Statistics
| Branch: | Revision:

root / target-arm / helper.c @ 72f24d15

History | View | Annotate | Download (73.3 kB)

1
#include <stdio.h>
2
#include <stdlib.h>
3
#include <string.h>
4

    
5
#include "cpu.h"
6
#include "exec-all.h"
7
#include "gdbstub.h"
8
#include "helpers.h"
9
#include "qemu-common.h"
10
#include "host-utils.h"
11
#if !defined(CONFIG_USER_ONLY)
12
#include "hw/loader.h"
13
#endif
14

    
15
static uint32_t cortexa9_cp15_c0_c1[8] =
16
{ 0x1031, 0x11, 0x000, 0, 0x00100103, 0x20000000, 0x01230000, 0x00002111 };
17

    
18
static uint32_t cortexa9_cp15_c0_c2[8] =
19
{ 0x00101111, 0x13112111, 0x21232041, 0x11112131, 0x00111142, 0, 0, 0 };
20

    
21
static uint32_t cortexa8_cp15_c0_c1[8] =
22
{ 0x1031, 0x11, 0x400, 0, 0x31100003, 0x20000000, 0x01202000, 0x11 };
23

    
24
static uint32_t cortexa8_cp15_c0_c2[8] =
25
{ 0x00101111, 0x12112111, 0x21232031, 0x11112131, 0x00111142, 0, 0, 0 };
26

    
27
static uint32_t mpcore_cp15_c0_c1[8] =
28
{ 0x111, 0x1, 0, 0x2, 0x01100103, 0x10020302, 0x01222000, 0 };
29

    
30
static uint32_t mpcore_cp15_c0_c2[8] =
31
{ 0x00100011, 0x12002111, 0x11221011, 0x01102131, 0x141, 0, 0, 0 };
32

    
33
static uint32_t arm1136_cp15_c0_c1[8] =
34
{ 0x111, 0x1, 0x2, 0x3, 0x01130003, 0x10030302, 0x01222110, 0 };
35

    
36
static uint32_t arm1136_cp15_c0_c2[8] =
37
{ 0x00140011, 0x12002111, 0x11231111, 0x01102131, 0x141, 0, 0, 0 };
38

    
39
static uint32_t cpu_arm_find_by_name(const char *name);
40

    
41
static inline void set_feature(CPUARMState *env, int feature)
42
{
43
    env->features |= 1u << feature;
44
}
45

    
46
static void cpu_reset_model_id(CPUARMState *env, uint32_t id)
47
{
48
    env->cp15.c0_cpuid = id;
49
    switch (id) {
50
    case ARM_CPUID_ARM926:
51
        set_feature(env, ARM_FEATURE_VFP);
52
        env->vfp.xregs[ARM_VFP_FPSID] = 0x41011090;
53
        env->cp15.c0_cachetype = 0x1dd20d2;
54
        env->cp15.c1_sys = 0x00090078;
55
        break;
56
    case ARM_CPUID_ARM946:
57
        set_feature(env, ARM_FEATURE_MPU);
58
        env->cp15.c0_cachetype = 0x0f004006;
59
        env->cp15.c1_sys = 0x00000078;
60
        break;
61
    case ARM_CPUID_ARM1026:
62
        set_feature(env, ARM_FEATURE_VFP);
63
        set_feature(env, ARM_FEATURE_AUXCR);
64
        env->vfp.xregs[ARM_VFP_FPSID] = 0x410110a0;
65
        env->cp15.c0_cachetype = 0x1dd20d2;
66
        env->cp15.c1_sys = 0x00090078;
67
        break;
68
    case ARM_CPUID_ARM1136_R2:
69
    case ARM_CPUID_ARM1136:
70
        set_feature(env, ARM_FEATURE_V6);
71
        set_feature(env, ARM_FEATURE_VFP);
72
        set_feature(env, ARM_FEATURE_AUXCR);
73
        env->vfp.xregs[ARM_VFP_FPSID] = 0x410120b4;
74
        env->vfp.xregs[ARM_VFP_MVFR0] = 0x11111111;
75
        env->vfp.xregs[ARM_VFP_MVFR1] = 0x00000000;
76
        memcpy(env->cp15.c0_c1, arm1136_cp15_c0_c1, 8 * sizeof(uint32_t));
77
        memcpy(env->cp15.c0_c2, arm1136_cp15_c0_c2, 8 * sizeof(uint32_t));
78
        env->cp15.c0_cachetype = 0x1dd20d2;
79
        break;
80
    case ARM_CPUID_ARM11MPCORE:
81
        set_feature(env, ARM_FEATURE_V6);
82
        set_feature(env, ARM_FEATURE_V6K);
83
        set_feature(env, ARM_FEATURE_VFP);
84
        set_feature(env, ARM_FEATURE_AUXCR);
85
        env->vfp.xregs[ARM_VFP_FPSID] = 0x410120b4;
86
        env->vfp.xregs[ARM_VFP_MVFR0] = 0x11111111;
87
        env->vfp.xregs[ARM_VFP_MVFR1] = 0x00000000;
88
        memcpy(env->cp15.c0_c1, mpcore_cp15_c0_c1, 8 * sizeof(uint32_t));
89
        memcpy(env->cp15.c0_c2, mpcore_cp15_c0_c2, 8 * sizeof(uint32_t));
90
        env->cp15.c0_cachetype = 0x1dd20d2;
91
        break;
92
    case ARM_CPUID_CORTEXA8:
93
        set_feature(env, ARM_FEATURE_V6);
94
        set_feature(env, ARM_FEATURE_V6K);
95
        set_feature(env, ARM_FEATURE_V7);
96
        set_feature(env, ARM_FEATURE_AUXCR);
97
        set_feature(env, ARM_FEATURE_THUMB2);
98
        set_feature(env, ARM_FEATURE_VFP);
99
        set_feature(env, ARM_FEATURE_VFP3);
100
        set_feature(env, ARM_FEATURE_NEON);
101
        set_feature(env, ARM_FEATURE_THUMB2EE);
102
        env->vfp.xregs[ARM_VFP_FPSID] = 0x410330c0;
103
        env->vfp.xregs[ARM_VFP_MVFR0] = 0x11110222;
104
        env->vfp.xregs[ARM_VFP_MVFR1] = 0x00011100;
105
        memcpy(env->cp15.c0_c1, cortexa8_cp15_c0_c1, 8 * sizeof(uint32_t));
106
        memcpy(env->cp15.c0_c2, cortexa8_cp15_c0_c2, 8 * sizeof(uint32_t));
107
        env->cp15.c0_cachetype = 0x82048004;
108
        env->cp15.c0_clid = (1 << 27) | (2 << 24) | 3;
109
        env->cp15.c0_ccsid[0] = 0xe007e01a; /* 16k L1 dcache. */
110
        env->cp15.c0_ccsid[1] = 0x2007e01a; /* 16k L1 icache. */
111
        env->cp15.c0_ccsid[2] = 0xf0000000; /* No L2 icache. */
112
        break;
113
    case ARM_CPUID_CORTEXA9:
114
        set_feature(env, ARM_FEATURE_V6);
115
        set_feature(env, ARM_FEATURE_V6K);
116
        set_feature(env, ARM_FEATURE_V7);
117
        set_feature(env, ARM_FEATURE_AUXCR);
118
        set_feature(env, ARM_FEATURE_THUMB2);
119
        set_feature(env, ARM_FEATURE_VFP);
120
        set_feature(env, ARM_FEATURE_VFP3);
121
        set_feature(env, ARM_FEATURE_VFP_FP16);
122
        set_feature(env, ARM_FEATURE_NEON);
123
        set_feature(env, ARM_FEATURE_THUMB2EE);
124
        env->vfp.xregs[ARM_VFP_FPSID] = 0x41034000; /* Guess */
125
        env->vfp.xregs[ARM_VFP_MVFR0] = 0x11110222;
126
        env->vfp.xregs[ARM_VFP_MVFR1] = 0x01111111;
127
        memcpy(env->cp15.c0_c1, cortexa9_cp15_c0_c1, 8 * sizeof(uint32_t));
128
        memcpy(env->cp15.c0_c2, cortexa9_cp15_c0_c2, 8 * sizeof(uint32_t));
129
        env->cp15.c0_cachetype = 0x80038003;
130
        env->cp15.c0_clid = (1 << 27) | (1 << 24) | 3;
131
        env->cp15.c0_ccsid[0] = 0xe00fe015; /* 16k L1 dcache. */
132
        env->cp15.c0_ccsid[1] = 0x200fe015; /* 16k L1 icache. */
133
        break;
134
    case ARM_CPUID_CORTEXM3:
135
        set_feature(env, ARM_FEATURE_V6);
136
        set_feature(env, ARM_FEATURE_THUMB2);
137
        set_feature(env, ARM_FEATURE_V7);
138
        set_feature(env, ARM_FEATURE_M);
139
        set_feature(env, ARM_FEATURE_DIV);
140
        break;
141
    case ARM_CPUID_ANY: /* For userspace emulation.  */
142
        set_feature(env, ARM_FEATURE_V6);
143
        set_feature(env, ARM_FEATURE_V6K);
144
        set_feature(env, ARM_FEATURE_V7);
145
        set_feature(env, ARM_FEATURE_THUMB2);
146
        set_feature(env, ARM_FEATURE_VFP);
147
        set_feature(env, ARM_FEATURE_VFP3);
148
        set_feature(env, ARM_FEATURE_VFP_FP16);
149
        set_feature(env, ARM_FEATURE_NEON);
150
        set_feature(env, ARM_FEATURE_THUMB2EE);
151
        set_feature(env, ARM_FEATURE_DIV);
152
        break;
153
    case ARM_CPUID_TI915T:
154
    case ARM_CPUID_TI925T:
155
        set_feature(env, ARM_FEATURE_OMAPCP);
156
        env->cp15.c0_cpuid = ARM_CPUID_TI925T; /* Depends on wiring.  */
157
        env->cp15.c0_cachetype = 0x5109149;
158
        env->cp15.c1_sys = 0x00000070;
159
        env->cp15.c15_i_max = 0x000;
160
        env->cp15.c15_i_min = 0xff0;
161
        break;
162
    case ARM_CPUID_PXA250:
163
    case ARM_CPUID_PXA255:
164
    case ARM_CPUID_PXA260:
165
    case ARM_CPUID_PXA261:
166
    case ARM_CPUID_PXA262:
167
        set_feature(env, ARM_FEATURE_XSCALE);
168
        /* JTAG_ID is ((id << 28) | 0x09265013) */
169
        env->cp15.c0_cachetype = 0xd172172;
170
        env->cp15.c1_sys = 0x00000078;
171
        break;
172
    case ARM_CPUID_PXA270_A0:
173
    case ARM_CPUID_PXA270_A1:
174
    case ARM_CPUID_PXA270_B0:
175
    case ARM_CPUID_PXA270_B1:
176
    case ARM_CPUID_PXA270_C0:
177
    case ARM_CPUID_PXA270_C5:
178
        set_feature(env, ARM_FEATURE_XSCALE);
179
        /* JTAG_ID is ((id << 28) | 0x09265013) */
180
        set_feature(env, ARM_FEATURE_IWMMXT);
181
        env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
182
        env->cp15.c0_cachetype = 0xd172172;
183
        env->cp15.c1_sys = 0x00000078;
184
        break;
185
    default:
186
        cpu_abort(env, "Bad CPU ID: %x\n", id);
187
        break;
188
    }
189
}
190

    
191
void cpu_reset(CPUARMState *env)
192
{
193
    uint32_t id;
194

    
195
    if (qemu_loglevel_mask(CPU_LOG_RESET)) {
196
        qemu_log("CPU Reset (CPU %d)\n", env->cpu_index);
197
        log_cpu_state(env, 0);
198
    }
199

    
200
    id = env->cp15.c0_cpuid;
201
    memset(env, 0, offsetof(CPUARMState, breakpoints));
202
    if (id)
203
        cpu_reset_model_id(env, id);
204
#if defined (CONFIG_USER_ONLY)
205
    env->uncached_cpsr = ARM_CPU_MODE_USR;
206
    /* For user mode we must enable access to coprocessors */
207
    env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
208
    if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
209
        env->cp15.c15_cpar = 3;
210
    } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
211
        env->cp15.c15_cpar = 1;
212
    }
213
#else
214
    /* SVC mode with interrupts disabled.  */
215
    env->uncached_cpsr = ARM_CPU_MODE_SVC | CPSR_A | CPSR_F | CPSR_I;
216
    /* On ARMv7-M the CPSR_I is the value of the PRIMASK register, and is
217
       clear at reset.  Initial SP and PC are loaded from ROM.  */
218
    if (IS_M(env)) {
219
        uint32_t pc;
220
        uint8_t *rom;
221
        env->uncached_cpsr &= ~CPSR_I;
222
        rom = rom_ptr(0);
223
        if (rom) {
224
            /* We should really use ldl_phys here, in case the guest
225
               modified flash and reset itself.  However images
226
               loaded via -kenrel have not been copied yet, so load the
227
               values directly from there.  */
228
            env->regs[13] = ldl_p(rom);
229
            pc = ldl_p(rom + 4);
230
            env->thumb = pc & 1;
231
            env->regs[15] = pc & ~1;
232
        }
233
    }
234
    env->vfp.xregs[ARM_VFP_FPEXC] = 0;
235
    env->cp15.c2_base_mask = 0xffffc000u;
236
#endif
237
    tlb_flush(env, 1);
238
}
239

    
240
static int vfp_gdb_get_reg(CPUState *env, uint8_t *buf, int reg)
241
{
242
    int nregs;
243

    
244
    /* VFP data registers are always little-endian.  */
245
    nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
246
    if (reg < nregs) {
247
        stfq_le_p(buf, env->vfp.regs[reg]);
248
        return 8;
249
    }
250
    if (arm_feature(env, ARM_FEATURE_NEON)) {
251
        /* Aliases for Q regs.  */
252
        nregs += 16;
253
        if (reg < nregs) {
254
            stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
255
            stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
256
            return 16;
257
        }
258
    }
259
    switch (reg - nregs) {
260
    case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
261
    case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
262
    case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
263
    }
264
    return 0;
265
}
266

    
267
static int vfp_gdb_set_reg(CPUState *env, uint8_t *buf, int reg)
268
{
269
    int nregs;
270

    
271
    nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
272
    if (reg < nregs) {
273
        env->vfp.regs[reg] = ldfq_le_p(buf);
274
        return 8;
275
    }
276
    if (arm_feature(env, ARM_FEATURE_NEON)) {
277
        nregs += 16;
278
        if (reg < nregs) {
279
            env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
280
            env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
281
            return 16;
282
        }
283
    }
284
    switch (reg - nregs) {
285
    case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
286
    case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
287
    case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
288
    }
289
    return 0;
290
}
291

    
292
CPUARMState *cpu_arm_init(const char *cpu_model)
293
{
294
    CPUARMState *env;
295
    uint32_t id;
296
    static int inited = 0;
297

    
298
    id = cpu_arm_find_by_name(cpu_model);
299
    if (id == 0)
300
        return NULL;
301
    env = qemu_mallocz(sizeof(CPUARMState));
302
    cpu_exec_init(env);
303
    if (!inited) {
304
        inited = 1;
305
        arm_translate_init();
306
    }
307

    
308
    env->cpu_model_str = cpu_model;
309
    env->cp15.c0_cpuid = id;
310
    cpu_reset(env);
311
    if (arm_feature(env, ARM_FEATURE_NEON)) {
312
        gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
313
                                 51, "arm-neon.xml", 0);
314
    } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
315
        gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
316
                                 35, "arm-vfp3.xml", 0);
317
    } else if (arm_feature(env, ARM_FEATURE_VFP)) {
318
        gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
319
                                 19, "arm-vfp.xml", 0);
320
    }
321
    qemu_init_vcpu(env);
322
    return env;
323
}
324

    
325
struct arm_cpu_t {
326
    uint32_t id;
327
    const char *name;
328
};
329

    
330
static const struct arm_cpu_t arm_cpu_names[] = {
331
    { ARM_CPUID_ARM926, "arm926"},
332
    { ARM_CPUID_ARM946, "arm946"},
333
    { ARM_CPUID_ARM1026, "arm1026"},
334
    { ARM_CPUID_ARM1136, "arm1136"},
335
    { ARM_CPUID_ARM1136_R2, "arm1136-r2"},
336
    { ARM_CPUID_ARM11MPCORE, "arm11mpcore"},
337
    { ARM_CPUID_CORTEXM3, "cortex-m3"},
338
    { ARM_CPUID_CORTEXA8, "cortex-a8"},
339
    { ARM_CPUID_CORTEXA9, "cortex-a9"},
340
    { ARM_CPUID_TI925T, "ti925t" },
341
    { ARM_CPUID_PXA250, "pxa250" },
342
    { ARM_CPUID_PXA255, "pxa255" },
343
    { ARM_CPUID_PXA260, "pxa260" },
344
    { ARM_CPUID_PXA261, "pxa261" },
345
    { ARM_CPUID_PXA262, "pxa262" },
346
    { ARM_CPUID_PXA270, "pxa270" },
347
    { ARM_CPUID_PXA270_A0, "pxa270-a0" },
348
    { ARM_CPUID_PXA270_A1, "pxa270-a1" },
349
    { ARM_CPUID_PXA270_B0, "pxa270-b0" },
350
    { ARM_CPUID_PXA270_B1, "pxa270-b1" },
351
    { ARM_CPUID_PXA270_C0, "pxa270-c0" },
352
    { ARM_CPUID_PXA270_C5, "pxa270-c5" },
353
    { ARM_CPUID_ANY, "any"},
354
    { 0, NULL}
355
};
356

    
357
void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
358
{
359
    int i;
360

    
361
    (*cpu_fprintf)(f, "Available CPUs:\n");
362
    for (i = 0; arm_cpu_names[i].name; i++) {
363
        (*cpu_fprintf)(f, "  %s\n", arm_cpu_names[i].name);
364
    }
365
}
366

    
367
/* return 0 if not found */
368
static uint32_t cpu_arm_find_by_name(const char *name)
369
{
370
    int i;
371
    uint32_t id;
372

    
373
    id = 0;
374
    for (i = 0; arm_cpu_names[i].name; i++) {
375
        if (strcmp(name, arm_cpu_names[i].name) == 0) {
376
            id = arm_cpu_names[i].id;
377
            break;
378
        }
379
    }
380
    return id;
381
}
382

    
383
void cpu_arm_close(CPUARMState *env)
384
{
385
    free(env);
386
}
387

    
388
uint32_t cpsr_read(CPUARMState *env)
389
{
390
    int ZF;
391
    ZF = (env->ZF == 0);
392
    return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
393
        (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
394
        | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
395
        | ((env->condexec_bits & 0xfc) << 8)
396
        | (env->GE << 16);
397
}
398

    
399
void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
400
{
401
    if (mask & CPSR_NZCV) {
402
        env->ZF = (~val) & CPSR_Z;
403
        env->NF = val;
404
        env->CF = (val >> 29) & 1;
405
        env->VF = (val << 3) & 0x80000000;
406
    }
407
    if (mask & CPSR_Q)
408
        env->QF = ((val & CPSR_Q) != 0);
409
    if (mask & CPSR_T)
410
        env->thumb = ((val & CPSR_T) != 0);
411
    if (mask & CPSR_IT_0_1) {
412
        env->condexec_bits &= ~3;
413
        env->condexec_bits |= (val >> 25) & 3;
414
    }
415
    if (mask & CPSR_IT_2_7) {
416
        env->condexec_bits &= 3;
417
        env->condexec_bits |= (val >> 8) & 0xfc;
418
    }
419
    if (mask & CPSR_GE) {
420
        env->GE = (val >> 16) & 0xf;
421
    }
422

    
423
    if ((env->uncached_cpsr ^ val) & mask & CPSR_M) {
424
        switch_mode(env, val & CPSR_M);
425
    }
426
    mask &= ~CACHED_CPSR_BITS;
427
    env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
428
}
429

    
430
/* Sign/zero extend */
431
uint32_t HELPER(sxtb16)(uint32_t x)
432
{
433
    uint32_t res;
434
    res = (uint16_t)(int8_t)x;
435
    res |= (uint32_t)(int8_t)(x >> 16) << 16;
436
    return res;
437
}
438

    
439
uint32_t HELPER(uxtb16)(uint32_t x)
440
{
441
    uint32_t res;
442
    res = (uint16_t)(uint8_t)x;
443
    res |= (uint32_t)(uint8_t)(x >> 16) << 16;
444
    return res;
445
}
446

    
447
uint32_t HELPER(clz)(uint32_t x)
448
{
449
    return clz32(x);
450
}
451

    
452
int32_t HELPER(sdiv)(int32_t num, int32_t den)
453
{
454
    if (den == 0)
455
      return 0;
456
    if (num == INT_MIN && den == -1)
457
      return INT_MIN;
458
    return num / den;
459
}
460

    
461
uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
462
{
463
    if (den == 0)
464
      return 0;
465
    return num / den;
466
}
467

    
468
uint32_t HELPER(rbit)(uint32_t x)
469
{
470
    x =  ((x & 0xff000000) >> 24)
471
       | ((x & 0x00ff0000) >> 8)
472
       | ((x & 0x0000ff00) << 8)
473
       | ((x & 0x000000ff) << 24);
474
    x =  ((x & 0xf0f0f0f0) >> 4)
475
       | ((x & 0x0f0f0f0f) << 4);
476
    x =  ((x & 0x88888888) >> 3)
477
       | ((x & 0x44444444) >> 1)
478
       | ((x & 0x22222222) << 1)
479
       | ((x & 0x11111111) << 3);
480
    return x;
481
}
482

    
483
uint32_t HELPER(abs)(uint32_t x)
484
{
485
    return ((int32_t)x < 0) ? -x : x;
486
}
487

    
488
#if defined(CONFIG_USER_ONLY)
489

    
490
void do_interrupt (CPUState *env)
491
{
492
    env->exception_index = -1;
493
}
494

    
495
int cpu_arm_handle_mmu_fault (CPUState *env, target_ulong address, int rw,
496
                              int mmu_idx, int is_softmmu)
497
{
498
    if (rw == 2) {
499
        env->exception_index = EXCP_PREFETCH_ABORT;
500
        env->cp15.c6_insn = address;
501
    } else {
502
        env->exception_index = EXCP_DATA_ABORT;
503
        env->cp15.c6_data = address;
504
    }
505
    return 1;
506
}
507

    
508
/* These should probably raise undefined insn exceptions.  */
509
void HELPER(set_cp)(CPUState *env, uint32_t insn, uint32_t val)
510
{
511
    int op1 = (insn >> 8) & 0xf;
512
    cpu_abort(env, "cp%i insn %08x\n", op1, insn);
513
    return;
514
}
515

    
516
uint32_t HELPER(get_cp)(CPUState *env, uint32_t insn)
517
{
518
    int op1 = (insn >> 8) & 0xf;
519
    cpu_abort(env, "cp%i insn %08x\n", op1, insn);
520
    return 0;
521
}
522

    
523
void HELPER(set_cp15)(CPUState *env, uint32_t insn, uint32_t val)
524
{
525
    cpu_abort(env, "cp15 insn %08x\n", insn);
526
}
527

    
528
uint32_t HELPER(get_cp15)(CPUState *env, uint32_t insn)
529
{
530
    cpu_abort(env, "cp15 insn %08x\n", insn);
531
}
532

    
533
/* These should probably raise undefined insn exceptions.  */
534
void HELPER(v7m_msr)(CPUState *env, uint32_t reg, uint32_t val)
535
{
536
    cpu_abort(env, "v7m_mrs %d\n", reg);
537
}
538

    
539
uint32_t HELPER(v7m_mrs)(CPUState *env, uint32_t reg)
540
{
541
    cpu_abort(env, "v7m_mrs %d\n", reg);
542
    return 0;
543
}
544

    
545
void switch_mode(CPUState *env, int mode)
546
{
547
    if (mode != ARM_CPU_MODE_USR)
548
        cpu_abort(env, "Tried to switch out of user mode\n");
549
}
550

    
551
void HELPER(set_r13_banked)(CPUState *env, uint32_t mode, uint32_t val)
552
{
553
    cpu_abort(env, "banked r13 write\n");
554
}
555

    
556
uint32_t HELPER(get_r13_banked)(CPUState *env, uint32_t mode)
557
{
558
    cpu_abort(env, "banked r13 read\n");
559
    return 0;
560
}
561

    
562
#else
563

    
564
extern int semihosting_enabled;
565

    
566
/* Map CPU modes onto saved register banks.  */
567
static inline int bank_number (int mode)
568
{
569
    switch (mode) {
570
    case ARM_CPU_MODE_USR:
571
    case ARM_CPU_MODE_SYS:
572
        return 0;
573
    case ARM_CPU_MODE_SVC:
574
        return 1;
575
    case ARM_CPU_MODE_ABT:
576
        return 2;
577
    case ARM_CPU_MODE_UND:
578
        return 3;
579
    case ARM_CPU_MODE_IRQ:
580
        return 4;
581
    case ARM_CPU_MODE_FIQ:
582
        return 5;
583
    }
584
    cpu_abort(cpu_single_env, "Bad mode %x\n", mode);
585
    return -1;
586
}
587

    
588
void switch_mode(CPUState *env, int mode)
589
{
590
    int old_mode;
591
    int i;
592

    
593
    old_mode = env->uncached_cpsr & CPSR_M;
594
    if (mode == old_mode)
595
        return;
596

    
597
    if (old_mode == ARM_CPU_MODE_FIQ) {
598
        memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
599
        memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
600
    } else if (mode == ARM_CPU_MODE_FIQ) {
601
        memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
602
        memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
603
    }
604

    
605
    i = bank_number(old_mode);
606
    env->banked_r13[i] = env->regs[13];
607
    env->banked_r14[i] = env->regs[14];
608
    env->banked_spsr[i] = env->spsr;
609

    
610
    i = bank_number(mode);
611
    env->regs[13] = env->banked_r13[i];
612
    env->regs[14] = env->banked_r14[i];
613
    env->spsr = env->banked_spsr[i];
614
}
615

    
616
static void v7m_push(CPUARMState *env, uint32_t val)
617
{
618
    env->regs[13] -= 4;
619
    stl_phys(env->regs[13], val);
620
}
621

    
622
static uint32_t v7m_pop(CPUARMState *env)
623
{
624
    uint32_t val;
625
    val = ldl_phys(env->regs[13]);
626
    env->regs[13] += 4;
627
    return val;
628
}
629

    
630
/* Switch to V7M main or process stack pointer.  */
631
static void switch_v7m_sp(CPUARMState *env, int process)
632
{
633
    uint32_t tmp;
634
    if (env->v7m.current_sp != process) {
635
        tmp = env->v7m.other_sp;
636
        env->v7m.other_sp = env->regs[13];
637
        env->regs[13] = tmp;
638
        env->v7m.current_sp = process;
639
    }
640
}
641

    
642
static void do_v7m_exception_exit(CPUARMState *env)
643
{
644
    uint32_t type;
645
    uint32_t xpsr;
646

    
647
    type = env->regs[15];
648
    if (env->v7m.exception != 0)
649
        armv7m_nvic_complete_irq(env->nvic, env->v7m.exception);
650

    
651
    /* Switch to the target stack.  */
652
    switch_v7m_sp(env, (type & 4) != 0);
653
    /* Pop registers.  */
654
    env->regs[0] = v7m_pop(env);
655
    env->regs[1] = v7m_pop(env);
656
    env->regs[2] = v7m_pop(env);
657
    env->regs[3] = v7m_pop(env);
658
    env->regs[12] = v7m_pop(env);
659
    env->regs[14] = v7m_pop(env);
660
    env->regs[15] = v7m_pop(env);
661
    xpsr = v7m_pop(env);
662
    xpsr_write(env, xpsr, 0xfffffdff);
663
    /* Undo stack alignment.  */
664
    if (xpsr & 0x200)
665
        env->regs[13] |= 4;
666
    /* ??? The exception return type specifies Thread/Handler mode.  However
667
       this is also implied by the xPSR value. Not sure what to do
668
       if there is a mismatch.  */
669
    /* ??? Likewise for mismatches between the CONTROL register and the stack
670
       pointer.  */
671
}
672

    
673
static void do_interrupt_v7m(CPUARMState *env)
674
{
675
    uint32_t xpsr = xpsr_read(env);
676
    uint32_t lr;
677
    uint32_t addr;
678

    
679
    lr = 0xfffffff1;
680
    if (env->v7m.current_sp)
681
        lr |= 4;
682
    if (env->v7m.exception == 0)
683
        lr |= 8;
684

    
685
    /* For exceptions we just mark as pending on the NVIC, and let that
686
       handle it.  */
687
    /* TODO: Need to escalate if the current priority is higher than the
688
       one we're raising.  */
689
    switch (env->exception_index) {
690
    case EXCP_UDEF:
691
        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
692
        return;
693
    case EXCP_SWI:
694
        env->regs[15] += 2;
695
        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
696
        return;
697
    case EXCP_PREFETCH_ABORT:
698
    case EXCP_DATA_ABORT:
699
        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
700
        return;
701
    case EXCP_BKPT:
702
        if (semihosting_enabled) {
703
            int nr;
704
            nr = lduw_code(env->regs[15]) & 0xff;
705
            if (nr == 0xab) {
706
                env->regs[15] += 2;
707
                env->regs[0] = do_arm_semihosting(env);
708
                return;
709
            }
710
        }
711
        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
712
        return;
713
    case EXCP_IRQ:
714
        env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic);
715
        break;
716
    case EXCP_EXCEPTION_EXIT:
717
        do_v7m_exception_exit(env);
718
        return;
719
    default:
720
        cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
721
        return; /* Never happens.  Keep compiler happy.  */
722
    }
723

    
724
    /* Align stack pointer.  */
725
    /* ??? Should only do this if Configuration Control Register
726
       STACKALIGN bit is set.  */
727
    if (env->regs[13] & 4) {
728
        env->regs[13] -= 4;
729
        xpsr |= 0x200;
730
    }
731
    /* Switch to the handler mode.  */
732
    v7m_push(env, xpsr);
733
    v7m_push(env, env->regs[15]);
734
    v7m_push(env, env->regs[14]);
735
    v7m_push(env, env->regs[12]);
736
    v7m_push(env, env->regs[3]);
737
    v7m_push(env, env->regs[2]);
738
    v7m_push(env, env->regs[1]);
739
    v7m_push(env, env->regs[0]);
740
    switch_v7m_sp(env, 0);
741
    env->uncached_cpsr &= ~CPSR_IT;
742
    env->regs[14] = lr;
743
    addr = ldl_phys(env->v7m.vecbase + env->v7m.exception * 4);
744
    env->regs[15] = addr & 0xfffffffe;
745
    env->thumb = addr & 1;
746
}
747

    
748
/* Handle a CPU exception.  */
749
void do_interrupt(CPUARMState *env)
750
{
751
    uint32_t addr;
752
    uint32_t mask;
753
    int new_mode;
754
    uint32_t offset;
755

    
756
    if (IS_M(env)) {
757
        do_interrupt_v7m(env);
758
        return;
759
    }
760
    /* TODO: Vectored interrupt controller.  */
761
    switch (env->exception_index) {
762
    case EXCP_UDEF:
763
        new_mode = ARM_CPU_MODE_UND;
764
        addr = 0x04;
765
        mask = CPSR_I;
766
        if (env->thumb)
767
            offset = 2;
768
        else
769
            offset = 4;
770
        break;
771
    case EXCP_SWI:
772
        if (semihosting_enabled) {
773
            /* Check for semihosting interrupt.  */
774
            if (env->thumb) {
775
                mask = lduw_code(env->regs[15] - 2) & 0xff;
776
            } else {
777
                mask = ldl_code(env->regs[15] - 4) & 0xffffff;
778
            }
779
            /* Only intercept calls from privileged modes, to provide some
780
               semblance of security.  */
781
            if (((mask == 0x123456 && !env->thumb)
782
                    || (mask == 0xab && env->thumb))
783
                  && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
784
                env->regs[0] = do_arm_semihosting(env);
785
                return;
786
            }
787
        }
788
        new_mode = ARM_CPU_MODE_SVC;
789
        addr = 0x08;
790
        mask = CPSR_I;
791
        /* The PC already points to the next instruction.  */
792
        offset = 0;
793
        break;
794
    case EXCP_BKPT:
795
        /* See if this is a semihosting syscall.  */
796
        if (env->thumb && semihosting_enabled) {
797
            mask = lduw_code(env->regs[15]) & 0xff;
798
            if (mask == 0xab
799
                  && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
800
                env->regs[15] += 2;
801
                env->regs[0] = do_arm_semihosting(env);
802
                return;
803
            }
804
        }
805
        /* Fall through to prefetch abort.  */
806
    case EXCP_PREFETCH_ABORT:
807
        new_mode = ARM_CPU_MODE_ABT;
808
        addr = 0x0c;
809
        mask = CPSR_A | CPSR_I;
810
        offset = 4;
811
        break;
812
    case EXCP_DATA_ABORT:
813
        new_mode = ARM_CPU_MODE_ABT;
814
        addr = 0x10;
815
        mask = CPSR_A | CPSR_I;
816
        offset = 8;
817
        break;
818
    case EXCP_IRQ:
819
        new_mode = ARM_CPU_MODE_IRQ;
820
        addr = 0x18;
821
        /* Disable IRQ and imprecise data aborts.  */
822
        mask = CPSR_A | CPSR_I;
823
        offset = 4;
824
        break;
825
    case EXCP_FIQ:
826
        new_mode = ARM_CPU_MODE_FIQ;
827
        addr = 0x1c;
828
        /* Disable FIQ, IRQ and imprecise data aborts.  */
829
        mask = CPSR_A | CPSR_I | CPSR_F;
830
        offset = 4;
831
        break;
832
    default:
833
        cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
834
        return; /* Never happens.  Keep compiler happy.  */
835
    }
836
    /* High vectors.  */
837
    if (env->cp15.c1_sys & (1 << 13)) {
838
        addr += 0xffff0000;
839
    }
840
    switch_mode (env, new_mode);
841
    env->spsr = cpsr_read(env);
842
    /* Clear IT bits.  */
843
    env->condexec_bits = 0;
844
    /* Switch to the new mode, and to the correct instruction set.  */
845
    env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
846
    env->uncached_cpsr |= mask;
847
    env->thumb = (env->cp15.c1_sys & (1 << 30)) != 0;
848
    env->regs[14] = env->regs[15] + offset;
849
    env->regs[15] = addr;
850
    env->interrupt_request |= CPU_INTERRUPT_EXITTB;
851
}
852

    
853
/* Check section/page access permissions.
854
   Returns the page protection flags, or zero if the access is not
855
   permitted.  */
856
static inline int check_ap(CPUState *env, int ap, int domain, int access_type,
857
                           int is_user)
858
{
859
  int prot_ro;
860

    
861
  if (domain == 3)
862
    return PAGE_READ | PAGE_WRITE;
863

    
864
  if (access_type == 1)
865
      prot_ro = 0;
866
  else
867
      prot_ro = PAGE_READ;
868

    
869
  switch (ap) {
870
  case 0:
871
      if (access_type == 1)
872
          return 0;
873
      switch ((env->cp15.c1_sys >> 8) & 3) {
874
      case 1:
875
          return is_user ? 0 : PAGE_READ;
876
      case 2:
877
          return PAGE_READ;
878
      default:
879
          return 0;
880
      }
881
  case 1:
882
      return is_user ? 0 : PAGE_READ | PAGE_WRITE;
883
  case 2:
884
      if (is_user)
885
          return prot_ro;
886
      else
887
          return PAGE_READ | PAGE_WRITE;
888
  case 3:
889
      return PAGE_READ | PAGE_WRITE;
890
  case 4: /* Reserved.  */
891
      return 0;
892
  case 5:
893
      return is_user ? 0 : prot_ro;
894
  case 6:
895
      return prot_ro;
896
  case 7:
897
      if (!arm_feature (env, ARM_FEATURE_V7))
898
          return 0;
899
      return prot_ro;
900
  default:
901
      abort();
902
  }
903
}
904

    
905
static uint32_t get_level1_table_address(CPUState *env, uint32_t address)
906
{
907
    uint32_t table;
908

    
909
    if (address & env->cp15.c2_mask)
910
        table = env->cp15.c2_base1 & 0xffffc000;
911
    else
912
        table = env->cp15.c2_base0 & env->cp15.c2_base_mask;
913

    
914
    table |= (address >> 18) & 0x3ffc;
915
    return table;
916
}
917

    
918
static int get_phys_addr_v5(CPUState *env, uint32_t address, int access_type,
919
                            int is_user, uint32_t *phys_ptr, int *prot,
920
                            target_ulong *page_size)
921
{
922
    int code;
923
    uint32_t table;
924
    uint32_t desc;
925
    int type;
926
    int ap;
927
    int domain;
928
    uint32_t phys_addr;
929

    
930
    /* Pagetable walk.  */
931
    /* Lookup l1 descriptor.  */
932
    table = get_level1_table_address(env, address);
933
    desc = ldl_phys(table);
934
    type = (desc & 3);
935
    domain = (env->cp15.c3 >> ((desc >> 4) & 0x1e)) & 3;
936
    if (type == 0) {
937
        /* Section translation fault.  */
938
        code = 5;
939
        goto do_fault;
940
    }
941
    if (domain == 0 || domain == 2) {
942
        if (type == 2)
943
            code = 9; /* Section domain fault.  */
944
        else
945
            code = 11; /* Page domain fault.  */
946
        goto do_fault;
947
    }
948
    if (type == 2) {
949
        /* 1Mb section.  */
950
        phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
951
        ap = (desc >> 10) & 3;
952
        code = 13;
953
        *page_size = 1024 * 1024;
954
    } else {
955
        /* Lookup l2 entry.  */
956
        if (type == 1) {
957
            /* Coarse pagetable.  */
958
            table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
959
        } else {
960
            /* Fine pagetable.  */
961
            table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
962
        }
963
        desc = ldl_phys(table);
964
        switch (desc & 3) {
965
        case 0: /* Page translation fault.  */
966
            code = 7;
967
            goto do_fault;
968
        case 1: /* 64k page.  */
969
            phys_addr = (desc & 0xffff0000) | (address & 0xffff);
970
            ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
971
            *page_size = 0x10000;
972
            break;
973
        case 2: /* 4k page.  */
974
            phys_addr = (desc & 0xfffff000) | (address & 0xfff);
975
            ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
976
            *page_size = 0x1000;
977
            break;
978
        case 3: /* 1k page.  */
979
            if (type == 1) {
980
                if (arm_feature(env, ARM_FEATURE_XSCALE)) {
981
                    phys_addr = (desc & 0xfffff000) | (address & 0xfff);
982
                } else {
983
                    /* Page translation fault.  */
984
                    code = 7;
985
                    goto do_fault;
986
                }
987
            } else {
988
                phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
989
            }
990
            ap = (desc >> 4) & 3;
991
            *page_size = 0x400;
992
            break;
993
        default:
994
            /* Never happens, but compiler isn't smart enough to tell.  */
995
            abort();
996
        }
997
        code = 15;
998
    }
999
    *prot = check_ap(env, ap, domain, access_type, is_user);
1000
    if (!*prot) {
1001
        /* Access permission fault.  */
1002
        goto do_fault;
1003
    }
1004
    *prot |= PAGE_EXEC;
1005
    *phys_ptr = phys_addr;
1006
    return 0;
1007
do_fault:
1008
    return code | (domain << 4);
1009
}
1010

    
1011
static int get_phys_addr_v6(CPUState *env, uint32_t address, int access_type,
1012
                            int is_user, uint32_t *phys_ptr, int *prot,
1013
                            target_ulong *page_size)
1014
{
1015
    int code;
1016
    uint32_t table;
1017
    uint32_t desc;
1018
    uint32_t xn;
1019
    int type;
1020
    int ap;
1021
    int domain;
1022
    uint32_t phys_addr;
1023

    
1024
    /* Pagetable walk.  */
1025
    /* Lookup l1 descriptor.  */
1026
    table = get_level1_table_address(env, address);
1027
    desc = ldl_phys(table);
1028
    type = (desc & 3);
1029
    if (type == 0) {
1030
        /* Section translation fault.  */
1031
        code = 5;
1032
        domain = 0;
1033
        goto do_fault;
1034
    } else if (type == 2 && (desc & (1 << 18))) {
1035
        /* Supersection.  */
1036
        domain = 0;
1037
    } else {
1038
        /* Section or page.  */
1039
        domain = (desc >> 4) & 0x1e;
1040
    }
1041
    domain = (env->cp15.c3 >> domain) & 3;
1042
    if (domain == 0 || domain == 2) {
1043
        if (type == 2)
1044
            code = 9; /* Section domain fault.  */
1045
        else
1046
            code = 11; /* Page domain fault.  */
1047
        goto do_fault;
1048
    }
1049
    if (type == 2) {
1050
        if (desc & (1 << 18)) {
1051
            /* Supersection.  */
1052
            phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
1053
            *page_size = 0x1000000;
1054
        } else {
1055
            /* Section.  */
1056
            phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
1057
            *page_size = 0x100000;
1058
        }
1059
        ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
1060
        xn = desc & (1 << 4);
1061
        code = 13;
1062
    } else {
1063
        /* Lookup l2 entry.  */
1064
        table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
1065
        desc = ldl_phys(table);
1066
        ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
1067
        switch (desc & 3) {
1068
        case 0: /* Page translation fault.  */
1069
            code = 7;
1070
            goto do_fault;
1071
        case 1: /* 64k page.  */
1072
            phys_addr = (desc & 0xffff0000) | (address & 0xffff);
1073
            xn = desc & (1 << 15);
1074
            *page_size = 0x10000;
1075
            break;
1076
        case 2: case 3: /* 4k page.  */
1077
            phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1078
            xn = desc & 1;
1079
            *page_size = 0x1000;
1080
            break;
1081
        default:
1082
            /* Never happens, but compiler isn't smart enough to tell.  */
1083
            abort();
1084
        }
1085
        code = 15;
1086
    }
1087
    if (xn && access_type == 2)
1088
        goto do_fault;
1089

    
1090
    /* The simplified model uses AP[0] as an access control bit.  */
1091
    if ((env->cp15.c1_sys & (1 << 29)) && (ap & 1) == 0) {
1092
        /* Access flag fault.  */
1093
        code = (code == 15) ? 6 : 3;
1094
        goto do_fault;
1095
    }
1096
    *prot = check_ap(env, ap, domain, access_type, is_user);
1097
    if (!*prot) {
1098
        /* Access permission fault.  */
1099
        goto do_fault;
1100
    }
1101
    if (!xn) {
1102
        *prot |= PAGE_EXEC;
1103
    }
1104
    *phys_ptr = phys_addr;
1105
    return 0;
1106
do_fault:
1107
    return code | (domain << 4);
1108
}
1109

    
1110
static int get_phys_addr_mpu(CPUState *env, uint32_t address, int access_type,
1111
                             int is_user, uint32_t *phys_ptr, int *prot)
1112
{
1113
    int n;
1114
    uint32_t mask;
1115
    uint32_t base;
1116

    
1117
    *phys_ptr = address;
1118
    for (n = 7; n >= 0; n--) {
1119
        base = env->cp15.c6_region[n];
1120
        if ((base & 1) == 0)
1121
            continue;
1122
        mask = 1 << ((base >> 1) & 0x1f);
1123
        /* Keep this shift separate from the above to avoid an
1124
           (undefined) << 32.  */
1125
        mask = (mask << 1) - 1;
1126
        if (((base ^ address) & ~mask) == 0)
1127
            break;
1128
    }
1129
    if (n < 0)
1130
        return 2;
1131

    
1132
    if (access_type == 2) {
1133
        mask = env->cp15.c5_insn;
1134
    } else {
1135
        mask = env->cp15.c5_data;
1136
    }
1137
    mask = (mask >> (n * 4)) & 0xf;
1138
    switch (mask) {
1139
    case 0:
1140
        return 1;
1141
    case 1:
1142
        if (is_user)
1143
          return 1;
1144
        *prot = PAGE_READ | PAGE_WRITE;
1145
        break;
1146
    case 2:
1147
        *prot = PAGE_READ;
1148
        if (!is_user)
1149
            *prot |= PAGE_WRITE;
1150
        break;
1151
    case 3:
1152
        *prot = PAGE_READ | PAGE_WRITE;
1153
        break;
1154
    case 5:
1155
        if (is_user)
1156
            return 1;
1157
        *prot = PAGE_READ;
1158
        break;
1159
    case 6:
1160
        *prot = PAGE_READ;
1161
        break;
1162
    default:
1163
        /* Bad permission.  */
1164
        return 1;
1165
    }
1166
    *prot |= PAGE_EXEC;
1167
    return 0;
1168
}
1169

    
1170
static inline int get_phys_addr(CPUState *env, uint32_t address,
1171
                                int access_type, int is_user,
1172
                                uint32_t *phys_ptr, int *prot,
1173
                                target_ulong *page_size)
1174
{
1175
    /* Fast Context Switch Extension.  */
1176
    if (address < 0x02000000)
1177
        address += env->cp15.c13_fcse;
1178

    
1179
    if ((env->cp15.c1_sys & 1) == 0) {
1180
        /* MMU/MPU disabled.  */
1181
        *phys_ptr = address;
1182
        *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
1183
        *page_size = TARGET_PAGE_SIZE;
1184
        return 0;
1185
    } else if (arm_feature(env, ARM_FEATURE_MPU)) {
1186
        *page_size = TARGET_PAGE_SIZE;
1187
        return get_phys_addr_mpu(env, address, access_type, is_user, phys_ptr,
1188
                                 prot);
1189
    } else if (env->cp15.c1_sys & (1 << 23)) {
1190
        return get_phys_addr_v6(env, address, access_type, is_user, phys_ptr,
1191
                                prot, page_size);
1192
    } else {
1193
        return get_phys_addr_v5(env, address, access_type, is_user, phys_ptr,
1194
                                prot, page_size);
1195
    }
1196
}
1197

    
1198
int cpu_arm_handle_mmu_fault (CPUState *env, target_ulong address,
1199
                              int access_type, int mmu_idx, int is_softmmu)
1200
{
1201
    uint32_t phys_addr;
1202
    target_ulong page_size;
1203
    int prot;
1204
    int ret, is_user;
1205

    
1206
    is_user = mmu_idx == MMU_USER_IDX;
1207
    ret = get_phys_addr(env, address, access_type, is_user, &phys_addr, &prot,
1208
                        &page_size);
1209
    if (ret == 0) {
1210
        /* Map a single [sub]page.  */
1211
        phys_addr &= ~(uint32_t)0x3ff;
1212
        address &= ~(uint32_t)0x3ff;
1213
        tlb_set_page (env, address, phys_addr, prot, mmu_idx, page_size);
1214
        return 0;
1215
    }
1216

    
1217
    if (access_type == 2) {
1218
        env->cp15.c5_insn = ret;
1219
        env->cp15.c6_insn = address;
1220
        env->exception_index = EXCP_PREFETCH_ABORT;
1221
    } else {
1222
        env->cp15.c5_data = ret;
1223
        if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6))
1224
            env->cp15.c5_data |= (1 << 11);
1225
        env->cp15.c6_data = address;
1226
        env->exception_index = EXCP_DATA_ABORT;
1227
    }
1228
    return 1;
1229
}
1230

    
1231
target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr)
1232
{
1233
    uint32_t phys_addr;
1234
    target_ulong page_size;
1235
    int prot;
1236
    int ret;
1237

    
1238
    ret = get_phys_addr(env, addr, 0, 0, &phys_addr, &prot, &page_size);
1239

    
1240
    if (ret != 0)
1241
        return -1;
1242

    
1243
    return phys_addr;
1244
}
1245

    
1246
void HELPER(set_cp)(CPUState *env, uint32_t insn, uint32_t val)
1247
{
1248
    int cp_num = (insn >> 8) & 0xf;
1249
    int cp_info = (insn >> 5) & 7;
1250
    int src = (insn >> 16) & 0xf;
1251
    int operand = insn & 0xf;
1252

    
1253
    if (env->cp[cp_num].cp_write)
1254
        env->cp[cp_num].cp_write(env->cp[cp_num].opaque,
1255
                                 cp_info, src, operand, val);
1256
}
1257

    
1258
uint32_t HELPER(get_cp)(CPUState *env, uint32_t insn)
1259
{
1260
    int cp_num = (insn >> 8) & 0xf;
1261
    int cp_info = (insn >> 5) & 7;
1262
    int dest = (insn >> 16) & 0xf;
1263
    int operand = insn & 0xf;
1264

    
1265
    if (env->cp[cp_num].cp_read)
1266
        return env->cp[cp_num].cp_read(env->cp[cp_num].opaque,
1267
                                       cp_info, dest, operand);
1268
    return 0;
1269
}
1270

    
1271
/* Return basic MPU access permission bits.  */
1272
static uint32_t simple_mpu_ap_bits(uint32_t val)
1273
{
1274
    uint32_t ret;
1275
    uint32_t mask;
1276
    int i;
1277
    ret = 0;
1278
    mask = 3;
1279
    for (i = 0; i < 16; i += 2) {
1280
        ret |= (val >> i) & mask;
1281
        mask <<= 2;
1282
    }
1283
    return ret;
1284
}
1285

    
1286
/* Pad basic MPU access permission bits to extended format.  */
1287
static uint32_t extended_mpu_ap_bits(uint32_t val)
1288
{
1289
    uint32_t ret;
1290
    uint32_t mask;
1291
    int i;
1292
    ret = 0;
1293
    mask = 3;
1294
    for (i = 0; i < 16; i += 2) {
1295
        ret |= (val & mask) << i;
1296
        mask <<= 2;
1297
    }
1298
    return ret;
1299
}
1300

    
1301
void HELPER(set_cp15)(CPUState *env, uint32_t insn, uint32_t val)
1302
{
1303
    int op1;
1304
    int op2;
1305
    int crm;
1306

    
1307
    op1 = (insn >> 21) & 7;
1308
    op2 = (insn >> 5) & 7;
1309
    crm = insn & 0xf;
1310
    switch ((insn >> 16) & 0xf) {
1311
    case 0:
1312
        /* ID codes.  */
1313
        if (arm_feature(env, ARM_FEATURE_XSCALE))
1314
            break;
1315
        if (arm_feature(env, ARM_FEATURE_OMAPCP))
1316
            break;
1317
        if (arm_feature(env, ARM_FEATURE_V7)
1318
                && op1 == 2 && crm == 0 && op2 == 0) {
1319
            env->cp15.c0_cssel = val & 0xf;
1320
            break;
1321
        }
1322
        goto bad_reg;
1323
    case 1: /* System configuration.  */
1324
        if (arm_feature(env, ARM_FEATURE_OMAPCP))
1325
            op2 = 0;
1326
        switch (op2) {
1327
        case 0:
1328
            if (!arm_feature(env, ARM_FEATURE_XSCALE) || crm == 0)
1329
                env->cp15.c1_sys = val;
1330
            /* ??? Lots of these bits are not implemented.  */
1331
            /* This may enable/disable the MMU, so do a TLB flush.  */
1332
            tlb_flush(env, 1);
1333
            break;
1334
        case 1: /* Auxiliary cotrol register.  */
1335
            if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1336
                env->cp15.c1_xscaleauxcr = val;
1337
                break;
1338
            }
1339
            /* Not implemented.  */
1340
            break;
1341
        case 2:
1342
            if (arm_feature(env, ARM_FEATURE_XSCALE))
1343
                goto bad_reg;
1344
            if (env->cp15.c1_coproc != val) {
1345
                env->cp15.c1_coproc = val;
1346
                /* ??? Is this safe when called from within a TB?  */
1347
                tb_flush(env);
1348
            }
1349
            break;
1350
        default:
1351
            goto bad_reg;
1352
        }
1353
        break;
1354
    case 2: /* MMU Page table control / MPU cache control.  */
1355
        if (arm_feature(env, ARM_FEATURE_MPU)) {
1356
            switch (op2) {
1357
            case 0:
1358
                env->cp15.c2_data = val;
1359
                break;
1360
            case 1:
1361
                env->cp15.c2_insn = val;
1362
                break;
1363
            default:
1364
                goto bad_reg;
1365
            }
1366
        } else {
1367
            switch (op2) {
1368
            case 0:
1369
                env->cp15.c2_base0 = val;
1370
                break;
1371
            case 1:
1372
                env->cp15.c2_base1 = val;
1373
                break;
1374
            case 2:
1375
                val &= 7;
1376
                env->cp15.c2_control = val;
1377
                env->cp15.c2_mask = ~(((uint32_t)0xffffffffu) >> val);
1378
                env->cp15.c2_base_mask = ~((uint32_t)0x3fffu >> val);
1379
                break;
1380
            default:
1381
                goto bad_reg;
1382
            }
1383
        }
1384
        break;
1385
    case 3: /* MMU Domain access control / MPU write buffer control.  */
1386
        env->cp15.c3 = val;
1387
        tlb_flush(env, 1); /* Flush TLB as domain not tracked in TLB */
1388
        break;
1389
    case 4: /* Reserved.  */
1390
        goto bad_reg;
1391
    case 5: /* MMU Fault status / MPU access permission.  */
1392
        if (arm_feature(env, ARM_FEATURE_OMAPCP))
1393
            op2 = 0;
1394
        switch (op2) {
1395
        case 0:
1396
            if (arm_feature(env, ARM_FEATURE_MPU))
1397
                val = extended_mpu_ap_bits(val);
1398
            env->cp15.c5_data = val;
1399
            break;
1400
        case 1:
1401
            if (arm_feature(env, ARM_FEATURE_MPU))
1402
                val = extended_mpu_ap_bits(val);
1403
            env->cp15.c5_insn = val;
1404
            break;
1405
        case 2:
1406
            if (!arm_feature(env, ARM_FEATURE_MPU))
1407
                goto bad_reg;
1408
            env->cp15.c5_data = val;
1409
            break;
1410
        case 3:
1411
            if (!arm_feature(env, ARM_FEATURE_MPU))
1412
                goto bad_reg;
1413
            env->cp15.c5_insn = val;
1414
            break;
1415
        default:
1416
            goto bad_reg;
1417
        }
1418
        break;
1419
    case 6: /* MMU Fault address / MPU base/size.  */
1420
        if (arm_feature(env, ARM_FEATURE_MPU)) {
1421
            if (crm >= 8)
1422
                goto bad_reg;
1423
            env->cp15.c6_region[crm] = val;
1424
        } else {
1425
            if (arm_feature(env, ARM_FEATURE_OMAPCP))
1426
                op2 = 0;
1427
            switch (op2) {
1428
            case 0:
1429
                env->cp15.c6_data = val;
1430
                break;
1431
            case 1: /* ??? This is WFAR on armv6 */
1432
            case 2:
1433
                env->cp15.c6_insn = val;
1434
                break;
1435
            default:
1436
                goto bad_reg;
1437
            }
1438
        }
1439
        break;
1440
    case 7: /* Cache control.  */
1441
        env->cp15.c15_i_max = 0x000;
1442
        env->cp15.c15_i_min = 0xff0;
1443
        /* No cache, so nothing to do.  */
1444
        /* ??? MPCore has VA to PA translation functions.  */
1445
        break;
1446
    case 8: /* MMU TLB control.  */
1447
        switch (op2) {
1448
        case 0: /* Invalidate all.  */
1449
            tlb_flush(env, 0);
1450
            break;
1451
        case 1: /* Invalidate single TLB entry.  */
1452
            tlb_flush_page(env, val & TARGET_PAGE_MASK);
1453
            break;
1454
        case 2: /* Invalidate on ASID.  */
1455
            tlb_flush(env, val == 0);
1456
            break;
1457
        case 3: /* Invalidate single entry on MVA.  */
1458
            /* ??? This is like case 1, but ignores ASID.  */
1459
            tlb_flush(env, 1);
1460
            break;
1461
        default:
1462
            goto bad_reg;
1463
        }
1464
        break;
1465
    case 9:
1466
        if (arm_feature(env, ARM_FEATURE_OMAPCP))
1467
            break;
1468
        switch (crm) {
1469
        case 0: /* Cache lockdown.  */
1470
            switch (op1) {
1471
            case 0: /* L1 cache.  */
1472
                switch (op2) {
1473
                case 0:
1474
                    env->cp15.c9_data = val;
1475
                    break;
1476
                case 1:
1477
                    env->cp15.c9_insn = val;
1478
                    break;
1479
                default:
1480
                    goto bad_reg;
1481
                }
1482
                break;
1483
            case 1: /* L2 cache.  */
1484
                /* Ignore writes to L2 lockdown/auxiliary registers.  */
1485
                break;
1486
            default:
1487
                goto bad_reg;
1488
            }
1489
            break;
1490
        case 1: /* TCM memory region registers.  */
1491
            /* Not implemented.  */
1492
            goto bad_reg;
1493
        default:
1494
            goto bad_reg;
1495
        }
1496
        break;
1497
    case 10: /* MMU TLB lockdown.  */
1498
        /* ??? TLB lockdown not implemented.  */
1499
        break;
1500
    case 12: /* Reserved.  */
1501
        goto bad_reg;
1502
    case 13: /* Process ID.  */
1503
        switch (op2) {
1504
        case 0:
1505
            /* Unlike real hardware the qemu TLB uses virtual addresses,
1506
               not modified virtual addresses, so this causes a TLB flush.
1507
             */
1508
            if (env->cp15.c13_fcse != val)
1509
              tlb_flush(env, 1);
1510
            env->cp15.c13_fcse = val;
1511
            break;
1512
        case 1:
1513
            /* This changes the ASID, so do a TLB flush.  */
1514
            if (env->cp15.c13_context != val
1515
                && !arm_feature(env, ARM_FEATURE_MPU))
1516
              tlb_flush(env, 0);
1517
            env->cp15.c13_context = val;
1518
            break;
1519
        default:
1520
            goto bad_reg;
1521
        }
1522
        break;
1523
    case 14: /* Reserved.  */
1524
        goto bad_reg;
1525
    case 15: /* Implementation specific.  */
1526
        if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1527
            if (op2 == 0 && crm == 1) {
1528
                if (env->cp15.c15_cpar != (val & 0x3fff)) {
1529
                    /* Changes cp0 to cp13 behavior, so needs a TB flush.  */
1530
                    tb_flush(env);
1531
                    env->cp15.c15_cpar = val & 0x3fff;
1532
                }
1533
                break;
1534
            }
1535
            goto bad_reg;
1536
        }
1537
        if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
1538
            switch (crm) {
1539
            case 0:
1540
                break;
1541
            case 1: /* Set TI925T configuration.  */
1542
                env->cp15.c15_ticonfig = val & 0xe7;
1543
                env->cp15.c0_cpuid = (val & (1 << 5)) ? /* OS_TYPE bit */
1544
                        ARM_CPUID_TI915T : ARM_CPUID_TI925T;
1545
                break;
1546
            case 2: /* Set I_max.  */
1547
                env->cp15.c15_i_max = val;
1548
                break;
1549
            case 3: /* Set I_min.  */
1550
                env->cp15.c15_i_min = val;
1551
                break;
1552
            case 4: /* Set thread-ID.  */
1553
                env->cp15.c15_threadid = val & 0xffff;
1554
                break;
1555
            case 8: /* Wait-for-interrupt (deprecated).  */
1556
                cpu_interrupt(env, CPU_INTERRUPT_HALT);
1557
                break;
1558
            default:
1559
                goto bad_reg;
1560
            }
1561
        }
1562
        break;
1563
    }
1564
    return;
1565
bad_reg:
1566
    /* ??? For debugging only.  Should raise illegal instruction exception.  */
1567
    cpu_abort(env, "Unimplemented cp15 register write (c%d, c%d, {%d, %d})\n",
1568
              (insn >> 16) & 0xf, crm, op1, op2);
1569
}
1570

    
1571
uint32_t HELPER(get_cp15)(CPUState *env, uint32_t insn)
1572
{
1573
    int op1;
1574
    int op2;
1575
    int crm;
1576

    
1577
    op1 = (insn >> 21) & 7;
1578
    op2 = (insn >> 5) & 7;
1579
    crm = insn & 0xf;
1580
    switch ((insn >> 16) & 0xf) {
1581
    case 0: /* ID codes.  */
1582
        switch (op1) {
1583
        case 0:
1584
            switch (crm) {
1585
            case 0:
1586
                switch (op2) {
1587
                case 0: /* Device ID.  */
1588
                    return env->cp15.c0_cpuid;
1589
                case 1: /* Cache Type.  */
1590
                    return env->cp15.c0_cachetype;
1591
                case 2: /* TCM status.  */
1592
                    return 0;
1593
                case 3: /* TLB type register.  */
1594
                    return 0; /* No lockable TLB entries.  */
1595
                case 5: /* CPU ID */
1596
                    if (ARM_CPUID(env) == ARM_CPUID_CORTEXA9) {
1597
                        return env->cpu_index | 0x80000900;
1598
                    } else {
1599
                        return env->cpu_index;
1600
                    }
1601
                default:
1602
                    goto bad_reg;
1603
                }
1604
            case 1:
1605
                if (!arm_feature(env, ARM_FEATURE_V6))
1606
                    goto bad_reg;
1607
                return env->cp15.c0_c1[op2];
1608
            case 2:
1609
                if (!arm_feature(env, ARM_FEATURE_V6))
1610
                    goto bad_reg;
1611
                return env->cp15.c0_c2[op2];
1612
            case 3: case 4: case 5: case 6: case 7:
1613
                return 0;
1614
            default:
1615
                goto bad_reg;
1616
            }
1617
        case 1:
1618
            /* These registers aren't documented on arm11 cores.  However
1619
               Linux looks at them anyway.  */
1620
            if (!arm_feature(env, ARM_FEATURE_V6))
1621
                goto bad_reg;
1622
            if (crm != 0)
1623
                goto bad_reg;
1624
            if (!arm_feature(env, ARM_FEATURE_V7))
1625
                return 0;
1626

    
1627
            switch (op2) {
1628
            case 0:
1629
                return env->cp15.c0_ccsid[env->cp15.c0_cssel];
1630
            case 1:
1631
                return env->cp15.c0_clid;
1632
            case 7:
1633
                return 0;
1634
            }
1635
            goto bad_reg;
1636
        case 2:
1637
            if (op2 != 0 || crm != 0)
1638
                goto bad_reg;
1639
            return env->cp15.c0_cssel;
1640
        default:
1641
            goto bad_reg;
1642
        }
1643
    case 1: /* System configuration.  */
1644
        if (arm_feature(env, ARM_FEATURE_OMAPCP))
1645
            op2 = 0;
1646
        switch (op2) {
1647
        case 0: /* Control register.  */
1648
            return env->cp15.c1_sys;
1649
        case 1: /* Auxiliary control register.  */
1650
            if (arm_feature(env, ARM_FEATURE_XSCALE))
1651
                return env->cp15.c1_xscaleauxcr;
1652
            if (!arm_feature(env, ARM_FEATURE_AUXCR))
1653
                goto bad_reg;
1654
            switch (ARM_CPUID(env)) {
1655
            case ARM_CPUID_ARM1026:
1656
                return 1;
1657
            case ARM_CPUID_ARM1136:
1658
            case ARM_CPUID_ARM1136_R2:
1659
                return 7;
1660
            case ARM_CPUID_ARM11MPCORE:
1661
                return 1;
1662
            case ARM_CPUID_CORTEXA8:
1663
                return 2;
1664
            case ARM_CPUID_CORTEXA9:
1665
                return 0;
1666
            default:
1667
                goto bad_reg;
1668
            }
1669
        case 2: /* Coprocessor access register.  */
1670
            if (arm_feature(env, ARM_FEATURE_XSCALE))
1671
                goto bad_reg;
1672
            return env->cp15.c1_coproc;
1673
        default:
1674
            goto bad_reg;
1675
        }
1676
    case 2: /* MMU Page table control / MPU cache control.  */
1677
        if (arm_feature(env, ARM_FEATURE_MPU)) {
1678
            switch (op2) {
1679
            case 0:
1680
                return env->cp15.c2_data;
1681
                break;
1682
            case 1:
1683
                return env->cp15.c2_insn;
1684
                break;
1685
            default:
1686
                goto bad_reg;
1687
            }
1688
        } else {
1689
            switch (op2) {
1690
            case 0:
1691
                return env->cp15.c2_base0;
1692
            case 1:
1693
                return env->cp15.c2_base1;
1694
            case 2:
1695
                return env->cp15.c2_control;
1696
            default:
1697
                goto bad_reg;
1698
            }
1699
        }
1700
    case 3: /* MMU Domain access control / MPU write buffer control.  */
1701
        return env->cp15.c3;
1702
    case 4: /* Reserved.  */
1703
        goto bad_reg;
1704
    case 5: /* MMU Fault status / MPU access permission.  */
1705
        if (arm_feature(env, ARM_FEATURE_OMAPCP))
1706
            op2 = 0;
1707
        switch (op2) {
1708
        case 0:
1709
            if (arm_feature(env, ARM_FEATURE_MPU))
1710
                return simple_mpu_ap_bits(env->cp15.c5_data);
1711
            return env->cp15.c5_data;
1712
        case 1:
1713
            if (arm_feature(env, ARM_FEATURE_MPU))
1714
                return simple_mpu_ap_bits(env->cp15.c5_data);
1715
            return env->cp15.c5_insn;
1716
        case 2:
1717
            if (!arm_feature(env, ARM_FEATURE_MPU))
1718
                goto bad_reg;
1719
            return env->cp15.c5_data;
1720
        case 3:
1721
            if (!arm_feature(env, ARM_FEATURE_MPU))
1722
                goto bad_reg;
1723
            return env->cp15.c5_insn;
1724
        default:
1725
            goto bad_reg;
1726
        }
1727
    case 6: /* MMU Fault address.  */
1728
        if (arm_feature(env, ARM_FEATURE_MPU)) {
1729
            if (crm >= 8)
1730
                goto bad_reg;
1731
            return env->cp15.c6_region[crm];
1732
        } else {
1733
            if (arm_feature(env, ARM_FEATURE_OMAPCP))
1734
                op2 = 0;
1735
            switch (op2) {
1736
            case 0:
1737
                return env->cp15.c6_data;
1738
            case 1:
1739
                if (arm_feature(env, ARM_FEATURE_V6)) {
1740
                    /* Watchpoint Fault Adrress.  */
1741
                    return 0; /* Not implemented.  */
1742
                } else {
1743
                    /* Instruction Fault Adrress.  */
1744
                    /* Arm9 doesn't have an IFAR, but implementing it anyway
1745
                       shouldn't do any harm.  */
1746
                    return env->cp15.c6_insn;
1747
                }
1748
            case 2:
1749
                if (arm_feature(env, ARM_FEATURE_V6)) {
1750
                    /* Instruction Fault Adrress.  */
1751
                    return env->cp15.c6_insn;
1752
                } else {
1753
                    goto bad_reg;
1754
                }
1755
            default:
1756
                goto bad_reg;
1757
            }
1758
        }
1759
    case 7: /* Cache control.  */
1760
        /* FIXME: Should only clear Z flag if destination is r15.  */
1761
        env->ZF = 0;
1762
        return 0;
1763
    case 8: /* MMU TLB control.  */
1764
        goto bad_reg;
1765
    case 9: /* Cache lockdown.  */
1766
        switch (op1) {
1767
        case 0: /* L1 cache.  */
1768
            if (arm_feature(env, ARM_FEATURE_OMAPCP))
1769
                return 0;
1770
            switch (op2) {
1771
            case 0:
1772
                return env->cp15.c9_data;
1773
            case 1:
1774
                return env->cp15.c9_insn;
1775
            default:
1776
                goto bad_reg;
1777
            }
1778
        case 1: /* L2 cache */
1779
            if (crm != 0)
1780
                goto bad_reg;
1781
            /* L2 Lockdown and Auxiliary control.  */
1782
            return 0;
1783
        default:
1784
            goto bad_reg;
1785
        }
1786
    case 10: /* MMU TLB lockdown.  */
1787
        /* ??? TLB lockdown not implemented.  */
1788
        return 0;
1789
    case 11: /* TCM DMA control.  */
1790
    case 12: /* Reserved.  */
1791
        goto bad_reg;
1792
    case 13: /* Process ID.  */
1793
        switch (op2) {
1794
        case 0:
1795
            return env->cp15.c13_fcse;
1796
        case 1:
1797
            return env->cp15.c13_context;
1798
        default:
1799
            goto bad_reg;
1800
        }
1801
    case 14: /* Reserved.  */
1802
        goto bad_reg;
1803
    case 15: /* Implementation specific.  */
1804
        if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1805
            if (op2 == 0 && crm == 1)
1806
                return env->cp15.c15_cpar;
1807

    
1808
            goto bad_reg;
1809
        }
1810
        if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
1811
            switch (crm) {
1812
            case 0:
1813
                return 0;
1814
            case 1: /* Read TI925T configuration.  */
1815
                return env->cp15.c15_ticonfig;
1816
            case 2: /* Read I_max.  */
1817
                return env->cp15.c15_i_max;
1818
            case 3: /* Read I_min.  */
1819
                return env->cp15.c15_i_min;
1820
            case 4: /* Read thread-ID.  */
1821
                return env->cp15.c15_threadid;
1822
            case 8: /* TI925T_status */
1823
                return 0;
1824
            }
1825
            /* TODO: Peripheral port remap register:
1826
             * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt
1827
             * controller base address at $rn & ~0xfff and map size of
1828
             * 0x200 << ($rn & 0xfff), when MMU is off.  */
1829
            goto bad_reg;
1830
        }
1831
        return 0;
1832
    }
1833
bad_reg:
1834
    /* ??? For debugging only.  Should raise illegal instruction exception.  */
1835
    cpu_abort(env, "Unimplemented cp15 register read (c%d, c%d, {%d, %d})\n",
1836
              (insn >> 16) & 0xf, crm, op1, op2);
1837
    return 0;
1838
}
1839

    
1840
void HELPER(set_r13_banked)(CPUState *env, uint32_t mode, uint32_t val)
1841
{
1842
    env->banked_r13[bank_number(mode)] = val;
1843
}
1844

    
1845
uint32_t HELPER(get_r13_banked)(CPUState *env, uint32_t mode)
1846
{
1847
    return env->banked_r13[bank_number(mode)];
1848
}
1849

    
1850
uint32_t HELPER(v7m_mrs)(CPUState *env, uint32_t reg)
1851
{
1852
    switch (reg) {
1853
    case 0: /* APSR */
1854
        return xpsr_read(env) & 0xf8000000;
1855
    case 1: /* IAPSR */
1856
        return xpsr_read(env) & 0xf80001ff;
1857
    case 2: /* EAPSR */
1858
        return xpsr_read(env) & 0xff00fc00;
1859
    case 3: /* xPSR */
1860
        return xpsr_read(env) & 0xff00fdff;
1861
    case 5: /* IPSR */
1862
        return xpsr_read(env) & 0x000001ff;
1863
    case 6: /* EPSR */
1864
        return xpsr_read(env) & 0x0700fc00;
1865
    case 7: /* IEPSR */
1866
        return xpsr_read(env) & 0x0700edff;
1867
    case 8: /* MSP */
1868
        return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
1869
    case 9: /* PSP */
1870
        return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
1871
    case 16: /* PRIMASK */
1872
        return (env->uncached_cpsr & CPSR_I) != 0;
1873
    case 17: /* FAULTMASK */
1874
        return (env->uncached_cpsr & CPSR_F) != 0;
1875
    case 18: /* BASEPRI */
1876
    case 19: /* BASEPRI_MAX */
1877
        return env->v7m.basepri;
1878
    case 20: /* CONTROL */
1879
        return env->v7m.control;
1880
    default:
1881
        /* ??? For debugging only.  */
1882
        cpu_abort(env, "Unimplemented system register read (%d)\n", reg);
1883
        return 0;
1884
    }
1885
}
1886

    
1887
void HELPER(v7m_msr)(CPUState *env, uint32_t reg, uint32_t val)
1888
{
1889
    switch (reg) {
1890
    case 0: /* APSR */
1891
        xpsr_write(env, val, 0xf8000000);
1892
        break;
1893
    case 1: /* IAPSR */
1894
        xpsr_write(env, val, 0xf8000000);
1895
        break;
1896
    case 2: /* EAPSR */
1897
        xpsr_write(env, val, 0xfe00fc00);
1898
        break;
1899
    case 3: /* xPSR */
1900
        xpsr_write(env, val, 0xfe00fc00);
1901
        break;
1902
    case 5: /* IPSR */
1903
        /* IPSR bits are readonly.  */
1904
        break;
1905
    case 6: /* EPSR */
1906
        xpsr_write(env, val, 0x0600fc00);
1907
        break;
1908
    case 7: /* IEPSR */
1909
        xpsr_write(env, val, 0x0600fc00);
1910
        break;
1911
    case 8: /* MSP */
1912
        if (env->v7m.current_sp)
1913
            env->v7m.other_sp = val;
1914
        else
1915
            env->regs[13] = val;
1916
        break;
1917
    case 9: /* PSP */
1918
        if (env->v7m.current_sp)
1919
            env->regs[13] = val;
1920
        else
1921
            env->v7m.other_sp = val;
1922
        break;
1923
    case 16: /* PRIMASK */
1924
        if (val & 1)
1925
            env->uncached_cpsr |= CPSR_I;
1926
        else
1927
            env->uncached_cpsr &= ~CPSR_I;
1928
        break;
1929
    case 17: /* FAULTMASK */
1930
        if (val & 1)
1931
            env->uncached_cpsr |= CPSR_F;
1932
        else
1933
            env->uncached_cpsr &= ~CPSR_F;
1934
        break;
1935
    case 18: /* BASEPRI */
1936
        env->v7m.basepri = val & 0xff;
1937
        break;
1938
    case 19: /* BASEPRI_MAX */
1939
        val &= 0xff;
1940
        if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
1941
            env->v7m.basepri = val;
1942
        break;
1943
    case 20: /* CONTROL */
1944
        env->v7m.control = val & 3;
1945
        switch_v7m_sp(env, (val & 2) != 0);
1946
        break;
1947
    default:
1948
        /* ??? For debugging only.  */
1949
        cpu_abort(env, "Unimplemented system register write (%d)\n", reg);
1950
        return;
1951
    }
1952
}
1953

    
1954
void cpu_arm_set_cp_io(CPUARMState *env, int cpnum,
1955
                ARMReadCPFunc *cp_read, ARMWriteCPFunc *cp_write,
1956
                void *opaque)
1957
{
1958
    if (cpnum < 0 || cpnum > 14) {
1959
        cpu_abort(env, "Bad coprocessor number: %i\n", cpnum);
1960
        return;
1961
    }
1962

    
1963
    env->cp[cpnum].cp_read = cp_read;
1964
    env->cp[cpnum].cp_write = cp_write;
1965
    env->cp[cpnum].opaque = opaque;
1966
}
1967

    
1968
#endif
1969

    
1970
/* Note that signed overflow is undefined in C.  The following routines are
1971
   careful to use unsigned types where modulo arithmetic is required.
1972
   Failure to do so _will_ break on newer gcc.  */
1973

    
1974
/* Signed saturating arithmetic.  */
1975

    
1976
/* Perform 16-bit signed saturating addition.  */
1977
static inline uint16_t add16_sat(uint16_t a, uint16_t b)
1978
{
1979
    uint16_t res;
1980

    
1981
    res = a + b;
1982
    if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
1983
        if (a & 0x8000)
1984
            res = 0x8000;
1985
        else
1986
            res = 0x7fff;
1987
    }
1988
    return res;
1989
}
1990

    
1991
/* Perform 8-bit signed saturating addition.  */
1992
static inline uint8_t add8_sat(uint8_t a, uint8_t b)
1993
{
1994
    uint8_t res;
1995

    
1996
    res = a + b;
1997
    if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
1998
        if (a & 0x80)
1999
            res = 0x80;
2000
        else
2001
            res = 0x7f;
2002
    }
2003
    return res;
2004
}
2005

    
2006
/* Perform 16-bit signed saturating subtraction.  */
2007
static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
2008
{
2009
    uint16_t res;
2010

    
2011
    res = a - b;
2012
    if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
2013
        if (a & 0x8000)
2014
            res = 0x8000;
2015
        else
2016
            res = 0x7fff;
2017
    }
2018
    return res;
2019
}
2020

    
2021
/* Perform 8-bit signed saturating subtraction.  */
2022
static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
2023
{
2024
    uint8_t res;
2025

    
2026
    res = a - b;
2027
    if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
2028
        if (a & 0x80)
2029
            res = 0x80;
2030
        else
2031
            res = 0x7f;
2032
    }
2033
    return res;
2034
}
2035

    
2036
#define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
2037
#define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
2038
#define ADD8(a, b, n)  RESULT(add8_sat(a, b), n, 8);
2039
#define SUB8(a, b, n)  RESULT(sub8_sat(a, b), n, 8);
2040
#define PFX q
2041

    
2042
#include "op_addsub.h"
2043

    
2044
/* Unsigned saturating arithmetic.  */
2045
static inline uint16_t add16_usat(uint16_t a, uint16_t b)
2046
{
2047
    uint16_t res;
2048
    res = a + b;
2049
    if (res < a)
2050
        res = 0xffff;
2051
    return res;
2052
}
2053

    
2054
static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
2055
{
2056
    if (a > b)
2057
        return a - b;
2058
    else
2059
        return 0;
2060
}
2061

    
2062
static inline uint8_t add8_usat(uint8_t a, uint8_t b)
2063
{
2064
    uint8_t res;
2065
    res = a + b;
2066
    if (res < a)
2067
        res = 0xff;
2068
    return res;
2069
}
2070

    
2071
static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
2072
{
2073
    if (a > b)
2074
        return a - b;
2075
    else
2076
        return 0;
2077
}
2078

    
2079
#define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
2080
#define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
2081
#define ADD8(a, b, n)  RESULT(add8_usat(a, b), n, 8);
2082
#define SUB8(a, b, n)  RESULT(sub8_usat(a, b), n, 8);
2083
#define PFX uq
2084

    
2085
#include "op_addsub.h"
2086

    
2087
/* Signed modulo arithmetic.  */
2088
#define SARITH16(a, b, n, op) do { \
2089
    int32_t sum; \
2090
    sum = (int16_t)((uint16_t)(a) op (uint16_t)(b)); \
2091
    RESULT(sum, n, 16); \
2092
    if (sum >= 0) \
2093
        ge |= 3 << (n * 2); \
2094
    } while(0)
2095

    
2096
#define SARITH8(a, b, n, op) do { \
2097
    int32_t sum; \
2098
    sum = (int8_t)((uint8_t)(a) op (uint8_t)(b)); \
2099
    RESULT(sum, n, 8); \
2100
    if (sum >= 0) \
2101
        ge |= 1 << n; \
2102
    } while(0)
2103

    
2104

    
2105
#define ADD16(a, b, n) SARITH16(a, b, n, +)
2106
#define SUB16(a, b, n) SARITH16(a, b, n, -)
2107
#define ADD8(a, b, n)  SARITH8(a, b, n, +)
2108
#define SUB8(a, b, n)  SARITH8(a, b, n, -)
2109
#define PFX s
2110
#define ARITH_GE
2111

    
2112
#include "op_addsub.h"
2113

    
2114
/* Unsigned modulo arithmetic.  */
2115
#define ADD16(a, b, n) do { \
2116
    uint32_t sum; \
2117
    sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
2118
    RESULT(sum, n, 16); \
2119
    if ((sum >> 16) == 1) \
2120
        ge |= 3 << (n * 2); \
2121
    } while(0)
2122

    
2123
#define ADD8(a, b, n) do { \
2124
    uint32_t sum; \
2125
    sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
2126
    RESULT(sum, n, 8); \
2127
    if ((sum >> 8) == 1) \
2128
        ge |= 1 << n; \
2129
    } while(0)
2130

    
2131
#define SUB16(a, b, n) do { \
2132
    uint32_t sum; \
2133
    sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
2134
    RESULT(sum, n, 16); \
2135
    if ((sum >> 16) == 0) \
2136
        ge |= 3 << (n * 2); \
2137
    } while(0)
2138

    
2139
#define SUB8(a, b, n) do { \
2140
    uint32_t sum; \
2141
    sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
2142
    RESULT(sum, n, 8); \
2143
    if ((sum >> 8) == 0) \
2144
        ge |= 1 << n; \
2145
    } while(0)
2146

    
2147
#define PFX u
2148
#define ARITH_GE
2149

    
2150
#include "op_addsub.h"
2151

    
2152
/* Halved signed arithmetic.  */
2153
#define ADD16(a, b, n) \
2154
  RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
2155
#define SUB16(a, b, n) \
2156
  RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
2157
#define ADD8(a, b, n) \
2158
  RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
2159
#define SUB8(a, b, n) \
2160
  RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
2161
#define PFX sh
2162

    
2163
#include "op_addsub.h"
2164

    
2165
/* Halved unsigned arithmetic.  */
2166
#define ADD16(a, b, n) \
2167
  RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2168
#define SUB16(a, b, n) \
2169
  RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2170
#define ADD8(a, b, n) \
2171
  RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2172
#define SUB8(a, b, n) \
2173
  RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2174
#define PFX uh
2175

    
2176
#include "op_addsub.h"
2177

    
2178
static inline uint8_t do_usad(uint8_t a, uint8_t b)
2179
{
2180
    if (a > b)
2181
        return a - b;
2182
    else
2183
        return b - a;
2184
}
2185

    
2186
/* Unsigned sum of absolute byte differences.  */
2187
uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
2188
{
2189
    uint32_t sum;
2190
    sum = do_usad(a, b);
2191
    sum += do_usad(a >> 8, b >> 8);
2192
    sum += do_usad(a >> 16, b >>16);
2193
    sum += do_usad(a >> 24, b >> 24);
2194
    return sum;
2195
}
2196

    
2197
/* For ARMv6 SEL instruction.  */
2198
uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
2199
{
2200
    uint32_t mask;
2201

    
2202
    mask = 0;
2203
    if (flags & 1)
2204
        mask |= 0xff;
2205
    if (flags & 2)
2206
        mask |= 0xff00;
2207
    if (flags & 4)
2208
        mask |= 0xff0000;
2209
    if (flags & 8)
2210
        mask |= 0xff000000;
2211
    return (a & mask) | (b & ~mask);
2212
}
2213

    
2214
uint32_t HELPER(logicq_cc)(uint64_t val)
2215
{
2216
    return (val >> 32) | (val != 0);
2217
}
2218

    
2219
/* VFP support.  We follow the convention used for VFP instrunctions:
2220
   Single precition routines have a "s" suffix, double precision a
2221
   "d" suffix.  */
2222

    
2223
/* Convert host exception flags to vfp form.  */
2224
static inline int vfp_exceptbits_from_host(int host_bits)
2225
{
2226
    int target_bits = 0;
2227

    
2228
    if (host_bits & float_flag_invalid)
2229
        target_bits |= 1;
2230
    if (host_bits & float_flag_divbyzero)
2231
        target_bits |= 2;
2232
    if (host_bits & float_flag_overflow)
2233
        target_bits |= 4;
2234
    if (host_bits & float_flag_underflow)
2235
        target_bits |= 8;
2236
    if (host_bits & float_flag_inexact)
2237
        target_bits |= 0x10;
2238
    return target_bits;
2239
}
2240

    
2241
uint32_t HELPER(vfp_get_fpscr)(CPUState *env)
2242
{
2243
    int i;
2244
    uint32_t fpscr;
2245

    
2246
    fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
2247
            | (env->vfp.vec_len << 16)
2248
            | (env->vfp.vec_stride << 20);
2249
    i = get_float_exception_flags(&env->vfp.fp_status);
2250
    fpscr |= vfp_exceptbits_from_host(i);
2251
    return fpscr;
2252
}
2253

    
2254
uint32_t vfp_get_fpscr(CPUState *env)
2255
{
2256
    return HELPER(vfp_get_fpscr)(env);
2257
}
2258

    
2259
/* Convert vfp exception flags to target form.  */
2260
static inline int vfp_exceptbits_to_host(int target_bits)
2261
{
2262
    int host_bits = 0;
2263

    
2264
    if (target_bits & 1)
2265
        host_bits |= float_flag_invalid;
2266
    if (target_bits & 2)
2267
        host_bits |= float_flag_divbyzero;
2268
    if (target_bits & 4)
2269
        host_bits |= float_flag_overflow;
2270
    if (target_bits & 8)
2271
        host_bits |= float_flag_underflow;
2272
    if (target_bits & 0x10)
2273
        host_bits |= float_flag_inexact;
2274
    return host_bits;
2275
}
2276

    
2277
void HELPER(vfp_set_fpscr)(CPUState *env, uint32_t val)
2278
{
2279
    int i;
2280
    uint32_t changed;
2281

    
2282
    changed = env->vfp.xregs[ARM_VFP_FPSCR];
2283
    env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
2284
    env->vfp.vec_len = (val >> 16) & 7;
2285
    env->vfp.vec_stride = (val >> 20) & 3;
2286

    
2287
    changed ^= val;
2288
    if (changed & (3 << 22)) {
2289
        i = (val >> 22) & 3;
2290
        switch (i) {
2291
        case 0:
2292
            i = float_round_nearest_even;
2293
            break;
2294
        case 1:
2295
            i = float_round_up;
2296
            break;
2297
        case 2:
2298
            i = float_round_down;
2299
            break;
2300
        case 3:
2301
            i = float_round_to_zero;
2302
            break;
2303
        }
2304
        set_float_rounding_mode(i, &env->vfp.fp_status);
2305
    }
2306
    if (changed & (1 << 24))
2307
        set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
2308
    if (changed & (1 << 25))
2309
        set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
2310

    
2311
    i = vfp_exceptbits_to_host((val >> 8) & 0x1f);
2312
    set_float_exception_flags(i, &env->vfp.fp_status);
2313
}
2314

    
2315
void vfp_set_fpscr(CPUState *env, uint32_t val)
2316
{
2317
    HELPER(vfp_set_fpscr)(env, val);
2318
}
2319

    
2320
#define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
2321

    
2322
#define VFP_BINOP(name) \
2323
float32 VFP_HELPER(name, s)(float32 a, float32 b, CPUState *env) \
2324
{ \
2325
    return float32_ ## name (a, b, &env->vfp.fp_status); \
2326
} \
2327
float64 VFP_HELPER(name, d)(float64 a, float64 b, CPUState *env) \
2328
{ \
2329
    return float64_ ## name (a, b, &env->vfp.fp_status); \
2330
}
2331
VFP_BINOP(add)
2332
VFP_BINOP(sub)
2333
VFP_BINOP(mul)
2334
VFP_BINOP(div)
2335
#undef VFP_BINOP
2336

    
2337
float32 VFP_HELPER(neg, s)(float32 a)
2338
{
2339
    return float32_chs(a);
2340
}
2341

    
2342
float64 VFP_HELPER(neg, d)(float64 a)
2343
{
2344
    return float64_chs(a);
2345
}
2346

    
2347
float32 VFP_HELPER(abs, s)(float32 a)
2348
{
2349
    return float32_abs(a);
2350
}
2351

    
2352
float64 VFP_HELPER(abs, d)(float64 a)
2353
{
2354
    return float64_abs(a);
2355
}
2356

    
2357
float32 VFP_HELPER(sqrt, s)(float32 a, CPUState *env)
2358
{
2359
    return float32_sqrt(a, &env->vfp.fp_status);
2360
}
2361

    
2362
float64 VFP_HELPER(sqrt, d)(float64 a, CPUState *env)
2363
{
2364
    return float64_sqrt(a, &env->vfp.fp_status);
2365
}
2366

    
2367
/* XXX: check quiet/signaling case */
2368
#define DO_VFP_cmp(p, type) \
2369
void VFP_HELPER(cmp, p)(type a, type b, CPUState *env)  \
2370
{ \
2371
    uint32_t flags; \
2372
    switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
2373
    case 0: flags = 0x6; break; \
2374
    case -1: flags = 0x8; break; \
2375
    case 1: flags = 0x2; break; \
2376
    default: case 2: flags = 0x3; break; \
2377
    } \
2378
    env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
2379
        | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
2380
} \
2381
void VFP_HELPER(cmpe, p)(type a, type b, CPUState *env) \
2382
{ \
2383
    uint32_t flags; \
2384
    switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
2385
    case 0: flags = 0x6; break; \
2386
    case -1: flags = 0x8; break; \
2387
    case 1: flags = 0x2; break; \
2388
    default: case 2: flags = 0x3; break; \
2389
    } \
2390
    env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
2391
        | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
2392
}
2393
DO_VFP_cmp(s, float32)
2394
DO_VFP_cmp(d, float64)
2395
#undef DO_VFP_cmp
2396

    
2397
/* Helper routines to perform bitwise copies between float and int.  */
2398
static inline float32 vfp_itos(uint32_t i)
2399
{
2400
    union {
2401
        uint32_t i;
2402
        float32 s;
2403
    } v;
2404

    
2405
    v.i = i;
2406
    return v.s;
2407
}
2408

    
2409
static inline uint32_t vfp_stoi(float32 s)
2410
{
2411
    union {
2412
        uint32_t i;
2413
        float32 s;
2414
    } v;
2415

    
2416
    v.s = s;
2417
    return v.i;
2418
}
2419

    
2420
static inline float64 vfp_itod(uint64_t i)
2421
{
2422
    union {
2423
        uint64_t i;
2424
        float64 d;
2425
    } v;
2426

    
2427
    v.i = i;
2428
    return v.d;
2429
}
2430

    
2431
static inline uint64_t vfp_dtoi(float64 d)
2432
{
2433
    union {
2434
        uint64_t i;
2435
        float64 d;
2436
    } v;
2437

    
2438
    v.d = d;
2439
    return v.i;
2440
}
2441

    
2442
/* Integer to float conversion.  */
2443
float32 VFP_HELPER(uito, s)(float32 x, CPUState *env)
2444
{
2445
    return uint32_to_float32(vfp_stoi(x), &env->vfp.fp_status);
2446
}
2447

    
2448
float64 VFP_HELPER(uito, d)(float32 x, CPUState *env)
2449
{
2450
    return uint32_to_float64(vfp_stoi(x), &env->vfp.fp_status);
2451
}
2452

    
2453
float32 VFP_HELPER(sito, s)(float32 x, CPUState *env)
2454
{
2455
    return int32_to_float32(vfp_stoi(x), &env->vfp.fp_status);
2456
}
2457

    
2458
float64 VFP_HELPER(sito, d)(float32 x, CPUState *env)
2459
{
2460
    return int32_to_float64(vfp_stoi(x), &env->vfp.fp_status);
2461
}
2462

    
2463
/* Float to integer conversion.  */
2464
float32 VFP_HELPER(toui, s)(float32 x, CPUState *env)
2465
{
2466
    if (float32_is_any_nan(x)) {
2467
        return float32_zero;
2468
    }
2469
    return vfp_itos(float32_to_uint32(x, &env->vfp.fp_status));
2470
}
2471

    
2472
float32 VFP_HELPER(toui, d)(float64 x, CPUState *env)
2473
{
2474
    if (float64_is_any_nan(x)) {
2475
        return float32_zero;
2476
    }
2477
    return vfp_itos(float64_to_uint32(x, &env->vfp.fp_status));
2478
}
2479

    
2480
float32 VFP_HELPER(tosi, s)(float32 x, CPUState *env)
2481
{
2482
    if (float32_is_any_nan(x)) {
2483
        return float32_zero;
2484
    }
2485
    return vfp_itos(float32_to_int32(x, &env->vfp.fp_status));
2486
}
2487

    
2488
float32 VFP_HELPER(tosi, d)(float64 x, CPUState *env)
2489
{
2490
    if (float64_is_any_nan(x)) {
2491
        return float32_zero;
2492
    }
2493
    return vfp_itos(float64_to_int32(x, &env->vfp.fp_status));
2494
}
2495

    
2496
float32 VFP_HELPER(touiz, s)(float32 x, CPUState *env)
2497
{
2498
    if (float32_is_any_nan(x)) {
2499
        return float32_zero;
2500
    }
2501
    return vfp_itos(float32_to_uint32_round_to_zero(x, &env->vfp.fp_status));
2502
}
2503

    
2504
float32 VFP_HELPER(touiz, d)(float64 x, CPUState *env)
2505
{
2506
    if (float64_is_any_nan(x)) {
2507
        return float32_zero;
2508
    }
2509
    return vfp_itos(float64_to_uint32_round_to_zero(x, &env->vfp.fp_status));
2510
}
2511

    
2512
float32 VFP_HELPER(tosiz, s)(float32 x, CPUState *env)
2513
{
2514
    if (float32_is_any_nan(x)) {
2515
        return float32_zero;
2516
    }
2517
    return vfp_itos(float32_to_int32_round_to_zero(x, &env->vfp.fp_status));
2518
}
2519

    
2520
float32 VFP_HELPER(tosiz, d)(float64 x, CPUState *env)
2521
{
2522
    if (float64_is_any_nan(x)) {
2523
        return float32_zero;
2524
    }
2525
    return vfp_itos(float64_to_int32_round_to_zero(x, &env->vfp.fp_status));
2526
}
2527

    
2528
/* floating point conversion */
2529
float64 VFP_HELPER(fcvtd, s)(float32 x, CPUState *env)
2530
{
2531
    float64 r = float32_to_float64(x, &env->vfp.fp_status);
2532
    /* ARM requires that S<->D conversion of any kind of NaN generates
2533
     * a quiet NaN by forcing the most significant frac bit to 1.
2534
     */
2535
    return float64_maybe_silence_nan(r);
2536
}
2537

    
2538
float32 VFP_HELPER(fcvts, d)(float64 x, CPUState *env)
2539
{
2540
    float32 r =  float64_to_float32(x, &env->vfp.fp_status);
2541
    /* ARM requires that S<->D conversion of any kind of NaN generates
2542
     * a quiet NaN by forcing the most significant frac bit to 1.
2543
     */
2544
    return float32_maybe_silence_nan(r);
2545
}
2546

    
2547
/* VFP3 fixed point conversion.  */
2548
#define VFP_CONV_FIX(name, p, ftype, itype, sign) \
2549
ftype VFP_HELPER(name##to, p)(ftype x, uint32_t shift, CPUState *env) \
2550
{ \
2551
    ftype tmp; \
2552
    tmp = sign##int32_to_##ftype ((itype##_t)vfp_##p##toi(x), \
2553
                                  &env->vfp.fp_status); \
2554
    return ftype##_scalbn(tmp, -(int)shift, &env->vfp.fp_status); \
2555
} \
2556
ftype VFP_HELPER(to##name, p)(ftype x, uint32_t shift, CPUState *env) \
2557
{ \
2558
    ftype tmp; \
2559
    if (ftype##_is_any_nan(x)) { \
2560
        return ftype##_zero; \
2561
    } \
2562
    tmp = ftype##_scalbn(x, shift, &env->vfp.fp_status); \
2563
    return vfp_ito##p(ftype##_to_##itype##_round_to_zero(tmp, \
2564
        &env->vfp.fp_status)); \
2565
}
2566

    
2567
VFP_CONV_FIX(sh, d, float64, int16, )
2568
VFP_CONV_FIX(sl, d, float64, int32, )
2569
VFP_CONV_FIX(uh, d, float64, uint16, u)
2570
VFP_CONV_FIX(ul, d, float64, uint32, u)
2571
VFP_CONV_FIX(sh, s, float32, int16, )
2572
VFP_CONV_FIX(sl, s, float32, int32, )
2573
VFP_CONV_FIX(uh, s, float32, uint16, u)
2574
VFP_CONV_FIX(ul, s, float32, uint32, u)
2575
#undef VFP_CONV_FIX
2576

    
2577
/* Half precision conversions.  */
2578
float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUState *env)
2579
{
2580
    float_status *s = &env->vfp.fp_status;
2581
    int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
2582
    return float16_to_float32(a, ieee, s);
2583
}
2584

    
2585
uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUState *env)
2586
{
2587
    float_status *s = &env->vfp.fp_status;
2588
    int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
2589
    return float32_to_float16(a, ieee, s);
2590
}
2591

    
2592
float32 HELPER(recps_f32)(float32 a, float32 b, CPUState *env)
2593
{
2594
    float_status *s = &env->vfp.fp_status;
2595
    float32 two = int32_to_float32(2, s);
2596
    return float32_sub(two, float32_mul(a, b, s), s);
2597
}
2598

    
2599
float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUState *env)
2600
{
2601
    float_status *s = &env->vfp.fp_status;
2602
    float32 three = int32_to_float32(3, s);
2603
    return float32_sub(three, float32_mul(a, b, s), s);
2604
}
2605

    
2606
/* NEON helpers.  */
2607

    
2608
/* TODO: The architecture specifies the value that the estimate functions
2609
   should return.  We return the exact reciprocal/root instead.  */
2610
float32 HELPER(recpe_f32)(float32 a, CPUState *env)
2611
{
2612
    float_status *s = &env->vfp.fp_status;
2613
    float32 one = int32_to_float32(1, s);
2614
    return float32_div(one, a, s);
2615
}
2616

    
2617
float32 HELPER(rsqrte_f32)(float32 a, CPUState *env)
2618
{
2619
    float_status *s = &env->vfp.fp_status;
2620
    float32 one = int32_to_float32(1, s);
2621
    return float32_div(one, float32_sqrt(a, s), s);
2622
}
2623

    
2624
uint32_t HELPER(recpe_u32)(uint32_t a, CPUState *env)
2625
{
2626
    float_status *s = &env->vfp.fp_status;
2627
    float32 tmp;
2628
    tmp = int32_to_float32(a, s);
2629
    tmp = float32_scalbn(tmp, -32, s);
2630
    tmp = helper_recpe_f32(tmp, env);
2631
    tmp = float32_scalbn(tmp, 31, s);
2632
    return float32_to_int32(tmp, s);
2633
}
2634

    
2635
uint32_t HELPER(rsqrte_u32)(uint32_t a, CPUState *env)
2636
{
2637
    float_status *s = &env->vfp.fp_status;
2638
    float32 tmp;
2639
    tmp = int32_to_float32(a, s);
2640
    tmp = float32_scalbn(tmp, -32, s);
2641
    tmp = helper_rsqrte_f32(tmp, env);
2642
    tmp = float32_scalbn(tmp, 31, s);
2643
    return float32_to_int32(tmp, s);
2644
}
2645

    
2646
void HELPER(set_teecr)(CPUState *env, uint32_t val)
2647
{
2648
    val &= 1;
2649
    if (env->teecr != val) {
2650
        env->teecr = val;
2651
        tb_flush(env);
2652
    }
2653
}