);
1205
    if (!acb->bh)
1206
        return -EIO;
1207

    
1208
    qemu_bh_schedule(acb->bh);
1209

    
1210
    return 0;
1211
}
1212

    
1213
static void qcow_aio_read_cb(void *opaque, int ret)
1214
{
1215
    QCowAIOCB *acb = opaque;
1216
    BlockDriverState *bs = acb->common.bs;
1217
    BDRVQcowState *s = bs->opaque;
1218
    int index_in_cluster, n1;
1219

    
1220
    acb->hd_aiocb = NULL;
1221
    if (ret < 0) {
1222
fail:
1223
        acb->common.cb(acb->common.opaque, ret);
1224
        qemu_aio_release(acb);
1225
        return;
1226
    }
1227

    
1228
    /* post process the read buffer */
1229
    if (!acb->cluster_offset) {
1230
        /* nothing to do */
1231
    } else if (acb->cluster_offset & QCOW_OFLAG_COMPRESSED) {
1232
        /* nothing to do */
1233
    } else {
1234
        if (s->crypt_method) {
1235
            encrypt_sectors(s, acb->sector_num, acb->buf, acb->buf,
1236
                            acb->n, 0,
1237
                            &s->aes_decrypt_key);
1238
        }
1239
    }
1240

    
1241
    acb->nb_sectors -= acb->n;
1242
    acb->sector_num += acb->n;
1243
    acb->buf += acb->n * 512;
1244

    
1245
    if (acb->nb_sectors == 0) {
1246
        /* request completed */
1247
        acb->common.cb(acb->common.opaque, 0);
1248
        qemu_aio_release(acb);
1249
        return;
1250
    }
1251

    
1252
    /* prepare next AIO request */
1253
    acb->n = acb->nb_sectors;
1254
    acb->cluster_offset = get_cluster_offset(bs, acb->sector_num << 9, &acb->n);
1255
    index_in_cluster = acb->sector_num & (s->cluster_sectors - 1);
1256

    
1257
    if (!acb->cluster_offset) {
1258
        if (bs->backing_hd) {
1259
            /* read from the base image */
1260
            n1 = backing_read1(bs->backing_hd, acb->sector_num,
1261
                               acb->buf, acb->n);
1262
            if (n1 > 0) {
1263
                acb->hd_aiocb = bdrv_aio_read(bs->backing_hd, acb->sector_num,
1264
                                    acb->buf, acb->n, qcow_aio_read_cb, acb);
1265
                if (acb->hd_aiocb == NULL)
1266
                    goto fail;
1267
            } else {
1268
                ret = qcow_schedule_bh(qcow_aio_read_bh, acb);
1269
                if (ret < 0)
1270
                    goto fail;
1271
            }
1272
        } else {
1273
            /* Note: in this case, no need to wait */
1274
            memset(acb->buf, 0, 512 * acb->n);
1275
            ret = qcow_schedule_bh(qcow_aio_read_bh, acb);
1276
            if (ret < 0)
1277
                goto fail;
1278
        }
1279
    } else if (acb->cluster_offset & QCOW_OFLAG_COMPRESSED) {
1280
        /* add AIO support for compressed blocks ? */
1281
        if (decompress_cluster(s, acb->cluster_offset) < 0)
1282
            goto fail;
1283
        memcpy(acb->buf,
1284
               s->cluster_cache + index_in_cluster * 512, 512 * acb->n);
1285
        ret = qcow_schedule_bh(qcow_aio_read_bh, acb);
1286
        if (ret < 0)
1287
            goto fail;
1288
    } else {
1289
        if ((acb->cluster_offset & 511) != 0) {
1290
            ret = -EIO;
1291
            goto fail;
1292
        }
1293
        acb->hd_aiocb = bdrv_aio_read(s->hd,
1294
                            (acb->cluster_offset >> 9) + index_in_cluster,
1295
                            acb->buf, acb->n, qcow_aio_read_cb, acb);
1296
        if (acb->hd_aiocb == NULL)
1297
            goto fail;
1298
    }
1299
}
1300

    
1301
static QCowAIOCB *qcow_aio_setup(BlockDriverState *bs,
1302
        int64_t sector_num, uint8_t *buf, int nb_sectors,
1303
        BlockDriverCompletionFunc *cb, void *opaque)
1304
{
1305
    QCowAIOCB *acb;
1306

    
1307
    acb = qemu_aio_get(bs, cb, opaque);
1308
    if (!acb)
1309
        return NULL;
1310
    acb->hd_aiocb = NULL;
1311
    acb->sector_num = sector_num;
1312
    acb->buf = buf;
1313
    acb->nb_sectors = nb_sectors;
1314
    acb->n = 0;
1315
    acb->cluster_offset = 0;
1316
    acb->l2meta.nb_clusters = 0;
1317
    return acb;
1318
}
1319

    
1320
static BlockDriverAIOCB *qcow_aio_read(BlockDriverState *bs,
1321
        int64_t sector_num, uint8_t *buf, int nb_sectors,
1322
        BlockDriverCompletionFunc *cb, void *opaque)
1323
{
1324
    QCowAIOCB *acb;
1325

    
1326
    acb = qcow_aio_setup(bs, sector_num, buf, nb_sectors, cb, opaque);
1327
    if (!acb)
1328
        return NULL;
1329

    
1330
    qcow_aio_read_cb(acb, 0);
1331
    return &acb->common;
1332
}
1333

    
1334
static void qcow_aio_write_cb(void *opaque, int ret)
1335
{
1336
    QCowAIOCB *acb = opaque;
1337
    BlockDriverState *bs = acb->common.bs;
1338
    BDRVQcowState *s = bs->opaque;
1339
    int index_in_cluster;
1340
    const uint8_t *src_buf;
1341
    int n_end;
1342

    
1343
    acb->hd_aiocb = NULL;
1344

    
1345
    if (ret < 0) {
1346
    fail:
1347
        acb->common.cb(acb->common.opaque, ret);
1348
        qemu_aio_release(acb);
1349
        return;
1350
    }
1351

    
1352
    if (alloc_cluster_link_l2(bs, acb->cluster_offset, &acb->l2meta) < 0) {
1353
        free_any_clusters(bs, acb->cluster_offset, acb->l2meta.nb_clusters);
1354
        goto fail;
1355
    }
1356

    
1357
    acb->nb_sectors -= acb->n;
1358
    acb->sector_num += acb->n;
1359
    acb->buf += acb->n * 512;
1360

    
1361
    if (acb->nb_sectors == 0) {
1362
        /* request completed */
1363
        acb->common.cb(acb->common.opaque, 0);
1364
        qemu_aio_release(acb);
1365
        return;
1366
    }
1367

    
1368
    index_in_cluster = acb->sector_num & (s->cluster_sectors - 1);
1369
    n_end = index_in_cluster + acb->nb_sectors;
1370
    if (s->crypt_method &&
1371
        n_end > QCOW_MAX_CRYPT_CLUSTERS * s->cluster_sectors)
1372
        n_end = QCOW_MAX_CRYPT_CLUSTERS * s->cluster_sectors;
1373

    
1374
    acb->cluster_offset = alloc_cluster_offset(bs, acb->sector_num << 9,
1375
                                          index_in_cluster,
1376
                                          n_end, &acb->n, &acb->l2meta);
1377
    if (!acb->cluster_offset || (acb->cluster_offset & 511) != 0) {
1378
        ret = -EIO;
1379
        goto fail;
1380
    }
1381
    if (s->crypt_method) {
1382
        if (!acb->cluster_data) {
1383
            acb->cluster_data = qemu_mallocz(QCOW_MAX_CRYPT_CLUSTERS *
1384
                                             s->cluster_size);
1385
        }
1386
        encrypt_sectors(s, acb->sector_num, acb->cluster_data, acb->buf,
1387
                        acb->n, 1, &s->aes_encrypt_key);
1388
        src_buf = acb->cluster_data;
1389
    } else {
1390
        src_buf = acb->buf;
1391
    }
1392
    acb->hd_aiocb = bdrv_aio_write(s->hd,
1393
                                   (acb->cluster_offset >> 9) + index_in_cluster,
1394
                                   src_buf, acb->n,
1395
                                   qcow_aio_write_cb, acb);
1396
    if (acb->hd_aiocb == NULL)
1397
        goto fail;
1398
}
1399

    
1400
static BlockDriverAIOCB *qcow_aio_write(BlockDriverState *bs,
1401
        int64_t sector_num, const uint8_t *buf, int nb_sectors,
1402
        BlockDriverCompletionFunc *cb, void *opaque)
1403
{
1404
    BDRVQcowState *s = bs->opaque;
1405
    QCowAIOCB *acb;
1406

    
1407
    s->cluster_cache_offset = -1; /* disable compressed cache */
1408

    
1409
    acb = qcow_aio_setup(bs, sector_num, (uint8_t*)buf, nb_sectors, cb, opaque);
1410
    if (!acb)
1411
        return NULL;
1412

    
1413
    qcow_aio_write_cb(acb, 0);
1414
    return &acb->common;
1415
}
1416

    
1417
static void qcow_aio_cancel(BlockDriverAIOCB *blockacb)
1418
{
1419
    QCowAIOCB *acb = (QCowAIOCB *)blockacb;
1420
    if (acb->hd_aiocb)
1421
        bdrv_aio_cancel(acb->hd_aiocb);
1422
    qemu_aio_release(acb);
1423
}
1424

    
1425
static void qcow_close(BlockDriverState *bs)
1426
{
1427
    BDRVQcowState *s = bs->opaque;
1428
    qemu_free(s->l1_table);
1429
    qemu_free(s->l2_cache);
1430
    qemu_free(s->cluster_cache);
1431
    qemu_free(s->cluster_data);
1432
    refcount_close(bs);
1433
    bdrv_delete(s->hd);
1434
}
1435

    
1436
/* XXX: use std qcow open function ? */
1437
typedef struct QCowCreateState {
1438
    int cluster_size;
1439
    int cluster_bits;
1440
    uint16_t *refcount_block;
1441
    uint64_t *refcount_table;
1442
    int64_t l1_table_offset;
1443
    int64_t refcount_table_offset;
1444
    int64_t refcount_block_offset;
1445
} QCowCreateState;
1446

    
1447
static void create_refcount_update(QCowCreateState *s,
1448
                                   int64_t offset, int64_t size)
1449
{
1450
    int refcount;
1451
    int64_t start, last, cluster_offset;
1452
    uint16_t *p;
1453

    
1454
    start = offset & ~(s->cluster_size - 1);
1455
    last = (offset + size - 1)  & ~(s->cluster_size - 1);
1456
    for(cluster_offset = start; cluster_offset <= last;
1457
        cluster_offset += s->cluster_size) {
1458
        p = &s->refcount_block[cluster_offset >> s->cluster_bits];
1459
        refcount = be16_to_cpu(*p);
1460
        refcount++;
1461
        *p = cpu_to_be16(refcount);
1462
    }
1463
}
1464

    
1465
static int qcow_create(const char *filename, int64_t total_size,
1466
                      const char *backing_file, int flags)
1467
{
1468
    int fd, header_size, backing_filename_len, l1_size, i, shift, l2_bits;
1469
    QCowHeader header;
1470
    uint64_t tmp, offset;
1471
    QCowCreateState s1, *s = &s1;
1472

    
1473
    memset(s, 0, sizeof(*s));
1474

    
1475
    fd = open(filename, O_WRONLY | O_CREAT | O_TRUNC | O_BINARY, 0644);
1476
    if (fd < 0)
1477
        return -1;
1478
    memset(&header, 0, sizeof(header));
1479
    header.magic = cpu_to_be32(QCOW_MAGIC);
1480
    header.version = cpu_to_be32(QCOW_VERSION);
1481
    header.size = cpu_to_be64(total_size * 512);
1482
    header_size = sizeof(header);
1483
    backing_filename_len = 0;
1484
    if (backing_file) {
1485
        header.backing_file_offset = cpu_to_be64(header_size);
1486
        backing_filename_len = strlen(backing_file);
1487
        header.backing_file_size = cpu_to_be32(backing_filename_len);
1488
        header_size += backing_filename_len;
1489
    }
1490
    s->cluster_bits = 12;  /* 4 KB clusters */
1491
    s->cluster_size = 1 << s->cluster_bits;
1492
    header.cluster_bits = cpu_to_be32(s->cluster_bits);
1493
    header_size = (header_size + 7) & ~7;
1494
    if (flags & BLOCK_FLAG_ENCRYPT) {
1495
        header.crypt_method = cpu_to_be32(QCOW_CRYPT_AES);
1496
    } else {
1497
        header.crypt_method = cpu_to_be32(QCOW_CRYPT_NONE);
1498
    }
1499
    l2_bits = s->cluster_bits - 3;
1500
    shift = s->cluster_bits + l2_bits;
1501
    l1_size = (((total_size * 512) + (1LL << shift) - 1) >> shift);
1502
    offset = align_offset(header_size, s->cluster_size);
1503
    s->l1_table_offset = offset;
1504
    header.l1_table_offset = cpu_to_be64(s->l1_table_offset);
1505
    header.l1_size = cpu_to_be32(l1_size);
1506
    offset += align_offset(l1_size * sizeof(uint64_t), s->cluster_size);
1507

    
1508
    s->refcount_table = qemu_mallocz(s->cluster_size);
1509
    s->refcount_block = qemu_mallocz(s->cluster_size);
1510

    
1511
    s->refcount_table_offset = offset;
1512
    header.refcount_table_offset = cpu_to_be64(offset);
1513
    header.refcount_table_clusters = cpu_to_be32(1);
1514
    offset += s->cluster_size;
1515

    
1516
    s->refcount_table[0] = cpu_to_be64(offset);
1517
    s->refcount_block_offset = offset;
1518
    offset += s->cluster_size;
1519

    
1520
    /* update refcounts */
1521
    create_refcount_update(s, 0, header_size);
1522
    create_refcount_update(s, s->l1_table_offset, l1_size * sizeof(uint64_t));
1523
    create_refcount_update(s, s->refcount_table_offset, s->cluster_size);
1524
    create_refcount_update(s, s->refcount_block_offset, s->cluster_size);
1525

    
1526
    /* write all the data */
1527
    write(fd, &header, sizeof(header));
1528
    if (backing_file) {
1529
        write(fd, backing_file, backing_filename_len);
1530
    }
1531
    lseek(fd, s->l1_table_offset, SEEK_SET);
1532
    tmp = 0;
1533
    for(i = 0;i < l1_size; i++) {
1534
        write(fd, &tmp, sizeof(tmp));
1535
    }
1536
    lseek(fd, s->refcount_table_offset, SEEK_SET);
1537
    write(fd, s->refcount_table, s->cluster_size);
1538

    
1539
    lseek(fd, s->refcount_block_offset, SEEK_SET);
1540
    write(fd, s->refcount_block, s->cluster_size);
1541

    
1542
    qemu_free(s->refcount_table);
1543
    qemu_free(s->refcount_block);
1544
    close(fd);
1545
    return 0;
1546
}
1547

    
1548
static int qcow_make_empty(BlockDriverState *bs)
1549
{
1550
#if 0
1551
    /* XXX: not correct */
1552
    BDRVQcowState *s = bs->opaque;
1553
    uint32_t l1_length = s->l1_size * sizeof(uint64_t);
1554
    int ret;
1555

1556
    memset(s->l1_table, 0, l1_length);
1557
    if (bdrv_pwrite(s->hd, s->l1_table_offset, s->l1_table, l1_length) < 0)
1558
        return -1;
1559
    ret = bdrv_truncate(s->hd, s->l1_table_offset + l1_length);
1560
    if (ret < 0)
1561
        return ret;
1562

1563
    l2_cache_reset(bs);
1564
#endif
1565
    return 0;
1566
}
1567

    
1568
/* XXX: put compressed sectors first, then all the cluster aligned
1569
   tables to avoid losing bytes in alignment */
1570
static int qcow_write_compressed(BlockDriverState *bs, int64_t sector_num,
1571
                                 const uint8_t *buf, int nb_sectors)
1572
{
1573
    BDRVQcowState *s = bs->opaque;
1574
    z_stream strm;
1575
    int ret, out_len;
1576
    uint8_t *out_buf;
1577
    uint64_t cluster_offset;
1578

    
1579
    if (nb_sectors == 0) {
1580
        /* align end of file to a sector boundary to ease reading with
1581
           sector based I/Os */
1582
        cluster_offset = bdrv_getlength(s->hd);
1583
        cluster_offset = (cluster_offset + 511) & ~511;
1584
        bdrv_truncate(s->hd, cluster_offset);
1585
        return 0;
1586
    }
1587

    
1588
    if (nb_sectors != s->cluster_sectors)
1589
        return -EINVAL;
1590

    
1591
    out_buf = qemu_malloc(s->cluster_size + (s->cluster_size / 1000) + 128);
1592

    
1593
    /* best compression, small window, no zlib header */
1594
    memset(&strm, 0, sizeof(strm));
1595
    ret = deflateInit2(&strm, Z_DEFAULT_COMPRESSION,
1596
                       Z_DEFLATED, -12,
1597
                       9, Z_DEFAULT_STRATEGY);
1598
    if (ret != 0) {
1599
        qemu_free(out_buf);
1600
        return -1;
1601
    }
1602

    
1603
    strm.avail_in = s->cluster_size;
1604
    strm.next_in = (uint8_t *)buf;
1605
    strm.avail_out = s->cluster_size;
1606
    strm.next_out = out_buf;
1607

    
1608
    ret = deflate(&strm, Z_FINISH);
1609
    if (ret != Z_STREAM_END && ret != Z_OK) {
1610
        qemu_free(out_buf);
1611
        deflateEnd(&strm);
1612
        return -1;
1613
    }
1614
    out_len = strm.next_out - out_buf;
1615

    
1616
    deflateEnd(&strm);
1617

    
1618
    if (ret != Z_STREAM_END || out_len >= s->cluster_size) {
1619
        /* could not compress: write normal cluster */
1620
        qcow_write(bs, sector_num, buf, s->cluster_sectors);
1621
    } else {
1622
        cluster_offset = alloc_compressed_cluster_offset(bs, sector_num << 9,
1623
                                              out_len);
1624
        if (!cluster_offset)
1625
            return -1;
1626
        cluster_offset &= s->cluster_offset_mask;
1627
        if (bdrv_pwrite(s->hd, cluster_offset, out_buf, out_len) != out_len) {
1628
            qemu_free(out_buf);
1629
            return -1;
1630
        }
1631
    }
1632

    
1633
    qemu_free(out_buf);
1634
    return 0;
1635
}
1636

    
1637
static void qcow_flush(BlockDriverState *bs)
1638
{
1639
    BDRVQcowState *s = bs->opaque;
1640
    bdrv_flush(s->hd);
1641
}
1642

    
1643
static int qcow_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
1644
{
1645
    BDRVQcowState *s = bs->opaque;
1646
    bdi->cluster_size = s->cluster_size;
1647
    bdi->vm_state_offset = (int64_t)s->l1_vm_state_index <<
1648
        (s->cluster_bits + s->l2_bits);
1649
    bdi->highest_alloc = s->highest_alloc << s->cluster_bits;
1650
    bdi->num_free_bytes = s->nc_free  << s->cluster_bits;
1651
    return 0;
1652
}
1653

    
1654
/*********************************************************/
1655
/* snapshot support */
1656

    
1657
/* update the refcounts of snapshots and the copied flag */
1658
static int update_snapshot_refcount(BlockDriverState *bs,
1659
                                    int64_t l1_table_offset,
1660
                                    int l1_size,
1661
                                    int addend)
1662
{
1663
    BDRVQcowState *s = bs->opaque;
1664
    uint64_t *l1_table, *l2_table, l2_offset, offset, l1_size2, l1_allocated;
1665
    int64_t old_offset, old_l2_offset;
1666
    int l2_size, i, j, l1_modified, l2_modified, nb_csectors, refcount;
1667

    
1668
    l2_cache_reset(bs);
1669

    
1670
    l2_table = NULL;
1671
    l1_table = NULL;
1672
    l1_size2 = l1_size * sizeof(uint64_t);
1673
    l1_allocated = 0;
1674
    if (l1_table_offset != s->l1_table_offset) {
1675
        l1_table = qemu_malloc(l1_size2);
1676
        l1_allocated = 1;
1677
        if (bdrv_pread(s->hd, l1_table_offset,
1678
                       l1_table, l1_size2) != l1_size2)
1679
            goto fail;
1680
        for(i = 0;i < l1_size; i++)
1681
            be64_to_cpus(&l1_table[i]);
1682
    } else {
1683
        assert(l1_size == s->l1_size);
1684
        l1_table = s->l1_table;
1685
        l1_allocated = 0;
1686
    }
1687

    
1688
    l2_size = s->l2_size * sizeof(uint64_t);
1689
    l2_table = qemu_malloc(l2_size);
1690
    l1_modified = 0;
1691
    for(i = 0; i < l1_size; i++) {
1692
        l2_offset = l1_table[i];
1693
        if (l2_offset) {
1694
            old_l2_offset = l2_offset;
1695
            l2_offset &= ~QCOW_OFLAG_COPIED;
1696
            l2_modified = 0;
1697
            if (bdrv_pread(s->hd, l2_offset, l2_table, l2_size) != l2_size)
1698
                goto fail;
1699
            for(j = 0; j < s->l2_size; j++) {
1700
                offset = be64_to_cpu(l2_table[j]);
1701
                if (offset != 0) {
1702
                    old_offset = offset;
1703
                    offset &= ~QCOW_OFLAG_COPIED;
1704
                    if (offset & QCOW_OFLAG_COMPRESSED) {
1705
                        nb_csectors = ((offset >> s->csize_shift) &
1706
                                       s->csize_mask) + 1;
1707
                        if (addend != 0)
1708
                            update_refcount(bs, (offset & s->cluster_offset_mask) & ~511,
1709
                                            nb_csectors * 512, addend);
1710
                        /* compressed clusters are never modified */
1711
                        refcount = 2;
1712
                    } else {
1713
                        if (addend != 0) {
1714
                            refcount = update_cluster_refcount(bs, offset >> s->cluster_bits, addend);
1715
                        } else {
1716
                            refcount = get_refcount(bs, offset >> s->cluster_bits);
1717
                        }
1718
                    }
1719

    
1720
                    if (refcount == 1) {
1721
                        offset |= QCOW_OFLAG_COPIED;
1722
                    }
1723
                    if (offset != old_offset) {
1724
                        l2_table[j] = cpu_to_be64(offset);
1725
                        l2_modified = 1;
1726
                    }
1727
                }
1728
            }
1729
            if (l2_modified) {
1730
                if (bdrv_pwrite(s->hd,
1731
                                l2_offset, l2_table, l2_size) != l2_size)
1732
                    goto fail;
1733
            }
1734

    
1735
            if (addend != 0) {
1736
                refcount = update_cluster_refcount(bs, l2_offset >> s->cluster_bits, addend);
1737
            } else {
1738
                refcount = get_refcount(bs, l2_offset >> s->cluster_bits);
1739
            }
1740
            if (refcount == 1) {
1741
                l2_offset |= QCOW_OFLAG_COPIED;
1742
            }
1743
            if (l2_offset != old_l2_offset) {
1744
                l1_table[i] = l2_offset;
1745
                l1_modified = 1;
1746
            }
1747
        }
1748
    }
1749
    if (l1_modified) {
1750
        for(i = 0; i < l1_size; i++)
1751
            cpu_to_be64s(&l1_table[i]);
1752
        if (bdrv_pwrite(s->hd, l1_table_offset, l1_table,
1753
                        l1_size2) != l1_size2)
1754
            goto fail;
1755
        for(i = 0; i < l1_size; i++)
1756
            be64_to_cpus(&l1_table[i]);
1757
    }
1758
    if (l1_allocated)
1759
        qemu_free(l1_table);
1760
    qemu_free(l2_table);
1761
    return 0;
1762
 fail:
1763
    if (l1_allocated)
1764
        qemu_free(l1_table);
1765
    qemu_free(l2_table);
1766
    return -EIO;
1767
}
1768

    
1769
static void qcow_free_snapshots(BlockDriverState *bs)
1770
{
1771
    BDRVQcowState *s = bs->opaque;
1772
    int i;
1773

    
1774
    for(i = 0; i < s->nb_snapshots; i++) {
1775
        qemu_free(s->snapshots[i].name);
1776
        qemu_free(s->snapshots[i].id_str);
1777
    }
1778
    qemu_free(s->snapshots);
1779
    s->snapshots = NULL;
1780
    s->nb_snapshots = 0;
1781
}
1782

    
1783
static int qcow_read_snapshots(BlockDriverState *bs)
1784
{
1785
    BDRVQcowState *s = bs->opaque;
1786
    QCowSnapshotHeader h;
1787
    QCowSnapshot *sn;
1788
    int i, id_str_size, name_size;
1789
    int64_t offset;
1790
    uint32_t extra_data_size;
1791

    
1792
    if (!s->nb_snapshots) {
1793
        s->snapshots = NULL;
1794
        s->snapshots_size = 0;
1795
        return 0;
1796
    }
1797

    
1798
    offset = s->snapshots_offset;
1799
    s->snapshots = qemu_mallocz(s->nb_snapshots * sizeof(QCowSnapshot));
1800
    for(i = 0; i < s->nb_snapshots; i++) {
1801
        offset = align_offset(offset, 8);
1802
        if (bdrv_pread(s->hd, offset, &h, sizeof(h)) != sizeof(h))
1803
            goto fail;
1804
        offset += sizeof(h);
1805
        sn = s->snapshots + i;
1806
        sn->l1_table_offset = be64_to_cpu(h.l1_table_offset);
1807
        sn->l1_size = be32_to_cpu(h.l1_size);
1808
        sn->vm_state_size = be32_to_cpu(h.vm_state_size);
1809
        sn->date_sec = be32_to_cpu(h.date_sec);
1810
        sn->date_nsec = be32_to_cpu(h.date_nsec);
1811
        sn->vm_clock_nsec = be64_to_cpu(h.vm_clock_nsec);
1812
        extra_data_size = be32_to_cpu(h.extra_data_size);
1813

    
1814
        id_str_size = be16_to_cpu(h.id_str_size);
1815
        name_size = be16_to_cpu(h.name_size);
1816

    
1817
        offset += extra_data_size;
1818

    
1819
        sn->id_str = qemu_malloc(id_str_size + 1);
1820
        if (bdrv_pread(s->hd, offset, sn->id_str, id_str_size) != id_str_size)
1821
            goto fail;
1822
        offset += id_str_size;
1823
        sn->id_str[id_str_size] = '\0';
1824

    
1825
        sn->name = qemu_malloc(name_size + 1);
1826
        if (bdrv_pread(s->hd, offset, sn->name, name_size) != name_size)
1827
            goto fail;
1828
        offset += name_size;
1829
        sn->name[name_size] = '\0';
1830
    }
1831
    s->snapshots_size = offset - s->snapshots_offset;
1832
    return 0;
1833
 fail:
1834
    qcow_free_snapshots(bs);
1835
    return -1;
1836
}
1837

    
1838
/* add at the end of the file a new list of snapshots */
1839
static int qcow_write_snapshots(BlockDriverState *bs)
1840
{
1841
    BDRVQcowState *s = bs->opaque;
1842
    QCowSnapshot *sn;
1843
    QCowSnapshotHeader h;
1844
    int i, name_size, id_str_size, snapshots_size;
1845
    uint64_t data64;
1846
    uint32_t data32;
1847
    int64_t offset, snapshots_offset;
1848

    
1849
    /* compute the size of the snapshots */
1850
    offset = 0;
1851
    for(i = 0; i < s->nb_snapshots; i++) {
1852
        sn = s->snapshots + i;
1853
        offset = align_offset(offset, 8);
1854
        offset += sizeof(h);
1855
        offset += strlen(sn->id_str);
1856
        offset += strlen(sn->name);
1857
    }
1858
    snapshots_size = offset;
1859

    
1860
    snapshots_offset = alloc_clusters(bs, snapshots_size);
1861
    offset = snapshots_offset;
1862

    
1863
    for(i = 0; i < s->nb_snapshots; i++) {
1864
        sn = s->snapshots + i;
1865
        memset(&h, 0, sizeof(h));
1866
        h.l1_table_offset = cpu_to_be64(sn->l1_table_offset);
1867
        h.l1_size = cpu_to_be32(sn->l1_size);
1868
        h.vm_state_size = cpu_to_be32(sn->vm_state_size);
1869
        h.date_sec = cpu_to_be32(sn->date_sec);
1870
        h.date_nsec = cpu_to_be32(sn->date_nsec);
1871
        h.vm_clock_nsec = cpu_to_be64(sn->vm_clock_nsec);
1872

    
1873
        id_str_size = strlen(sn->id_str);
1874
        name_size = strlen(sn->name);
1875
        h.id_str_size = cpu_to_be16(id_str_size);
1876
        h.name_size = cpu_to_be16(name_size);
1877
        offset = align_offset(offset, 8);
1878
        if (bdrv_pwrite(s->hd, offset, &h, sizeof(h)) != sizeof(h))
1879
            goto fail;
1880
        offset += sizeof(h);
1881
        if (bdrv_pwrite(s->hd, offset, sn->id_str, id_str_size) != id_str_size)
1882
            goto fail;
1883
        offset += id_str_size;
1884
        if (bdrv_pwrite(s->hd, offset, sn->name, name_size) != name_size)
1885
            goto fail;
1886
        offset += name_size;
1887
    }
1888

    
1889
    /* update the various header fields */
1890
    data64 = cpu_to_be64(snapshots_offset);
1891
    if (bdrv_pwrite(s->hd, offsetof(QCowHeader, snapshots_offset),
1892
                    &data64, sizeof(data64)) != sizeof(data64))
1893
        goto fail;
1894
    data32 = cpu_to_be32(s->nb_snapshots);
1895
    if (bdrv_pwrite(s->hd, offsetof(QCowHeader, nb_snapshots),
1896
                    &data32, sizeof(data32)) != sizeof(data32))
1897
        goto fail;
1898

    
1899
    /* free the old snapshot table */
1900
    free_clusters(bs, s->snapshots_offset, s->snapshots_size);
1901
    s->snapshots_offset = snapshots_offset;
1902
    s->snapshots_size = snapshots_size;
1903
    return 0;
1904
 fail:
1905
    return -1;
1906
}
1907

    
1908
static void find_new_snapshot_id(BlockDriverState *bs,
1909
                                 char *id_str, int id_str_size)
1910
{
1911
    BDRVQcowState *s = bs->opaque;
1912
    QCowSnapshot *sn;
1913
    int i, id, id_max = 0;
1914

    
1915
    for(i = 0; i < s->nb_snapshots; i++) {
1916
        sn = s->snapshots + i;
1917
        id = strtoul(sn->id_str, NULL, 10);
1918
        if (id > id_max)
1919
            id_max = id;
1920
    }
1921
    snprintf(id_str, id_str_size, "%d", id_max + 1);
1922
}
1923

    
1924
static int find_snapshot_by_id(BlockDriverState *bs, const char *id_str)
1925
{
1926
    BDRVQcowState *s = bs->opaque;
1927
    int i;
1928

    
1929
    for(i = 0; i < s->nb_snapshots; i++) {
1930
        if (!strcmp(s->snapshots[i].id_str, id_str))
1931
            return i;
1932
    }
1933
    return -1;
1934
}
1935

    
1936
static int find_snapshot_by_id_or_name(BlockDriverState *bs, const char *name)
1937
{
1938
    BDRVQcowState *s = bs->opaque;
1939
    int i, ret;
1940

    
1941
    ret = find_snapshot_by_id(bs, name);
1942
    if (ret >= 0)
1943
        return ret;
1944
    for(i = 0; i < s->nb_snapshots; i++) {
1945
        if (!strcmp(s->snapshots[i].name, name))
1946
            return i;
1947
    }
1948
    return -1;
1949
}
1950

    
1951
/* if no id is provided, a new one is constructed */
1952
static int qcow_snapshot_create(BlockDriverState *bs,
1953
                                QEMUSnapshotInfo *sn_info)
1954
{
1955
    BDRVQcowState *s = bs->opaque;
1956
    QCowSnapshot *snapshots1, sn1, *sn = &sn1;
1957
    int i, ret;
1958
    uint64_t *l1_table = NULL;
1959

    
1960
    memset(sn, 0, sizeof(*sn));
1961

    
1962
    if (sn_info->id_str[0] == '\0') {
1963
        /* compute a new id */
1964
        find_new_snapshot_id(bs, sn_info->id_str, sizeof(sn_info->id_str));
1965
    }
1966

    
1967
    /* check that the ID is unique */
1968
    if (find_snapshot_by_id(bs, sn_info->id_str) >= 0)
1969
        return -ENOENT;
1970

    
1971
    sn->id_str = qemu_strdup(sn_info->id_str);
1972
    if (!sn->id_str)
1973
        goto fail;
1974
    sn->name = qemu_strdup(sn_info->name);
1975
    if (!sn->name)
1976
        goto fail;
1977
    sn->vm_state_size = sn_info->vm_state_size;
1978
    sn->date_sec = sn_info->date_sec;
1979
    sn->date_nsec = sn_info->date_nsec;
1980
    sn->vm_clock_nsec = sn_info->vm_clock_nsec;
1981

    
1982
    ret = update_snapshot_refcount(bs, s->l1_table_offset, s->l1_size, 1);
1983
    if (ret < 0)
1984
        goto fail;
1985

    
1986
    /* create the L1 table of the snapshot */
1987
    sn->l1_table_offset = alloc_clusters(bs, s->l1_size * sizeof(uint64_t));
1988
    sn->l1_size = s->l1_size;
1989

    
1990
    l1_table = qemu_malloc(s->l1_size * sizeof(uint64_t));
1991
    for(i = 0; i < s->l1_size; i++) {
1992
        l1_table[i] = cpu_to_be64(s->l1_table[i]);
1993
    }
1994
    if (bdrv_pwrite(s->hd, sn->l1_table_offset,
1995
                    l1_table, s->l1_size * sizeof(uint64_t)) !=
1996
        (s->l1_size * sizeof(uint64_t)))
1997
        goto fail;
1998
    qemu_free(l1_table);
1999
    l1_table = NULL;
2000

    
2001
    snapshots1 = qemu_malloc((s->nb_snapshots + 1) * sizeof(QCowSnapshot));
2002
    if (s->snapshots) {
2003
        memcpy(snapshots1, s->snapshots, s->nb_snapshots * sizeof(QCowSnapshot));
2004
        qemu_free(s->snapshots);
2005
    }
2006
    s->snapshots = snapshots1;
2007
    s->snapshots[s->nb_snapshots++] = *sn;
2008

    
2009
    if (qcow_write_snapshots(bs) < 0)
2010
        goto fail;
2011
#ifdef DEBUG_ALLOC
2012
    check_refcounts(bs);
2013
#endif
2014
    return 0;
2015
 fail:
2016
    qemu_free(sn->name);
2017
    qemu_free(l1_table);
2018
    return -1;
2019
}
2020

    
2021
/* copy the snapshot 'snapshot_name' into the current disk image */
2022
static int qcow_snapshot_goto(BlockDriverState *bs,
2023
                              const char *snapshot_id)
2024
{
2025
    BDRVQcowState *s = bs->opaque;
2026
    QCowSnapshot *sn;
2027
    int i, snapshot_index, l1_size2;
2028

    
2029
    snapshot_index = find_snapshot_by_id_or_name(bs, snapshot_id);
2030
    if (snapshot_index < 0)
2031
        return -ENOENT;
2032
    sn = &s->snapshots[snapshot_index];
2033

    
2034
    if (update_snapshot_refcount(bs, s->l1_table_offset, s->l1_size, -1) < 0)
2035
        goto fail;
2036

    
2037
    if (grow_l1_table(bs, sn->l1_size) < 0)
2038
        goto fail;
2039

    
2040
    s->l1_size = sn->l1_size;
2041
    l1_size2 = s->l1_size * sizeof(uint64_t);
2042
    /* copy the snapshot l1 table to the current l1 table */
2043
    if (bdrv_pread(s->hd, sn->l1_table_offset,
2044
                   s->l1_table, l1_size2) != l1_size2)
2045
        goto fail;
2046
    if (bdrv_pwrite(s->hd, s->l1_table_offset,
2047
                    s->l1_table, l1_size2) != l1_size2)
2048
        goto fail;
2049
    for(i = 0;i < s->l1_size; i++) {
2050
        be64_to_cpus(&s->l1_table[i]);
2051
    }
2052

    
2053
    if (update_snapshot_refcount(bs, s->l1_table_offset, s->l1_size, 1) < 0)
2054
        goto fail;
2055

    
2056
#ifdef DEBUG_ALLOC
2057
    check_refcounts(bs);
2058
#endif
2059
    return 0;
2060
 fail:
2061
    return -EIO;
2062
}
2063

    
2064
static int qcow_snapshot_delete(BlockDriverState *bs, const char *snapshot_id)
2065
{
2066
    BDRVQcowState *s = bs->opaque;
2067
    QCowSnapshot *sn;
2068
    int snapshot_index, ret;
2069

    
2070
    snapshot_index = find_snapshot_by_id_or_name(bs, snapshot_id);
2071
    if (snapshot_index < 0)
2072
        return -ENOENT;
2073
    sn = &s->snapshots[snapshot_index];
2074

    
2075
    ret = update_snapshot_refcount(bs, sn->l1_table_offset, sn->l1_size, -1);
2076
    if (ret < 0)
2077
        return ret;
2078
    /* must update the copied flag on the current cluster offsets */
2079
    ret = update_snapshot_refcount(bs, s->l1_table_offset, s->l1_size, 0);
2080
    if (ret < 0)
2081
        return ret;
2082
    free_clusters(bs, sn->l1_table_offset, sn->l1_size * sizeof(uint64_t));
2083

    
2084
    qemu_free(sn->id_str);
2085
    qemu_free(sn->name);
2086
    memmove(sn, sn + 1, (s->nb_snapshots - snapshot_index - 1) * sizeof(*sn));
2087
    s->nb_snapshots--;
2088
    ret = qcow_write_snapshots(bs);
2089
    if (ret < 0) {
2090
        /* XXX: restore snapshot if error ? */
2091
        return ret;
2092
    }
2093
#ifdef DEBUG_ALLOC
2094
    check_refcounts(bs);
2095
#endif
2096
    return 0;
2097
}
2098

    
2099
static int qcow_snapshot_list(BlockDriverState *bs,
2100
                              QEMUSnapshotInfo **psn_tab)
2101
{
2102
    BDRVQcowState *s = bs->opaque;
2103
    QEMUSnapshotInfo *sn_tab, *sn_info;
2104
    QCowSnapshot *sn;
2105
    int i;
2106

    
2107
    sn_tab = qemu_mallocz(s->nb_snapshots * sizeof(QEMUSnapshotInfo));
2108
    for(i = 0; i < s->nb_snapshots; i++) {
2109
        sn_info = sn_tab + i;
2110
        sn = s->snapshots + i;
2111
        pstrcpy(sn_info->id_str, sizeof(sn_info->id_str),
2112
                sn->id_str);
2113
        pstrcpy(sn_info->name, sizeof(sn_info->name),
2114
                sn->name);
2115
        sn_info->vm_state_size = sn->vm_state_size;
2116
        sn_info->date_sec = sn->date_sec;
2117
        sn_info->date_nsec = sn->date_nsec;
2118
        sn_info->vm_clock_nsec = sn->vm_clock_nsec;
2119
    }
2120
    *psn_tab = sn_tab;
2121
    return s->nb_snapshots;
2122
}
2123

    
2124
/*********************************************************/
2125
/* refcount handling */
2126

    
2127
static int refcount_init(BlockDriverState *bs)
2128
{
2129
    BDRVQcowState *s = bs->opaque;
2130
    int ret, refcount_table_size2, i;
2131

    
2132
    s->refcount_block_cache = qemu_malloc(s->cluster_size);
2133
    refcount_table_size2 = s->refcount_table_size * sizeof(uint64_t);
2134
    s->refcount_table = qemu_malloc(refcount_table_size2);
2135
    if (s->refcount_table_size > 0) {
2136
        ret = bdrv_pread(s->hd, s->refcount_table_offset,
2137
                         s->refcount_table, refcount_table_size2);
2138
        if (ret != refcount_table_size2)
2139
            goto fail;
2140
        for(i = 0; i < s->refcount_table_size; i++)
2141
            be64_to_cpus(&s->refcount_table[i]);
2142
    }
2143
    return 0;
2144
 fail:
2145
    return -ENOMEM;
2146
}
2147

    
2148
static void refcount_close(BlockDriverState *bs)
2149
{
2150
    BDRVQcowState *s = bs->opaque;
2151
    qemu_free(s->refcount_block_cache);
2152
    qemu_free(s->refcount_table);
2153
}
2154

    
2155

    
2156
static int load_refcount_block(BlockDriverState *bs,
2157
                               int64_t refcount_block_offset)
2158
{
2159
    BDRVQcowState *s = bs->opaque;
2160
    int ret;
2161
    ret = bdrv_pread(s->hd, refcount_block_offset, s->refcount_block_cache,
2162
                     s->cluster_size);
2163
    if (ret != s->cluster_size)
2164
        return -EIO;
2165
    s->refcount_block_cache_offset = refcount_block_offset;
2166
    return 0;
2167
}
2168

    
2169
static void scan_refcount(BlockDriverState *bs, int64_t *high, int64_t *free)
2170
{
2171
    BDRVQcowState *s = bs->opaque;
2172
    int64_t refcnt_index, cluster_index, cluster_end, h = 0, f = 0;
2173
    int64_t tail = 0; /* do not count last consecutive free entries */
2174

    
2175
    for (refcnt_index=0; refcnt_index < s->refcount_table_size; refcnt_index++){
2176
        if (s->refcount_table[refcnt_index] == 0) {
2177
            f += 1 << (s->cluster_bits - REFCOUNT_SHIFT);
2178
            tail += 1 << (s->cluster_bits - REFCOUNT_SHIFT);
2179
            continue;
2180
        }
2181
        cluster_index = refcnt_index << (s->cluster_bits - REFCOUNT_SHIFT);
2182
        cluster_end = (refcnt_index + 1) << (s->cluster_bits - REFCOUNT_SHIFT);
2183
        for ( ; cluster_index < cluster_end; cluster_index++) {
2184
            if (get_refcount(bs, cluster_index) == 0) {
2185
                f++;
2186
                tail++;
2187
            }
2188
            else {
2189
                h = cluster_index;
2190
                tail = 0;
2191
            }
2192
        }
2193
    }
2194

    
2195
    f -= tail;
2196
    if (free)
2197
        *free = f;
2198
    if (high)
2199
        *high = (h+1);
2200
}
2201

    
2202
static int get_refcount(BlockDriverState *bs, int64_t cluster_index)
2203
{
2204
    BDRVQcowState *s = bs->opaque;
2205
    int refcount_table_index, block_index;
2206
    int64_t refcount_block_offset;
2207

    
2208
    refcount_table_index = cluster_index >> (s->cluster_bits - REFCOUNT_SHIFT);
2209
    if (refcount_table_index >= s->refcount_table_size)
2210
        return 0;
2211
    refcount_block_offset = s->refcount_table[refcount_table_index];
2212
    if (!refcount_block_offset)
2213
        return 0;
2214
    if (refcount_block_offset != s->refcount_block_cache_offset) {
2215
        /* better than nothing: return allocated if read error */
2216
        if (load_refcount_block(bs, refcount_block_offset) < 0)
2217
            return 1;
2218
    }
2219
    block_index = cluster_index &
2220
        ((1 << (s->cluster_bits - REFCOUNT_SHIFT)) - 1);
2221
    return be16_to_cpu(s->refcount_block_cache[block_index]);
2222
}
2223

    
2224
/* return < 0 if error */
2225
static int64_t alloc_clusters_noref(BlockDriverState *bs, int64_t size)
2226
{
2227
    BDRVQcowState *s = bs->opaque;
2228
    int i, nb_clusters;
2229

    
2230
    nb_clusters = size_to_clusters(s, size);
2231
retry:
2232
    for(i = 0; i < nb_clusters; i++) {
2233
        int64_t i = s->free_cluster_index++;
2234
        if (get_refcount(bs, i) != 0)
2235
            goto retry;
2236
    }
2237
#ifdef DEBUG_ALLOC2
2238
    printf("alloc_clusters: size=%lld -> %lld\n",
2239
            size,
2240
            (s->free_cluster_index - nb_clusters) << s->cluster_bits);
2241
#endif
2242

    
2243
    if (s->highest_alloc < s->free_cluster_index) {
2244
        s->nc_free += (s->free_cluster_index - s->highest_alloc);
2245
        s->highest_alloc = s->free_cluster_index;
2246
    }
2247

    
2248
    return (s->free_cluster_index - nb_clusters) << s->cluster_bits;
2249
}
2250

    
2251
static int64_t alloc_clusters(BlockDriverState *bs, int64_t size)
2252
{
2253
    int64_t offset;
2254

    
2255
    offset = alloc_clusters_noref(bs, size);
2256
    update_refcount(bs, offset, size, 1);
2257
    return offset;
2258
}
2259

    
2260
/* only used to allocate compressed sectors. We try to allocate
2261
   contiguous sectors. size must be <= cluster_size */
2262
static int64_t alloc_bytes(BlockDriverState *bs, int size)
2263
{
2264
    BDRVQcowState *s = bs->opaque;
2265
    int64_t offset, cluster_offset;
2266
    int free_in_cluster;
2267

    
2268
    assert(size > 0 && size <= s->cluster_size);
2269
    if (s->free_byte_offset == 0) {
2270
        s->free_byte_offset = alloc_clusters(bs, s->cluster_size);
2271
    }
2272
 redo:
2273
    free_in_cluster = s->cluster_size -
2274
        (s->free_byte_offset & (s->cluster_size - 1));
2275
    if (size <= free_in_cluster) {
2276
        /* enough space in current cluster */
2277
        offset = s->free_byte_offset;
2278
        s->free_byte_offset += size;
2279
        free_in_cluster -= size;
2280
        if (free_in_cluster == 0)
2281
            s->free_byte_offset = 0;
2282
        if ((offset & (s->cluster_size - 1)) != 0)
2283
            update_cluster_refcount(bs, offset >> s->cluster_bits, 1);
2284
    } else {
2285
        offset = alloc_clusters(bs, s->cluster_size);
2286
        cluster_offset = s->free_byte_offset & ~(s->cluster_size - 1);
2287
        if ((cluster_offset + s->cluster_size) == offset) {
2288
            /* we are lucky: contiguous data */
2289
            offset = s->free_byte_offset;
2290
            update_cluster_refcount(bs, offset >> s->cluster_bits, 1);
2291
            s->free_byte_offset += size;
2292
        } else {
2293
            s->free_byte_offset = offset;
2294
            goto redo;
2295
        }
2296
    }
2297
    return offset;
2298
}
2299

    
2300
static void free_clusters(BlockDriverState *bs,
2301
                          int64_t offset, int64_t size)
2302
{
2303
    update_refcount(bs, offset, size, -1);
2304
}
2305

    
2306
static int grow_refcount_table(BlockDriverState *bs, int min_size)
2307
{
2308
    BDRVQcowState *s = bs->opaque;
2309
    int new_table_size, new_table_size2, refcount_table_clusters, i, ret;
2310
    uint64_t *new_table;
2311
    int64_t table_offset;
2312
    uint8_t data[12];
2313
    int old_table_size;
2314
    int64_t old_table_offset;
2315

    
2316
    if (min_size <= s->refcount_table_size)
2317
        return 0;
2318
    /* compute new table size */
2319
    refcount_table_clusters = s->refcount_table_size >> (s->cluster_bits - 3);
2320
    for(;;) {
2321
        if (refcount_table_clusters == 0) {
2322
            refcount_table_clusters = 1;
2323
        } else {
2324
            refcount_table_clusters = (refcount_table_clusters * 3 + 1) / 2;
2325
        }
2326
        new_table_size = refcount_table_clusters << (s->cluster_bits - 3);
2327
        if (min_size <= new_table_size)
2328
            break;
2329
    }
2330
#ifdef DEBUG_ALLOC2
2331
    printf("grow_refcount_table from %d to %d\n",
2332
           s->refcount_table_size,
2333
           new_table_size);
2334
#endif
2335
    new_table_size2 = new_table_size * sizeof(uint64_t);
2336
    new_table = qemu_mallocz(new_table_size2);
2337
    memcpy(new_table, s->refcount_table,
2338
           s->refcount_table_size * sizeof(uint64_t));
2339
    for(i = 0; i < s->refcount_table_size; i++)
2340
        cpu_to_be64s(&new_table[i]);
2341
    /* Note: we cannot update the refcount now to avoid recursion */
2342
    table_offset = alloc_clusters_noref(bs, new_table_size2);
2343
    ret = bdrv_pwrite(s->hd, table_offset, new_table, new_table_size2);
2344
    if (ret != new_table_size2)
2345
        goto fail;
2346
    for(i = 0; i < s->refcount_table_size; i++)
2347
        be64_to_cpus(&new_table[i]);
2348

    
2349
    cpu_to_be64w((uint64_t*)data, table_offset);
2350
    cpu_to_be32w((uint32_t*)(data + 8), refcount_table_clusters);
2351
    if (bdrv_pwrite(s->hd, offsetof(QCowHeader, refcount_table_offset),
2352
                    data, sizeof(data)) != sizeof(data))
2353
        goto fail;
2354
    qemu_free(s->refcount_table);
2355
    old_table_offset = s->refcount_table_offset;
2356
    old_table_size = s->refcount_table_size;
2357
    s->refcount_table = new_table;
2358
    s->refcount_table_size = new_table_size;
2359
    s->refcount_table_offset = table_offset;
2360

    
2361
    update_refcount(bs, table_offset, new_table_size2, 1);
2362
    free_clusters(bs, old_table_offset, old_table_size * sizeof(uint64_t));
2363
    return 0;
2364
 fail:
2365
    free_clusters(bs, table_offset, new_table_size2);
2366
    qemu_free(new_table);
2367
    return -EIO;
2368
}
2369

    
2370
/* addend must be 1 or -1 */
2371
/* XXX: cache several refcount block clusters ? */
2372
static int update_cluster_refcount(BlockDriverState *bs,
2373
                                   int64_t cluster_index,
2374
                                   int addend)
2375
{
2376
    BDRVQcowState *s = bs->opaque;
2377
    int64_t offset, refcount_block_offset;
2378
    int ret, refcount_table_index, block_index, refcount;
2379
    uint64_t data64;
2380

    
2381
    refcount_table_index = cluster_index >> (s->cluster_bits - REFCOUNT_SHIFT);
2382
    if (refcount_table_index >= s->refcount_table_size) {
2383
        if (addend < 0)
2384
            return -EINVAL;
2385
        ret = grow_refcount_table(bs, refcount_table_index + 1);
2386
        if (ret < 0)
2387
            return ret;
2388
    }
2389
    refcount_block_offset = s->refcount_table[refcount_table_index];
2390
    if (!refcount_block_offset) {
2391
        if (addend < 0)
2392
            return -EINVAL;
2393
        /* create a new refcount block */
2394
        /* Note: we cannot update the refcount now to avoid recursion */
2395
        offset = alloc_clusters_noref(bs, s->cluster_size);
2396
        memset(s->refcount_block_cache, 0, s->cluster_size);
2397
        ret = bdrv_pwrite(s->hd, offset, s->refcount_block_cache, s->cluster_size);
2398
        if (ret != s->cluster_size)
2399
            return -EINVAL;
2400
        s->refcount_table[refcount_table_index] = offset;
2401
        data64 = cpu_to_be64(offset);
2402
        ret = bdrv_pwrite(s->hd, s->refcount_table_offset +
2403
                          refcount_table_index * sizeof(uint64_t),
2404
                          &data64, sizeof(data64));
2405
        if (ret != sizeof(data64))
2406
            return -EINVAL;
2407

    
2408
        refcount_block_offset = offset;
2409
        s->refcount_block_cache_offset = offset;
2410
        update_refcount(bs, offset, s->cluster_size, 1);
2411
    } else {
2412
        if (refcount_block_offset != s->refcount_block_cache_offset) {
2413
            if (load_refcount_block(bs, refcount_block_offset) < 0)
2414
                return -EIO;
2415
        }
2416
    }
2417
    /* we can update the count and save it */
2418
    block_index = cluster_index &
2419
        ((1 << (s->cluster_bits - REFCOUNT_SHIFT)) - 1);
2420
    refcount = be16_to_cpu(s->refcount_block_cache[block_index]);
2421

    
2422
    if (refcount == 1 && addend == -1)
2423
        s->nc_free += 1;
2424
    else if (refcount == 0 && addend == 1)
2425
        s->nc_free -= 1;
2426

    
2427
    refcount += addend;
2428
    if (refcount < 0 || refcount > 0xffff)
2429
        return -EINVAL;
2430
    if (refcount == 0 && cluster_index < s->free_cluster_index) {
2431
        s->free_cluster_index = cluster_index;
2432
    }
2433
    s->refcount_block_cache[block_index] = cpu_to_be16(refcount);
2434
    if (bdrv_pwrite(s->hd,
2435
                    refcount_block_offset + (block_index << REFCOUNT_SHIFT),
2436
                    &s->refcount_block_cache[block_index], 2) != 2)
2437
        return -EIO;
2438
    return refcount;
2439
}
2440

    
2441
static void update_refcount(BlockDriverState *bs,
2442
                            int64_t offset, int64_t length,
2443
                            int addend)
2444
{
2445
    BDRVQcowState *s = bs->opaque;
2446
    int64_t start, last, cluster_offset;
2447

    
2448
#ifdef DEBUG_ALLOC2
2449
    printf("update_refcount: offset=%lld size=%lld addend=%d\n",
2450
           offset, length, addend);
2451
#endif
2452
    if (length <= 0)
2453
        return;
2454
    start = offset & ~(s->cluster_size - 1);
2455
    last = (offset + length - 1) & ~(s->cluster_size - 1);
2456
    for(cluster_offset = start; cluster_offset <= last;
2457
        cluster_offset += s->cluster_size) {
2458
        update_cluster_refcount(bs, cluster_offset >> s->cluster_bits, addend);
2459
    }
2460
}
2461

    
2462
#ifdef DEBUG_ALLOC
2463
static void inc_refcounts(BlockDriverState *bs,
2464
                          uint16_t *refcount_table,
2465
                          int refcount_table_size,
2466
                          int64_t offset, int64_t size)
2467
{
2468
    BDRVQcowState *s = bs->opaque;
2469
    int64_t start, last, cluster_offset;
2470
    int k;
2471

    
2472
    if (size <= 0)
2473
        return;
2474

    
2475
    start = offset & ~(s->cluster_size - 1);
2476
    last = (offset + size - 1) & ~(s->cluster_size - 1);
2477
    for(cluster_offset = start; cluster_offset <= last;
2478
        cluster_offset += s->cluster_size) {
2479
        k = cluster_offset >> s->cluster_bits;
2480
        if (k < 0 || k >= refcount_table_size) {
2481
            printf("ERROR: invalid cluster offset=0x%llx\n", cluster_offset);
2482
        } else {
2483
            if (++refcount_table[k] == 0) {
2484
                printf("ERROR: overflow cluster offset=0x%llx\n", cluster_offset);
2485
            }
2486
        }
2487
    }
2488
}
2489

    
2490
static int check_refcounts_l1(BlockDriverState *bs,
2491
                              uint16_t *refcount_table,
2492
                              int refcount_table_size,
2493
                              int64_t l1_table_offset, int l1_size,
2494
                              int check_copied)
2495
{
2496
    BDRVQcowState *s = bs->opaque;
2497
    uint64_t *l1_table, *l2_table, l2_offset, offset, l1_size2;
2498
    int l2_size, i, j, nb_csectors, refcount;
2499

    
2500
    l2_table = NULL;
2501
    l1_size2 = l1_size * sizeof(uint64_t);
2502

    
2503
    inc_refcounts(bs, refcount_table, refcount_table_size,
2504
                  l1_table_offset, l1_size2);
2505

    
2506
    l1_table = qemu_malloc(l1_size2);
2507
    if (bdrv_pread(s->hd, l1_table_offset,
2508
                   l1_table, l1_size2) != l1_size2)
2509
        goto fail;
2510
    for(i = 0;i < l1_size; i++)
2511
        be64_to_cpus(&l1_table[i]);
2512

    
2513
    l2_size = s->l2_size * sizeof(uint64_t);
2514
    l2_table = qemu_malloc(l2_size);
2515
    for(i = 0; i < l1_size; i++) {
2516
        l2_offset = l1_table[i];
2517
        if (l2_offset) {
2518
            if (check_copied) {
2519
                refcount = get_refcount(bs, (l2_offset & ~QCOW_OFLAG_COPIED) >> s->cluster_bits);
2520
                if ((refcount == 1) != ((l2_offset & QCOW_OFLAG_COPIED) != 0)) {
2521
                    printf("ERROR OFLAG_COPIED: l2_offset=%llx refcount=%d\n",
2522
                           l2_offset, refcount);
2523
                }
2524
            }
2525
            l2_offset &= ~QCOW_OFLAG_COPIED;
2526
            if (bdrv_pread(s->hd, l2_offset, l2_table, l2_size) != l2_size)
2527
                goto fail;
2528
            for(j = 0; j < s->l2_size; j++) {
2529
                offset = be64_to_cpu(l2_table[j]);
2530
                if (offset != 0) {
2531
                    if (offset & QCOW_OFLAG_COMPRESSED) {
2532
                        if (offset & QCOW_OFLAG_COPIED) {
2533
                            printf("ERROR: cluster %lld: copied flag must never be set for compressed clusters\n",
2534
                                   offset >> s->cluster_bits);
2535
                            offset &= ~QCOW_OFLAG_COPIED;
2536
                        }
2537
                        nb_csectors = ((offset >> s->csize_shift) &
2538
                                       s->csize_mask) + 1;
2539
                        offset &= s->cluster_offset_mask;
2540
                        inc_refcounts(bs, refcount_table,
2541
                                      refcount_table_size,
2542
                                      offset & ~511, nb_csectors * 512);
2543
                    } else {
2544
                        if (check_copied) {
2545
                            refcount = get_refcount(bs, (offset & ~QCOW_OFLAG_COPIED) >> s->cluster_bits);
2546
                            if ((refcount == 1) != ((offset & QCOW_OFLAG_COPIED) != 0)) {
2547
                                printf("ERROR OFLAG_COPIED: offset=%llx refcount=%d\n",
2548
                                       offset, refcount);
2549
                            }
2550
                        }
2551
                        offset &= ~QCOW_OFLAG_COPIED;
2552
                        inc_refcounts(bs, refcount_table,
2553
                                      refcount_table_size,
2554
                                      offset, s->cluster_size);
2555
                    }
2556
                }
2557
            }
2558
            inc_refcounts(bs, refcount_table,
2559
                          refcount_table_size,
2560
                          l2_offset,
2561
                          s->cluster_size);
2562
        }
2563
    }
2564
    qemu_free(l1_table);
2565
    qemu_free(l2_table);
2566
    return 0;
2567
 fail:
2568
    printf("ERROR: I/O error in check_refcounts_l1\n");
2569
    qemu_free(l1_table);
2570
    qemu_free(l2_table);
2571
    return -EIO;
2572
}
2573

    
2574
static void check_refcounts(BlockDriverState *bs)
2575
{
2576
    BDRVQcowState *s = bs->opaque;
2577
    int64_t size;
2578
    int nb_clusters, refcount1, refcount2, i;
2579
    QCowSnapshot *sn;
2580
    uint16_t *refcount_table;
2581

    
2582
    size = bdrv_getlength(s->hd);
2583
    nb_clusters = size_to_clusters(s, size);
2584
    refcount_table = qemu_mallocz(nb_clusters * sizeof(uint16_t));
2585

    
2586
    /* header */
2587
    inc_refcounts(bs, refcount_table, nb_clusters,
2588
                  0, s->cluster_size);
2589

    
2590
    check_refcounts_l1(bs, refcount_table, nb_clusters,
2591
                       s->l1_table_offset, s->l1_size, 1);
2592

    
2593
    /* snapshots */
2594
    for(i = 0; i < s->nb_snapshots; i++) {
2595
        sn = s->snapshots + i;
2596
        check_refcounts_l1(bs, refcount_table, nb_clusters,
2597
                           sn->l1_table_offset, sn->l1_size, 0);
2598
    }
2599
    inc_refcounts(bs, refcount_table, nb_clusters,
2600
                  s->snapshots_offset, s->snapshots_size);
2601

    
2602
    /* refcount data */
2603
    inc_refcounts(bs, refcount_table, nb_clusters,
2604
                  s->refcount_table_offset,
2605
                  s->refcount_table_size * sizeof(uint64_t));
2606
    for(i = 0; i < s->refcount_table_size; i++) {
2607
        int64_t offset;
2608
        offset = s->refcount_table[i];
2609
        if (offset != 0) {
2610
            inc_refcounts(bs, refcount_table, nb_clusters,
2611
                          offset, s->cluster_size);
2612
        }
2613
    }
2614

    
2615
    /* compare ref counts */
2616
    for(i = 0; i < nb_clusters; i++) {
2617
        refcount1 = get_refcount(bs, i);
2618
        refcount2 = refcount_table[i];
2619
        if (refcount1 != refcount2)
2620
            printf("ERROR cluster %d refcount=%d reference=%d\n",
2621
                   i, refcount1, refcount2);
2622
    }
2623

    
2624
    qemu_free(refcount_table);
2625
}
2626

    
2627
#if 0
2628
static void dump_refcounts(BlockDriverState *bs)
2629
{
2630
    BDRVQcowState *s = bs->opaque;
2631
    int64_t nb_clusters, k, k1, size;
2632
    int refcount;
2633

2634
    size = bdrv_getlength(s->hd);
2635
    nb_clusters = size_to_clusters(s, size);
2636
    for(k = 0; k < nb_clusters;) {
2637
        k1 = k;
2638
        refcount = get_refcount(bs, k);
2639
        k++;
2640
        while (k < nb_clusters && get_refcount(bs, k) == refcount)
2641
            k++;
2642
        printf("%lld: refcount=%d nb=%lld\n", k, refcount, k - k1);
2643
    }
2644
}
2645
#endif
2646
#endif
2647

    
2648
BlockDriver bdrv_qcow2 = {
2649
    "qcow2",
2650
    sizeof(BDRVQcowState),
2651
    qcow_probe,
2652
    qcow_open,
2653
    NULL,
2654
    NULL,
2655
    qcow_close,
2656
    qcow_create,
2657
    qcow_flush,
2658
    qcow_is_allocated,
2659
    qcow_set_key,
2660
    qcow_make_empty,
2661

    
2662
    .bdrv_aio_read = qcow_aio_read,
2663
    .bdrv_aio_write = qcow_aio_write,
2664
    .bdrv_aio_cancel = qcow_aio_cancel,
2665
    .aiocb_size = sizeof(QCowAIOCB),
2666
    .bdrv_write_compressed = qcow_write_compressed,
2667

    
2668
    .bdrv_snapshot_create = qcow_snapshot_create,
2669
    .bdrv_snapshot_goto = qcow_snapshot_goto,
2670
    .bdrv_snapshot_delete = qcow_snapshot_delete,
2671
    .bdrv_snapshot_list = qcow_snapshot_list,
2672
    .bdrv_get_info = qcow_get_info,
2673
};