Statistics
| Branch: | Revision:

root / vl.c @ 7317b8ca

History | View | Annotate | Download (223.1 kB)

1
/*
2
 * QEMU System Emulator
3
 *
4
 * Copyright (c) 2003-2007 Fabrice Bellard
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "hw/hw.h"
25
#include "hw/boards.h"
26
#include "hw/usb.h"
27
#include "hw/pcmcia.h"
28
#include "hw/pc.h"
29
#include "hw/fdc.h"
30
#include "hw/audiodev.h"
31
#include "hw/isa.h"
32
#include "net.h"
33
#include "console.h"
34
#include "sysemu.h"
35
#include "gdbstub.h"
36
#include "qemu-timer.h"
37
#include "qemu-char.h"
38
#include "block.h"
39
#include "audio/audio.h"
40

    
41
#include <unistd.h>
42
#include <fcntl.h>
43
#include <signal.h>
44
#include <time.h>
45
#include <errno.h>
46
#include <sys/time.h>
47
#include <zlib.h>
48

    
49
#ifndef _WIN32
50
#include <sys/times.h>
51
#include <sys/wait.h>
52
#include <termios.h>
53
#include <sys/poll.h>
54
#include <sys/mman.h>
55
#include <sys/ioctl.h>
56
#include <sys/socket.h>
57
#include <netinet/in.h>
58
#include <dirent.h>
59
#include <netdb.h>
60
#include <sys/select.h>
61
#include <arpa/inet.h>
62
#ifdef _BSD
63
#include <sys/stat.h>
64
#ifndef __APPLE__
65
#include <libutil.h>
66
#endif
67
#elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
68
#include <freebsd/stdlib.h>
69
#else
70
#ifndef __sun__
71
#include <linux/if.h>
72
#include <linux/if_tun.h>
73
#include <pty.h>
74
#include <malloc.h>
75
#include <linux/rtc.h>
76

    
77
/* For the benefit of older linux systems which don't supply it,
78
   we use a local copy of hpet.h. */
79
/* #include <linux/hpet.h> */
80
#include "hpet.h"
81

    
82
#include <linux/ppdev.h>
83
#include <linux/parport.h>
84
#else
85
#include <sys/stat.h>
86
#include <sys/ethernet.h>
87
#include <sys/sockio.h>
88
#include <netinet/arp.h>
89
#include <netinet/in.h>
90
#include <netinet/in_systm.h>
91
#include <netinet/ip.h>
92
#include <netinet/ip_icmp.h> // must come after ip.h
93
#include <netinet/udp.h>
94
#include <netinet/tcp.h>
95
#include <net/if.h>
96
#include <syslog.h>
97
#include <stropts.h>
98
#endif
99
#endif
100
#else
101
#include <winsock2.h>
102
int inet_aton(const char *cp, struct in_addr *ia);
103
#endif
104

    
105
#if defined(CONFIG_SLIRP)
106
#include "libslirp.h"
107
#endif
108

    
109
#ifdef _WIN32
110
#include <malloc.h>
111
#include <sys/timeb.h>
112
#include <windows.h>
113
#define getopt_long_only getopt_long
114
#define memalign(align, size) malloc(size)
115
#endif
116

    
117
#include "qemu_socket.h"
118

    
119
#ifdef CONFIG_SDL
120
#ifdef __APPLE__
121
#include <SDL/SDL.h>
122
#endif
123
#endif /* CONFIG_SDL */
124

    
125
#ifdef CONFIG_COCOA
126
#undef main
127
#define main qemu_main
128
#endif /* CONFIG_COCOA */
129

    
130
#include "disas.h"
131

    
132
#include "exec-all.h"
133

    
134
#define DEFAULT_NETWORK_SCRIPT "/etc/qemu-ifup"
135
#define DEFAULT_NETWORK_DOWN_SCRIPT "/etc/qemu-ifdown"
136
#ifdef __sun__
137
#define SMBD_COMMAND "/usr/sfw/sbin/smbd"
138
#else
139
#define SMBD_COMMAND "/usr/sbin/smbd"
140
#endif
141

    
142
//#define DEBUG_UNUSED_IOPORT
143
//#define DEBUG_IOPORT
144

    
145
#define PHYS_RAM_MAX_SIZE (2047 * 1024 * 1024)
146

    
147
#ifdef TARGET_PPC
148
#define DEFAULT_RAM_SIZE 144
149
#else
150
#define DEFAULT_RAM_SIZE 128
151
#endif
152
/* in ms */
153
#define GUI_REFRESH_INTERVAL 30
154

    
155
/* Max number of USB devices that can be specified on the commandline.  */
156
#define MAX_USB_CMDLINE 8
157

    
158
/* XXX: use a two level table to limit memory usage */
159
#define MAX_IOPORTS 65536
160

    
161
const char *bios_dir = CONFIG_QEMU_SHAREDIR;
162
const char *bios_name = NULL;
163
char phys_ram_file[1024];
164
void *ioport_opaque[MAX_IOPORTS];
165
IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
166
IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
167
/* Note: bs_table[MAX_DISKS] is a dummy block driver if none available
168
   to store the VM snapshots */
169
BlockDriverState *bs_table[MAX_DISKS + 1], *fd_table[MAX_FD];
170
BlockDriverState *pflash_table[MAX_PFLASH];
171
BlockDriverState *sd_bdrv;
172
BlockDriverState *mtd_bdrv;
173
/* point to the block driver where the snapshots are managed */
174
BlockDriverState *bs_snapshots;
175
int vga_ram_size;
176
static DisplayState display_state;
177
int nographic;
178
const char* keyboard_layout = NULL;
179
int64_t ticks_per_sec;
180
int ram_size;
181
int pit_min_timer_count = 0;
182
int nb_nics;
183
NICInfo nd_table[MAX_NICS];
184
int vm_running;
185
int rtc_utc = 1;
186
int rtc_start_date = -1; /* -1 means now */
187
int cirrus_vga_enabled = 1;
188
int vmsvga_enabled = 0;
189
#ifdef TARGET_SPARC
190
int graphic_width = 1024;
191
int graphic_height = 768;
192
int graphic_depth = 8;
193
#else
194
int graphic_width = 800;
195
int graphic_height = 600;
196
int graphic_depth = 15;
197
#endif
198
int full_screen = 0;
199
int no_frame = 0;
200
int no_quit = 0;
201
CharDriverState *serial_hds[MAX_SERIAL_PORTS];
202
CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
203
#ifdef TARGET_I386
204
int win2k_install_hack = 0;
205
#endif
206
int usb_enabled = 0;
207
static VLANState *first_vlan;
208
int smp_cpus = 1;
209
const char *vnc_display;
210
#if defined(TARGET_SPARC)
211
#define MAX_CPUS 16
212
#elif defined(TARGET_I386)
213
#define MAX_CPUS 255
214
#else
215
#define MAX_CPUS 1
216
#endif
217
int acpi_enabled = 1;
218
int fd_bootchk = 1;
219
int no_reboot = 0;
220
int cursor_hide = 1;
221
int graphic_rotate = 0;
222
int daemonize = 0;
223
const char *option_rom[MAX_OPTION_ROMS];
224
int nb_option_roms;
225
int semihosting_enabled = 0;
226
int autostart = 1;
227
#ifdef TARGET_ARM
228
int old_param = 0;
229
#endif
230
const char *qemu_name;
231
int alt_grab = 0;
232
#ifdef TARGET_SPARC
233
unsigned int nb_prom_envs = 0;
234
const char *prom_envs[MAX_PROM_ENVS];
235
#endif
236

    
237
#define TFR(expr) do { if ((expr) != -1) break; } while (errno == EINTR)
238

    
239
/***********************************************************/
240
/* x86 ISA bus support */
241

    
242
target_phys_addr_t isa_mem_base = 0;
243
PicState2 *isa_pic;
244

    
245
static uint32_t default_ioport_readb(void *opaque, uint32_t address)
246
{
247
#ifdef DEBUG_UNUSED_IOPORT
248
    fprintf(stderr, "unused inb: port=0x%04x\n", address);
249
#endif
250
    return 0xff;
251
}
252

    
253
static void default_ioport_writeb(void *opaque, uint32_t address, uint32_t data)
254
{
255
#ifdef DEBUG_UNUSED_IOPORT
256
    fprintf(stderr, "unused outb: port=0x%04x data=0x%02x\n", address, data);
257
#endif
258
}
259

    
260
/* default is to make two byte accesses */
261
static uint32_t default_ioport_readw(void *opaque, uint32_t address)
262
{
263
    uint32_t data;
264
    data = ioport_read_table[0][address](ioport_opaque[address], address);
265
    address = (address + 1) & (MAX_IOPORTS - 1);
266
    data |= ioport_read_table[0][address](ioport_opaque[address], address) << 8;
267
    return data;
268
}
269

    
270
static void default_ioport_writew(void *opaque, uint32_t address, uint32_t data)
271
{
272
    ioport_write_table[0][address](ioport_opaque[address], address, data & 0xff);
273
    address = (address + 1) & (MAX_IOPORTS - 1);
274
    ioport_write_table[0][address](ioport_opaque[address], address, (data >> 8) & 0xff);
275
}
276

    
277
static uint32_t default_ioport_readl(void *opaque, uint32_t address)
278
{
279
#ifdef DEBUG_UNUSED_IOPORT
280
    fprintf(stderr, "unused inl: port=0x%04x\n", address);
281
#endif
282
    return 0xffffffff;
283
}
284

    
285
static void default_ioport_writel(void *opaque, uint32_t address, uint32_t data)
286
{
287
#ifdef DEBUG_UNUSED_IOPORT
288
    fprintf(stderr, "unused outl: port=0x%04x data=0x%02x\n", address, data);
289
#endif
290
}
291

    
292
static void init_ioports(void)
293
{
294
    int i;
295

    
296
    for(i = 0; i < MAX_IOPORTS; i++) {
297
        ioport_read_table[0][i] = default_ioport_readb;
298
        ioport_write_table[0][i] = default_ioport_writeb;
299
        ioport_read_table[1][i] = default_ioport_readw;
300
        ioport_write_table[1][i] = default_ioport_writew;
301
        ioport_read_table[2][i] = default_ioport_readl;
302
        ioport_write_table[2][i] = default_ioport_writel;
303
    }
304
}
305

    
306
/* size is the word size in byte */
307
int register_ioport_read(int start, int length, int size,
308
                         IOPortReadFunc *func, void *opaque)
309
{
310
    int i, bsize;
311

    
312
    if (size == 1) {
313
        bsize = 0;
314
    } else if (size == 2) {
315
        bsize = 1;
316
    } else if (size == 4) {
317
        bsize = 2;
318
    } else {
319
        hw_error("register_ioport_read: invalid size");
320
        return -1;
321
    }
322
    for(i = start; i < start + length; i += size) {
323
        ioport_read_table[bsize][i] = func;
324
        if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
325
            hw_error("register_ioport_read: invalid opaque");
326
        ioport_opaque[i] = opaque;
327
    }
328
    return 0;
329
}
330

    
331
/* size is the word size in byte */
332
int register_ioport_write(int start, int length, int size,
333
                          IOPortWriteFunc *func, void *opaque)
334
{
335
    int i, bsize;
336

    
337
    if (size == 1) {
338
        bsize = 0;
339
    } else if (size == 2) {
340
        bsize = 1;
341
    } else if (size == 4) {
342
        bsize = 2;
343
    } else {
344
        hw_error("register_ioport_write: invalid size");
345
        return -1;
346
    }
347
    for(i = start; i < start + length; i += size) {
348
        ioport_write_table[bsize][i] = func;
349
        if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
350
            hw_error("register_ioport_write: invalid opaque");
351
        ioport_opaque[i] = opaque;
352
    }
353
    return 0;
354
}
355

    
356
void isa_unassign_ioport(int start, int length)
357
{
358
    int i;
359

    
360
    for(i = start; i < start + length; i++) {
361
        ioport_read_table[0][i] = default_ioport_readb;
362
        ioport_read_table[1][i] = default_ioport_readw;
363
        ioport_read_table[2][i] = default_ioport_readl;
364

    
365
        ioport_write_table[0][i] = default_ioport_writeb;
366
        ioport_write_table[1][i] = default_ioport_writew;
367
        ioport_write_table[2][i] = default_ioport_writel;
368
    }
369
}
370

    
371
/***********************************************************/
372

    
373
void cpu_outb(CPUState *env, int addr, int val)
374
{
375
#ifdef DEBUG_IOPORT
376
    if (loglevel & CPU_LOG_IOPORT)
377
        fprintf(logfile, "outb: %04x %02x\n", addr, val);
378
#endif
379
    ioport_write_table[0][addr](ioport_opaque[addr], addr, val);
380
#ifdef USE_KQEMU
381
    if (env)
382
        env->last_io_time = cpu_get_time_fast();
383
#endif
384
}
385

    
386
void cpu_outw(CPUState *env, int addr, int val)
387
{
388
#ifdef DEBUG_IOPORT
389
    if (loglevel & CPU_LOG_IOPORT)
390
        fprintf(logfile, "outw: %04x %04x\n", addr, val);
391
#endif
392
    ioport_write_table[1][addr](ioport_opaque[addr], addr, val);
393
#ifdef USE_KQEMU
394
    if (env)
395
        env->last_io_time = cpu_get_time_fast();
396
#endif
397
}
398

    
399
void cpu_outl(CPUState *env, int addr, int val)
400
{
401
#ifdef DEBUG_IOPORT
402
    if (loglevel & CPU_LOG_IOPORT)
403
        fprintf(logfile, "outl: %04x %08x\n", addr, val);
404
#endif
405
    ioport_write_table[2][addr](ioport_opaque[addr], addr, val);
406
#ifdef USE_KQEMU
407
    if (env)
408
        env->last_io_time = cpu_get_time_fast();
409
#endif
410
}
411

    
412
int cpu_inb(CPUState *env, int addr)
413
{
414
    int val;
415
    val = ioport_read_table[0][addr](ioport_opaque[addr], addr);
416
#ifdef DEBUG_IOPORT
417
    if (loglevel & CPU_LOG_IOPORT)
418
        fprintf(logfile, "inb : %04x %02x\n", addr, val);
419
#endif
420
#ifdef USE_KQEMU
421
    if (env)
422
        env->last_io_time = cpu_get_time_fast();
423
#endif
424
    return val;
425
}
426

    
427
int cpu_inw(CPUState *env, int addr)
428
{
429
    int val;
430
    val = ioport_read_table[1][addr](ioport_opaque[addr], addr);
431
#ifdef DEBUG_IOPORT
432
    if (loglevel & CPU_LOG_IOPORT)
433
        fprintf(logfile, "inw : %04x %04x\n", addr, val);
434
#endif
435
#ifdef USE_KQEMU
436
    if (env)
437
        env->last_io_time = cpu_get_time_fast();
438
#endif
439
    return val;
440
}
441

    
442
int cpu_inl(CPUState *env, int addr)
443
{
444
    int val;
445
    val = ioport_read_table[2][addr](ioport_opaque[addr], addr);
446
#ifdef DEBUG_IOPORT
447
    if (loglevel & CPU_LOG_IOPORT)
448
        fprintf(logfile, "inl : %04x %08x\n", addr, val);
449
#endif
450
#ifdef USE_KQEMU
451
    if (env)
452
        env->last_io_time = cpu_get_time_fast();
453
#endif
454
    return val;
455
}
456

    
457
/***********************************************************/
458
void hw_error(const char *fmt, ...)
459
{
460
    va_list ap;
461
    CPUState *env;
462

    
463
    va_start(ap, fmt);
464
    fprintf(stderr, "qemu: hardware error: ");
465
    vfprintf(stderr, fmt, ap);
466
    fprintf(stderr, "\n");
467
    for(env = first_cpu; env != NULL; env = env->next_cpu) {
468
        fprintf(stderr, "CPU #%d:\n", env->cpu_index);
469
#ifdef TARGET_I386
470
        cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
471
#else
472
        cpu_dump_state(env, stderr, fprintf, 0);
473
#endif
474
    }
475
    va_end(ap);
476
    abort();
477
}
478

    
479
/***********************************************************/
480
/* keyboard/mouse */
481

    
482
static QEMUPutKBDEvent *qemu_put_kbd_event;
483
static void *qemu_put_kbd_event_opaque;
484
static QEMUPutMouseEntry *qemu_put_mouse_event_head;
485
static QEMUPutMouseEntry *qemu_put_mouse_event_current;
486

    
487
void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
488
{
489
    qemu_put_kbd_event_opaque = opaque;
490
    qemu_put_kbd_event = func;
491
}
492

    
493
QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
494
                                                void *opaque, int absolute,
495
                                                const char *name)
496
{
497
    QEMUPutMouseEntry *s, *cursor;
498

    
499
    s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
500
    if (!s)
501
        return NULL;
502

    
503
    s->qemu_put_mouse_event = func;
504
    s->qemu_put_mouse_event_opaque = opaque;
505
    s->qemu_put_mouse_event_absolute = absolute;
506
    s->qemu_put_mouse_event_name = qemu_strdup(name);
507
    s->next = NULL;
508

    
509
    if (!qemu_put_mouse_event_head) {
510
        qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
511
        return s;
512
    }
513

    
514
    cursor = qemu_put_mouse_event_head;
515
    while (cursor->next != NULL)
516
        cursor = cursor->next;
517

    
518
    cursor->next = s;
519
    qemu_put_mouse_event_current = s;
520

    
521
    return s;
522
}
523

    
524
void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
525
{
526
    QEMUPutMouseEntry *prev = NULL, *cursor;
527

    
528
    if (!qemu_put_mouse_event_head || entry == NULL)
529
        return;
530

    
531
    cursor = qemu_put_mouse_event_head;
532
    while (cursor != NULL && cursor != entry) {
533
        prev = cursor;
534
        cursor = cursor->next;
535
    }
536

    
537
    if (cursor == NULL) // does not exist or list empty
538
        return;
539
    else if (prev == NULL) { // entry is head
540
        qemu_put_mouse_event_head = cursor->next;
541
        if (qemu_put_mouse_event_current == entry)
542
            qemu_put_mouse_event_current = cursor->next;
543
        qemu_free(entry->qemu_put_mouse_event_name);
544
        qemu_free(entry);
545
        return;
546
    }
547

    
548
    prev->next = entry->next;
549

    
550
    if (qemu_put_mouse_event_current == entry)
551
        qemu_put_mouse_event_current = prev;
552

    
553
    qemu_free(entry->qemu_put_mouse_event_name);
554
    qemu_free(entry);
555
}
556

    
557
void kbd_put_keycode(int keycode)
558
{
559
    if (qemu_put_kbd_event) {
560
        qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
561
    }
562
}
563

    
564
void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
565
{
566
    QEMUPutMouseEvent *mouse_event;
567
    void *mouse_event_opaque;
568
    int width;
569

    
570
    if (!qemu_put_mouse_event_current) {
571
        return;
572
    }
573

    
574
    mouse_event =
575
        qemu_put_mouse_event_current->qemu_put_mouse_event;
576
    mouse_event_opaque =
577
        qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
578

    
579
    if (mouse_event) {
580
        if (graphic_rotate) {
581
            if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
582
                width = 0x7fff;
583
            else
584
                width = graphic_width;
585
            mouse_event(mouse_event_opaque,
586
                                 width - dy, dx, dz, buttons_state);
587
        } else
588
            mouse_event(mouse_event_opaque,
589
                                 dx, dy, dz, buttons_state);
590
    }
591
}
592

    
593
int kbd_mouse_is_absolute(void)
594
{
595
    if (!qemu_put_mouse_event_current)
596
        return 0;
597

    
598
    return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
599
}
600

    
601
void do_info_mice(void)
602
{
603
    QEMUPutMouseEntry *cursor;
604
    int index = 0;
605

    
606
    if (!qemu_put_mouse_event_head) {
607
        term_printf("No mouse devices connected\n");
608
        return;
609
    }
610

    
611
    term_printf("Mouse devices available:\n");
612
    cursor = qemu_put_mouse_event_head;
613
    while (cursor != NULL) {
614
        term_printf("%c Mouse #%d: %s\n",
615
                    (cursor == qemu_put_mouse_event_current ? '*' : ' '),
616
                    index, cursor->qemu_put_mouse_event_name);
617
        index++;
618
        cursor = cursor->next;
619
    }
620
}
621

    
622
void do_mouse_set(int index)
623
{
624
    QEMUPutMouseEntry *cursor;
625
    int i = 0;
626

    
627
    if (!qemu_put_mouse_event_head) {
628
        term_printf("No mouse devices connected\n");
629
        return;
630
    }
631

    
632
    cursor = qemu_put_mouse_event_head;
633
    while (cursor != NULL && index != i) {
634
        i++;
635
        cursor = cursor->next;
636
    }
637

    
638
    if (cursor != NULL)
639
        qemu_put_mouse_event_current = cursor;
640
    else
641
        term_printf("Mouse at given index not found\n");
642
}
643

    
644
/* compute with 96 bit intermediate result: (a*b)/c */
645
uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
646
{
647
    union {
648
        uint64_t ll;
649
        struct {
650
#ifdef WORDS_BIGENDIAN
651
            uint32_t high, low;
652
#else
653
            uint32_t low, high;
654
#endif
655
        } l;
656
    } u, res;
657
    uint64_t rl, rh;
658

    
659
    u.ll = a;
660
    rl = (uint64_t)u.l.low * (uint64_t)b;
661
    rh = (uint64_t)u.l.high * (uint64_t)b;
662
    rh += (rl >> 32);
663
    res.l.high = rh / c;
664
    res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
665
    return res.ll;
666
}
667

    
668
/***********************************************************/
669
/* real time host monotonic timer */
670

    
671
#define QEMU_TIMER_BASE 1000000000LL
672

    
673
#ifdef WIN32
674

    
675
static int64_t clock_freq;
676

    
677
static void init_get_clock(void)
678
{
679
    LARGE_INTEGER freq;
680
    int ret;
681
    ret = QueryPerformanceFrequency(&freq);
682
    if (ret == 0) {
683
        fprintf(stderr, "Could not calibrate ticks\n");
684
        exit(1);
685
    }
686
    clock_freq = freq.QuadPart;
687
}
688

    
689
static int64_t get_clock(void)
690
{
691
    LARGE_INTEGER ti;
692
    QueryPerformanceCounter(&ti);
693
    return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
694
}
695

    
696
#else
697

    
698
static int use_rt_clock;
699

    
700
static void init_get_clock(void)
701
{
702
    use_rt_clock = 0;
703
#if defined(__linux__)
704
    {
705
        struct timespec ts;
706
        if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
707
            use_rt_clock = 1;
708
        }
709
    }
710
#endif
711
}
712

    
713
static int64_t get_clock(void)
714
{
715
#if defined(__linux__)
716
    if (use_rt_clock) {
717
        struct timespec ts;
718
        clock_gettime(CLOCK_MONOTONIC, &ts);
719
        return ts.tv_sec * 1000000000LL + ts.tv_nsec;
720
    } else
721
#endif
722
    {
723
        /* XXX: using gettimeofday leads to problems if the date
724
           changes, so it should be avoided. */
725
        struct timeval tv;
726
        gettimeofday(&tv, NULL);
727
        return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
728
    }
729
}
730

    
731
#endif
732

    
733
/***********************************************************/
734
/* guest cycle counter */
735

    
736
static int64_t cpu_ticks_prev;
737
static int64_t cpu_ticks_offset;
738
static int64_t cpu_clock_offset;
739
static int cpu_ticks_enabled;
740

    
741
/* return the host CPU cycle counter and handle stop/restart */
742
int64_t cpu_get_ticks(void)
743
{
744
    if (!cpu_ticks_enabled) {
745
        return cpu_ticks_offset;
746
    } else {
747
        int64_t ticks;
748
        ticks = cpu_get_real_ticks();
749
        if (cpu_ticks_prev > ticks) {
750
            /* Note: non increasing ticks may happen if the host uses
751
               software suspend */
752
            cpu_ticks_offset += cpu_ticks_prev - ticks;
753
        }
754
        cpu_ticks_prev = ticks;
755
        return ticks + cpu_ticks_offset;
756
    }
757
}
758

    
759
/* return the host CPU monotonic timer and handle stop/restart */
760
static int64_t cpu_get_clock(void)
761
{
762
    int64_t ti;
763
    if (!cpu_ticks_enabled) {
764
        return cpu_clock_offset;
765
    } else {
766
        ti = get_clock();
767
        return ti + cpu_clock_offset;
768
    }
769
}
770

    
771
/* enable cpu_get_ticks() */
772
void cpu_enable_ticks(void)
773
{
774
    if (!cpu_ticks_enabled) {
775
        cpu_ticks_offset -= cpu_get_real_ticks();
776
        cpu_clock_offset -= get_clock();
777
        cpu_ticks_enabled = 1;
778
    }
779
}
780

    
781
/* disable cpu_get_ticks() : the clock is stopped. You must not call
782
   cpu_get_ticks() after that.  */
783
void cpu_disable_ticks(void)
784
{
785
    if (cpu_ticks_enabled) {
786
        cpu_ticks_offset = cpu_get_ticks();
787
        cpu_clock_offset = cpu_get_clock();
788
        cpu_ticks_enabled = 0;
789
    }
790
}
791

    
792
/***********************************************************/
793
/* timers */
794

    
795
#define QEMU_TIMER_REALTIME 0
796
#define QEMU_TIMER_VIRTUAL  1
797

    
798
struct QEMUClock {
799
    int type;
800
    /* XXX: add frequency */
801
};
802

    
803
struct QEMUTimer {
804
    QEMUClock *clock;
805
    int64_t expire_time;
806
    QEMUTimerCB *cb;
807
    void *opaque;
808
    struct QEMUTimer *next;
809
};
810

    
811
struct qemu_alarm_timer {
812
    char const *name;
813
    unsigned int flags;
814

    
815
    int (*start)(struct qemu_alarm_timer *t);
816
    void (*stop)(struct qemu_alarm_timer *t);
817
    void (*rearm)(struct qemu_alarm_timer *t);
818
    void *priv;
819
};
820

    
821
#define ALARM_FLAG_DYNTICKS  0x1
822

    
823
static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
824
{
825
    return t->flags & ALARM_FLAG_DYNTICKS;
826
}
827

    
828
static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
829
{
830
    if (!alarm_has_dynticks(t))
831
        return;
832

    
833
    t->rearm(t);
834
}
835

    
836
/* TODO: MIN_TIMER_REARM_US should be optimized */
837
#define MIN_TIMER_REARM_US 250
838

    
839
static struct qemu_alarm_timer *alarm_timer;
840

    
841
#ifdef _WIN32
842

    
843
struct qemu_alarm_win32 {
844
    MMRESULT timerId;
845
    HANDLE host_alarm;
846
    unsigned int period;
847
} alarm_win32_data = {0, NULL, -1};
848

    
849
static int win32_start_timer(struct qemu_alarm_timer *t);
850
static void win32_stop_timer(struct qemu_alarm_timer *t);
851
static void win32_rearm_timer(struct qemu_alarm_timer *t);
852

    
853
#else
854

    
855
static int unix_start_timer(struct qemu_alarm_timer *t);
856
static void unix_stop_timer(struct qemu_alarm_timer *t);
857

    
858
#ifdef __linux__
859

    
860
static int dynticks_start_timer(struct qemu_alarm_timer *t);
861
static void dynticks_stop_timer(struct qemu_alarm_timer *t);
862
static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
863

    
864
static int hpet_start_timer(struct qemu_alarm_timer *t);
865
static void hpet_stop_timer(struct qemu_alarm_timer *t);
866

    
867
static int rtc_start_timer(struct qemu_alarm_timer *t);
868
static void rtc_stop_timer(struct qemu_alarm_timer *t);
869

    
870
#endif /* __linux__ */
871

    
872
#endif /* _WIN32 */
873

    
874
static struct qemu_alarm_timer alarm_timers[] = {
875
#ifndef _WIN32
876
#ifdef __linux__
877
    {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
878
     dynticks_stop_timer, dynticks_rearm_timer, NULL},
879
    /* HPET - if available - is preferred */
880
    {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
881
    /* ...otherwise try RTC */
882
    {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
883
#endif
884
    {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
885
#else
886
    {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
887
     win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
888
    {"win32", 0, win32_start_timer,
889
     win32_stop_timer, NULL, &alarm_win32_data},
890
#endif
891
    {NULL, }
892
};
893

    
894
static void show_available_alarms()
895
{
896
    int i;
897

    
898
    printf("Available alarm timers, in order of precedence:\n");
899
    for (i = 0; alarm_timers[i].name; i++)
900
        printf("%s\n", alarm_timers[i].name);
901
}
902

    
903
static void configure_alarms(char const *opt)
904
{
905
    int i;
906
    int cur = 0;
907
    int count = (sizeof(alarm_timers) / sizeof(*alarm_timers)) - 1;
908
    char *arg;
909
    char *name;
910

    
911
    if (!strcmp(opt, "help")) {
912
        show_available_alarms();
913
        exit(0);
914
    }
915

    
916
    arg = strdup(opt);
917

    
918
    /* Reorder the array */
919
    name = strtok(arg, ",");
920
    while (name) {
921
        struct qemu_alarm_timer tmp;
922

    
923
        for (i = 0; i < count && alarm_timers[i].name; i++) {
924
            if (!strcmp(alarm_timers[i].name, name))
925
                break;
926
        }
927

    
928
        if (i == count) {
929
            fprintf(stderr, "Unknown clock %s\n", name);
930
            goto next;
931
        }
932

    
933
        if (i < cur)
934
            /* Ignore */
935
            goto next;
936

    
937
        /* Swap */
938
        tmp = alarm_timers[i];
939
        alarm_timers[i] = alarm_timers[cur];
940
        alarm_timers[cur] = tmp;
941

    
942
        cur++;
943
next:
944
        name = strtok(NULL, ",");
945
    }
946

    
947
    free(arg);
948

    
949
    if (cur) {
950
        /* Disable remaining timers */
951
        for (i = cur; i < count; i++)
952
            alarm_timers[i].name = NULL;
953
    }
954

    
955
    /* debug */
956
    show_available_alarms();
957
}
958

    
959
QEMUClock *rt_clock;
960
QEMUClock *vm_clock;
961

    
962
static QEMUTimer *active_timers[2];
963

    
964
static QEMUClock *qemu_new_clock(int type)
965
{
966
    QEMUClock *clock;
967
    clock = qemu_mallocz(sizeof(QEMUClock));
968
    if (!clock)
969
        return NULL;
970
    clock->type = type;
971
    return clock;
972
}
973

    
974
QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
975
{
976
    QEMUTimer *ts;
977

    
978
    ts = qemu_mallocz(sizeof(QEMUTimer));
979
    ts->clock = clock;
980
    ts->cb = cb;
981
    ts->opaque = opaque;
982
    return ts;
983
}
984

    
985
void qemu_free_timer(QEMUTimer *ts)
986
{
987
    qemu_free(ts);
988
}
989

    
990
/* stop a timer, but do not dealloc it */
991
void qemu_del_timer(QEMUTimer *ts)
992
{
993
    QEMUTimer **pt, *t;
994

    
995
    /* NOTE: this code must be signal safe because
996
       qemu_timer_expired() can be called from a signal. */
997
    pt = &active_timers[ts->clock->type];
998
    for(;;) {
999
        t = *pt;
1000
        if (!t)
1001
            break;
1002
        if (t == ts) {
1003
            *pt = t->next;
1004
            break;
1005
        }
1006
        pt = &t->next;
1007
    }
1008
}
1009

    
1010
/* modify the current timer so that it will be fired when current_time
1011
   >= expire_time. The corresponding callback will be called. */
1012
void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
1013
{
1014
    QEMUTimer **pt, *t;
1015

    
1016
    qemu_del_timer(ts);
1017

    
1018
    /* add the timer in the sorted list */
1019
    /* NOTE: this code must be signal safe because
1020
       qemu_timer_expired() can be called from a signal. */
1021
    pt = &active_timers[ts->clock->type];
1022
    for(;;) {
1023
        t = *pt;
1024
        if (!t)
1025
            break;
1026
        if (t->expire_time > expire_time)
1027
            break;
1028
        pt = &t->next;
1029
    }
1030
    ts->expire_time = expire_time;
1031
    ts->next = *pt;
1032
    *pt = ts;
1033
}
1034

    
1035
int qemu_timer_pending(QEMUTimer *ts)
1036
{
1037
    QEMUTimer *t;
1038
    for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
1039
        if (t == ts)
1040
            return 1;
1041
    }
1042
    return 0;
1043
}
1044

    
1045
static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
1046
{
1047
    if (!timer_head)
1048
        return 0;
1049
    return (timer_head->expire_time <= current_time);
1050
}
1051

    
1052
static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
1053
{
1054
    QEMUTimer *ts;
1055

    
1056
    for(;;) {
1057
        ts = *ptimer_head;
1058
        if (!ts || ts->expire_time > current_time)
1059
            break;
1060
        /* remove timer from the list before calling the callback */
1061
        *ptimer_head = ts->next;
1062
        ts->next = NULL;
1063

    
1064
        /* run the callback (the timer list can be modified) */
1065
        ts->cb(ts->opaque);
1066
    }
1067
    qemu_rearm_alarm_timer(alarm_timer);
1068
}
1069

    
1070
int64_t qemu_get_clock(QEMUClock *clock)
1071
{
1072
    switch(clock->type) {
1073
    case QEMU_TIMER_REALTIME:
1074
        return get_clock() / 1000000;
1075
    default:
1076
    case QEMU_TIMER_VIRTUAL:
1077
        return cpu_get_clock();
1078
    }
1079
}
1080

    
1081
static void init_timers(void)
1082
{
1083
    init_get_clock();
1084
    ticks_per_sec = QEMU_TIMER_BASE;
1085
    rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
1086
    vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
1087
}
1088

    
1089
/* save a timer */
1090
void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
1091
{
1092
    uint64_t expire_time;
1093

    
1094
    if (qemu_timer_pending(ts)) {
1095
        expire_time = ts->expire_time;
1096
    } else {
1097
        expire_time = -1;
1098
    }
1099
    qemu_put_be64(f, expire_time);
1100
}
1101

    
1102
void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
1103
{
1104
    uint64_t expire_time;
1105

    
1106
    expire_time = qemu_get_be64(f);
1107
    if (expire_time != -1) {
1108
        qemu_mod_timer(ts, expire_time);
1109
    } else {
1110
        qemu_del_timer(ts);
1111
    }
1112
}
1113

    
1114
static void timer_save(QEMUFile *f, void *opaque)
1115
{
1116
    if (cpu_ticks_enabled) {
1117
        hw_error("cannot save state if virtual timers are running");
1118
    }
1119
    qemu_put_be64s(f, &cpu_ticks_offset);
1120
    qemu_put_be64s(f, &ticks_per_sec);
1121
    qemu_put_be64s(f, &cpu_clock_offset);
1122
}
1123

    
1124
static int timer_load(QEMUFile *f, void *opaque, int version_id)
1125
{
1126
    if (version_id != 1 && version_id != 2)
1127
        return -EINVAL;
1128
    if (cpu_ticks_enabled) {
1129
        return -EINVAL;
1130
    }
1131
    qemu_get_be64s(f, &cpu_ticks_offset);
1132
    qemu_get_be64s(f, &ticks_per_sec);
1133
    if (version_id == 2) {
1134
        qemu_get_be64s(f, &cpu_clock_offset);
1135
    }
1136
    return 0;
1137
}
1138

    
1139
#ifdef _WIN32
1140
void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
1141
                                 DWORD_PTR dwUser, DWORD_PTR dw1, DWORD_PTR dw2)
1142
#else
1143
static void host_alarm_handler(int host_signum)
1144
#endif
1145
{
1146
#if 0
1147
#define DISP_FREQ 1000
1148
    {
1149
        static int64_t delta_min = INT64_MAX;
1150
        static int64_t delta_max, delta_cum, last_clock, delta, ti;
1151
        static int count;
1152
        ti = qemu_get_clock(vm_clock);
1153
        if (last_clock != 0) {
1154
            delta = ti - last_clock;
1155
            if (delta < delta_min)
1156
                delta_min = delta;
1157
            if (delta > delta_max)
1158
                delta_max = delta;
1159
            delta_cum += delta;
1160
            if (++count == DISP_FREQ) {
1161
                printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1162
                       muldiv64(delta_min, 1000000, ticks_per_sec),
1163
                       muldiv64(delta_max, 1000000, ticks_per_sec),
1164
                       muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
1165
                       (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
1166
                count = 0;
1167
                delta_min = INT64_MAX;
1168
                delta_max = 0;
1169
                delta_cum = 0;
1170
            }
1171
        }
1172
        last_clock = ti;
1173
    }
1174
#endif
1175
    if (alarm_has_dynticks(alarm_timer) ||
1176
        qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
1177
                           qemu_get_clock(vm_clock)) ||
1178
        qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
1179
                           qemu_get_clock(rt_clock))) {
1180
#ifdef _WIN32
1181
        struct qemu_alarm_win32 *data = ((struct qemu_alarm_timer*)dwUser)->priv;
1182
        SetEvent(data->host_alarm);
1183
#endif
1184
        CPUState *env = cpu_single_env;
1185
        if (env) {
1186
            /* stop the currently executing cpu because a timer occured */
1187
            cpu_interrupt(env, CPU_INTERRUPT_EXIT);
1188
#ifdef USE_KQEMU
1189
            if (env->kqemu_enabled) {
1190
                kqemu_cpu_interrupt(env);
1191
            }
1192
#endif
1193
        }
1194
    }
1195
}
1196

    
1197
static uint64_t qemu_next_deadline(void)
1198
{
1199
    int64_t nearest_delta_us = INT64_MAX;
1200
    int64_t vmdelta_us;
1201

    
1202
    if (active_timers[QEMU_TIMER_REALTIME])
1203
        nearest_delta_us = (active_timers[QEMU_TIMER_REALTIME]->expire_time -
1204
                            qemu_get_clock(rt_clock))*1000;
1205

    
1206
    if (active_timers[QEMU_TIMER_VIRTUAL]) {
1207
        /* round up */
1208
        vmdelta_us = (active_timers[QEMU_TIMER_VIRTUAL]->expire_time -
1209
                      qemu_get_clock(vm_clock)+999)/1000;
1210
        if (vmdelta_us < nearest_delta_us)
1211
            nearest_delta_us = vmdelta_us;
1212
    }
1213

    
1214
    /* Avoid arming the timer to negative, zero, or too low values */
1215
    if (nearest_delta_us <= MIN_TIMER_REARM_US)
1216
        nearest_delta_us = MIN_TIMER_REARM_US;
1217

    
1218
    return nearest_delta_us;
1219
}
1220

    
1221
#ifndef _WIN32
1222

    
1223
#if defined(__linux__)
1224

    
1225
#define RTC_FREQ 1024
1226

    
1227
static void enable_sigio_timer(int fd)
1228
{
1229
    struct sigaction act;
1230

    
1231
    /* timer signal */
1232
    sigfillset(&act.sa_mask);
1233
    act.sa_flags = 0;
1234
    act.sa_handler = host_alarm_handler;
1235

    
1236
    sigaction(SIGIO, &act, NULL);
1237
    fcntl(fd, F_SETFL, O_ASYNC);
1238
    fcntl(fd, F_SETOWN, getpid());
1239
}
1240

    
1241
static int hpet_start_timer(struct qemu_alarm_timer *t)
1242
{
1243
    struct hpet_info info;
1244
    int r, fd;
1245

    
1246
    fd = open("/dev/hpet", O_RDONLY);
1247
    if (fd < 0)
1248
        return -1;
1249

    
1250
    /* Set frequency */
1251
    r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
1252
    if (r < 0) {
1253
        fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1254
                "error, but for better emulation accuracy type:\n"
1255
                "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1256
        goto fail;
1257
    }
1258

    
1259
    /* Check capabilities */
1260
    r = ioctl(fd, HPET_INFO, &info);
1261
    if (r < 0)
1262
        goto fail;
1263

    
1264
    /* Enable periodic mode */
1265
    r = ioctl(fd, HPET_EPI, 0);
1266
    if (info.hi_flags && (r < 0))
1267
        goto fail;
1268

    
1269
    /* Enable interrupt */
1270
    r = ioctl(fd, HPET_IE_ON, 0);
1271
    if (r < 0)
1272
        goto fail;
1273

    
1274
    enable_sigio_timer(fd);
1275
    t->priv = (void *)(long)fd;
1276

    
1277
    return 0;
1278
fail:
1279
    close(fd);
1280
    return -1;
1281
}
1282

    
1283
static void hpet_stop_timer(struct qemu_alarm_timer *t)
1284
{
1285
    int fd = (long)t->priv;
1286

    
1287
    close(fd);
1288
}
1289

    
1290
static int rtc_start_timer(struct qemu_alarm_timer *t)
1291
{
1292
    int rtc_fd;
1293

    
1294
    TFR(rtc_fd = open("/dev/rtc", O_RDONLY));
1295
    if (rtc_fd < 0)
1296
        return -1;
1297
    if (ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1298
        fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1299
                "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1300
                "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1301
        goto fail;
1302
    }
1303
    if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1304
    fail:
1305
        close(rtc_fd);
1306
        return -1;
1307
    }
1308

    
1309
    enable_sigio_timer(rtc_fd);
1310

    
1311
    t->priv = (void *)(long)rtc_fd;
1312

    
1313
    return 0;
1314
}
1315

    
1316
static void rtc_stop_timer(struct qemu_alarm_timer *t)
1317
{
1318
    int rtc_fd = (long)t->priv;
1319

    
1320
    close(rtc_fd);
1321
}
1322

    
1323
static int dynticks_start_timer(struct qemu_alarm_timer *t)
1324
{
1325
    struct sigevent ev;
1326
    timer_t host_timer;
1327
    struct sigaction act;
1328

    
1329
    sigfillset(&act.sa_mask);
1330
    act.sa_flags = 0;
1331
    act.sa_handler = host_alarm_handler;
1332

    
1333
    sigaction(SIGALRM, &act, NULL);
1334

    
1335
    ev.sigev_value.sival_int = 0;
1336
    ev.sigev_notify = SIGEV_SIGNAL;
1337
    ev.sigev_signo = SIGALRM;
1338

    
1339
    if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
1340
        perror("timer_create");
1341

    
1342
        /* disable dynticks */
1343
        fprintf(stderr, "Dynamic Ticks disabled\n");
1344

    
1345
        return -1;
1346
    }
1347

    
1348
    t->priv = (void *)host_timer;
1349

    
1350
    return 0;
1351
}
1352

    
1353
static void dynticks_stop_timer(struct qemu_alarm_timer *t)
1354
{
1355
    timer_t host_timer = (timer_t)t->priv;
1356

    
1357
    timer_delete(host_timer);
1358
}
1359

    
1360
static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
1361
{
1362
    timer_t host_timer = (timer_t)t->priv;
1363
    struct itimerspec timeout;
1364
    int64_t nearest_delta_us = INT64_MAX;
1365
    int64_t current_us;
1366

    
1367
    if (!active_timers[QEMU_TIMER_REALTIME] &&
1368
                !active_timers[QEMU_TIMER_VIRTUAL])
1369
            return;
1370

    
1371
    nearest_delta_us = qemu_next_deadline();
1372

    
1373
    /* check whether a timer is already running */
1374
    if (timer_gettime(host_timer, &timeout)) {
1375
        perror("gettime");
1376
        fprintf(stderr, "Internal timer error: aborting\n");
1377
        exit(1);
1378
    }
1379
    current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
1380
    if (current_us && current_us <= nearest_delta_us)
1381
        return;
1382

    
1383
    timeout.it_interval.tv_sec = 0;
1384
    timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
1385
    timeout.it_value.tv_sec =  nearest_delta_us / 1000000;
1386
    timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
1387
    if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
1388
        perror("settime");
1389
        fprintf(stderr, "Internal timer error: aborting\n");
1390
        exit(1);
1391
    }
1392
}
1393

    
1394
#endif /* defined(__linux__) */
1395

    
1396
static int unix_start_timer(struct qemu_alarm_timer *t)
1397
{
1398
    struct sigaction act;
1399
    struct itimerval itv;
1400
    int err;
1401

    
1402
    /* timer signal */
1403
    sigfillset(&act.sa_mask);
1404
    act.sa_flags = 0;
1405
    act.sa_handler = host_alarm_handler;
1406

    
1407
    sigaction(SIGALRM, &act, NULL);
1408

    
1409
    itv.it_interval.tv_sec = 0;
1410
    /* for i386 kernel 2.6 to get 1 ms */
1411
    itv.it_interval.tv_usec = 999;
1412
    itv.it_value.tv_sec = 0;
1413
    itv.it_value.tv_usec = 10 * 1000;
1414

    
1415
    err = setitimer(ITIMER_REAL, &itv, NULL);
1416
    if (err)
1417
        return -1;
1418

    
1419
    return 0;
1420
}
1421

    
1422
static void unix_stop_timer(struct qemu_alarm_timer *t)
1423
{
1424
    struct itimerval itv;
1425

    
1426
    memset(&itv, 0, sizeof(itv));
1427
    setitimer(ITIMER_REAL, &itv, NULL);
1428
}
1429

    
1430
#endif /* !defined(_WIN32) */
1431

    
1432
#ifdef _WIN32
1433

    
1434
static int win32_start_timer(struct qemu_alarm_timer *t)
1435
{
1436
    TIMECAPS tc;
1437
    struct qemu_alarm_win32 *data = t->priv;
1438
    UINT flags;
1439

    
1440
    data->host_alarm = CreateEvent(NULL, FALSE, FALSE, NULL);
1441
    if (!data->host_alarm) {
1442
        perror("Failed CreateEvent");
1443
        return -1;
1444
    }
1445

    
1446
    memset(&tc, 0, sizeof(tc));
1447
    timeGetDevCaps(&tc, sizeof(tc));
1448

    
1449
    if (data->period < tc.wPeriodMin)
1450
        data->period = tc.wPeriodMin;
1451

    
1452
    timeBeginPeriod(data->period);
1453

    
1454
    flags = TIME_CALLBACK_FUNCTION;
1455
    if (alarm_has_dynticks(t))
1456
        flags |= TIME_ONESHOT;
1457
    else
1458
        flags |= TIME_PERIODIC;
1459

    
1460
    data->timerId = timeSetEvent(1,         // interval (ms)
1461
                        data->period,       // resolution
1462
                        host_alarm_handler, // function
1463
                        (DWORD)t,           // parameter
1464
                        flags);
1465

    
1466
    if (!data->timerId) {
1467
        perror("Failed to initialize win32 alarm timer");
1468

    
1469
        timeEndPeriod(data->period);
1470
        CloseHandle(data->host_alarm);
1471
        return -1;
1472
    }
1473

    
1474
    qemu_add_wait_object(data->host_alarm, NULL, NULL);
1475

    
1476
    return 0;
1477
}
1478

    
1479
static void win32_stop_timer(struct qemu_alarm_timer *t)
1480
{
1481
    struct qemu_alarm_win32 *data = t->priv;
1482

    
1483
    timeKillEvent(data->timerId);
1484
    timeEndPeriod(data->period);
1485

    
1486
    CloseHandle(data->host_alarm);
1487
}
1488

    
1489
static void win32_rearm_timer(struct qemu_alarm_timer *t)
1490
{
1491
    struct qemu_alarm_win32 *data = t->priv;
1492
    uint64_t nearest_delta_us;
1493

    
1494
    if (!active_timers[QEMU_TIMER_REALTIME] &&
1495
                !active_timers[QEMU_TIMER_VIRTUAL])
1496
            return;
1497

    
1498
    nearest_delta_us = qemu_next_deadline();
1499
    nearest_delta_us /= 1000;
1500

    
1501
    timeKillEvent(data->timerId);
1502

    
1503
    data->timerId = timeSetEvent(1,
1504
                        data->period,
1505
                        host_alarm_handler,
1506
                        (DWORD)t,
1507
                        TIME_ONESHOT | TIME_PERIODIC);
1508

    
1509
    if (!data->timerId) {
1510
        perror("Failed to re-arm win32 alarm timer");
1511

    
1512
        timeEndPeriod(data->period);
1513
        CloseHandle(data->host_alarm);
1514
        exit(1);
1515
    }
1516
}
1517

    
1518
#endif /* _WIN32 */
1519

    
1520
static void init_timer_alarm(void)
1521
{
1522
    struct qemu_alarm_timer *t;
1523
    int i, err = -1;
1524

    
1525
    for (i = 0; alarm_timers[i].name; i++) {
1526
        t = &alarm_timers[i];
1527

    
1528
        err = t->start(t);
1529
        if (!err)
1530
            break;
1531
    }
1532

    
1533
    if (err) {
1534
        fprintf(stderr, "Unable to find any suitable alarm timer.\n");
1535
        fprintf(stderr, "Terminating\n");
1536
        exit(1);
1537
    }
1538

    
1539
    alarm_timer = t;
1540
}
1541

    
1542
static void quit_timers(void)
1543
{
1544
    alarm_timer->stop(alarm_timer);
1545
    alarm_timer = NULL;
1546
}
1547

    
1548
/***********************************************************/
1549
/* character device */
1550

    
1551
static void qemu_chr_event(CharDriverState *s, int event)
1552
{
1553
    if (!s->chr_event)
1554
        return;
1555
    s->chr_event(s->handler_opaque, event);
1556
}
1557

    
1558
static void qemu_chr_reset_bh(void *opaque)
1559
{
1560
    CharDriverState *s = opaque;
1561
    qemu_chr_event(s, CHR_EVENT_RESET);
1562
    qemu_bh_delete(s->bh);
1563
    s->bh = NULL;
1564
}
1565

    
1566
void qemu_chr_reset(CharDriverState *s)
1567
{
1568
    if (s->bh == NULL) {
1569
        s->bh = qemu_bh_new(qemu_chr_reset_bh, s);
1570
        qemu_bh_schedule(s->bh);
1571
    }
1572
}
1573

    
1574
int qemu_chr_write(CharDriverState *s, const uint8_t *buf, int len)
1575
{
1576
    return s->chr_write(s, buf, len);
1577
}
1578

    
1579
int qemu_chr_ioctl(CharDriverState *s, int cmd, void *arg)
1580
{
1581
    if (!s->chr_ioctl)
1582
        return -ENOTSUP;
1583
    return s->chr_ioctl(s, cmd, arg);
1584
}
1585

    
1586
int qemu_chr_can_read(CharDriverState *s)
1587
{
1588
    if (!s->chr_can_read)
1589
        return 0;
1590
    return s->chr_can_read(s->handler_opaque);
1591
}
1592

    
1593
void qemu_chr_read(CharDriverState *s, uint8_t *buf, int len)
1594
{
1595
    s->chr_read(s->handler_opaque, buf, len);
1596
}
1597

    
1598

    
1599
void qemu_chr_printf(CharDriverState *s, const char *fmt, ...)
1600
{
1601
    char buf[4096];
1602
    va_list ap;
1603
    va_start(ap, fmt);
1604
    vsnprintf(buf, sizeof(buf), fmt, ap);
1605
    qemu_chr_write(s, buf, strlen(buf));
1606
    va_end(ap);
1607
}
1608

    
1609
void qemu_chr_send_event(CharDriverState *s, int event)
1610
{
1611
    if (s->chr_send_event)
1612
        s->chr_send_event(s, event);
1613
}
1614

    
1615
void qemu_chr_add_handlers(CharDriverState *s,
1616
                           IOCanRWHandler *fd_can_read,
1617
                           IOReadHandler *fd_read,
1618
                           IOEventHandler *fd_event,
1619
                           void *opaque)
1620
{
1621
    s->chr_can_read = fd_can_read;
1622
    s->chr_read = fd_read;
1623
    s->chr_event = fd_event;
1624
    s->handler_opaque = opaque;
1625
    if (s->chr_update_read_handler)
1626
        s->chr_update_read_handler(s);
1627
}
1628

    
1629
static int null_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1630
{
1631
    return len;
1632
}
1633

    
1634
static CharDriverState *qemu_chr_open_null(void)
1635
{
1636
    CharDriverState *chr;
1637

    
1638
    chr = qemu_mallocz(sizeof(CharDriverState));
1639
    if (!chr)
1640
        return NULL;
1641
    chr->chr_write = null_chr_write;
1642
    return chr;
1643
}
1644

    
1645
/* MUX driver for serial I/O splitting */
1646
static int term_timestamps;
1647
static int64_t term_timestamps_start;
1648
#define MAX_MUX 4
1649
typedef struct {
1650
    IOCanRWHandler *chr_can_read[MAX_MUX];
1651
    IOReadHandler *chr_read[MAX_MUX];
1652
    IOEventHandler *chr_event[MAX_MUX];
1653
    void *ext_opaque[MAX_MUX];
1654
    CharDriverState *drv;
1655
    int mux_cnt;
1656
    int term_got_escape;
1657
    int max_size;
1658
} MuxDriver;
1659

    
1660

    
1661
static int mux_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1662
{
1663
    MuxDriver *d = chr->opaque;
1664
    int ret;
1665
    if (!term_timestamps) {
1666
        ret = d->drv->chr_write(d->drv, buf, len);
1667
    } else {
1668
        int i;
1669

    
1670
        ret = 0;
1671
        for(i = 0; i < len; i++) {
1672
            ret += d->drv->chr_write(d->drv, buf+i, 1);
1673
            if (buf[i] == '\n') {
1674
                char buf1[64];
1675
                int64_t ti;
1676
                int secs;
1677

    
1678
                ti = get_clock();
1679
                if (term_timestamps_start == -1)
1680
                    term_timestamps_start = ti;
1681
                ti -= term_timestamps_start;
1682
                secs = ti / 1000000000;
1683
                snprintf(buf1, sizeof(buf1),
1684
                         "[%02d:%02d:%02d.%03d] ",
1685
                         secs / 3600,
1686
                         (secs / 60) % 60,
1687
                         secs % 60,
1688
                         (int)((ti / 1000000) % 1000));
1689
                d->drv->chr_write(d->drv, buf1, strlen(buf1));
1690
            }
1691
        }
1692
    }
1693
    return ret;
1694
}
1695

    
1696
static char *mux_help[] = {
1697
    "% h    print this help\n\r",
1698
    "% x    exit emulator\n\r",
1699
    "% s    save disk data back to file (if -snapshot)\n\r",
1700
    "% t    toggle console timestamps\n\r"
1701
    "% b    send break (magic sysrq)\n\r",
1702
    "% c    switch between console and monitor\n\r",
1703
    "% %  sends %\n\r",
1704
    NULL
1705
};
1706

    
1707
static int term_escape_char = 0x01; /* ctrl-a is used for escape */
1708
static void mux_print_help(CharDriverState *chr)
1709
{
1710
    int i, j;
1711
    char ebuf[15] = "Escape-Char";
1712
    char cbuf[50] = "\n\r";
1713

    
1714
    if (term_escape_char > 0 && term_escape_char < 26) {
1715
        sprintf(cbuf,"\n\r");
1716
        sprintf(ebuf,"C-%c", term_escape_char - 1 + 'a');
1717
    } else {
1718
        sprintf(cbuf,"\n\rEscape-Char set to Ascii: 0x%02x\n\r\n\r", term_escape_char);
1719
    }
1720
    chr->chr_write(chr, cbuf, strlen(cbuf));
1721
    for (i = 0; mux_help[i] != NULL; i++) {
1722
        for (j=0; mux_help[i][j] != '\0'; j++) {
1723
            if (mux_help[i][j] == '%')
1724
                chr->chr_write(chr, ebuf, strlen(ebuf));
1725
            else
1726
                chr->chr_write(chr, &mux_help[i][j], 1);
1727
        }
1728
    }
1729
}
1730

    
1731
static int mux_proc_byte(CharDriverState *chr, MuxDriver *d, int ch)
1732
{
1733
    if (d->term_got_escape) {
1734
        d->term_got_escape = 0;
1735
        if (ch == term_escape_char)
1736
            goto send_char;
1737
        switch(ch) {
1738
        case '?':
1739
        case 'h':
1740
            mux_print_help(chr);
1741
            break;
1742
        case 'x':
1743
            {
1744
                 char *term =  "QEMU: Terminated\n\r";
1745
                 chr->chr_write(chr,term,strlen(term));
1746
                 exit(0);
1747
                 break;
1748
            }
1749
        case 's':
1750
            {
1751
                int i;
1752
                for (i = 0; i < MAX_DISKS; i++) {
1753
                    if (bs_table[i])
1754
                        bdrv_commit(bs_table[i]);
1755
                }
1756
                if (mtd_bdrv)
1757
                    bdrv_commit(mtd_bdrv);
1758
            }
1759
            break;
1760
        case 'b':
1761
            qemu_chr_event(chr, CHR_EVENT_BREAK);
1762
            break;
1763
        case 'c':
1764
            /* Switch to the next registered device */
1765
            chr->focus++;
1766
            if (chr->focus >= d->mux_cnt)
1767
                chr->focus = 0;
1768
            break;
1769
       case 't':
1770
           term_timestamps = !term_timestamps;
1771
           term_timestamps_start = -1;
1772
           break;
1773
        }
1774
    } else if (ch == term_escape_char) {
1775
        d->term_got_escape = 1;
1776
    } else {
1777
    send_char:
1778
        return 1;
1779
    }
1780
    return 0;
1781
}
1782

    
1783
static int mux_chr_can_read(void *opaque)
1784
{
1785
    CharDriverState *chr = opaque;
1786
    MuxDriver *d = chr->opaque;
1787
    if (d->chr_can_read[chr->focus])
1788
       return d->chr_can_read[chr->focus](d->ext_opaque[chr->focus]);
1789
    return 0;
1790
}
1791

    
1792
static void mux_chr_read(void *opaque, const uint8_t *buf, int size)
1793
{
1794
    CharDriverState *chr = opaque;
1795
    MuxDriver *d = chr->opaque;
1796
    int i;
1797
    for(i = 0; i < size; i++)
1798
        if (mux_proc_byte(chr, d, buf[i]))
1799
            d->chr_read[chr->focus](d->ext_opaque[chr->focus], &buf[i], 1);
1800
}
1801

    
1802
static void mux_chr_event(void *opaque, int event)
1803
{
1804
    CharDriverState *chr = opaque;
1805
    MuxDriver *d = chr->opaque;
1806
    int i;
1807

    
1808
    /* Send the event to all registered listeners */
1809
    for (i = 0; i < d->mux_cnt; i++)
1810
        if (d->chr_event[i])
1811
            d->chr_event[i](d->ext_opaque[i], event);
1812
}
1813

    
1814
static void mux_chr_update_read_handler(CharDriverState *chr)
1815
{
1816
    MuxDriver *d = chr->opaque;
1817

    
1818
    if (d->mux_cnt >= MAX_MUX) {
1819
        fprintf(stderr, "Cannot add I/O handlers, MUX array is full\n");
1820
        return;
1821
    }
1822
    d->ext_opaque[d->mux_cnt] = chr->handler_opaque;
1823
    d->chr_can_read[d->mux_cnt] = chr->chr_can_read;
1824
    d->chr_read[d->mux_cnt] = chr->chr_read;
1825
    d->chr_event[d->mux_cnt] = chr->chr_event;
1826
    /* Fix up the real driver with mux routines */
1827
    if (d->mux_cnt == 0) {
1828
        qemu_chr_add_handlers(d->drv, mux_chr_can_read, mux_chr_read,
1829
                              mux_chr_event, chr);
1830
    }
1831
    chr->focus = d->mux_cnt;
1832
    d->mux_cnt++;
1833
}
1834

    
1835
static CharDriverState *qemu_chr_open_mux(CharDriverState *drv)
1836
{
1837
    CharDriverState *chr;
1838
    MuxDriver *d;
1839

    
1840
    chr = qemu_mallocz(sizeof(CharDriverState));
1841
    if (!chr)
1842
        return NULL;
1843
    d = qemu_mallocz(sizeof(MuxDriver));
1844
    if (!d) {
1845
        free(chr);
1846
        return NULL;
1847
    }
1848

    
1849
    chr->opaque = d;
1850
    d->drv = drv;
1851
    chr->focus = -1;
1852
    chr->chr_write = mux_chr_write;
1853
    chr->chr_update_read_handler = mux_chr_update_read_handler;
1854
    return chr;
1855
}
1856

    
1857

    
1858
#ifdef _WIN32
1859

    
1860
static void socket_cleanup(void)
1861
{
1862
    WSACleanup();
1863
}
1864

    
1865
static int socket_init(void)
1866
{
1867
    WSADATA Data;
1868
    int ret, err;
1869

    
1870
    ret = WSAStartup(MAKEWORD(2,2), &Data);
1871
    if (ret != 0) {
1872
        err = WSAGetLastError();
1873
        fprintf(stderr, "WSAStartup: %d\n", err);
1874
        return -1;
1875
    }
1876
    atexit(socket_cleanup);
1877
    return 0;
1878
}
1879

    
1880
static int send_all(int fd, const uint8_t *buf, int len1)
1881
{
1882
    int ret, len;
1883

    
1884
    len = len1;
1885
    while (len > 0) {
1886
        ret = send(fd, buf, len, 0);
1887
        if (ret < 0) {
1888
            int errno;
1889
            errno = WSAGetLastError();
1890
            if (errno != WSAEWOULDBLOCK) {
1891
                return -1;
1892
            }
1893
        } else if (ret == 0) {
1894
            break;
1895
        } else {
1896
            buf += ret;
1897
            len -= ret;
1898
        }
1899
    }
1900
    return len1 - len;
1901
}
1902

    
1903
void socket_set_nonblock(int fd)
1904
{
1905
    unsigned long opt = 1;
1906
    ioctlsocket(fd, FIONBIO, &opt);
1907
}
1908

    
1909
#else
1910

    
1911
static int unix_write(int fd, const uint8_t *buf, int len1)
1912
{
1913
    int ret, len;
1914

    
1915
    len = len1;
1916
    while (len > 0) {
1917
        ret = write(fd, buf, len);
1918
        if (ret < 0) {
1919
            if (errno != EINTR && errno != EAGAIN)
1920
                return -1;
1921
        } else if (ret == 0) {
1922
            break;
1923
        } else {
1924
            buf += ret;
1925
            len -= ret;
1926
        }
1927
    }
1928
    return len1 - len;
1929
}
1930

    
1931
static inline int send_all(int fd, const uint8_t *buf, int len1)
1932
{
1933
    return unix_write(fd, buf, len1);
1934
}
1935

    
1936
void socket_set_nonblock(int fd)
1937
{
1938
    fcntl(fd, F_SETFL, O_NONBLOCK);
1939
}
1940
#endif /* !_WIN32 */
1941

    
1942
#ifndef _WIN32
1943

    
1944
typedef struct {
1945
    int fd_in, fd_out;
1946
    int max_size;
1947
} FDCharDriver;
1948

    
1949
#define STDIO_MAX_CLIENTS 1
1950
static int stdio_nb_clients = 0;
1951

    
1952
static int fd_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1953
{
1954
    FDCharDriver *s = chr->opaque;
1955
    return unix_write(s->fd_out, buf, len);
1956
}
1957

    
1958
static int fd_chr_read_poll(void *opaque)
1959
{
1960
    CharDriverState *chr = opaque;
1961
    FDCharDriver *s = chr->opaque;
1962

    
1963
    s->max_size = qemu_chr_can_read(chr);
1964
    return s->max_size;
1965
}
1966

    
1967
static void fd_chr_read(void *opaque)
1968
{
1969
    CharDriverState *chr = opaque;
1970
    FDCharDriver *s = chr->opaque;
1971
    int size, len;
1972
    uint8_t buf[1024];
1973

    
1974
    len = sizeof(buf);
1975
    if (len > s->max_size)
1976
        len = s->max_size;
1977
    if (len == 0)
1978
        return;
1979
    size = read(s->fd_in, buf, len);
1980
    if (size == 0) {
1981
        /* FD has been closed. Remove it from the active list.  */
1982
        qemu_set_fd_handler2(s->fd_in, NULL, NULL, NULL, NULL);
1983
        return;
1984
    }
1985
    if (size > 0) {
1986
        qemu_chr_read(chr, buf, size);
1987
    }
1988
}
1989

    
1990
static void fd_chr_update_read_handler(CharDriverState *chr)
1991
{
1992
    FDCharDriver *s = chr->opaque;
1993

    
1994
    if (s->fd_in >= 0) {
1995
        if (nographic && s->fd_in == 0) {
1996
        } else {
1997
            qemu_set_fd_handler2(s->fd_in, fd_chr_read_poll,
1998
                                 fd_chr_read, NULL, chr);
1999
        }
2000
    }
2001
}
2002

    
2003
/* open a character device to a unix fd */
2004
static CharDriverState *qemu_chr_open_fd(int fd_in, int fd_out)
2005
{
2006
    CharDriverState *chr;
2007
    FDCharDriver *s;
2008

    
2009
    chr = qemu_mallocz(sizeof(CharDriverState));
2010
    if (!chr)
2011
        return NULL;
2012
    s = qemu_mallocz(sizeof(FDCharDriver));
2013
    if (!s) {
2014
        free(chr);
2015
        return NULL;
2016
    }
2017
    s->fd_in = fd_in;
2018
    s->fd_out = fd_out;
2019
    chr->opaque = s;
2020
    chr->chr_write = fd_chr_write;
2021
    chr->chr_update_read_handler = fd_chr_update_read_handler;
2022

    
2023
    qemu_chr_reset(chr);
2024

    
2025
    return chr;
2026
}
2027

    
2028
static CharDriverState *qemu_chr_open_file_out(const char *file_out)
2029
{
2030
    int fd_out;
2031

    
2032
    TFR(fd_out = open(file_out, O_WRONLY | O_TRUNC | O_CREAT | O_BINARY, 0666));
2033
    if (fd_out < 0)
2034
        return NULL;
2035
    return qemu_chr_open_fd(-1, fd_out);
2036
}
2037

    
2038
static CharDriverState *qemu_chr_open_pipe(const char *filename)
2039
{
2040
    int fd_in, fd_out;
2041
    char filename_in[256], filename_out[256];
2042

    
2043
    snprintf(filename_in, 256, "%s.in", filename);
2044
    snprintf(filename_out, 256, "%s.out", filename);
2045
    TFR(fd_in = open(filename_in, O_RDWR | O_BINARY));
2046
    TFR(fd_out = open(filename_out, O_RDWR | O_BINARY));
2047
    if (fd_in < 0 || fd_out < 0) {
2048
        if (fd_in >= 0)
2049
            close(fd_in);
2050
        if (fd_out >= 0)
2051
            close(fd_out);
2052
        TFR(fd_in = fd_out = open(filename, O_RDWR | O_BINARY));
2053
        if (fd_in < 0)
2054
            return NULL;
2055
    }
2056
    return qemu_chr_open_fd(fd_in, fd_out);
2057
}
2058

    
2059

    
2060
/* for STDIO, we handle the case where several clients use it
2061
   (nographic mode) */
2062

    
2063
#define TERM_FIFO_MAX_SIZE 1
2064

    
2065
static uint8_t term_fifo[TERM_FIFO_MAX_SIZE];
2066
static int term_fifo_size;
2067

    
2068
static int stdio_read_poll(void *opaque)
2069
{
2070
    CharDriverState *chr = opaque;
2071

    
2072
    /* try to flush the queue if needed */
2073
    if (term_fifo_size != 0 && qemu_chr_can_read(chr) > 0) {
2074
        qemu_chr_read(chr, term_fifo, 1);
2075
        term_fifo_size = 0;
2076
    }
2077
    /* see if we can absorb more chars */
2078
    if (term_fifo_size == 0)
2079
        return 1;
2080
    else
2081
        return 0;
2082
}
2083

    
2084
static void stdio_read(void *opaque)
2085
{
2086
    int size;
2087
    uint8_t buf[1];
2088
    CharDriverState *chr = opaque;
2089

    
2090
    size = read(0, buf, 1);
2091
    if (size == 0) {
2092
        /* stdin has been closed. Remove it from the active list.  */
2093
        qemu_set_fd_handler2(0, NULL, NULL, NULL, NULL);
2094
        return;
2095
    }
2096
    if (size > 0) {
2097
        if (qemu_chr_can_read(chr) > 0) {
2098
            qemu_chr_read(chr, buf, 1);
2099
        } else if (term_fifo_size == 0) {
2100
            term_fifo[term_fifo_size++] = buf[0];
2101
        }
2102
    }
2103
}
2104

    
2105
/* init terminal so that we can grab keys */
2106
static struct termios oldtty;
2107
static int old_fd0_flags;
2108

    
2109
static void term_exit(void)
2110
{
2111
    tcsetattr (0, TCSANOW, &oldtty);
2112
    fcntl(0, F_SETFL, old_fd0_flags);
2113
}
2114

    
2115
static void term_init(void)
2116
{
2117
    struct termios tty;
2118

    
2119
    tcgetattr (0, &tty);
2120
    oldtty = tty;
2121
    old_fd0_flags = fcntl(0, F_GETFL);
2122

    
2123
    tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
2124
                          |INLCR|IGNCR|ICRNL|IXON);
2125
    tty.c_oflag |= OPOST;
2126
    tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN);
2127
    /* if graphical mode, we allow Ctrl-C handling */
2128
    if (nographic)
2129
        tty.c_lflag &= ~ISIG;
2130
    tty.c_cflag &= ~(CSIZE|PARENB);
2131
    tty.c_cflag |= CS8;
2132
    tty.c_cc[VMIN] = 1;
2133
    tty.c_cc[VTIME] = 0;
2134

    
2135
    tcsetattr (0, TCSANOW, &tty);
2136

    
2137
    atexit(term_exit);
2138

    
2139
    fcntl(0, F_SETFL, O_NONBLOCK);
2140
}
2141

    
2142
static CharDriverState *qemu_chr_open_stdio(void)
2143
{
2144
    CharDriverState *chr;
2145

    
2146
    if (stdio_nb_clients >= STDIO_MAX_CLIENTS)
2147
        return NULL;
2148
    chr = qemu_chr_open_fd(0, 1);
2149
    qemu_set_fd_handler2(0, stdio_read_poll, stdio_read, NULL, chr);
2150
    stdio_nb_clients++;
2151
    term_init();
2152

    
2153
    return chr;
2154
}
2155

    
2156
#if defined(__linux__) || defined(__sun__)
2157
static CharDriverState *qemu_chr_open_pty(void)
2158
{
2159
    struct termios tty;
2160
    char slave_name[1024];
2161
    int master_fd, slave_fd;
2162

    
2163
#if defined(__linux__)
2164
    /* Not satisfying */
2165
    if (openpty(&master_fd, &slave_fd, slave_name, NULL, NULL) < 0) {
2166
        return NULL;
2167
    }
2168
#endif
2169

    
2170
    /* Disabling local echo and line-buffered output */
2171
    tcgetattr (master_fd, &tty);
2172
    tty.c_lflag &= ~(ECHO|ICANON|ISIG);
2173
    tty.c_cc[VMIN] = 1;
2174
    tty.c_cc[VTIME] = 0;
2175
    tcsetattr (master_fd, TCSAFLUSH, &tty);
2176

    
2177
    fprintf(stderr, "char device redirected to %s\n", slave_name);
2178
    return qemu_chr_open_fd(master_fd, master_fd);
2179
}
2180

    
2181
static void tty_serial_init(int fd, int speed,
2182
                            int parity, int data_bits, int stop_bits)
2183
{
2184
    struct termios tty;
2185
    speed_t spd;
2186

    
2187
#if 0
2188
    printf("tty_serial_init: speed=%d parity=%c data=%d stop=%d\n",
2189
           speed, parity, data_bits, stop_bits);
2190
#endif
2191
    tcgetattr (fd, &tty);
2192

    
2193
    switch(speed) {
2194
    case 50:
2195
        spd = B50;
2196
        break;
2197
    case 75:
2198
        spd = B75;
2199
        break;
2200
    case 300:
2201
        spd = B300;
2202
        break;
2203
    case 600:
2204
        spd = B600;
2205
        break;
2206
    case 1200:
2207
        spd = B1200;
2208
        break;
2209
    case 2400:
2210
        spd = B2400;
2211
        break;
2212
    case 4800:
2213
        spd = B4800;
2214
        break;
2215
    case 9600:
2216
        spd = B9600;
2217
        break;
2218
    case 19200:
2219
        spd = B19200;
2220
        break;
2221
    case 38400:
2222
        spd = B38400;
2223
        break;
2224
    case 57600:
2225
        spd = B57600;
2226
        break;
2227
    default:
2228
    case 115200:
2229
        spd = B115200;
2230
        break;
2231
    }
2232

    
2233
    cfsetispeed(&tty, spd);
2234
    cfsetospeed(&tty, spd);
2235

    
2236
    tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
2237
                          |INLCR|IGNCR|ICRNL|IXON);
2238
    tty.c_oflag |= OPOST;
2239
    tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN|ISIG);
2240
    tty.c_cflag &= ~(CSIZE|PARENB|PARODD|CRTSCTS|CSTOPB);
2241
    switch(data_bits) {
2242
    default:
2243
    case 8:
2244
        tty.c_cflag |= CS8;
2245
        break;
2246
    case 7:
2247
        tty.c_cflag |= CS7;
2248
        break;
2249
    case 6:
2250
        tty.c_cflag |= CS6;
2251
        break;
2252
    case 5:
2253
        tty.c_cflag |= CS5;
2254
        break;
2255
    }
2256
    switch(parity) {
2257
    default:
2258
    case 'N':
2259
        break;
2260
    case 'E':
2261
        tty.c_cflag |= PARENB;
2262
        break;
2263
    case 'O':
2264
        tty.c_cflag |= PARENB | PARODD;
2265
        break;
2266
    }
2267
    if (stop_bits == 2)
2268
        tty.c_cflag |= CSTOPB;
2269

    
2270
    tcsetattr (fd, TCSANOW, &tty);
2271
}
2272

    
2273
static int tty_serial_ioctl(CharDriverState *chr, int cmd, void *arg)
2274
{
2275
    FDCharDriver *s = chr->opaque;
2276

    
2277
    switch(cmd) {
2278
    case CHR_IOCTL_SERIAL_SET_PARAMS:
2279
        {
2280
            QEMUSerialSetParams *ssp = arg;
2281
            tty_serial_init(s->fd_in, ssp->speed, ssp->parity,
2282
                            ssp->data_bits, ssp->stop_bits);
2283
        }
2284
        break;
2285
    case CHR_IOCTL_SERIAL_SET_BREAK:
2286
        {
2287
            int enable = *(int *)arg;
2288
            if (enable)
2289
                tcsendbreak(s->fd_in, 1);
2290
        }
2291
        break;
2292
    default:
2293
        return -ENOTSUP;
2294
    }
2295
    return 0;
2296
}
2297

    
2298
static CharDriverState *qemu_chr_open_tty(const char *filename)
2299
{
2300
    CharDriverState *chr;
2301
    int fd;
2302

    
2303
    TFR(fd = open(filename, O_RDWR | O_NONBLOCK));
2304
    fcntl(fd, F_SETFL, O_NONBLOCK);
2305
    tty_serial_init(fd, 115200, 'N', 8, 1);
2306
    chr = qemu_chr_open_fd(fd, fd);
2307
    if (!chr) {
2308
        close(fd);
2309
        return NULL;
2310
    }
2311
    chr->chr_ioctl = tty_serial_ioctl;
2312
    qemu_chr_reset(chr);
2313
    return chr;
2314
}
2315
#else  /* ! __linux__ && ! __sun__ */
2316
static CharDriverState *qemu_chr_open_pty(void)
2317
{
2318
    return NULL;
2319
}
2320
#endif /* __linux__ || __sun__ */
2321

    
2322
#if defined(__linux__)
2323
typedef struct {
2324
    int fd;
2325
    int mode;
2326
} ParallelCharDriver;
2327

    
2328
static int pp_hw_mode(ParallelCharDriver *s, uint16_t mode)
2329
{
2330
    if (s->mode != mode) {
2331
        int m = mode;
2332
        if (ioctl(s->fd, PPSETMODE, &m) < 0)
2333
            return 0;
2334
        s->mode = mode;
2335
    }
2336
    return 1;
2337
}
2338

    
2339
static int pp_ioctl(CharDriverState *chr, int cmd, void *arg)
2340
{
2341
    ParallelCharDriver *drv = chr->opaque;
2342
    int fd = drv->fd;
2343
    uint8_t b;
2344

    
2345
    switch(cmd) {
2346
    case CHR_IOCTL_PP_READ_DATA:
2347
        if (ioctl(fd, PPRDATA, &b) < 0)
2348
            return -ENOTSUP;
2349
        *(uint8_t *)arg = b;
2350
        break;
2351
    case CHR_IOCTL_PP_WRITE_DATA:
2352
        b = *(uint8_t *)arg;
2353
        if (ioctl(fd, PPWDATA, &b) < 0)
2354
            return -ENOTSUP;
2355
        break;
2356
    case CHR_IOCTL_PP_READ_CONTROL:
2357
        if (ioctl(fd, PPRCONTROL, &b) < 0)
2358
            return -ENOTSUP;
2359
        /* Linux gives only the lowest bits, and no way to know data
2360
           direction! For better compatibility set the fixed upper
2361
           bits. */
2362
        *(uint8_t *)arg = b | 0xc0;
2363
        break;
2364
    case CHR_IOCTL_PP_WRITE_CONTROL:
2365
        b = *(uint8_t *)arg;
2366
        if (ioctl(fd, PPWCONTROL, &b) < 0)
2367
            return -ENOTSUP;
2368
        break;
2369
    case CHR_IOCTL_PP_READ_STATUS:
2370
        if (ioctl(fd, PPRSTATUS, &b) < 0)
2371
            return -ENOTSUP;
2372
        *(uint8_t *)arg = b;
2373
        break;
2374
    case CHR_IOCTL_PP_EPP_READ_ADDR:
2375
        if (pp_hw_mode(drv, IEEE1284_MODE_EPP|IEEE1284_ADDR)) {
2376
            struct ParallelIOArg *parg = arg;
2377
            int n = read(fd, parg->buffer, parg->count);
2378
            if (n != parg->count) {
2379
                return -EIO;
2380
            }
2381
        }
2382
        break;
2383
    case CHR_IOCTL_PP_EPP_READ:
2384
        if (pp_hw_mode(drv, IEEE1284_MODE_EPP)) {
2385
            struct ParallelIOArg *parg = arg;
2386
            int n = read(fd, parg->buffer, parg->count);
2387
            if (n != parg->count) {
2388
                return -EIO;
2389
            }
2390
        }
2391
        break;
2392
    case CHR_IOCTL_PP_EPP_WRITE_ADDR:
2393
        if (pp_hw_mode(drv, IEEE1284_MODE_EPP|IEEE1284_ADDR)) {
2394
            struct ParallelIOArg *parg = arg;
2395
            int n = write(fd, parg->buffer, parg->count);
2396
            if (n != parg->count) {
2397
                return -EIO;
2398
            }
2399
        }
2400
        break;
2401
    case CHR_IOCTL_PP_EPP_WRITE:
2402
        if (pp_hw_mode(drv, IEEE1284_MODE_EPP)) {
2403
            struct ParallelIOArg *parg = arg;
2404
            int n = write(fd, parg->buffer, parg->count);
2405
            if (n != parg->count) {
2406
                return -EIO;
2407
            }
2408
        }
2409
        break;
2410
    default:
2411
        return -ENOTSUP;
2412
    }
2413
    return 0;
2414
}
2415

    
2416
static void pp_close(CharDriverState *chr)
2417
{
2418
    ParallelCharDriver *drv = chr->opaque;
2419
    int fd = drv->fd;
2420

    
2421
    pp_hw_mode(drv, IEEE1284_MODE_COMPAT);
2422
    ioctl(fd, PPRELEASE);
2423
    close(fd);
2424
    qemu_free(drv);
2425
}
2426

    
2427
static CharDriverState *qemu_chr_open_pp(const char *filename)
2428
{
2429
    CharDriverState *chr;
2430
    ParallelCharDriver *drv;
2431
    int fd;
2432

    
2433
    TFR(fd = open(filename, O_RDWR));
2434
    if (fd < 0)
2435
        return NULL;
2436

    
2437
    if (ioctl(fd, PPCLAIM) < 0) {
2438
        close(fd);
2439
        return NULL;
2440
    }
2441

    
2442
    drv = qemu_mallocz(sizeof(ParallelCharDriver));
2443
    if (!drv) {
2444
        close(fd);
2445
        return NULL;
2446
    }
2447
    drv->fd = fd;
2448
    drv->mode = IEEE1284_MODE_COMPAT;
2449

    
2450
    chr = qemu_mallocz(sizeof(CharDriverState));
2451
    if (!chr) {
2452
        qemu_free(drv);
2453
        close(fd);
2454
        return NULL;
2455
    }
2456
    chr->chr_write = null_chr_write;
2457
    chr->chr_ioctl = pp_ioctl;
2458
    chr->chr_close = pp_close;
2459
    chr->opaque = drv;
2460

    
2461
    qemu_chr_reset(chr);
2462

    
2463
    return chr;
2464
}
2465
#endif /* __linux__ */
2466

    
2467
#else /* _WIN32 */
2468

    
2469
typedef struct {
2470
    int max_size;
2471
    HANDLE hcom, hrecv, hsend;
2472
    OVERLAPPED orecv, osend;
2473
    BOOL fpipe;
2474
    DWORD len;
2475
} WinCharState;
2476

    
2477
#define NSENDBUF 2048
2478
#define NRECVBUF 2048
2479
#define MAXCONNECT 1
2480
#define NTIMEOUT 5000
2481

    
2482
static int win_chr_poll(void *opaque);
2483
static int win_chr_pipe_poll(void *opaque);
2484

    
2485
static void win_chr_close(CharDriverState *chr)
2486
{
2487
    WinCharState *s = chr->opaque;
2488

    
2489
    if (s->hsend) {
2490
        CloseHandle(s->hsend);
2491
        s->hsend = NULL;
2492
    }
2493
    if (s->hrecv) {
2494
        CloseHandle(s->hrecv);
2495
        s->hrecv = NULL;
2496
    }
2497
    if (s->hcom) {
2498
        CloseHandle(s->hcom);
2499
        s->hcom = NULL;
2500
    }
2501
    if (s->fpipe)
2502
        qemu_del_polling_cb(win_chr_pipe_poll, chr);
2503
    else
2504
        qemu_del_polling_cb(win_chr_poll, chr);
2505
}
2506

    
2507
static int win_chr_init(CharDriverState *chr, const char *filename)
2508
{
2509
    WinCharState *s = chr->opaque;
2510
    COMMCONFIG comcfg;
2511
    COMMTIMEOUTS cto = { 0, 0, 0, 0, 0};
2512
    COMSTAT comstat;
2513
    DWORD size;
2514
    DWORD err;
2515

    
2516
    s->hsend = CreateEvent(NULL, TRUE, FALSE, NULL);
2517
    if (!s->hsend) {
2518
        fprintf(stderr, "Failed CreateEvent\n");
2519
        goto fail;
2520
    }
2521
    s->hrecv = CreateEvent(NULL, TRUE, FALSE, NULL);
2522
    if (!s->hrecv) {
2523
        fprintf(stderr, "Failed CreateEvent\n");
2524
        goto fail;
2525
    }
2526

    
2527
    s->hcom = CreateFile(filename, GENERIC_READ|GENERIC_WRITE, 0, NULL,
2528
                      OPEN_EXISTING, FILE_FLAG_OVERLAPPED, 0);
2529
    if (s->hcom == INVALID_HANDLE_VALUE) {
2530
        fprintf(stderr, "Failed CreateFile (%lu)\n", GetLastError());
2531
        s->hcom = NULL;
2532
        goto fail;
2533
    }
2534

    
2535
    if (!SetupComm(s->hcom, NRECVBUF, NSENDBUF)) {
2536
        fprintf(stderr, "Failed SetupComm\n");
2537
        goto fail;
2538
    }
2539

    
2540
    ZeroMemory(&comcfg, sizeof(COMMCONFIG));
2541
    size = sizeof(COMMCONFIG);
2542
    GetDefaultCommConfig(filename, &comcfg, &size);
2543
    comcfg.dcb.DCBlength = sizeof(DCB);
2544
    CommConfigDialog(filename, NULL, &comcfg);
2545

    
2546
    if (!SetCommState(s->hcom, &comcfg.dcb)) {
2547
        fprintf(stderr, "Failed SetCommState\n");
2548
        goto fail;
2549
    }
2550

    
2551
    if (!SetCommMask(s->hcom, EV_ERR)) {
2552
        fprintf(stderr, "Failed SetCommMask\n");
2553
        goto fail;
2554
    }
2555

    
2556
    cto.ReadIntervalTimeout = MAXDWORD;
2557
    if (!SetCommTimeouts(s->hcom, &cto)) {
2558
        fprintf(stderr, "Failed SetCommTimeouts\n");
2559
        goto fail;
2560
    }
2561

    
2562
    if (!ClearCommError(s->hcom, &err, &comstat)) {
2563
        fprintf(stderr, "Failed ClearCommError\n");
2564
        goto fail;
2565
    }
2566
    qemu_add_polling_cb(win_chr_poll, chr);
2567
    return 0;
2568

    
2569
 fail:
2570
    win_chr_close(chr);
2571
    return -1;
2572
}
2573

    
2574
static int win_chr_write(CharDriverState *chr, const uint8_t *buf, int len1)
2575
{
2576
    WinCharState *s = chr->opaque;
2577
    DWORD len, ret, size, err;
2578

    
2579
    len = len1;
2580
    ZeroMemory(&s->osend, sizeof(s->osend));
2581
    s->osend.hEvent = s->hsend;
2582
    while (len > 0) {
2583
        if (s->hsend)
2584
            ret = WriteFile(s->hcom, buf, len, &size, &s->osend);
2585
        else
2586
            ret = WriteFile(s->hcom, buf, len, &size, NULL);
2587
        if (!ret) {
2588
            err = GetLastError();
2589
            if (err == ERROR_IO_PENDING) {
2590
                ret = GetOverlappedResult(s->hcom, &s->osend, &size, TRUE);
2591
                if (ret) {
2592
                    buf += size;
2593
                    len -= size;
2594
                } else {
2595
                    break;
2596
                }
2597
            } else {
2598
                break;
2599
            }
2600
        } else {
2601
            buf += size;
2602
            len -= size;
2603
        }
2604
    }
2605
    return len1 - len;
2606
}
2607

    
2608
static int win_chr_read_poll(CharDriverState *chr)
2609
{
2610
    WinCharState *s = chr->opaque;
2611

    
2612
    s->max_size = qemu_chr_can_read(chr);
2613
    return s->max_size;
2614
}
2615

    
2616
static void win_chr_readfile(CharDriverState *chr)
2617
{
2618
    WinCharState *s = chr->opaque;
2619
    int ret, err;
2620
    uint8_t buf[1024];
2621
    DWORD size;
2622

    
2623
    ZeroMemory(&s->orecv, sizeof(s->orecv));
2624
    s->orecv.hEvent = s->hrecv;
2625
    ret = ReadFile(s->hcom, buf, s->len, &size, &s->orecv);
2626
    if (!ret) {
2627
        err = GetLastError();
2628
        if (err == ERROR_IO_PENDING) {
2629
            ret = GetOverlappedResult(s->hcom, &s->orecv, &size, TRUE);
2630
        }
2631
    }
2632

    
2633
    if (size > 0) {
2634
        qemu_chr_read(chr, buf, size);
2635
    }
2636
}
2637

    
2638
static void win_chr_read(CharDriverState *chr)
2639
{
2640
    WinCharState *s = chr->opaque;
2641

    
2642
    if (s->len > s->max_size)
2643
        s->len = s->max_size;
2644
    if (s->len == 0)
2645
        return;
2646

    
2647
    win_chr_readfile(chr);
2648
}
2649

    
2650
static int win_chr_poll(void *opaque)
2651
{
2652
    CharDriverState *chr = opaque;
2653
    WinCharState *s = chr->opaque;
2654
    COMSTAT status;
2655
    DWORD comerr;
2656

    
2657
    ClearCommError(s->hcom, &comerr, &status);
2658
    if (status.cbInQue > 0) {
2659
        s->len = status.cbInQue;
2660
        win_chr_read_poll(chr);
2661
        win_chr_read(chr);
2662
        return 1;
2663
    }
2664
    return 0;
2665
}
2666

    
2667
static CharDriverState *qemu_chr_open_win(const char *filename)
2668
{
2669
    CharDriverState *chr;
2670
    WinCharState *s;
2671

    
2672
    chr = qemu_mallocz(sizeof(CharDriverState));
2673
    if (!chr)
2674
        return NULL;
2675
    s = qemu_mallocz(sizeof(WinCharState));
2676
    if (!s) {
2677
        free(chr);
2678
        return NULL;
2679
    }
2680
    chr->opaque = s;
2681
    chr->chr_write = win_chr_write;
2682
    chr->chr_close = win_chr_close;
2683

    
2684
    if (win_chr_init(chr, filename) < 0) {
2685
        free(s);
2686
        free(chr);
2687
        return NULL;
2688
    }
2689
    qemu_chr_reset(chr);
2690
    return chr;
2691
}
2692

    
2693
static int win_chr_pipe_poll(void *opaque)
2694
{
2695
    CharDriverState *chr = opaque;
2696
    WinCharState *s = chr->opaque;
2697
    DWORD size;
2698

    
2699
    PeekNamedPipe(s->hcom, NULL, 0, NULL, &size, NULL);
2700
    if (size > 0) {
2701
        s->len = size;
2702
        win_chr_read_poll(chr);
2703
        win_chr_read(chr);
2704
        return 1;
2705
    }
2706
    return 0;
2707
}
2708

    
2709
static int win_chr_pipe_init(CharDriverState *chr, const char *filename)
2710
{
2711
    WinCharState *s = chr->opaque;
2712
    OVERLAPPED ov;
2713
    int ret;
2714
    DWORD size;
2715
    char openname[256];
2716

    
2717
    s->fpipe = TRUE;
2718

    
2719
    s->hsend = CreateEvent(NULL, TRUE, FALSE, NULL);
2720
    if (!s->hsend) {
2721
        fprintf(stderr, "Failed CreateEvent\n");
2722
        goto fail;
2723
    }
2724
    s->hrecv = CreateEvent(NULL, TRUE, FALSE, NULL);
2725
    if (!s->hrecv) {
2726
        fprintf(stderr, "Failed CreateEvent\n");
2727
        goto fail;
2728
    }
2729

    
2730
    snprintf(openname, sizeof(openname), "\\\\.\\pipe\\%s", filename);
2731
    s->hcom = CreateNamedPipe(openname, PIPE_ACCESS_DUPLEX | FILE_FLAG_OVERLAPPED,
2732
                              PIPE_TYPE_BYTE | PIPE_READMODE_BYTE |
2733
                              PIPE_WAIT,
2734
                              MAXCONNECT, NSENDBUF, NRECVBUF, NTIMEOUT, NULL);
2735
    if (s->hcom == INVALID_HANDLE_VALUE) {
2736
        fprintf(stderr, "Failed CreateNamedPipe (%lu)\n", GetLastError());
2737
        s->hcom = NULL;
2738
        goto fail;
2739
    }
2740

    
2741
    ZeroMemory(&ov, sizeof(ov));
2742
    ov.hEvent = CreateEvent(NULL, TRUE, FALSE, NULL);
2743
    ret = ConnectNamedPipe(s->hcom, &ov);
2744
    if (ret) {
2745
        fprintf(stderr, "Failed ConnectNamedPipe\n");
2746
        goto fail;
2747
    }
2748

    
2749
    ret = GetOverlappedResult(s->hcom, &ov, &size, TRUE);
2750
    if (!ret) {
2751
        fprintf(stderr, "Failed GetOverlappedResult\n");
2752
        if (ov.hEvent) {
2753
            CloseHandle(ov.hEvent);
2754
            ov.hEvent = NULL;
2755
        }
2756
        goto fail;
2757
    }
2758

    
2759
    if (ov.hEvent) {
2760
        CloseHandle(ov.hEvent);
2761
        ov.hEvent = NULL;
2762
    }
2763
    qemu_add_polling_cb(win_chr_pipe_poll, chr);
2764
    return 0;
2765

    
2766
 fail:
2767
    win_chr_close(chr);
2768
    return -1;
2769
}
2770

    
2771

    
2772
static CharDriverState *qemu_chr_open_win_pipe(const char *filename)
2773
{
2774
    CharDriverState *chr;
2775
    WinCharState *s;
2776

    
2777
    chr = qemu_mallocz(sizeof(CharDriverState));
2778
    if (!chr)
2779
        return NULL;
2780
    s = qemu_mallocz(sizeof(WinCharState));
2781
    if (!s) {
2782
        free(chr);
2783
        return NULL;
2784
    }
2785
    chr->opaque = s;
2786
    chr->chr_write = win_chr_write;
2787
    chr->chr_close = win_chr_close;
2788

    
2789
    if (win_chr_pipe_init(chr, filename) < 0) {
2790
        free(s);
2791
        free(chr);
2792
        return NULL;
2793
    }
2794
    qemu_chr_reset(chr);
2795
    return chr;
2796
}
2797

    
2798
static CharDriverState *qemu_chr_open_win_file(HANDLE fd_out)
2799
{
2800
    CharDriverState *chr;
2801
    WinCharState *s;
2802

    
2803
    chr = qemu_mallocz(sizeof(CharDriverState));
2804
    if (!chr)
2805
        return NULL;
2806
    s = qemu_mallocz(sizeof(WinCharState));
2807
    if (!s) {
2808
        free(chr);
2809
        return NULL;
2810
    }
2811
    s->hcom = fd_out;
2812
    chr->opaque = s;
2813
    chr->chr_write = win_chr_write;
2814
    qemu_chr_reset(chr);
2815
    return chr;
2816
}
2817

    
2818
static CharDriverState *qemu_chr_open_win_con(const char *filename)
2819
{
2820
    return qemu_chr_open_win_file(GetStdHandle(STD_OUTPUT_HANDLE));
2821
}
2822

    
2823
static CharDriverState *qemu_chr_open_win_file_out(const char *file_out)
2824
{
2825
    HANDLE fd_out;
2826

    
2827
    fd_out = CreateFile(file_out, GENERIC_WRITE, FILE_SHARE_READ, NULL,
2828
                        OPEN_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
2829
    if (fd_out == INVALID_HANDLE_VALUE)
2830
        return NULL;
2831

    
2832
    return qemu_chr_open_win_file(fd_out);
2833
}
2834
#endif /* !_WIN32 */
2835

    
2836
/***********************************************************/
2837
/* UDP Net console */
2838

    
2839
typedef struct {
2840
    int fd;
2841
    struct sockaddr_in daddr;
2842
    char buf[1024];
2843
    int bufcnt;
2844
    int bufptr;
2845
    int max_size;
2846
} NetCharDriver;
2847

    
2848
static int udp_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
2849
{
2850
    NetCharDriver *s = chr->opaque;
2851

    
2852
    return sendto(s->fd, buf, len, 0,
2853
                  (struct sockaddr *)&s->daddr, sizeof(struct sockaddr_in));
2854
}
2855

    
2856
static int udp_chr_read_poll(void *opaque)
2857
{
2858
    CharDriverState *chr = opaque;
2859
    NetCharDriver *s = chr->opaque;
2860

    
2861
    s->max_size = qemu_chr_can_read(chr);
2862

    
2863
    /* If there were any stray characters in the queue process them
2864
     * first
2865
     */
2866
    while (s->max_size > 0 && s->bufptr < s->bufcnt) {
2867
        qemu_chr_read(chr, &s->buf[s->bufptr], 1);
2868
        s->bufptr++;
2869
        s->max_size = qemu_chr_can_read(chr);
2870
    }
2871
    return s->max_size;
2872
}
2873

    
2874
static void udp_chr_read(void *opaque)
2875
{
2876
    CharDriverState *chr = opaque;
2877
    NetCharDriver *s = chr->opaque;
2878

    
2879
    if (s->max_size == 0)
2880
        return;
2881
    s->bufcnt = recv(s->fd, s->buf, sizeof(s->buf), 0);
2882
    s->bufptr = s->bufcnt;
2883
    if (s->bufcnt <= 0)
2884
        return;
2885

    
2886
    s->bufptr = 0;
2887
    while (s->max_size > 0 && s->bufptr < s->bufcnt) {
2888
        qemu_chr_read(chr, &s->buf[s->bufptr], 1);
2889
        s->bufptr++;
2890
        s->max_size = qemu_chr_can_read(chr);
2891
    }
2892
}
2893

    
2894
static void udp_chr_update_read_handler(CharDriverState *chr)
2895
{
2896
    NetCharDriver *s = chr->opaque;
2897

    
2898
    if (s->fd >= 0) {
2899
        qemu_set_fd_handler2(s->fd, udp_chr_read_poll,
2900
                             udp_chr_read, NULL, chr);
2901
    }
2902
}
2903

    
2904
int parse_host_port(struct sockaddr_in *saddr, const char *str);
2905
#ifndef _WIN32
2906
static int parse_unix_path(struct sockaddr_un *uaddr, const char *str);
2907
#endif
2908
int parse_host_src_port(struct sockaddr_in *haddr,
2909
                        struct sockaddr_in *saddr,
2910
                        const char *str);
2911

    
2912
static CharDriverState *qemu_chr_open_udp(const char *def)
2913
{
2914
    CharDriverState *chr = NULL;
2915
    NetCharDriver *s = NULL;
2916
    int fd = -1;
2917
    struct sockaddr_in saddr;
2918

    
2919
    chr = qemu_mallocz(sizeof(CharDriverState));
2920
    if (!chr)
2921
        goto return_err;
2922
    s = qemu_mallocz(sizeof(NetCharDriver));
2923
    if (!s)
2924
        goto return_err;
2925

    
2926
    fd = socket(PF_INET, SOCK_DGRAM, 0);
2927
    if (fd < 0) {
2928
        perror("socket(PF_INET, SOCK_DGRAM)");
2929
        goto return_err;
2930
    }
2931

    
2932
    if (parse_host_src_port(&s->daddr, &saddr, def) < 0) {
2933
        printf("Could not parse: %s\n", def);
2934
        goto return_err;
2935
    }
2936

    
2937
    if (bind(fd, (struct sockaddr *)&saddr, sizeof(saddr)) < 0)
2938
    {
2939
        perror("bind");
2940
        goto return_err;
2941
    }
2942

    
2943
    s->fd = fd;
2944
    s->bufcnt = 0;
2945
    s->bufptr = 0;
2946
    chr->opaque = s;
2947
    chr->chr_write = udp_chr_write;
2948
    chr->chr_update_read_handler = udp_chr_update_read_handler;
2949
    return chr;
2950

    
2951
return_err:
2952
    if (chr)
2953
        free(chr);
2954
    if (s)
2955
        free(s);
2956
    if (fd >= 0)
2957
        closesocket(fd);
2958
    return NULL;
2959
}
2960

    
2961
/***********************************************************/
2962
/* TCP Net console */
2963

    
2964
typedef struct {
2965
    int fd, listen_fd;
2966
    int connected;
2967
    int max_size;
2968
    int do_telnetopt;
2969
    int do_nodelay;
2970
    int is_unix;
2971
} TCPCharDriver;
2972

    
2973
static void tcp_chr_accept(void *opaque);
2974

    
2975
static int tcp_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
2976
{
2977
    TCPCharDriver *s = chr->opaque;
2978
    if (s->connected) {
2979
        return send_all(s->fd, buf, len);
2980
    } else {
2981
        /* XXX: indicate an error ? */
2982
        return len;
2983
    }
2984
}
2985

    
2986
static int tcp_chr_read_poll(void *opaque)
2987
{
2988
    CharDriverState *chr = opaque;
2989
    TCPCharDriver *s = chr->opaque;
2990
    if (!s->connected)
2991
        return 0;
2992
    s->max_size = qemu_chr_can_read(chr);
2993
    return s->max_size;
2994
}
2995

    
2996
#define IAC 255
2997
#define IAC_BREAK 243
2998
static void tcp_chr_process_IAC_bytes(CharDriverState *chr,
2999
                                      TCPCharDriver *s,
3000
                                      char *buf, int *size)
3001
{
3002
    /* Handle any telnet client's basic IAC options to satisfy char by
3003
     * char mode with no echo.  All IAC options will be removed from
3004
     * the buf and the do_telnetopt variable will be used to track the
3005
     * state of the width of the IAC information.
3006
     *
3007
     * IAC commands come in sets of 3 bytes with the exception of the
3008
     * "IAC BREAK" command and the double IAC.
3009
     */
3010

    
3011
    int i;
3012
    int j = 0;
3013

    
3014
    for (i = 0; i < *size; i++) {
3015
        if (s->do_telnetopt > 1) {
3016
            if ((unsigned char)buf[i] == IAC && s->do_telnetopt == 2) {
3017
                /* Double IAC means send an IAC */
3018
                if (j != i)
3019
                    buf[j] = buf[i];
3020
                j++;
3021
                s->do_telnetopt = 1;
3022
            } else {
3023
                if ((unsigned char)buf[i] == IAC_BREAK && s->do_telnetopt == 2) {
3024
                    /* Handle IAC break commands by sending a serial break */
3025
                    qemu_chr_event(chr, CHR_EVENT_BREAK);
3026
                    s->do_telnetopt++;
3027
                }
3028
                s->do_telnetopt++;
3029
            }
3030
            if (s->do_telnetopt >= 4) {
3031
                s->do_telnetopt = 1;
3032
            }
3033
        } else {
3034
            if ((unsigned char)buf[i] == IAC) {
3035
                s->do_telnetopt = 2;
3036
            } else {
3037
                if (j != i)
3038
                    buf[j] = buf[i];
3039
                j++;
3040
            }
3041
        }
3042
    }
3043
    *size = j;
3044
}
3045

    
3046
static void tcp_chr_read(void *opaque)
3047
{
3048
    CharDriverState *chr = opaque;
3049
    TCPCharDriver *s = chr->opaque;
3050
    uint8_t buf[1024];
3051
    int len, size;
3052

    
3053
    if (!s->connected || s->max_size <= 0)
3054
        return;
3055
    len = sizeof(buf);
3056
    if (len > s->max_size)
3057
        len = s->max_size;
3058
    size = recv(s->fd, buf, len, 0);
3059
    if (size == 0) {
3060
        /* connection closed */
3061
        s->connected = 0;
3062
        if (s->listen_fd >= 0) {
3063
            qemu_set_fd_handler(s->listen_fd, tcp_chr_accept, NULL, chr);
3064
        }
3065
        qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
3066
        closesocket(s->fd);
3067
        s->fd = -1;
3068
    } else if (size > 0) {
3069
        if (s->do_telnetopt)
3070
            tcp_chr_process_IAC_bytes(chr, s, buf, &size);
3071
        if (size > 0)
3072
            qemu_chr_read(chr, buf, size);
3073
    }
3074
}
3075

    
3076
static void tcp_chr_connect(void *opaque)
3077
{
3078
    CharDriverState *chr = opaque;
3079
    TCPCharDriver *s = chr->opaque;
3080

    
3081
    s->connected = 1;
3082
    qemu_set_fd_handler2(s->fd, tcp_chr_read_poll,
3083
                         tcp_chr_read, NULL, chr);
3084
    qemu_chr_reset(chr);
3085
}
3086

    
3087
#define IACSET(x,a,b,c) x[0] = a; x[1] = b; x[2] = c;
3088
static void tcp_chr_telnet_init(int fd)
3089
{
3090
    char buf[3];
3091
    /* Send the telnet negotion to put telnet in binary, no echo, single char mode */
3092
    IACSET(buf, 0xff, 0xfb, 0x01);  /* IAC WILL ECHO */
3093
    send(fd, (char *)buf, 3, 0);
3094
    IACSET(buf, 0xff, 0xfb, 0x03);  /* IAC WILL Suppress go ahead */
3095
    send(fd, (char *)buf, 3, 0);
3096
    IACSET(buf, 0xff, 0xfb, 0x00);  /* IAC WILL Binary */
3097
    send(fd, (char *)buf, 3, 0);
3098
    IACSET(buf, 0xff, 0xfd, 0x00);  /* IAC DO Binary */
3099
    send(fd, (char *)buf, 3, 0);
3100
}
3101

    
3102
static void socket_set_nodelay(int fd)
3103
{
3104
    int val = 1;
3105
    setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val));
3106
}
3107

    
3108
static void tcp_chr_accept(void *opaque)
3109
{
3110
    CharDriverState *chr = opaque;
3111
    TCPCharDriver *s = chr->opaque;
3112
    struct sockaddr_in saddr;
3113
#ifndef _WIN32
3114
    struct sockaddr_un uaddr;
3115
#endif
3116
    struct sockaddr *addr;
3117
    socklen_t len;
3118
    int fd;
3119

    
3120
    for(;;) {
3121
#ifndef _WIN32
3122
        if (s->is_unix) {
3123
            len = sizeof(uaddr);
3124
            addr = (struct sockaddr *)&uaddr;
3125
        } else
3126
#endif
3127
        {
3128
            len = sizeof(saddr);
3129
            addr = (struct sockaddr *)&saddr;
3130
        }
3131
        fd = accept(s->listen_fd, addr, &len);
3132
        if (fd < 0 && errno != EINTR) {
3133
            return;
3134
        } else if (fd >= 0) {
3135
            if (s->do_telnetopt)
3136
                tcp_chr_telnet_init(fd);
3137
            break;
3138
        }
3139
    }
3140
    socket_set_nonblock(fd);
3141
    if (s->do_nodelay)
3142
        socket_set_nodelay(fd);
3143
    s->fd = fd;
3144
    qemu_set_fd_handler(s->listen_fd, NULL, NULL, NULL);
3145
    tcp_chr_connect(chr);
3146
}
3147

    
3148
static void tcp_chr_close(CharDriverState *chr)
3149
{
3150
    TCPCharDriver *s = chr->opaque;
3151
    if (s->fd >= 0)
3152
        closesocket(s->fd);
3153
    if (s->listen_fd >= 0)
3154
        closesocket(s->listen_fd);
3155
    qemu_free(s);
3156
}
3157

    
3158
static CharDriverState *qemu_chr_open_tcp(const char *host_str,
3159
                                          int is_telnet,
3160
                                          int is_unix)
3161
{
3162
    CharDriverState *chr = NULL;
3163
    TCPCharDriver *s = NULL;
3164
    int fd = -1, ret, err, val;
3165
    int is_listen = 0;
3166
    int is_waitconnect = 1;
3167
    int do_nodelay = 0;
3168
    const char *ptr;
3169
    struct sockaddr_in saddr;
3170
#ifndef _WIN32
3171
    struct sockaddr_un uaddr;
3172
#endif
3173
    struct sockaddr *addr;
3174
    socklen_t addrlen;
3175

    
3176
#ifndef _WIN32
3177
    if (is_unix) {
3178
        addr = (struct sockaddr *)&uaddr;
3179
        addrlen = sizeof(uaddr);
3180
        if (parse_unix_path(&uaddr, host_str) < 0)
3181
            goto fail;
3182
    } else
3183
#endif
3184
    {
3185
        addr = (struct sockaddr *)&saddr;
3186
        addrlen = sizeof(saddr);
3187
        if (parse_host_port(&saddr, host_str) < 0)
3188
            goto fail;
3189
    }
3190

    
3191
    ptr = host_str;
3192
    while((ptr = strchr(ptr,','))) {
3193
        ptr++;
3194
        if (!strncmp(ptr,"server",6)) {
3195
            is_listen = 1;
3196
        } else if (!strncmp(ptr,"nowait",6)) {
3197
            is_waitconnect = 0;
3198
        } else if (!strncmp(ptr,"nodelay",6)) {
3199
            do_nodelay = 1;
3200
        } else {
3201
            printf("Unknown option: %s\n", ptr);
3202
            goto fail;
3203
        }
3204
    }
3205
    if (!is_listen)
3206
        is_waitconnect = 0;
3207

    
3208
    chr = qemu_mallocz(sizeof(CharDriverState));
3209
    if (!chr)
3210
        goto fail;
3211
    s = qemu_mallocz(sizeof(TCPCharDriver));
3212
    if (!s)
3213
        goto fail;
3214

    
3215
#ifndef _WIN32
3216
    if (is_unix)
3217
        fd = socket(PF_UNIX, SOCK_STREAM, 0);
3218
    else
3219
#endif
3220
        fd = socket(PF_INET, SOCK_STREAM, 0);
3221

    
3222
    if (fd < 0)
3223
        goto fail;
3224

    
3225
    if (!is_waitconnect)
3226
        socket_set_nonblock(fd);
3227

    
3228
    s->connected = 0;
3229
    s->fd = -1;
3230
    s->listen_fd = -1;
3231
    s->is_unix = is_unix;
3232
    s->do_nodelay = do_nodelay && !is_unix;
3233

    
3234
    chr->opaque = s;
3235
    chr->chr_write = tcp_chr_write;
3236
    chr->chr_close = tcp_chr_close;
3237

    
3238
    if (is_listen) {
3239
        /* allow fast reuse */
3240
#ifndef _WIN32
3241
        if (is_unix) {
3242
            char path[109];
3243
            strncpy(path, uaddr.sun_path, 108);
3244
            path[108] = 0;
3245
            unlink(path);
3246
        } else
3247
#endif
3248
        {
3249
            val = 1;
3250
            setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (const char *)&val, sizeof(val));
3251
        }
3252

    
3253
        ret = bind(fd, addr, addrlen);
3254
        if (ret < 0)
3255
            goto fail;
3256

    
3257
        ret = listen(fd, 0);
3258
        if (ret < 0)
3259
            goto fail;
3260

    
3261
        s->listen_fd = fd;
3262
        qemu_set_fd_handler(s->listen_fd, tcp_chr_accept, NULL, chr);
3263
        if (is_telnet)
3264
            s->do_telnetopt = 1;
3265
    } else {
3266
        for(;;) {
3267
            ret = connect(fd, addr, addrlen);
3268
            if (ret < 0) {
3269
                err = socket_error();
3270
                if (err == EINTR || err == EWOULDBLOCK) {
3271
                } else if (err == EINPROGRESS) {
3272
                    break;
3273
#ifdef _WIN32
3274
                } else if (err == WSAEALREADY) {
3275
                    break;
3276
#endif
3277
                } else {
3278
                    goto fail;
3279
                }
3280
            } else {
3281
                s->connected = 1;
3282
                break;
3283
            }
3284
        }
3285
        s->fd = fd;
3286
        socket_set_nodelay(fd);
3287
        if (s->connected)
3288
            tcp_chr_connect(chr);
3289
        else
3290
            qemu_set_fd_handler(s->fd, NULL, tcp_chr_connect, chr);
3291
    }
3292

    
3293
    if (is_listen && is_waitconnect) {
3294
        printf("QEMU waiting for connection on: %s\n", host_str);
3295
        tcp_chr_accept(chr);
3296
        socket_set_nonblock(s->listen_fd);
3297
    }
3298

    
3299
    return chr;
3300
 fail:
3301
    if (fd >= 0)
3302
        closesocket(fd);
3303
    qemu_free(s);
3304
    qemu_free(chr);
3305
    return NULL;
3306
}
3307

    
3308
CharDriverState *qemu_chr_open(const char *filename)
3309
{
3310
    const char *p;
3311

    
3312
    if (!strcmp(filename, "vc")) {
3313
        return text_console_init(&display_state, 0);
3314
    } else if (strstart(filename, "vc:", &p)) {
3315
        return text_console_init(&display_state, p);
3316
    } else if (!strcmp(filename, "null")) {
3317
        return qemu_chr_open_null();
3318
    } else
3319
    if (strstart(filename, "tcp:", &p)) {
3320
        return qemu_chr_open_tcp(p, 0, 0);
3321
    } else
3322
    if (strstart(filename, "telnet:", &p)) {
3323
        return qemu_chr_open_tcp(p, 1, 0);
3324
    } else
3325
    if (strstart(filename, "udp:", &p)) {
3326
        return qemu_chr_open_udp(p);
3327
    } else
3328
    if (strstart(filename, "mon:", &p)) {
3329
        CharDriverState *drv = qemu_chr_open(p);
3330
        if (drv) {
3331
            drv = qemu_chr_open_mux(drv);
3332
            monitor_init(drv, !nographic);
3333
            return drv;
3334
        }
3335
        printf("Unable to open driver: %s\n", p);
3336
        return 0;
3337
    } else
3338
#ifndef _WIN32
3339
    if (strstart(filename, "unix:", &p)) {
3340
        return qemu_chr_open_tcp(p, 0, 1);
3341
    } else if (strstart(filename, "file:", &p)) {
3342
        return qemu_chr_open_file_out(p);
3343
    } else if (strstart(filename, "pipe:", &p)) {
3344
        return qemu_chr_open_pipe(p);
3345
    } else if (!strcmp(filename, "pty")) {
3346
        return qemu_chr_open_pty();
3347
    } else if (!strcmp(filename, "stdio")) {
3348
        return qemu_chr_open_stdio();
3349
    } else
3350
#if defined(__linux__)
3351
    if (strstart(filename, "/dev/parport", NULL)) {
3352
        return qemu_chr_open_pp(filename);
3353
    } else
3354
#endif
3355
#if defined(__linux__) || defined(__sun__)
3356
    if (strstart(filename, "/dev/", NULL)) {
3357
        return qemu_chr_open_tty(filename);
3358
    } else
3359
#endif
3360
#else /* !_WIN32 */
3361
    if (strstart(filename, "COM", NULL)) {
3362
        return qemu_chr_open_win(filename);
3363
    } else
3364
    if (strstart(filename, "pipe:", &p)) {
3365
        return qemu_chr_open_win_pipe(p);
3366
    } else
3367
    if (strstart(filename, "con:", NULL)) {
3368
        return qemu_chr_open_win_con(filename);
3369
    } else
3370
    if (strstart(filename, "file:", &p)) {
3371
        return qemu_chr_open_win_file_out(p);
3372
    }
3373
#endif
3374
    {
3375
        return NULL;
3376
    }
3377
}
3378

    
3379
void qemu_chr_close(CharDriverState *chr)
3380
{
3381
    if (chr->chr_close)
3382
        chr->chr_close(chr);
3383
}
3384

    
3385
/***********************************************************/
3386
/* network device redirectors */
3387

    
3388
static void hex_dump(FILE *f, const uint8_t *buf, int size)
3389
{
3390
    int len, i, j, c;
3391

    
3392
    for(i=0;i<size;i+=16) {
3393
        len = size - i;
3394
        if (len > 16)
3395
            len = 16;
3396
        fprintf(f, "%08x ", i);
3397
        for(j=0;j<16;j++) {
3398
            if (j < len)
3399
                fprintf(f, " %02x", buf[i+j]);
3400
            else
3401
                fprintf(f, "   ");
3402
        }
3403
        fprintf(f, " ");
3404
        for(j=0;j<len;j++) {
3405
            c = buf[i+j];
3406
            if (c < ' ' || c > '~')
3407
                c = '.';
3408
            fprintf(f, "%c", c);
3409
        }
3410
        fprintf(f, "\n");
3411
    }
3412
}
3413

    
3414
static int parse_macaddr(uint8_t *macaddr, const char *p)
3415
{
3416
    int i;
3417
    for(i = 0; i < 6; i++) {
3418
        macaddr[i] = strtol(p, (char **)&p, 16);
3419
        if (i == 5) {
3420
            if (*p != '\0')
3421
                return -1;
3422
        } else {
3423
            if (*p != ':')
3424
                return -1;
3425
            p++;
3426
        }
3427
    }
3428
    return 0;
3429
}
3430

    
3431
static int get_str_sep(char *buf, int buf_size, const char **pp, int sep)
3432
{
3433
    const char *p, *p1;
3434
    int len;
3435
    p = *pp;
3436
    p1 = strchr(p, sep);
3437
    if (!p1)
3438
        return -1;
3439
    len = p1 - p;
3440
    p1++;
3441
    if (buf_size > 0) {
3442
        if (len > buf_size - 1)
3443
            len = buf_size - 1;
3444
        memcpy(buf, p, len);
3445
        buf[len] = '\0';
3446
    }
3447
    *pp = p1;
3448
    return 0;
3449
}
3450

    
3451
int parse_host_src_port(struct sockaddr_in *haddr,
3452
                        struct sockaddr_in *saddr,
3453
                        const char *input_str)
3454
{
3455
    char *str = strdup(input_str);
3456
    char *host_str = str;
3457
    char *src_str;
3458
    char *ptr;
3459

    
3460
    /*
3461
     * Chop off any extra arguments at the end of the string which
3462
     * would start with a comma, then fill in the src port information
3463
     * if it was provided else use the "any address" and "any port".
3464
     */
3465
    if ((ptr = strchr(str,',')))
3466
        *ptr = '\0';
3467

    
3468
    if ((src_str = strchr(input_str,'@'))) {
3469
        *src_str = '\0';
3470
        src_str++;
3471
    }
3472

    
3473
    if (parse_host_port(haddr, host_str) < 0)
3474
        goto fail;
3475

    
3476
    if (!src_str || *src_str == '\0')
3477
        src_str = ":0";
3478

    
3479
    if (parse_host_port(saddr, src_str) < 0)
3480
        goto fail;
3481

    
3482
    free(str);
3483
    return(0);
3484

    
3485
fail:
3486
    free(str);
3487
    return -1;
3488
}
3489

    
3490
int parse_host_port(struct sockaddr_in *saddr, const char *str)
3491
{
3492
    char buf[512];
3493
    struct hostent *he;
3494
    const char *p, *r;
3495
    int port;
3496

    
3497
    p = str;
3498
    if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3499
        return -1;
3500
    saddr->sin_family = AF_INET;
3501
    if (buf[0] == '\0') {
3502
        saddr->sin_addr.s_addr = 0;
3503
    } else {
3504
        if (isdigit(buf[0])) {
3505
            if (!inet_aton(buf, &saddr->sin_addr))
3506
                return -1;
3507
        } else {
3508
            if ((he = gethostbyname(buf)) == NULL)
3509
                return - 1;
3510
            saddr->sin_addr = *(struct in_addr *)he->h_addr;
3511
        }
3512
    }
3513
    port = strtol(p, (char **)&r, 0);
3514
    if (r == p)
3515
        return -1;
3516
    saddr->sin_port = htons(port);
3517
    return 0;
3518
}
3519

    
3520
#ifndef _WIN32
3521
static int parse_unix_path(struct sockaddr_un *uaddr, const char *str)
3522
{
3523
    const char *p;
3524
    int len;
3525

    
3526
    len = MIN(108, strlen(str));
3527
    p = strchr(str, ',');
3528
    if (p)
3529
        len = MIN(len, p - str);
3530

    
3531
    memset(uaddr, 0, sizeof(*uaddr));
3532

    
3533
    uaddr->sun_family = AF_UNIX;
3534
    memcpy(uaddr->sun_path, str, len);
3535

    
3536
    return 0;
3537
}
3538
#endif
3539

    
3540
/* find or alloc a new VLAN */
3541
VLANState *qemu_find_vlan(int id)
3542
{
3543
    VLANState **pvlan, *vlan;
3544
    for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
3545
        if (vlan->id == id)
3546
            return vlan;
3547
    }
3548
    vlan = qemu_mallocz(sizeof(VLANState));
3549
    if (!vlan)
3550
        return NULL;
3551
    vlan->id = id;
3552
    vlan->next = NULL;
3553
    pvlan = &first_vlan;
3554
    while (*pvlan != NULL)
3555
        pvlan = &(*pvlan)->next;
3556
    *pvlan = vlan;
3557
    return vlan;
3558
}
3559

    
3560
VLANClientState *qemu_new_vlan_client(VLANState *vlan,
3561
                                      IOReadHandler *fd_read,
3562
                                      IOCanRWHandler *fd_can_read,
3563
                                      void *opaque)
3564
{
3565
    VLANClientState *vc, **pvc;
3566
    vc = qemu_mallocz(sizeof(VLANClientState));
3567
    if (!vc)
3568
        return NULL;
3569
    vc->fd_read = fd_read;
3570
    vc->fd_can_read = fd_can_read;
3571
    vc->opaque = opaque;
3572
    vc->vlan = vlan;
3573

    
3574
    vc->next = NULL;
3575
    pvc = &vlan->first_client;
3576
    while (*pvc != NULL)
3577
        pvc = &(*pvc)->next;
3578
    *pvc = vc;
3579
    return vc;
3580
}
3581

    
3582
int qemu_can_send_packet(VLANClientState *vc1)
3583
{
3584
    VLANState *vlan = vc1->vlan;
3585
    VLANClientState *vc;
3586

    
3587
    for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
3588
        if (vc != vc1) {
3589
            if (vc->fd_can_read && vc->fd_can_read(vc->opaque))
3590
                return 1;
3591
        }
3592
    }
3593
    return 0;
3594
}
3595

    
3596
void qemu_send_packet(VLANClientState *vc1, const uint8_t *buf, int size)
3597
{
3598
    VLANState *vlan = vc1->vlan;
3599
    VLANClientState *vc;
3600

    
3601
#if 0
3602
    printf("vlan %d send:\n", vlan->id);
3603
    hex_dump(stdout, buf, size);
3604
#endif
3605
    for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
3606
        if (vc != vc1) {
3607
            vc->fd_read(vc->opaque, buf, size);
3608
        }
3609
    }
3610
}
3611

    
3612
#if defined(CONFIG_SLIRP)
3613

    
3614
/* slirp network adapter */
3615

    
3616
static int slirp_inited;
3617
static VLANClientState *slirp_vc;
3618

    
3619
int slirp_can_output(void)
3620
{
3621
    return !slirp_vc || qemu_can_send_packet(slirp_vc);
3622
}
3623

    
3624
void slirp_output(const uint8_t *pkt, int pkt_len)
3625
{
3626
#if 0
3627
    printf("slirp output:\n");
3628
    hex_dump(stdout, pkt, pkt_len);
3629
#endif
3630
    if (!slirp_vc)
3631
        return;
3632
    qemu_send_packet(slirp_vc, pkt, pkt_len);
3633
}
3634

    
3635
static void slirp_receive(void *opaque, const uint8_t *buf, int size)
3636
{
3637
#if 0
3638
    printf("slirp input:\n");
3639
    hex_dump(stdout, buf, size);
3640
#endif
3641
    slirp_input(buf, size);
3642
}
3643

    
3644
static int net_slirp_init(VLANState *vlan)
3645
{
3646
    if (!slirp_inited) {
3647
        slirp_inited = 1;
3648
        slirp_init();
3649
    }
3650
    slirp_vc = qemu_new_vlan_client(vlan,
3651
                                    slirp_receive, NULL, NULL);
3652
    snprintf(slirp_vc->info_str, sizeof(slirp_vc->info_str), "user redirector");
3653
    return 0;
3654
}
3655

    
3656
static void net_slirp_redir(const char *redir_str)
3657
{
3658
    int is_udp;
3659
    char buf[256], *r;
3660
    const char *p;
3661
    struct in_addr guest_addr;
3662
    int host_port, guest_port;
3663

    
3664
    if (!slirp_inited) {
3665
        slirp_inited = 1;
3666
        slirp_init();
3667
    }
3668

    
3669
    p = redir_str;
3670
    if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3671
        goto fail;
3672
    if (!strcmp(buf, "tcp")) {
3673
        is_udp = 0;
3674
    } else if (!strcmp(buf, "udp")) {
3675
        is_udp = 1;
3676
    } else {
3677
        goto fail;
3678
    }
3679

    
3680
    if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3681
        goto fail;
3682
    host_port = strtol(buf, &r, 0);
3683
    if (r == buf)
3684
        goto fail;
3685

    
3686
    if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3687
        goto fail;
3688
    if (buf[0] == '\0') {
3689
        pstrcpy(buf, sizeof(buf), "10.0.2.15");
3690
    }
3691
    if (!inet_aton(buf, &guest_addr))
3692
        goto fail;
3693

    
3694
    guest_port = strtol(p, &r, 0);
3695
    if (r == p)
3696
        goto fail;
3697

    
3698
    if (slirp_redir(is_udp, host_port, guest_addr, guest_port) < 0) {
3699
        fprintf(stderr, "qemu: could not set up redirection\n");
3700
        exit(1);
3701
    }
3702
    return;
3703
 fail:
3704
    fprintf(stderr, "qemu: syntax: -redir [tcp|udp]:host-port:[guest-host]:guest-port\n");
3705
    exit(1);
3706
}
3707

    
3708
#ifndef _WIN32
3709

    
3710
char smb_dir[1024];
3711

    
3712
static void smb_exit(void)
3713
{
3714
    DIR *d;
3715
    struct dirent *de;
3716
    char filename[1024];
3717

    
3718
    /* erase all the files in the directory */
3719
    d = opendir(smb_dir);
3720
    for(;;) {
3721
        de = readdir(d);
3722
        if (!de)
3723
            break;
3724
        if (strcmp(de->d_name, ".") != 0 &&
3725
            strcmp(de->d_name, "..") != 0) {
3726
            snprintf(filename, sizeof(filename), "%s/%s",
3727
                     smb_dir, de->d_name);
3728
            unlink(filename);
3729
        }
3730
    }
3731
    closedir(d);
3732
    rmdir(smb_dir);
3733
}
3734

    
3735
/* automatic user mode samba server configuration */
3736
static void net_slirp_smb(const char *exported_dir)
3737
{
3738
    char smb_conf[1024];
3739
    char smb_cmdline[1024];
3740
    FILE *f;
3741

    
3742
    if (!slirp_inited) {
3743
        slirp_inited = 1;
3744
        slirp_init();
3745
    }
3746

    
3747
    /* XXX: better tmp dir construction */
3748
    snprintf(smb_dir, sizeof(smb_dir), "/tmp/qemu-smb.%d", getpid());
3749
    if (mkdir(smb_dir, 0700) < 0) {
3750
        fprintf(stderr, "qemu: could not create samba server dir '%s'\n", smb_dir);
3751
        exit(1);
3752
    }
3753
    snprintf(smb_conf, sizeof(smb_conf), "%s/%s", smb_dir, "smb.conf");
3754

    
3755
    f = fopen(smb_conf, "w");
3756
    if (!f) {
3757
        fprintf(stderr, "qemu: could not create samba server configuration file '%s'\n", smb_conf);
3758
        exit(1);
3759
    }
3760
    fprintf(f,
3761
            "[global]\n"
3762
            "private dir=%s\n"
3763
            "smb ports=0\n"
3764
            "socket address=127.0.0.1\n"
3765
            "pid directory=%s\n"
3766
            "lock directory=%s\n"
3767
            "log file=%s/log.smbd\n"
3768
            "smb passwd file=%s/smbpasswd\n"
3769
            "security = share\n"
3770
            "[qemu]\n"
3771
            "path=%s\n"
3772
            "read only=no\n"
3773
            "guest ok=yes\n",
3774
            smb_dir,
3775
            smb_dir,
3776
            smb_dir,
3777
            smb_dir,
3778
            smb_dir,
3779
            exported_dir
3780
            );
3781
    fclose(f);
3782
    atexit(smb_exit);
3783

    
3784
    snprintf(smb_cmdline, sizeof(smb_cmdline), "%s -s %s",
3785
             SMBD_COMMAND, smb_conf);
3786

    
3787
    slirp_add_exec(0, smb_cmdline, 4, 139);
3788
}
3789

    
3790
#endif /* !defined(_WIN32) */
3791
void do_info_slirp(void)
3792
{
3793
    slirp_stats();
3794
}
3795

    
3796
#endif /* CONFIG_SLIRP */
3797

    
3798
#if !defined(_WIN32)
3799

    
3800
typedef struct TAPState {
3801
    VLANClientState *vc;
3802
    int fd;
3803
    char down_script[1024];
3804
} TAPState;
3805

    
3806
static void tap_receive(void *opaque, const uint8_t *buf, int size)
3807
{
3808
    TAPState *s = opaque;
3809
    int ret;
3810
    for(;;) {
3811
        ret = write(s->fd, buf, size);
3812
        if (ret < 0 && (errno == EINTR || errno == EAGAIN)) {
3813
        } else {
3814
            break;
3815
        }
3816
    }
3817
}
3818

    
3819
static void tap_send(void *opaque)
3820
{
3821
    TAPState *s = opaque;
3822
    uint8_t buf[4096];
3823
    int size;
3824

    
3825
#ifdef __sun__
3826
    struct strbuf sbuf;
3827
    int f = 0;
3828
    sbuf.maxlen = sizeof(buf);
3829
    sbuf.buf = buf;
3830
    size = getmsg(s->fd, NULL, &sbuf, &f) >=0 ? sbuf.len : -1;
3831
#else
3832
    size = read(s->fd, buf, sizeof(buf));
3833
#endif
3834
    if (size > 0) {
3835
        qemu_send_packet(s->vc, buf, size);
3836
    }
3837
}
3838

    
3839
/* fd support */
3840

    
3841
static TAPState *net_tap_fd_init(VLANState *vlan, int fd)
3842
{
3843
    TAPState *s;
3844

    
3845
    s = qemu_mallocz(sizeof(TAPState));
3846
    if (!s)
3847
        return NULL;
3848
    s->fd = fd;
3849
    s->vc = qemu_new_vlan_client(vlan, tap_receive, NULL, s);
3850
    qemu_set_fd_handler(s->fd, tap_send, NULL, s);
3851
    snprintf(s->vc->info_str, sizeof(s->vc->info_str), "tap: fd=%d", fd);
3852
    return s;
3853
}
3854

    
3855
#if defined (_BSD) || defined (__FreeBSD_kernel__)
3856
static int tap_open(char *ifname, int ifname_size)
3857
{
3858
    int fd;
3859
    char *dev;
3860
    struct stat s;
3861

    
3862
    TFR(fd = open("/dev/tap", O_RDWR));
3863
    if (fd < 0) {
3864
        fprintf(stderr, "warning: could not open /dev/tap: no virtual network emulation\n");
3865
        return -1;
3866
    }
3867

    
3868
    fstat(fd, &s);
3869
    dev = devname(s.st_rdev, S_IFCHR);
3870
    pstrcpy(ifname, ifname_size, dev);
3871

    
3872
    fcntl(fd, F_SETFL, O_NONBLOCK);
3873
    return fd;
3874
}
3875
#elif defined(__sun__)
3876
#define TUNNEWPPA       (('T'<<16) | 0x0001)
3877
/*
3878
 * Allocate TAP device, returns opened fd.
3879
 * Stores dev name in the first arg(must be large enough).
3880
 */
3881
int tap_alloc(char *dev)
3882
{
3883
    int tap_fd, if_fd, ppa = -1;
3884
    static int ip_fd = 0;
3885
    char *ptr;
3886

    
3887
    static int arp_fd = 0;
3888
    int ip_muxid, arp_muxid;
3889
    struct strioctl  strioc_if, strioc_ppa;
3890
    int link_type = I_PLINK;;
3891
    struct lifreq ifr;
3892
    char actual_name[32] = "";
3893

    
3894
    memset(&ifr, 0x0, sizeof(ifr));
3895

    
3896
    if( *dev ){
3897
       ptr = dev;
3898
       while( *ptr && !isdigit((int)*ptr) ) ptr++;
3899
       ppa = atoi(ptr);
3900
    }
3901

    
3902
    /* Check if IP device was opened */
3903
    if( ip_fd )
3904
       close(ip_fd);
3905

    
3906
    TFR(ip_fd = open("/dev/udp", O_RDWR, 0));
3907
    if (ip_fd < 0) {
3908
       syslog(LOG_ERR, "Can't open /dev/ip (actually /dev/udp)");
3909
       return -1;
3910
    }
3911

    
3912
    TFR(tap_fd = open("/dev/tap", O_RDWR, 0));
3913
    if (tap_fd < 0) {
3914
       syslog(LOG_ERR, "Can't open /dev/tap");
3915
       return -1;
3916
    }
3917

    
3918
    /* Assign a new PPA and get its unit number. */
3919
    strioc_ppa.ic_cmd = TUNNEWPPA;
3920
    strioc_ppa.ic_timout = 0;
3921
    strioc_ppa.ic_len = sizeof(ppa);
3922
    strioc_ppa.ic_dp = (char *)&ppa;
3923
    if ((ppa = ioctl (tap_fd, I_STR, &strioc_ppa)) < 0)
3924
       syslog (LOG_ERR, "Can't assign new interface");
3925

    
3926
    TFR(if_fd = open("/dev/tap", O_RDWR, 0));
3927
    if (if_fd < 0) {
3928
       syslog(LOG_ERR, "Can't open /dev/tap (2)");
3929
       return -1;
3930
    }
3931
    if(ioctl(if_fd, I_PUSH, "ip") < 0){
3932
       syslog(LOG_ERR, "Can't push IP module");
3933
       return -1;
3934
    }
3935

    
3936
    if (ioctl(if_fd, SIOCGLIFFLAGS, &ifr) < 0)
3937
        syslog(LOG_ERR, "Can't get flags\n");
3938

    
3939
    snprintf (actual_name, 32, "tap%d", ppa);
3940
    strncpy (ifr.lifr_name, actual_name, sizeof (ifr.lifr_name));
3941

    
3942
    ifr.lifr_ppa = ppa;
3943
    /* Assign ppa according to the unit number returned by tun device */
3944

    
3945
    if (ioctl (if_fd, SIOCSLIFNAME, &ifr) < 0)
3946
        syslog (LOG_ERR, "Can't set PPA %d", ppa);
3947
    if (ioctl(if_fd, SIOCGLIFFLAGS, &ifr) <0)
3948
        syslog (LOG_ERR, "Can't get flags\n");
3949
    /* Push arp module to if_fd */
3950
    if (ioctl (if_fd, I_PUSH, "arp") < 0)
3951
        syslog (LOG_ERR, "Can't push ARP module (2)");
3952

    
3953
    /* Push arp module to ip_fd */
3954
    if (ioctl (ip_fd, I_POP, NULL) < 0)
3955
        syslog (LOG_ERR, "I_POP failed\n");
3956
    if (ioctl (ip_fd, I_PUSH, "arp") < 0)
3957
        syslog (LOG_ERR, "Can't push ARP module (3)\n");
3958
    /* Open arp_fd */
3959
    TFR(arp_fd = open ("/dev/tap", O_RDWR, 0));
3960
    if (arp_fd < 0)
3961
       syslog (LOG_ERR, "Can't open %s\n", "/dev/tap");
3962

    
3963
    /* Set ifname to arp */
3964
    strioc_if.ic_cmd = SIOCSLIFNAME;
3965
    strioc_if.ic_timout = 0;
3966
    strioc_if.ic_len = sizeof(ifr);
3967
    strioc_if.ic_dp = (char *)&ifr;
3968
    if (ioctl(arp_fd, I_STR, &strioc_if) < 0){
3969
        syslog (LOG_ERR, "Can't set ifname to arp\n");
3970
    }
3971

    
3972
    if((ip_muxid = ioctl(ip_fd, I_LINK, if_fd)) < 0){
3973
       syslog(LOG_ERR, "Can't link TAP device to IP");
3974
       return -1;
3975
    }
3976

    
3977
    if ((arp_muxid = ioctl (ip_fd, link_type, arp_fd)) < 0)
3978
        syslog (LOG_ERR, "Can't link TAP device to ARP");
3979

    
3980
    close (if_fd);
3981

    
3982
    memset(&ifr, 0x0, sizeof(ifr));
3983
    strncpy (ifr.lifr_name, actual_name, sizeof (ifr.lifr_name));
3984
    ifr.lifr_ip_muxid  = ip_muxid;
3985
    ifr.lifr_arp_muxid = arp_muxid;
3986

    
3987
    if (ioctl (ip_fd, SIOCSLIFMUXID, &ifr) < 0)
3988
    {
3989
      ioctl (ip_fd, I_PUNLINK , arp_muxid);
3990
      ioctl (ip_fd, I_PUNLINK, ip_muxid);
3991
      syslog (LOG_ERR, "Can't set multiplexor id");
3992
    }
3993

    
3994
    sprintf(dev, "tap%d", ppa);
3995
    return tap_fd;
3996
}
3997

    
3998
static int tap_open(char *ifname, int ifname_size)
3999
{
4000
    char  dev[10]="";
4001
    int fd;
4002
    if( (fd = tap_alloc(dev)) < 0 ){
4003
       fprintf(stderr, "Cannot allocate TAP device\n");
4004
       return -1;
4005
    }
4006
    pstrcpy(ifname, ifname_size, dev);
4007
    fcntl(fd, F_SETFL, O_NONBLOCK);
4008
    return fd;
4009
}
4010
#else
4011
static int tap_open(char *ifname, int ifname_size)
4012
{
4013
    struct ifreq ifr;
4014
    int fd, ret;
4015

    
4016
    TFR(fd = open("/dev/net/tun", O_RDWR));
4017
    if (fd < 0) {
4018
        fprintf(stderr, "warning: could not open /dev/net/tun: no virtual network emulation\n");
4019
        return -1;
4020
    }
4021
    memset(&ifr, 0, sizeof(ifr));
4022
    ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
4023
    if (ifname[0] != '\0')
4024
        pstrcpy(ifr.ifr_name, IFNAMSIZ, ifname);
4025
    else
4026
        pstrcpy(ifr.ifr_name, IFNAMSIZ, "tap%d");
4027
    ret = ioctl(fd, TUNSETIFF, (void *) &ifr);
4028
    if (ret != 0) {
4029
        fprintf(stderr, "warning: could not configure /dev/net/tun: no virtual network emulation\n");
4030
        close(fd);
4031
        return -1;
4032
    }
4033
    pstrcpy(ifname, ifname_size, ifr.ifr_name);
4034
    fcntl(fd, F_SETFL, O_NONBLOCK);
4035
    return fd;
4036
}
4037
#endif
4038

    
4039
static int launch_script(const char *setup_script, const char *ifname, int fd)
4040
{
4041
    int pid, status;
4042
    char *args[3];
4043
    char **parg;
4044

    
4045
        /* try to launch network script */
4046
        pid = fork();
4047
        if (pid >= 0) {
4048
            if (pid == 0) {
4049
                int open_max = sysconf (_SC_OPEN_MAX), i;
4050
                for (i = 0; i < open_max; i++)
4051
                    if (i != STDIN_FILENO &&
4052
                        i != STDOUT_FILENO &&
4053
                        i != STDERR_FILENO &&
4054
                        i != fd)
4055
                        close(i);
4056

    
4057
                parg = args;
4058
                *parg++ = (char *)setup_script;
4059
                *parg++ = (char *)ifname;
4060
                *parg++ = NULL;
4061
                execv(setup_script, args);
4062
                _exit(1);
4063
            }
4064
            while (waitpid(pid, &status, 0) != pid);
4065
            if (!WIFEXITED(status) ||
4066
                WEXITSTATUS(status) != 0) {
4067
                fprintf(stderr, "%s: could not launch network script\n",
4068
                        setup_script);
4069
                return -1;
4070
            }
4071
        }
4072
    return 0;
4073
}
4074

    
4075
static int net_tap_init(VLANState *vlan, const char *ifname1,
4076
                        const char *setup_script, const char *down_script)
4077
{
4078
    TAPState *s;
4079
    int fd;
4080
    char ifname[128];
4081

    
4082
    if (ifname1 != NULL)
4083
        pstrcpy(ifname, sizeof(ifname), ifname1);
4084
    else
4085
        ifname[0] = '\0';
4086
    TFR(fd = tap_open(ifname, sizeof(ifname)));
4087
    if (fd < 0)
4088
        return -1;
4089

    
4090
    if (!setup_script || !strcmp(setup_script, "no"))
4091
        setup_script = "";
4092
    if (setup_script[0] != '\0') {
4093
        if (launch_script(setup_script, ifname, fd))
4094
            return -1;
4095
    }
4096
    s = net_tap_fd_init(vlan, fd);
4097
    if (!s)
4098
        return -1;
4099
    snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4100
             "tap: ifname=%s setup_script=%s", ifname, setup_script);
4101
    if (down_script && strcmp(down_script, "no"))
4102
        snprintf(s->down_script, sizeof(s->down_script), "%s", down_script);
4103
    return 0;
4104
}
4105

    
4106
#endif /* !_WIN32 */
4107

    
4108
/* network connection */
4109
typedef struct NetSocketState {
4110
    VLANClientState *vc;
4111
    int fd;
4112
    int state; /* 0 = getting length, 1 = getting data */
4113
    int index;
4114
    int packet_len;
4115
    uint8_t buf[4096];
4116
    struct sockaddr_in dgram_dst; /* contains inet host and port destination iff connectionless (SOCK_DGRAM) */
4117
} NetSocketState;
4118

    
4119
typedef struct NetSocketListenState {
4120
    VLANState *vlan;
4121
    int fd;
4122
} NetSocketListenState;
4123

    
4124
/* XXX: we consider we can send the whole packet without blocking */
4125
static void net_socket_receive(void *opaque, const uint8_t *buf, int size)
4126
{
4127
    NetSocketState *s = opaque;
4128
    uint32_t len;
4129
    len = htonl(size);
4130

    
4131
    send_all(s->fd, (const uint8_t *)&len, sizeof(len));
4132
    send_all(s->fd, buf, size);
4133
}
4134

    
4135
static void net_socket_receive_dgram(void *opaque, const uint8_t *buf, int size)
4136
{
4137
    NetSocketState *s = opaque;
4138
    sendto(s->fd, buf, size, 0,
4139
           (struct sockaddr *)&s->dgram_dst, sizeof(s->dgram_dst));
4140
}
4141

    
4142
static void net_socket_send(void *opaque)
4143
{
4144
    NetSocketState *s = opaque;
4145
    int l, size, err;
4146
    uint8_t buf1[4096];
4147
    const uint8_t *buf;
4148

    
4149
    size = recv(s->fd, buf1, sizeof(buf1), 0);
4150
    if (size < 0) {
4151
        err = socket_error();
4152
        if (err != EWOULDBLOCK)
4153
            goto eoc;
4154
    } else if (size == 0) {
4155
        /* end of connection */
4156
    eoc:
4157
        qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
4158
        closesocket(s->fd);
4159
        return;
4160
    }
4161
    buf = buf1;
4162
    while (size > 0) {
4163
        /* reassemble a packet from the network */
4164
        switch(s->state) {
4165
        case 0:
4166
            l = 4 - s->index;
4167
            if (l > size)
4168
                l = size;
4169
            memcpy(s->buf + s->index, buf, l);
4170
            buf += l;
4171
            size -= l;
4172
            s->index += l;
4173
            if (s->index == 4) {
4174
                /* got length */
4175
                s->packet_len = ntohl(*(uint32_t *)s->buf);
4176
                s->index = 0;
4177
                s->state = 1;
4178
            }
4179
            break;
4180
        case 1:
4181
            l = s->packet_len - s->index;
4182
            if (l > size)
4183
                l = size;
4184
            memcpy(s->buf + s->index, buf, l);
4185
            s->index += l;
4186
            buf += l;
4187
            size -= l;
4188
            if (s->index >= s->packet_len) {
4189
                qemu_send_packet(s->vc, s->buf, s->packet_len);
4190
                s->index = 0;
4191
                s->state = 0;
4192
            }
4193
            break;
4194
        }
4195
    }
4196
}
4197

    
4198
static void net_socket_send_dgram(void *opaque)
4199
{
4200
    NetSocketState *s = opaque;
4201
    int size;
4202

    
4203
    size = recv(s->fd, s->buf, sizeof(s->buf), 0);
4204
    if (size < 0)
4205
        return;
4206
    if (size == 0) {
4207
        /* end of connection */
4208
        qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
4209
        return;
4210
    }
4211
    qemu_send_packet(s->vc, s->buf, size);
4212
}
4213

    
4214
static int net_socket_mcast_create(struct sockaddr_in *mcastaddr)
4215
{
4216
    struct ip_mreq imr;
4217
    int fd;
4218
    int val, ret;
4219
    if (!IN_MULTICAST(ntohl(mcastaddr->sin_addr.s_addr))) {
4220
        fprintf(stderr, "qemu: error: specified mcastaddr \"%s\" (0x%08x) does not contain a multicast address\n",
4221
                inet_ntoa(mcastaddr->sin_addr),
4222
                (int)ntohl(mcastaddr->sin_addr.s_addr));
4223
        return -1;
4224

    
4225
    }
4226
    fd = socket(PF_INET, SOCK_DGRAM, 0);
4227
    if (fd < 0) {
4228
        perror("socket(PF_INET, SOCK_DGRAM)");
4229
        return -1;
4230
    }
4231

    
4232
    val = 1;
4233
    ret=setsockopt(fd, SOL_SOCKET, SO_REUSEADDR,
4234
                   (const char *)&val, sizeof(val));
4235
    if (ret < 0) {
4236
        perror("setsockopt(SOL_SOCKET, SO_REUSEADDR)");
4237
        goto fail;
4238
    }
4239

    
4240
    ret = bind(fd, (struct sockaddr *)mcastaddr, sizeof(*mcastaddr));
4241
    if (ret < 0) {
4242
        perror("bind");
4243
        goto fail;
4244
    }
4245

    
4246
    /* Add host to multicast group */
4247
    imr.imr_multiaddr = mcastaddr->sin_addr;
4248
    imr.imr_interface.s_addr = htonl(INADDR_ANY);
4249

    
4250
    ret = setsockopt(fd, IPPROTO_IP, IP_ADD_MEMBERSHIP,
4251
                     (const char *)&imr, sizeof(struct ip_mreq));
4252
    if (ret < 0) {
4253
        perror("setsockopt(IP_ADD_MEMBERSHIP)");
4254
        goto fail;
4255
    }
4256

    
4257
    /* Force mcast msgs to loopback (eg. several QEMUs in same host */
4258
    val = 1;
4259
    ret=setsockopt(fd, IPPROTO_IP, IP_MULTICAST_LOOP,
4260
                   (const char *)&val, sizeof(val));
4261
    if (ret < 0) {
4262
        perror("setsockopt(SOL_IP, IP_MULTICAST_LOOP)");
4263
        goto fail;
4264
    }
4265

    
4266
    socket_set_nonblock(fd);
4267
    return fd;
4268
fail:
4269
    if (fd >= 0)
4270
        closesocket(fd);
4271
    return -1;
4272
}
4273

    
4274
static NetSocketState *net_socket_fd_init_dgram(VLANState *vlan, int fd,
4275
                                          int is_connected)
4276
{
4277
    struct sockaddr_in saddr;
4278
    int newfd;
4279
    socklen_t saddr_len;
4280
    NetSocketState *s;
4281

    
4282
    /* fd passed: multicast: "learn" dgram_dst address from bound address and save it
4283
     * Because this may be "shared" socket from a "master" process, datagrams would be recv()
4284
     * by ONLY ONE process: we must "clone" this dgram socket --jjo
4285
     */
4286

    
4287
    if (is_connected) {
4288
        if (getsockname(fd, (struct sockaddr *) &saddr, &saddr_len) == 0) {
4289
            /* must be bound */
4290
            if (saddr.sin_addr.s_addr==0) {
4291
                fprintf(stderr, "qemu: error: init_dgram: fd=%d unbound, cannot setup multicast dst addr\n",
4292
                        fd);
4293
                return NULL;
4294
            }
4295
            /* clone dgram socket */
4296
            newfd = net_socket_mcast_create(&saddr);
4297
            if (newfd < 0) {
4298
                /* error already reported by net_socket_mcast_create() */
4299
                close(fd);
4300
                return NULL;
4301
            }
4302
            /* clone newfd to fd, close newfd */
4303
            dup2(newfd, fd);
4304
            close(newfd);
4305

    
4306
        } else {
4307
            fprintf(stderr, "qemu: error: init_dgram: fd=%d failed getsockname(): %s\n",
4308
                    fd, strerror(errno));
4309
            return NULL;
4310
        }
4311
    }
4312

    
4313
    s = qemu_mallocz(sizeof(NetSocketState));
4314
    if (!s)
4315
        return NULL;
4316
    s->fd = fd;
4317

    
4318
    s->vc = qemu_new_vlan_client(vlan, net_socket_receive_dgram, NULL, s);
4319
    qemu_set_fd_handler(s->fd, net_socket_send_dgram, NULL, s);
4320

    
4321
    /* mcast: save bound address as dst */
4322
    if (is_connected) s->dgram_dst=saddr;
4323

    
4324
    snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4325
            "socket: fd=%d (%s mcast=%s:%d)",
4326
            fd, is_connected? "cloned" : "",
4327
            inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4328
    return s;
4329
}
4330

    
4331
static void net_socket_connect(void *opaque)
4332
{
4333
    NetSocketState *s = opaque;
4334
    qemu_set_fd_handler(s->fd, net_socket_send, NULL, s);
4335
}
4336

    
4337
static NetSocketState *net_socket_fd_init_stream(VLANState *vlan, int fd,
4338
                                          int is_connected)
4339
{
4340
    NetSocketState *s;
4341
    s = qemu_mallocz(sizeof(NetSocketState));
4342
    if (!s)
4343
        return NULL;
4344
    s->fd = fd;
4345
    s->vc = qemu_new_vlan_client(vlan,
4346
                                 net_socket_receive, NULL, s);
4347
    snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4348
             "socket: fd=%d", fd);
4349
    if (is_connected) {
4350
        net_socket_connect(s);
4351
    } else {
4352
        qemu_set_fd_handler(s->fd, NULL, net_socket_connect, s);
4353
    }
4354
    return s;
4355
}
4356

    
4357
static NetSocketState *net_socket_fd_init(VLANState *vlan, int fd,
4358
                                          int is_connected)
4359
{
4360
    int so_type=-1, optlen=sizeof(so_type);
4361

    
4362
    if(getsockopt(fd, SOL_SOCKET, SO_TYPE, (char *)&so_type, &optlen)< 0) {
4363
        fprintf(stderr, "qemu: error: getsockopt(SO_TYPE) for fd=%d failed\n", fd);
4364
        return NULL;
4365
    }
4366
    switch(so_type) {
4367
    case SOCK_DGRAM:
4368
        return net_socket_fd_init_dgram(vlan, fd, is_connected);
4369
    case SOCK_STREAM:
4370
        return net_socket_fd_init_stream(vlan, fd, is_connected);
4371
    default:
4372
        /* who knows ... this could be a eg. a pty, do warn and continue as stream */
4373
        fprintf(stderr, "qemu: warning: socket type=%d for fd=%d is not SOCK_DGRAM or SOCK_STREAM\n", so_type, fd);
4374
        return net_socket_fd_init_stream(vlan, fd, is_connected);
4375
    }
4376
    return NULL;
4377
}
4378

    
4379
static void net_socket_accept(void *opaque)
4380
{
4381
    NetSocketListenState *s = opaque;
4382
    NetSocketState *s1;
4383
    struct sockaddr_in saddr;
4384
    socklen_t len;
4385
    int fd;
4386

    
4387
    for(;;) {
4388
        len = sizeof(saddr);
4389
        fd = accept(s->fd, (struct sockaddr *)&saddr, &len);
4390
        if (fd < 0 && errno != EINTR) {
4391
            return;
4392
        } else if (fd >= 0) {
4393
            break;
4394
        }
4395
    }
4396
    s1 = net_socket_fd_init(s->vlan, fd, 1);
4397
    if (!s1) {
4398
        closesocket(fd);
4399
    } else {
4400
        snprintf(s1->vc->info_str, sizeof(s1->vc->info_str),
4401
                 "socket: connection from %s:%d",
4402
                 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4403
    }
4404
}
4405

    
4406
static int net_socket_listen_init(VLANState *vlan, const char *host_str)
4407
{
4408
    NetSocketListenState *s;
4409
    int fd, val, ret;
4410
    struct sockaddr_in saddr;
4411

    
4412
    if (parse_host_port(&saddr, host_str) < 0)
4413
        return -1;
4414

    
4415
    s = qemu_mallocz(sizeof(NetSocketListenState));
4416
    if (!s)
4417
        return -1;
4418

    
4419
    fd = socket(PF_INET, SOCK_STREAM, 0);
4420
    if (fd < 0) {
4421
        perror("socket");
4422
        return -1;
4423
    }
4424
    socket_set_nonblock(fd);
4425

    
4426
    /* allow fast reuse */
4427
    val = 1;
4428
    setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (const char *)&val, sizeof(val));
4429

    
4430
    ret = bind(fd, (struct sockaddr *)&saddr, sizeof(saddr));
4431
    if (ret < 0) {
4432
        perror("bind");
4433
        return -1;
4434
    }
4435
    ret = listen(fd, 0);
4436
    if (ret < 0) {
4437
        perror("listen");
4438
        return -1;
4439
    }
4440
    s->vlan = vlan;
4441
    s->fd = fd;
4442
    qemu_set_fd_handler(fd, net_socket_accept, NULL, s);
4443
    return 0;
4444
}
4445

    
4446
static int net_socket_connect_init(VLANState *vlan, const char *host_str)
4447
{
4448
    NetSocketState *s;
4449
    int fd, connected, ret, err;
4450
    struct sockaddr_in saddr;
4451

    
4452
    if (parse_host_port(&saddr, host_str) < 0)
4453
        return -1;
4454

    
4455
    fd = socket(PF_INET, SOCK_STREAM, 0);
4456
    if (fd < 0) {
4457
        perror("socket");
4458
        return -1;
4459
    }
4460
    socket_set_nonblock(fd);
4461

    
4462
    connected = 0;
4463
    for(;;) {
4464
        ret = connect(fd, (struct sockaddr *)&saddr, sizeof(saddr));
4465
        if (ret < 0) {
4466
            err = socket_error();
4467
            if (err == EINTR || err == EWOULDBLOCK) {
4468
            } else if (err == EINPROGRESS) {
4469
                break;
4470
#ifdef _WIN32
4471
            } else if (err == WSAEALREADY) {
4472
                break;
4473
#endif
4474
            } else {
4475
                perror("connect");
4476
                closesocket(fd);
4477
                return -1;
4478
            }
4479
        } else {
4480
            connected = 1;
4481
            break;
4482
        }
4483
    }
4484
    s = net_socket_fd_init(vlan, fd, connected);
4485
    if (!s)
4486
        return -1;
4487
    snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4488
             "socket: connect to %s:%d",
4489
             inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4490
    return 0;
4491
}
4492

    
4493
static int net_socket_mcast_init(VLANState *vlan, const char *host_str)
4494
{
4495
    NetSocketState *s;
4496
    int fd;
4497
    struct sockaddr_in saddr;
4498

    
4499
    if (parse_host_port(&saddr, host_str) < 0)
4500
        return -1;
4501

    
4502

    
4503
    fd = net_socket_mcast_create(&saddr);
4504
    if (fd < 0)
4505
        return -1;
4506

    
4507
    s = net_socket_fd_init(vlan, fd, 0);
4508
    if (!s)
4509
        return -1;
4510

    
4511
    s->dgram_dst = saddr;
4512

    
4513
    snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4514
             "socket: mcast=%s:%d",
4515
             inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4516
    return 0;
4517

    
4518
}
4519

    
4520
static int get_param_value(char *buf, int buf_size,
4521
                           const char *tag, const char *str)
4522
{
4523
    const char *p;
4524
    char *q;
4525
    char option[128];
4526

    
4527
    p = str;
4528
    for(;;) {
4529
        q = option;
4530
        while (*p != '\0' && *p != '=') {
4531
            if ((q - option) < sizeof(option) - 1)
4532
                *q++ = *p;
4533
            p++;
4534
        }
4535
        *q = '\0';
4536
        if (*p != '=')
4537
            break;
4538
        p++;
4539
        if (!strcmp(tag, option)) {
4540
            q = buf;
4541
            while (*p != '\0' && *p != ',') {
4542
                if ((q - buf) < buf_size - 1)
4543
                    *q++ = *p;
4544
                p++;
4545
            }
4546
            *q = '\0';
4547
            return q - buf;
4548
        } else {
4549
            while (*p != '\0' && *p != ',') {
4550
                p++;
4551
            }
4552
        }
4553
        if (*p != ',')
4554
            break;
4555
        p++;
4556
    }
4557
    return 0;
4558
}
4559

    
4560
static int net_client_init(const char *str)
4561
{
4562
    const char *p;
4563
    char *q;
4564
    char device[64];
4565
    char buf[1024];
4566
    int vlan_id, ret;
4567
    VLANState *vlan;
4568

    
4569
    p = str;
4570
    q = device;
4571
    while (*p != '\0' && *p != ',') {
4572
        if ((q - device) < sizeof(device) - 1)
4573
            *q++ = *p;
4574
        p++;
4575
    }
4576
    *q = '\0';
4577
    if (*p == ',')
4578
        p++;
4579
    vlan_id = 0;
4580
    if (get_param_value(buf, sizeof(buf), "vlan", p)) {
4581
        vlan_id = strtol(buf, NULL, 0);
4582
    }
4583
    vlan = qemu_find_vlan(vlan_id);
4584
    if (!vlan) {
4585
        fprintf(stderr, "Could not create vlan %d\n", vlan_id);
4586
        return -1;
4587
    }
4588
    if (!strcmp(device, "nic")) {
4589
        NICInfo *nd;
4590
        uint8_t *macaddr;
4591

    
4592
        if (nb_nics >= MAX_NICS) {
4593
            fprintf(stderr, "Too Many NICs\n");
4594
            return -1;
4595
        }
4596
        nd = &nd_table[nb_nics];
4597
        macaddr = nd->macaddr;
4598
        macaddr[0] = 0x52;
4599
        macaddr[1] = 0x54;
4600
        macaddr[2] = 0x00;
4601
        macaddr[3] = 0x12;
4602
        macaddr[4] = 0x34;
4603
        macaddr[5] = 0x56 + nb_nics;
4604

    
4605
        if (get_param_value(buf, sizeof(buf), "macaddr", p)) {
4606
            if (parse_macaddr(macaddr, buf) < 0) {
4607
                fprintf(stderr, "invalid syntax for ethernet address\n");
4608
                return -1;
4609
            }
4610
        }
4611
        if (get_param_value(buf, sizeof(buf), "model", p)) {
4612
            nd->model = strdup(buf);
4613
        }
4614
        nd->vlan = vlan;
4615
        nb_nics++;
4616
        vlan->nb_guest_devs++;
4617
        ret = 0;
4618
    } else
4619
    if (!strcmp(device, "none")) {
4620
        /* does nothing. It is needed to signal that no network cards
4621
           are wanted */
4622
        ret = 0;
4623
    } else
4624
#ifdef CONFIG_SLIRP
4625
    if (!strcmp(device, "user")) {
4626
        if (get_param_value(buf, sizeof(buf), "hostname", p)) {
4627
            pstrcpy(slirp_hostname, sizeof(slirp_hostname), buf);
4628
        }
4629
        vlan->nb_host_devs++;
4630
        ret = net_slirp_init(vlan);
4631
    } else
4632
#endif
4633
#ifdef _WIN32
4634
    if (!strcmp(device, "tap")) {
4635
        char ifname[64];
4636
        if (get_param_value(ifname, sizeof(ifname), "ifname", p) <= 0) {
4637
            fprintf(stderr, "tap: no interface name\n");
4638
            return -1;
4639
        }
4640
        vlan->nb_host_devs++;
4641
        ret = tap_win32_init(vlan, ifname);
4642
    } else
4643
#else
4644
    if (!strcmp(device, "tap")) {
4645
        char ifname[64];
4646
        char setup_script[1024], down_script[1024];
4647
        int fd;
4648
        vlan->nb_host_devs++;
4649
        if (get_param_value(buf, sizeof(buf), "fd", p) > 0) {
4650
            fd = strtol(buf, NULL, 0);
4651
            ret = -1;
4652
            if (net_tap_fd_init(vlan, fd))
4653
                ret = 0;
4654
        } else {
4655
            if (get_param_value(ifname, sizeof(ifname), "ifname", p) <= 0) {
4656
                ifname[0] = '\0';
4657
            }
4658
            if (get_param_value(setup_script, sizeof(setup_script), "script", p) == 0) {
4659
                pstrcpy(setup_script, sizeof(setup_script), DEFAULT_NETWORK_SCRIPT);
4660
            }
4661
            if (get_param_value(down_script, sizeof(down_script), "downscript", p) == 0) {
4662
                pstrcpy(down_script, sizeof(down_script), DEFAULT_NETWORK_DOWN_SCRIPT);
4663
            }
4664
            ret = net_tap_init(vlan, ifname, setup_script, down_script);
4665
        }
4666
    } else
4667
#endif
4668
    if (!strcmp(device, "socket")) {
4669
        if (get_param_value(buf, sizeof(buf), "fd", p) > 0) {
4670
            int fd;
4671
            fd = strtol(buf, NULL, 0);
4672
            ret = -1;
4673
            if (net_socket_fd_init(vlan, fd, 1))
4674
                ret = 0;
4675
        } else if (get_param_value(buf, sizeof(buf), "listen", p) > 0) {
4676
            ret = net_socket_listen_init(vlan, buf);
4677
        } else if (get_param_value(buf, sizeof(buf), "connect", p) > 0) {
4678
            ret = net_socket_connect_init(vlan, buf);
4679
        } else if (get_param_value(buf, sizeof(buf), "mcast", p) > 0) {
4680
            ret = net_socket_mcast_init(vlan, buf);
4681
        } else {
4682
            fprintf(stderr, "Unknown socket options: %s\n", p);
4683
            return -1;
4684
        }
4685
        vlan->nb_host_devs++;
4686
    } else
4687
    {
4688
        fprintf(stderr, "Unknown network device: %s\n", device);
4689
        return -1;
4690
    }
4691
    if (ret < 0) {
4692
        fprintf(stderr, "Could not initialize device '%s'\n", device);
4693
    }
4694

    
4695
    return ret;
4696
}
4697

    
4698
void do_info_network(void)
4699
{
4700
    VLANState *vlan;
4701
    VLANClientState *vc;
4702

    
4703
    for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
4704
        term_printf("VLAN %d devices:\n", vlan->id);
4705
        for(vc = vlan->first_client; vc != NULL; vc = vc->next)
4706
            term_printf("  %s\n", vc->info_str);
4707
    }
4708
}
4709

    
4710
/***********************************************************/
4711
/* USB devices */
4712

    
4713
static USBPort *used_usb_ports;
4714
static USBPort *free_usb_ports;
4715

    
4716
/* ??? Maybe change this to register a hub to keep track of the topology.  */
4717
void qemu_register_usb_port(USBPort *port, void *opaque, int index,
4718
                            usb_attachfn attach)
4719
{
4720
    port->opaque = opaque;
4721
    port->index = index;
4722
    port->attach = attach;
4723
    port->next = free_usb_ports;
4724
    free_usb_ports = port;
4725
}
4726

    
4727
static int usb_device_add(const char *devname)
4728
{
4729
    const char *p;
4730
    USBDevice *dev;
4731
    USBPort *port;
4732

    
4733
    if (!free_usb_ports)
4734
        return -1;
4735

    
4736
    if (strstart(devname, "host:", &p)) {
4737
        dev = usb_host_device_open(p);
4738
    } else if (!strcmp(devname, "mouse")) {
4739
        dev = usb_mouse_init();
4740
    } else if (!strcmp(devname, "tablet")) {
4741
        dev = usb_tablet_init();
4742
    } else if (!strcmp(devname, "keyboard")) {
4743
        dev = usb_keyboard_init();
4744
    } else if (strstart(devname, "disk:", &p)) {
4745
        dev = usb_msd_init(p);
4746
    } else if (!strcmp(devname, "wacom-tablet")) {
4747
        dev = usb_wacom_init();
4748
    } else {
4749
        return -1;
4750
    }
4751
    if (!dev)
4752
        return -1;
4753

    
4754
    /* Find a USB port to add the device to.  */
4755
    port = free_usb_ports;
4756
    if (!port->next) {
4757
        USBDevice *hub;
4758

    
4759
        /* Create a new hub and chain it on.  */
4760
        free_usb_ports = NULL;
4761
        port->next = used_usb_ports;
4762
        used_usb_ports = port;
4763

    
4764
        hub = usb_hub_init(VM_USB_HUB_SIZE);
4765
        usb_attach(port, hub);
4766
        port = free_usb_ports;
4767
    }
4768

    
4769
    free_usb_ports = port->next;
4770
    port->next = used_usb_ports;
4771
    used_usb_ports = port;
4772
    usb_attach(port, dev);
4773
    return 0;
4774
}
4775

    
4776
static int usb_device_del(const char *devname)
4777
{
4778
    USBPort *port;
4779
    USBPort **lastp;
4780
    USBDevice *dev;
4781
    int bus_num, addr;
4782
    const char *p;
4783

    
4784
    if (!used_usb_ports)
4785
        return -1;
4786

    
4787
    p = strchr(devname, '.');
4788
    if (!p)
4789
        return -1;
4790
    bus_num = strtoul(devname, NULL, 0);
4791
    addr = strtoul(p + 1, NULL, 0);
4792
    if (bus_num != 0)
4793
        return -1;
4794

    
4795
    lastp = &used_usb_ports;
4796
    port = used_usb_ports;
4797
    while (port && port->dev->addr != addr) {
4798
        lastp = &port->next;
4799
        port = port->next;
4800
    }
4801

    
4802
    if (!port)
4803
        return -1;
4804

    
4805
    dev = port->dev;
4806
    *lastp = port->next;
4807
    usb_attach(port, NULL);
4808
    dev->handle_destroy(dev);
4809
    port->next = free_usb_ports;
4810
    free_usb_ports = port;
4811
    return 0;
4812
}
4813

    
4814
void do_usb_add(const char *devname)
4815
{
4816
    int ret;
4817
    ret = usb_device_add(devname);
4818
    if (ret < 0)
4819
        term_printf("Could not add USB device '%s'\n", devname);
4820
}
4821

    
4822
void do_usb_del(const char *devname)
4823
{
4824
    int ret;
4825
    ret = usb_device_del(devname);
4826
    if (ret < 0)
4827
        term_printf("Could not remove USB device '%s'\n", devname);
4828
}
4829

    
4830
void usb_info(void)
4831
{
4832
    USBDevice *dev;
4833
    USBPort *port;
4834
    const char *speed_str;
4835

    
4836
    if (!usb_enabled) {
4837
        term_printf("USB support not enabled\n");
4838
        return;
4839
    }
4840

    
4841
    for (port = used_usb_ports; port; port = port->next) {
4842
        dev = port->dev;
4843
        if (!dev)
4844
            continue;
4845
        switch(dev->speed) {
4846
        case USB_SPEED_LOW:
4847
            speed_str = "1.5";
4848
            break;
4849
        case USB_SPEED_FULL:
4850
            speed_str = "12";
4851
            break;
4852
        case USB_SPEED_HIGH:
4853
            speed_str = "480";
4854
            break;
4855
        default:
4856
            speed_str = "?";
4857
            break;
4858
        }
4859
        term_printf("  Device %d.%d, Speed %s Mb/s, Product %s\n",
4860
                    0, dev->addr, speed_str, dev->devname);
4861
    }
4862
}
4863

    
4864
/***********************************************************/
4865
/* PCMCIA/Cardbus */
4866

    
4867
static struct pcmcia_socket_entry_s {
4868
    struct pcmcia_socket_s *socket;
4869
    struct pcmcia_socket_entry_s *next;
4870
} *pcmcia_sockets = 0;
4871

    
4872
void pcmcia_socket_register(struct pcmcia_socket_s *socket)
4873
{
4874
    struct pcmcia_socket_entry_s *entry;
4875

    
4876
    entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
4877
    entry->socket = socket;
4878
    entry->next = pcmcia_sockets;
4879
    pcmcia_sockets = entry;
4880
}
4881

    
4882
void pcmcia_socket_unregister(struct pcmcia_socket_s *socket)
4883
{
4884
    struct pcmcia_socket_entry_s *entry, **ptr;
4885

    
4886
    ptr = &pcmcia_sockets;
4887
    for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
4888
        if (entry->socket == socket) {
4889
            *ptr = entry->next;
4890
            qemu_free(entry);
4891
        }
4892
}
4893

    
4894
void pcmcia_info(void)
4895
{
4896
    struct pcmcia_socket_entry_s *iter;
4897
    if (!pcmcia_sockets)
4898
        term_printf("No PCMCIA sockets\n");
4899

    
4900
    for (iter = pcmcia_sockets; iter; iter = iter->next)
4901
        term_printf("%s: %s\n", iter->socket->slot_string,
4902
                    iter->socket->attached ? iter->socket->card_string :
4903
                    "Empty");
4904
}
4905

    
4906
/***********************************************************/
4907
/* dumb display */
4908

    
4909
static void dumb_update(DisplayState *ds, int x, int y, int w, int h)
4910
{
4911
}
4912

    
4913
static void dumb_resize(DisplayState *ds, int w, int h)
4914
{
4915
}
4916

    
4917
static void dumb_refresh(DisplayState *ds)
4918
{
4919
#if defined(CONFIG_SDL)
4920
    vga_hw_update();
4921
#endif
4922
}
4923

    
4924
static void dumb_display_init(DisplayState *ds)
4925
{
4926
    ds->data = NULL;
4927
    ds->linesize = 0;
4928
    ds->depth = 0;
4929
    ds->dpy_update = dumb_update;
4930
    ds->dpy_resize = dumb_resize;
4931
    ds->dpy_refresh = dumb_refresh;
4932
}
4933

    
4934
/***********************************************************/
4935
/* I/O handling */
4936

    
4937
#define MAX_IO_HANDLERS 64
4938

    
4939
typedef struct IOHandlerRecord {
4940
    int fd;
4941
    IOCanRWHandler *fd_read_poll;
4942
    IOHandler *fd_read;
4943
    IOHandler *fd_write;
4944
    int deleted;
4945
    void *opaque;
4946
    /* temporary data */
4947
    struct pollfd *ufd;
4948
    struct IOHandlerRecord *next;
4949
} IOHandlerRecord;
4950

    
4951
static IOHandlerRecord *first_io_handler;
4952

    
4953
/* XXX: fd_read_poll should be suppressed, but an API change is
4954
   necessary in the character devices to suppress fd_can_read(). */
4955
int qemu_set_fd_handler2(int fd,
4956
                         IOCanRWHandler *fd_read_poll,
4957
                         IOHandler *fd_read,
4958
                         IOHandler *fd_write,
4959
                         void *opaque)
4960
{
4961
    IOHandlerRecord **pioh, *ioh;
4962

    
4963
    if (!fd_read && !fd_write) {
4964
        pioh = &first_io_handler;
4965
        for(;;) {
4966
            ioh = *pioh;
4967
            if (ioh == NULL)
4968
                break;
4969
            if (ioh->fd == fd) {
4970
                ioh->deleted = 1;
4971
                break;
4972
            }
4973
            pioh = &ioh->next;
4974
        }
4975
    } else {
4976
        for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
4977
            if (ioh->fd == fd)
4978
                goto found;
4979
        }
4980
        ioh = qemu_mallocz(sizeof(IOHandlerRecord));
4981
        if (!ioh)
4982
            return -1;
4983
        ioh->next = first_io_handler;
4984
        first_io_handler = ioh;
4985
    found:
4986
        ioh->fd = fd;
4987
        ioh->fd_read_poll = fd_read_poll;
4988
        ioh->fd_read = fd_read;
4989
        ioh->fd_write = fd_write;
4990
        ioh->opaque = opaque;
4991
        ioh->deleted = 0;
4992
    }
4993
    return 0;
4994
}
4995

    
4996
int qemu_set_fd_handler(int fd,
4997
                        IOHandler *fd_read,
4998
                        IOHandler *fd_write,
4999
                        void *opaque)
5000
{
5001
    return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
5002
}
5003

    
5004
/***********************************************************/
5005
/* Polling handling */
5006

    
5007
typedef struct PollingEntry {
5008
    PollingFunc *func;
5009
    void *opaque;
5010
    struct PollingEntry *next;
5011
} PollingEntry;
5012

    
5013
static PollingEntry *first_polling_entry;
5014

    
5015
int qemu_add_polling_cb(PollingFunc *func, void *opaque)
5016
{
5017
    PollingEntry **ppe, *pe;
5018
    pe = qemu_mallocz(sizeof(PollingEntry));
5019
    if (!pe)
5020
        return -1;
5021
    pe->func = func;
5022
    pe->opaque = opaque;
5023
    for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
5024
    *ppe = pe;
5025
    return 0;
5026
}
5027

    
5028
void qemu_del_polling_cb(PollingFunc *func, void *opaque)
5029
{
5030
    PollingEntry **ppe, *pe;
5031
    for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
5032
        pe = *ppe;
5033
        if (pe->func == func && pe->opaque == opaque) {
5034
            *ppe = pe->next;
5035
            qemu_free(pe);
5036
            break;
5037
        }
5038
    }
5039
}
5040

    
5041
#ifdef _WIN32
5042
/***********************************************************/
5043
/* Wait objects support */
5044
typedef struct WaitObjects {
5045
    int num;
5046
    HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
5047
    WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
5048
    void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
5049
} WaitObjects;
5050

    
5051
static WaitObjects wait_objects = {0};
5052

    
5053
int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
5054
{
5055
    WaitObjects *w = &wait_objects;
5056

    
5057
    if (w->num >= MAXIMUM_WAIT_OBJECTS)
5058
        return -1;
5059
    w->events[w->num] = handle;
5060
    w->func[w->num] = func;
5061
    w->opaque[w->num] = opaque;
5062
    w->num++;
5063
    return 0;
5064
}
5065

    
5066
void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
5067
{
5068
    int i, found;
5069
    WaitObjects *w = &wait_objects;
5070

    
5071
    found = 0;
5072
    for (i = 0; i < w->num; i++) {
5073
        if (w->events[i] == handle)
5074
            found = 1;
5075
        if (found) {
5076
            w->events[i] = w->events[i + 1];
5077
            w->func[i] = w->func[i + 1];
5078
            w->opaque[i] = w->opaque[i + 1];
5079
        }
5080
    }
5081
    if (found)
5082
        w->num--;
5083
}
5084
#endif
5085

    
5086
/***********************************************************/
5087
/* savevm/loadvm support */
5088

    
5089
#define IO_BUF_SIZE 32768
5090

    
5091
struct QEMUFile {
5092
    FILE *outfile;
5093
    BlockDriverState *bs;
5094
    int is_file;
5095
    int is_writable;
5096
    int64_t base_offset;
5097
    int64_t buf_offset; /* start of buffer when writing, end of buffer
5098
                           when reading */
5099
    int buf_index;
5100
    int buf_size; /* 0 when writing */
5101
    uint8_t buf[IO_BUF_SIZE];
5102
};
5103

    
5104
QEMUFile *qemu_fopen(const char *filename, const char *mode)
5105
{
5106
    QEMUFile *f;
5107

    
5108
    f = qemu_mallocz(sizeof(QEMUFile));
5109
    if (!f)
5110
        return NULL;
5111
    if (!strcmp(mode, "wb")) {
5112
        f->is_writable = 1;
5113
    } else if (!strcmp(mode, "rb")) {
5114
        f->is_writable = 0;
5115
    } else {
5116
        goto fail;
5117
    }
5118
    f->outfile = fopen(filename, mode);
5119
    if (!f->outfile)
5120
        goto fail;
5121
    f->is_file = 1;
5122
    return f;
5123
 fail:
5124
    if (f->outfile)
5125
        fclose(f->outfile);
5126
    qemu_free(f);
5127
    return NULL;
5128
}
5129

    
5130
static QEMUFile *qemu_fopen_bdrv(BlockDriverState *bs, int64_t offset, int is_writable)
5131
{
5132
    QEMUFile *f;
5133

    
5134
    f = qemu_mallocz(sizeof(QEMUFile));
5135
    if (!f)
5136
        return NULL;
5137
    f->is_file = 0;
5138
    f->bs = bs;
5139
    f->is_writable = is_writable;
5140
    f->base_offset = offset;
5141
    return f;
5142
}
5143

    
5144
void qemu_fflush(QEMUFile *f)
5145
{
5146
    if (!f->is_writable)
5147
        return;
5148
    if (f->buf_index > 0) {
5149
        if (f->is_file) {
5150
            fseek(f->outfile, f->buf_offset, SEEK_SET);
5151
            fwrite(f->buf, 1, f->buf_index, f->outfile);
5152
        } else {
5153
            bdrv_pwrite(f->bs, f->base_offset + f->buf_offset,
5154
                        f->buf, f->buf_index);
5155
        }
5156
        f->buf_offset += f->buf_index;
5157
        f->buf_index = 0;
5158
    }
5159
}
5160

    
5161
static void qemu_fill_buffer(QEMUFile *f)
5162
{
5163
    int len;
5164

    
5165
    if (f->is_writable)
5166
        return;
5167
    if (f->is_file) {
5168
        fseek(f->outfile, f->buf_offset, SEEK_SET);
5169
        len = fread(f->buf, 1, IO_BUF_SIZE, f->outfile);
5170
        if (len < 0)
5171
            len = 0;
5172
    } else {
5173
        len = bdrv_pread(f->bs, f->base_offset + f->buf_offset,
5174
                         f->buf, IO_BUF_SIZE);
5175
        if (len < 0)
5176
            len = 0;
5177
    }
5178
    f->buf_index = 0;
5179
    f->buf_size = len;
5180
    f->buf_offset += len;
5181
}
5182

    
5183
void qemu_fclose(QEMUFile *f)
5184
{
5185
    if (f->is_writable)
5186
        qemu_fflush(f);
5187
    if (f->is_file) {
5188
        fclose(f->outfile);
5189
    }
5190
    qemu_free(f);
5191
}
5192

    
5193
void qemu_put_buffer(QEMUFile *f, const uint8_t *buf, int size)
5194
{
5195
    int l;
5196
    while (size > 0) {
5197
        l = IO_BUF_SIZE - f->buf_index;
5198
        if (l > size)
5199
            l = size;
5200
        memcpy(f->buf + f->buf_index, buf, l);
5201
        f->buf_index += l;
5202
        buf += l;
5203
        size -= l;
5204
        if (f->buf_index >= IO_BUF_SIZE)
5205
            qemu_fflush(f);
5206
    }
5207
}
5208

    
5209
void qemu_put_byte(QEMUFile *f, int v)
5210
{
5211
    f->buf[f->buf_index++] = v;
5212
    if (f->buf_index >= IO_BUF_SIZE)
5213
        qemu_fflush(f);
5214
}
5215

    
5216
int qemu_get_buffer(QEMUFile *f, uint8_t *buf, int size1)
5217
{
5218
    int size, l;
5219

    
5220
    size = size1;
5221
    while (size > 0) {
5222
        l = f->buf_size - f->buf_index;
5223
        if (l == 0) {
5224
            qemu_fill_buffer(f);
5225
            l = f->buf_size - f->buf_index;
5226
            if (l == 0)
5227
                break;
5228
        }
5229
        if (l > size)
5230
            l = size;
5231
        memcpy(buf, f->buf + f->buf_index, l);
5232
        f->buf_index += l;
5233
        buf += l;
5234
        size -= l;
5235
    }
5236
    return size1 - size;
5237
}
5238

    
5239
int qemu_get_byte(QEMUFile *f)
5240
{
5241
    if (f->buf_index >= f->buf_size) {
5242
        qemu_fill_buffer(f);
5243
        if (f->buf_index >= f->buf_size)
5244
            return 0;
5245
    }
5246
    return f->buf[f->buf_index++];
5247
}
5248

    
5249
int64_t qemu_ftell(QEMUFile *f)
5250
{
5251
    return f->buf_offset - f->buf_size + f->buf_index;
5252
}
5253

    
5254
int64_t qemu_fseek(QEMUFile *f, int64_t pos, int whence)
5255
{
5256
    if (whence == SEEK_SET) {
5257
        /* nothing to do */
5258
    } else if (whence == SEEK_CUR) {
5259
        pos += qemu_ftell(f);
5260
    } else {
5261
        /* SEEK_END not supported */
5262
        return -1;
5263
    }
5264
    if (f->is_writable) {
5265
        qemu_fflush(f);
5266
        f->buf_offset = pos;
5267
    } else {
5268
        f->buf_offset = pos;
5269
        f->buf_index = 0;
5270
        f->buf_size = 0;
5271
    }
5272
    return pos;
5273
}
5274

    
5275
void qemu_put_be16(QEMUFile *f, unsigned int v)
5276
{
5277
    qemu_put_byte(f, v >> 8);
5278
    qemu_put_byte(f, v);
5279
}
5280

    
5281
void qemu_put_be32(QEMUFile *f, unsigned int v)
5282
{
5283
    qemu_put_byte(f, v >> 24);
5284
    qemu_put_byte(f, v >> 16);
5285
    qemu_put_byte(f, v >> 8);
5286
    qemu_put_byte(f, v);
5287
}
5288

    
5289
void qemu_put_be64(QEMUFile *f, uint64_t v)
5290
{
5291
    qemu_put_be32(f, v >> 32);
5292
    qemu_put_be32(f, v);
5293
}
5294

    
5295
unsigned int qemu_get_be16(QEMUFile *f)
5296
{
5297
    unsigned int v;
5298
    v = qemu_get_byte(f) << 8;
5299
    v |= qemu_get_byte(f);
5300
    return v;
5301
}
5302

    
5303
unsigned int qemu_get_be32(QEMUFile *f)
5304
{
5305
    unsigned int v;
5306
    v = qemu_get_byte(f) << 24;
5307
    v |= qemu_get_byte(f) << 16;
5308
    v |= qemu_get_byte(f) << 8;
5309
    v |= qemu_get_byte(f);
5310
    return v;
5311
}
5312

    
5313
uint64_t qemu_get_be64(QEMUFile *f)
5314
{
5315
    uint64_t v;
5316
    v = (uint64_t)qemu_get_be32(f) << 32;
5317
    v |= qemu_get_be32(f);
5318
    return v;
5319
}
5320

    
5321
typedef struct SaveStateEntry {
5322
    char idstr[256];
5323
    int instance_id;
5324
    int version_id;
5325
    SaveStateHandler *save_state;
5326
    LoadStateHandler *load_state;
5327
    void *opaque;
5328
    struct SaveStateEntry *next;
5329
} SaveStateEntry;
5330

    
5331
static SaveStateEntry *first_se;
5332

    
5333
int register_savevm(const char *idstr,
5334
                    int instance_id,
5335
                    int version_id,
5336
                    SaveStateHandler *save_state,
5337
                    LoadStateHandler *load_state,
5338
                    void *opaque)
5339
{
5340
    SaveStateEntry *se, **pse;
5341

    
5342
    se = qemu_malloc(sizeof(SaveStateEntry));
5343
    if (!se)
5344
        return -1;
5345
    pstrcpy(se->idstr, sizeof(se->idstr), idstr);
5346
    se->instance_id = instance_id;
5347
    se->version_id = version_id;
5348
    se->save_state = save_state;
5349
    se->load_state = load_state;
5350
    se->opaque = opaque;
5351
    se->next = NULL;
5352

    
5353
    /* add at the end of list */
5354
    pse = &first_se;
5355
    while (*pse != NULL)
5356
        pse = &(*pse)->next;
5357
    *pse = se;
5358
    return 0;
5359
}
5360

    
5361
#define QEMU_VM_FILE_MAGIC   0x5145564d
5362
#define QEMU_VM_FILE_VERSION 0x00000002
5363

    
5364
static int qemu_savevm_state(QEMUFile *f)
5365
{
5366
    SaveStateEntry *se;
5367
    int len, ret;
5368
    int64_t cur_pos, len_pos, total_len_pos;
5369

    
5370
    qemu_put_be32(f, QEMU_VM_FILE_MAGIC);
5371
    qemu_put_be32(f, QEMU_VM_FILE_VERSION);
5372
    total_len_pos = qemu_ftell(f);
5373
    qemu_put_be64(f, 0); /* total size */
5374

    
5375
    for(se = first_se; se != NULL; se = se->next) {
5376
        /* ID string */
5377
        len = strlen(se->idstr);
5378
        qemu_put_byte(f, len);
5379
        qemu_put_buffer(f, se->idstr, len);
5380

    
5381
        qemu_put_be32(f, se->instance_id);
5382
        qemu_put_be32(f, se->version_id);
5383

    
5384
        /* record size: filled later */
5385
        len_pos = qemu_ftell(f);
5386
        qemu_put_be32(f, 0);
5387
        se->save_state(f, se->opaque);
5388

    
5389
        /* fill record size */
5390
        cur_pos = qemu_ftell(f);
5391
        len = cur_pos - len_pos - 4;
5392
        qemu_fseek(f, len_pos, SEEK_SET);
5393
        qemu_put_be32(f, len);
5394
        qemu_fseek(f, cur_pos, SEEK_SET);
5395
    }
5396
    cur_pos = qemu_ftell(f);
5397
    qemu_fseek(f, total_len_pos, SEEK_SET);
5398
    qemu_put_be64(f, cur_pos - total_len_pos - 8);
5399
    qemu_fseek(f, cur_pos, SEEK_SET);
5400

    
5401
    ret = 0;
5402
    return ret;
5403
}
5404

    
5405
static SaveStateEntry *find_se(const char *idstr, int instance_id)
5406
{
5407
    SaveStateEntry *se;
5408

    
5409
    for(se = first_se; se != NULL; se = se->next) {
5410
        if (!strcmp(se->idstr, idstr) &&
5411
            instance_id == se->instance_id)
5412
            return se;
5413
    }
5414
    return NULL;
5415
}
5416

    
5417
static int qemu_loadvm_state(QEMUFile *f)
5418
{
5419
    SaveStateEntry *se;
5420
    int len, ret, instance_id, record_len, version_id;
5421
    int64_t total_len, end_pos, cur_pos;
5422
    unsigned int v;
5423
    char idstr[256];
5424

    
5425
    v = qemu_get_be32(f);
5426
    if (v != QEMU_VM_FILE_MAGIC)
5427
        goto fail;
5428
    v = qemu_get_be32(f);
5429
    if (v != QEMU_VM_FILE_VERSION) {
5430
    fail:
5431
        ret = -1;
5432
        goto the_end;
5433
    }
5434
    total_len = qemu_get_be64(f);
5435
    end_pos = total_len + qemu_ftell(f);
5436
    for(;;) {
5437
        if (qemu_ftell(f) >= end_pos)
5438
            break;
5439
        len = qemu_get_byte(f);
5440
        qemu_get_buffer(f, idstr, len);
5441
        idstr[len] = '\0';
5442
        instance_id = qemu_get_be32(f);
5443
        version_id = qemu_get_be32(f);
5444
        record_len = qemu_get_be32(f);
5445
#if 0
5446
        printf("idstr=%s instance=0x%x version=%d len=%d\n",
5447
               idstr, instance_id, version_id, record_len);
5448
#endif
5449
        cur_pos = qemu_ftell(f);
5450
        se = find_se(idstr, instance_id);
5451
        if (!se) {
5452
            fprintf(stderr, "qemu: warning: instance 0x%x of device '%s' not present in current VM\n",
5453
                    instance_id, idstr);
5454
        } else {
5455
            ret = se->load_state(f, se->opaque, version_id);
5456
            if (ret < 0) {
5457
                fprintf(stderr, "qemu: warning: error while loading state for instance 0x%x of device '%s'\n",
5458
                        instance_id, idstr);
5459
            }
5460
        }
5461
        /* always seek to exact end of record */
5462
        qemu_fseek(f, cur_pos + record_len, SEEK_SET);
5463
    }
5464
    ret = 0;
5465
 the_end:
5466
    return ret;
5467
}
5468

    
5469
/* device can contain snapshots */
5470
static int bdrv_can_snapshot(BlockDriverState *bs)
5471
{
5472
    return (bs &&
5473
            !bdrv_is_removable(bs) &&
5474
            !bdrv_is_read_only(bs));
5475
}
5476

    
5477
/* device must be snapshots in order to have a reliable snapshot */
5478
static int bdrv_has_snapshot(BlockDriverState *bs)
5479
{
5480
    return (bs &&
5481
            !bdrv_is_removable(bs) &&
5482
            !bdrv_is_read_only(bs));
5483
}
5484

    
5485
static BlockDriverState *get_bs_snapshots(void)
5486
{
5487
    BlockDriverState *bs;
5488
    int i;
5489

    
5490
    if (bs_snapshots)
5491
        return bs_snapshots;
5492
    for(i = 0; i <= MAX_DISKS; i++) {
5493
        bs = bs_table[i];
5494
        if (bdrv_can_snapshot(bs))
5495
            goto ok;
5496
    }
5497
    return NULL;
5498
 ok:
5499
    bs_snapshots = bs;
5500
    return bs;
5501
}
5502

    
5503
static int bdrv_snapshot_find(BlockDriverState *bs, QEMUSnapshotInfo *sn_info,
5504
                              const char *name)
5505
{
5506
    QEMUSnapshotInfo *sn_tab, *sn;
5507
    int nb_sns, i, ret;
5508

    
5509
    ret = -ENOENT;
5510
    nb_sns = bdrv_snapshot_list(bs, &sn_tab);
5511
    if (nb_sns < 0)
5512
        return ret;
5513
    for(i = 0; i < nb_sns; i++) {
5514
        sn = &sn_tab[i];
5515
        if (!strcmp(sn->id_str, name) || !strcmp(sn->name, name)) {
5516
            *sn_info = *sn;
5517
            ret = 0;
5518
            break;
5519
        }
5520
    }
5521
    qemu_free(sn_tab);
5522
    return ret;
5523
}
5524

    
5525
void do_savevm(const char *name)
5526
{
5527
    BlockDriverState *bs, *bs1;
5528
    QEMUSnapshotInfo sn1, *sn = &sn1, old_sn1, *old_sn = &old_sn1;
5529
    int must_delete, ret, i;
5530
    BlockDriverInfo bdi1, *bdi = &bdi1;
5531
    QEMUFile *f;
5532
    int saved_vm_running;
5533
#ifdef _WIN32
5534
    struct _timeb tb;
5535
#else
5536
    struct timeval tv;
5537
#endif
5538

    
5539
    bs = get_bs_snapshots();
5540
    if (!bs) {
5541
        term_printf("No block device can accept snapshots\n");
5542
        return;
5543
    }
5544

    
5545
    /* ??? Should this occur after vm_stop?  */
5546
    qemu_aio_flush();
5547

    
5548
    saved_vm_running = vm_running;
5549
    vm_stop(0);
5550

    
5551
    must_delete = 0;
5552
    if (name) {
5553
        ret = bdrv_snapshot_find(bs, old_sn, name);
5554
        if (ret >= 0) {
5555
            must_delete = 1;
5556
        }
5557
    }
5558
    memset(sn, 0, sizeof(*sn));
5559
    if (must_delete) {
5560
        pstrcpy(sn->name, sizeof(sn->name), old_sn->name);
5561
        pstrcpy(sn->id_str, sizeof(sn->id_str), old_sn->id_str);
5562
    } else {
5563
        if (name)
5564
            pstrcpy(sn->name, sizeof(sn->name), name);
5565
    }
5566

    
5567
    /* fill auxiliary fields */
5568
#ifdef _WIN32
5569
    _ftime(&tb);
5570
    sn->date_sec = tb.time;
5571
    sn->date_nsec = tb.millitm * 1000000;
5572
#else
5573
    gettimeofday(&tv, NULL);
5574
    sn->date_sec = tv.tv_sec;
5575
    sn->date_nsec = tv.tv_usec * 1000;
5576
#endif
5577
    sn->vm_clock_nsec = qemu_get_clock(vm_clock);
5578

    
5579
    if (bdrv_get_info(bs, bdi) < 0 || bdi->vm_state_offset <= 0) {
5580
        term_printf("Device %s does not support VM state snapshots\n",
5581
                    bdrv_get_device_name(bs));
5582
        goto the_end;
5583
    }
5584

    
5585
    /* save the VM state */
5586
    f = qemu_fopen_bdrv(bs, bdi->vm_state_offset, 1);
5587
    if (!f) {
5588
        term_printf("Could not open VM state file\n");
5589
        goto the_end;
5590
    }
5591
    ret = qemu_savevm_state(f);
5592
    sn->vm_state_size = qemu_ftell(f);
5593
    qemu_fclose(f);
5594
    if (ret < 0) {
5595
        term_printf("Error %d while writing VM\n", ret);
5596
        goto the_end;
5597
    }
5598

    
5599
    /* create the snapshots */
5600

    
5601
    for(i = 0; i < MAX_DISKS; i++) {
5602
        bs1 = bs_table[i];
5603
        if (bdrv_has_snapshot(bs1)) {
5604
            if (must_delete) {
5605
                ret = bdrv_snapshot_delete(bs1, old_sn->id_str);
5606
                if (ret < 0) {
5607
                    term_printf("Error while deleting snapshot on '%s'\n",
5608
                                bdrv_get_device_name(bs1));
5609
                }
5610
            }
5611
            ret = bdrv_snapshot_create(bs1, sn);
5612
            if (ret < 0) {
5613
                term_printf("Error while creating snapshot on '%s'\n",
5614
                            bdrv_get_device_name(bs1));
5615
            }
5616
        }
5617
    }
5618

    
5619
 the_end:
5620
    if (saved_vm_running)
5621
        vm_start();
5622
}
5623

    
5624
void do_loadvm(const char *name)
5625
{
5626
    BlockDriverState *bs, *bs1;
5627
    BlockDriverInfo bdi1, *bdi = &bdi1;
5628
    QEMUFile *f;
5629
    int i, ret;
5630
    int saved_vm_running;
5631

    
5632
    bs = get_bs_snapshots();
5633
    if (!bs) {
5634
        term_printf("No block device supports snapshots\n");
5635
        return;
5636
    }
5637

    
5638
    /* Flush all IO requests so they don't interfere with the new state.  */
5639
    qemu_aio_flush();
5640

    
5641
    saved_vm_running = vm_running;
5642
    vm_stop(0);
5643

    
5644
    for(i = 0; i <= MAX_DISKS; i++) {
5645
        bs1 = bs_table[i];
5646
        if (bdrv_has_snapshot(bs1)) {
5647
            ret = bdrv_snapshot_goto(bs1, name);
5648
            if (ret < 0) {
5649
                if (bs != bs1)
5650
                    term_printf("Warning: ");
5651
                switch(ret) {
5652
                case -ENOTSUP:
5653
                    term_printf("Snapshots not supported on device '%s'\n",
5654
                                bdrv_get_device_name(bs1));
5655
                    break;
5656
                case -ENOENT:
5657
                    term_printf("Could not find snapshot '%s' on device '%s'\n",
5658
                                name, bdrv_get_device_name(bs1));
5659
                    break;
5660
                default:
5661
                    term_printf("Error %d while activating snapshot on '%s'\n",
5662
                                ret, bdrv_get_device_name(bs1));
5663
                    break;
5664
                }
5665
                /* fatal on snapshot block device */
5666
                if (bs == bs1)
5667
                    goto the_end;
5668
            }
5669
        }
5670
    }
5671

    
5672
    if (bdrv_get_info(bs, bdi) < 0 || bdi->vm_state_offset <= 0) {
5673
        term_printf("Device %s does not support VM state snapshots\n",
5674
                    bdrv_get_device_name(bs));
5675
        return;
5676
    }
5677

    
5678
    /* restore the VM state */
5679
    f = qemu_fopen_bdrv(bs, bdi->vm_state_offset, 0);
5680
    if (!f) {
5681
        term_printf("Could not open VM state file\n");
5682
        goto the_end;
5683
    }
5684
    ret = qemu_loadvm_state(f);
5685
    qemu_fclose(f);
5686
    if (ret < 0) {
5687
        term_printf("Error %d while loading VM state\n", ret);
5688
    }
5689
 the_end:
5690
    if (saved_vm_running)
5691
        vm_start();
5692
}
5693

    
5694
void do_delvm(const char *name)
5695
{
5696
    BlockDriverState *bs, *bs1;
5697
    int i, ret;
5698

    
5699
    bs = get_bs_snapshots();
5700
    if (!bs) {
5701
        term_printf("No block device supports snapshots\n");
5702
        return;
5703
    }
5704

    
5705
    for(i = 0; i <= MAX_DISKS; i++) {
5706
        bs1 = bs_table[i];
5707
        if (bdrv_has_snapshot(bs1)) {
5708
            ret = bdrv_snapshot_delete(bs1, name);
5709
            if (ret < 0) {
5710
                if (ret == -ENOTSUP)
5711
                    term_printf("Snapshots not supported on device '%s'\n",
5712
                                bdrv_get_device_name(bs1));
5713
                else
5714
                    term_printf("Error %d while deleting snapshot on '%s'\n",
5715
                                ret, bdrv_get_device_name(bs1));
5716
            }
5717
        }
5718
    }
5719
}
5720

    
5721
void do_info_snapshots(void)
5722
{
5723
    BlockDriverState *bs, *bs1;
5724
    QEMUSnapshotInfo *sn_tab, *sn;
5725
    int nb_sns, i;
5726
    char buf[256];
5727

    
5728
    bs = get_bs_snapshots();
5729
    if (!bs) {
5730
        term_printf("No available block device supports snapshots\n");
5731
        return;
5732
    }
5733
    term_printf("Snapshot devices:");
5734
    for(i = 0; i <= MAX_DISKS; i++) {
5735
        bs1 = bs_table[i];
5736
        if (bdrv_has_snapshot(bs1)) {
5737
            if (bs == bs1)
5738
                term_printf(" %s", bdrv_get_device_name(bs1));
5739
        }
5740
    }
5741
    term_printf("\n");
5742

    
5743
    nb_sns = bdrv_snapshot_list(bs, &sn_tab);
5744
    if (nb_sns < 0) {
5745
        term_printf("bdrv_snapshot_list: error %d\n", nb_sns);
5746
        return;
5747
    }
5748
    term_printf("Snapshot list (from %s):\n", bdrv_get_device_name(bs));
5749
    term_printf("%s\n", bdrv_snapshot_dump(buf, sizeof(buf), NULL));
5750
    for(i = 0; i < nb_sns; i++) {
5751
        sn = &sn_tab[i];
5752
        term_printf("%s\n", bdrv_snapshot_dump(buf, sizeof(buf), sn));
5753
    }
5754
    qemu_free(sn_tab);
5755
}
5756

    
5757
/***********************************************************/
5758
/* cpu save/restore */
5759

    
5760
#if defined(TARGET_I386)
5761

    
5762
static void cpu_put_seg(QEMUFile *f, SegmentCache *dt)
5763
{
5764
    qemu_put_be32(f, dt->selector);
5765
    qemu_put_betl(f, dt->base);
5766
    qemu_put_be32(f, dt->limit);
5767
    qemu_put_be32(f, dt->flags);
5768
}
5769

    
5770
static void cpu_get_seg(QEMUFile *f, SegmentCache *dt)
5771
{
5772
    dt->selector = qemu_get_be32(f);
5773
    dt->base = qemu_get_betl(f);
5774
    dt->limit = qemu_get_be32(f);
5775
    dt->flags = qemu_get_be32(f);
5776
}
5777

    
5778
void cpu_save(QEMUFile *f, void *opaque)
5779
{
5780
    CPUState *env = opaque;
5781
    uint16_t fptag, fpus, fpuc, fpregs_format;
5782
    uint32_t hflags;
5783
    int i;
5784

    
5785
    for(i = 0; i < CPU_NB_REGS; i++)
5786
        qemu_put_betls(f, &env->regs[i]);
5787
    qemu_put_betls(f, &env->eip);
5788
    qemu_put_betls(f, &env->eflags);
5789
    hflags = env->hflags; /* XXX: suppress most of the redundant hflags */
5790
    qemu_put_be32s(f, &hflags);
5791

    
5792
    /* FPU */
5793
    fpuc = env->fpuc;
5794
    fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
5795
    fptag = 0;
5796
    for(i = 0; i < 8; i++) {
5797
        fptag |= ((!env->fptags[i]) << i);
5798
    }
5799

    
5800
    qemu_put_be16s(f, &fpuc);
5801
    qemu_put_be16s(f, &fpus);
5802
    qemu_put_be16s(f, &fptag);
5803

    
5804
#ifdef USE_X86LDOUBLE
5805
    fpregs_format = 0;
5806
#else
5807
    fpregs_format = 1;
5808
#endif
5809
    qemu_put_be16s(f, &fpregs_format);
5810

    
5811
    for(i = 0; i < 8; i++) {
5812
#ifdef USE_X86LDOUBLE
5813
        {
5814
            uint64_t mant;
5815
            uint16_t exp;
5816
            /* we save the real CPU data (in case of MMX usage only 'mant'
5817
               contains the MMX register */
5818
            cpu_get_fp80(&mant, &exp, env->fpregs[i].d);
5819
            qemu_put_be64(f, mant);
5820
            qemu_put_be16(f, exp);
5821
        }
5822
#else
5823
        /* if we use doubles for float emulation, we save the doubles to
5824
           avoid losing information in case of MMX usage. It can give
5825
           problems if the image is restored on a CPU where long
5826
           doubles are used instead. */
5827
        qemu_put_be64(f, env->fpregs[i].mmx.MMX_Q(0));
5828
#endif
5829
    }
5830

    
5831
    for(i = 0; i < 6; i++)
5832
        cpu_put_seg(f, &env->segs[i]);
5833
    cpu_put_seg(f, &env->ldt);
5834
    cpu_put_seg(f, &env->tr);
5835
    cpu_put_seg(f, &env->gdt);
5836
    cpu_put_seg(f, &env->idt);
5837

    
5838
    qemu_put_be32s(f, &env->sysenter_cs);
5839
    qemu_put_be32s(f, &env->sysenter_esp);
5840
    qemu_put_be32s(f, &env->sysenter_eip);
5841

    
5842
    qemu_put_betls(f, &env->cr[0]);
5843
    qemu_put_betls(f, &env->cr[2]);
5844
    qemu_put_betls(f, &env->cr[3]);
5845
    qemu_put_betls(f, &env->cr[4]);
5846

    
5847
    for(i = 0; i < 8; i++)
5848
        qemu_put_betls(f, &env->dr[i]);
5849

    
5850
    /* MMU */
5851
    qemu_put_be32s(f, &env->a20_mask);
5852

    
5853
    /* XMM */
5854
    qemu_put_be32s(f, &env->mxcsr);
5855
    for(i = 0; i < CPU_NB_REGS; i++) {
5856
        qemu_put_be64s(f, &env->xmm_regs[i].XMM_Q(0));
5857
        qemu_put_be64s(f, &env->xmm_regs[i].XMM_Q(1));
5858
    }
5859

    
5860
#ifdef TARGET_X86_64
5861
    qemu_put_be64s(f, &env->efer);
5862
    qemu_put_be64s(f, &env->star);
5863
    qemu_put_be64s(f, &env->lstar);
5864
    qemu_put_be64s(f, &env->cstar);
5865
    qemu_put_be64s(f, &env->fmask);
5866
    qemu_put_be64s(f, &env->kernelgsbase);
5867
#endif
5868
    qemu_put_be32s(f, &env->smbase);
5869
}
5870

    
5871
#ifdef USE_X86LDOUBLE
5872
/* XXX: add that in a FPU generic layer */
5873
union x86_longdouble {
5874
    uint64_t mant;
5875
    uint16_t exp;
5876
};
5877

    
5878
#define MANTD1(fp)        (fp & ((1LL << 52) - 1))
5879
#define EXPBIAS1 1023
5880
#define EXPD1(fp)        ((fp >> 52) & 0x7FF)
5881
#define SIGND1(fp)        ((fp >> 32) & 0x80000000)
5882

    
5883
static void fp64_to_fp80(union x86_longdouble *p, uint64_t temp)
5884
{
5885
    int e;
5886
    /* mantissa */
5887
    p->mant = (MANTD1(temp) << 11) | (1LL << 63);
5888
    /* exponent + sign */
5889
    e = EXPD1(temp) - EXPBIAS1 + 16383;
5890
    e |= SIGND1(temp) >> 16;
5891
    p->exp = e;
5892
}
5893
#endif
5894

    
5895
int cpu_load(QEMUFile *f, void *opaque, int version_id)
5896
{
5897
    CPUState *env = opaque;
5898
    int i, guess_mmx;
5899
    uint32_t hflags;
5900
    uint16_t fpus, fpuc, fptag, fpregs_format;
5901

    
5902
    if (version_id != 3 && version_id != 4)
5903
        return -EINVAL;
5904
    for(i = 0; i < CPU_NB_REGS; i++)
5905
        qemu_get_betls(f, &env->regs[i]);
5906
    qemu_get_betls(f, &env->eip);
5907
    qemu_get_betls(f, &env->eflags);
5908
    qemu_get_be32s(f, &hflags);
5909

    
5910
    qemu_get_be16s(f, &fpuc);
5911
    qemu_get_be16s(f, &fpus);
5912
    qemu_get_be16s(f, &fptag);
5913
    qemu_get_be16s(f, &fpregs_format);
5914

    
5915
    /* NOTE: we cannot always restore the FPU state if the image come
5916
       from a host with a different 'USE_X86LDOUBLE' define. We guess
5917
       if we are in an MMX state to restore correctly in that case. */
5918
    guess_mmx = ((fptag == 0xff) && (fpus & 0x3800) == 0);
5919
    for(i = 0; i < 8; i++) {
5920
        uint64_t mant;
5921
        uint16_t exp;
5922

    
5923
        switch(fpregs_format) {
5924
        case 0:
5925
            mant = qemu_get_be64(f);
5926
            exp = qemu_get_be16(f);
5927
#ifdef USE_X86LDOUBLE
5928
            env->fpregs[i].d = cpu_set_fp80(mant, exp);
5929
#else
5930
            /* difficult case */
5931
            if (guess_mmx)
5932
                env->fpregs[i].mmx.MMX_Q(0) = mant;
5933
            else
5934
                env->fpregs[i].d = cpu_set_fp80(mant, exp);
5935
#endif
5936
            break;
5937
        case 1:
5938
            mant = qemu_get_be64(f);
5939
#ifdef USE_X86LDOUBLE
5940
            {
5941
                union x86_longdouble *p;
5942
                /* difficult case */
5943
                p = (void *)&env->fpregs[i];
5944
                if (guess_mmx) {
5945
                    p->mant = mant;
5946
                    p->exp = 0xffff;
5947
                } else {
5948
                    fp64_to_fp80(p, mant);
5949
                }
5950
            }
5951
#else
5952
            env->fpregs[i].mmx.MMX_Q(0) = mant;
5953
#endif
5954
            break;
5955
        default:
5956
            return -EINVAL;
5957
        }
5958
    }
5959

    
5960
    env->fpuc = fpuc;
5961
    /* XXX: restore FPU round state */
5962
    env->fpstt = (fpus >> 11) & 7;
5963
    env->fpus = fpus & ~0x3800;
5964
    fptag ^= 0xff;
5965
    for(i = 0; i < 8; i++) {
5966
        env->fptags[i] = (fptag >> i) & 1;
5967
    }
5968

    
5969
    for(i = 0; i < 6; i++)
5970
        cpu_get_seg(f, &env->segs[i]);
5971
    cpu_get_seg(f, &env->ldt);
5972
    cpu_get_seg(f, &env->tr);
5973
    cpu_get_seg(f, &env->gdt);
5974
    cpu_get_seg(f, &env->idt);
5975

    
5976
    qemu_get_be32s(f, &env->sysenter_cs);
5977
    qemu_get_be32s(f, &env->sysenter_esp);
5978
    qemu_get_be32s(f, &env->sysenter_eip);
5979

    
5980
    qemu_get_betls(f, &env->cr[0]);
5981
    qemu_get_betls(f, &env->cr[2]);
5982
    qemu_get_betls(f, &env->cr[3]);
5983
    qemu_get_betls(f, &env->cr[4]);
5984

    
5985
    for(i = 0; i < 8; i++)
5986
        qemu_get_betls(f, &env->dr[i]);
5987

    
5988
    /* MMU */
5989
    qemu_get_be32s(f, &env->a20_mask);
5990

    
5991
    qemu_get_be32s(f, &env->mxcsr);
5992
    for(i = 0; i < CPU_NB_REGS; i++) {
5993
        qemu_get_be64s(f, &env->xmm_regs[i].XMM_Q(0));
5994
        qemu_get_be64s(f, &env->xmm_regs[i].XMM_Q(1));
5995
    }
5996

    
5997
#ifdef TARGET_X86_64
5998
    qemu_get_be64s(f, &env->efer);
5999
    qemu_get_be64s(f, &env->star);
6000
    qemu_get_be64s(f, &env->lstar);
6001
    qemu_get_be64s(f, &env->cstar);
6002
    qemu_get_be64s(f, &env->fmask);
6003
    qemu_get_be64s(f, &env->kernelgsbase);
6004
#endif
6005
    if (version_id >= 4)
6006
        qemu_get_be32s(f, &env->smbase);
6007

    
6008
    /* XXX: compute hflags from scratch, except for CPL and IIF */
6009
    env->hflags = hflags;
6010
    tlb_flush(env, 1);
6011
    return 0;
6012
}
6013

    
6014
#elif defined(TARGET_PPC)
6015
void cpu_save(QEMUFile *f, void *opaque)
6016
{
6017
}
6018

    
6019
int cpu_load(QEMUFile *f, void *opaque, int version_id)
6020
{
6021
    return 0;
6022
}
6023

    
6024
#elif defined(TARGET_MIPS)
6025
void cpu_save(QEMUFile *f, void *opaque)
6026
{
6027
}
6028

    
6029
int cpu_load(QEMUFile *f, void *opaque, int version_id)
6030
{
6031
    return 0;
6032
}
6033

    
6034
#elif defined(TARGET_SPARC)
6035
void cpu_save(QEMUFile *f, void *opaque)
6036
{
6037
    CPUState *env = opaque;
6038
    int i;
6039
    uint32_t tmp;
6040

    
6041
    for(i = 0; i < 8; i++)
6042
        qemu_put_betls(f, &env->gregs[i]);
6043
    for(i = 0; i < NWINDOWS * 16; i++)
6044
        qemu_put_betls(f, &env->regbase[i]);
6045

    
6046
    /* FPU */
6047
    for(i = 0; i < TARGET_FPREGS; i++) {
6048
        union {
6049
            float32 f;
6050
            uint32_t i;
6051
        } u;
6052
        u.f = env->fpr[i];
6053
        qemu_put_be32(f, u.i);
6054
    }
6055

    
6056
    qemu_put_betls(f, &env->pc);
6057
    qemu_put_betls(f, &env->npc);
6058
    qemu_put_betls(f, &env->y);
6059
    tmp = GET_PSR(env);
6060
    qemu_put_be32(f, tmp);
6061
    qemu_put_betls(f, &env->fsr);
6062
    qemu_put_betls(f, &env->tbr);
6063
#ifndef TARGET_SPARC64
6064
    qemu_put_be32s(f, &env->wim);
6065
    /* MMU */
6066
    for(i = 0; i < 16; i++)
6067
        qemu_put_be32s(f, &env->mmuregs[i]);
6068
#endif
6069
}
6070

    
6071
int cpu_load(QEMUFile *f, void *opaque, int version_id)
6072
{
6073
    CPUState *env = opaque;
6074
    int i;
6075
    uint32_t tmp;
6076

    
6077
    for(i = 0; i < 8; i++)
6078
        qemu_get_betls(f, &env->gregs[i]);
6079
    for(i = 0; i < NWINDOWS * 16; i++)
6080
        qemu_get_betls(f, &env->regbase[i]);
6081

    
6082
    /* FPU */
6083
    for(i = 0; i < TARGET_FPREGS; i++) {
6084
        union {
6085
            float32 f;
6086
            uint32_t i;
6087
        } u;
6088
        u.i = qemu_get_be32(f);
6089
        env->fpr[i] = u.f;
6090
    }
6091

    
6092
    qemu_get_betls(f, &env->pc);
6093
    qemu_get_betls(f, &env->npc);
6094
    qemu_get_betls(f, &env->y);
6095
    tmp = qemu_get_be32(f);
6096
    env->cwp = 0; /* needed to ensure that the wrapping registers are
6097
                     correctly updated */
6098
    PUT_PSR(env, tmp);
6099
    qemu_get_betls(f, &env->fsr);
6100
    qemu_get_betls(f, &env->tbr);
6101
#ifndef TARGET_SPARC64
6102
    qemu_get_be32s(f, &env->wim);
6103
    /* MMU */
6104
    for(i = 0; i < 16; i++)
6105
        qemu_get_be32s(f, &env->mmuregs[i]);
6106
#endif
6107
    tlb_flush(env, 1);
6108
    return 0;
6109
}
6110

    
6111
#elif defined(TARGET_ARM)
6112

    
6113
void cpu_save(QEMUFile *f, void *opaque)
6114
{
6115
    int i;
6116
    CPUARMState *env = (CPUARMState *)opaque;
6117

    
6118
    for (i = 0; i < 16; i++) {
6119
        qemu_put_be32(f, env->regs[i]);
6120
    }
6121
    qemu_put_be32(f, cpsr_read(env));
6122
    qemu_put_be32(f, env->spsr);
6123
    for (i = 0; i < 6; i++) {
6124
        qemu_put_be32(f, env->banked_spsr[i]);
6125
        qemu_put_be32(f, env->banked_r13[i]);
6126
        qemu_put_be32(f, env->banked_r14[i]);
6127
    }
6128
    for (i = 0; i < 5; i++) {
6129
        qemu_put_be32(f, env->usr_regs[i]);
6130
        qemu_put_be32(f, env->fiq_regs[i]);
6131
    }
6132
    qemu_put_be32(f, env->cp15.c0_cpuid);
6133
    qemu_put_be32(f, env->cp15.c0_cachetype);
6134
    qemu_put_be32(f, env->cp15.c1_sys);
6135
    qemu_put_be32(f, env->cp15.c1_coproc);
6136
    qemu_put_be32(f, env->cp15.c1_xscaleauxcr);
6137
    qemu_put_be32(f, env->cp15.c2_base0);
6138
    qemu_put_be32(f, env->cp15.c2_base1);
6139
    qemu_put_be32(f, env->cp15.c2_mask);
6140
    qemu_put_be32(f, env->cp15.c2_data);
6141
    qemu_put_be32(f, env->cp15.c2_insn);
6142
    qemu_put_be32(f, env->cp15.c3);
6143
    qemu_put_be32(f, env->cp15.c5_insn);
6144
    qemu_put_be32(f, env->cp15.c5_data);
6145
    for (i = 0; i < 8; i++) {
6146
        qemu_put_be32(f, env->cp15.c6_region[i]);
6147
    }
6148
    qemu_put_be32(f, env->cp15.c6_insn);
6149
    qemu_put_be32(f, env->cp15.c6_data);
6150
    qemu_put_be32(f, env->cp15.c9_insn);
6151
    qemu_put_be32(f, env->cp15.c9_data);
6152
    qemu_put_be32(f, env->cp15.c13_fcse);
6153
    qemu_put_be32(f, env->cp15.c13_context);
6154
    qemu_put_be32(f, env->cp15.c13_tls1);
6155
    qemu_put_be32(f, env->cp15.c13_tls2);
6156
    qemu_put_be32(f, env->cp15.c13_tls3);
6157
    qemu_put_be32(f, env->cp15.c15_cpar);
6158

    
6159
    qemu_put_be32(f, env->features);
6160

    
6161
    if (arm_feature(env, ARM_FEATURE_VFP)) {
6162
        for (i = 0;  i < 16; i++) {
6163
            CPU_DoubleU u;
6164
            u.d = env->vfp.regs[i];
6165
            qemu_put_be32(f, u.l.upper);
6166
            qemu_put_be32(f, u.l.lower);
6167
        }
6168
        for (i = 0; i < 16; i++) {
6169
            qemu_put_be32(f, env->vfp.xregs[i]);
6170
        }
6171

    
6172
        /* TODO: Should use proper FPSCR access functions.  */
6173
        qemu_put_be32(f, env->vfp.vec_len);
6174
        qemu_put_be32(f, env->vfp.vec_stride);
6175

    
6176
        if (arm_feature(env, ARM_FEATURE_VFP3)) {
6177
            for (i = 16;  i < 32; i++) {
6178
                CPU_DoubleU u;
6179
                u.d = env->vfp.regs[i];
6180
                qemu_put_be32(f, u.l.upper);
6181
                qemu_put_be32(f, u.l.lower);
6182
            }
6183
        }
6184
    }
6185

    
6186
    if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
6187
        for (i = 0; i < 16; i++) {
6188
            qemu_put_be64(f, env->iwmmxt.regs[i]);
6189
        }
6190
        for (i = 0; i < 16; i++) {
6191
            qemu_put_be32(f, env->iwmmxt.cregs[i]);
6192
        }
6193
    }
6194

    
6195
    if (arm_feature(env, ARM_FEATURE_M)) {
6196
        qemu_put_be32(f, env->v7m.other_sp);
6197
        qemu_put_be32(f, env->v7m.vecbase);
6198
        qemu_put_be32(f, env->v7m.basepri);
6199
        qemu_put_be32(f, env->v7m.control);
6200
        qemu_put_be32(f, env->v7m.current_sp);
6201
        qemu_put_be32(f, env->v7m.exception);
6202
    }
6203
}
6204

    
6205
int cpu_load(QEMUFile *f, void *opaque, int version_id)
6206
{
6207
    CPUARMState *env = (CPUARMState *)opaque;
6208
    int i;
6209

    
6210
    if (version_id != ARM_CPU_SAVE_VERSION)
6211
        return -EINVAL;
6212

    
6213
    for (i = 0; i < 16; i++) {
6214
        env->regs[i] = qemu_get_be32(f);
6215
    }
6216
    cpsr_write(env, qemu_get_be32(f), 0xffffffff);
6217
    env->spsr = qemu_get_be32(f);
6218
    for (i = 0; i < 6; i++) {
6219
        env->banked_spsr[i] = qemu_get_be32(f);
6220
        env->banked_r13[i] = qemu_get_be32(f);
6221
        env->banked_r14[i] = qemu_get_be32(f);
6222
    }
6223
    for (i = 0; i < 5; i++) {
6224
        env->usr_regs[i] = qemu_get_be32(f);
6225
        env->fiq_regs[i] = qemu_get_be32(f);
6226
    }
6227
    env->cp15.c0_cpuid = qemu_get_be32(f);
6228
    env->cp15.c0_cachetype = qemu_get_be32(f);
6229
    env->cp15.c1_sys = qemu_get_be32(f);
6230
    env->cp15.c1_coproc = qemu_get_be32(f);
6231
    env->cp15.c1_xscaleauxcr = qemu_get_be32(f);
6232
    env->cp15.c2_base0 = qemu_get_be32(f);
6233
    env->cp15.c2_base1 = qemu_get_be32(f);
6234
    env->cp15.c2_mask = qemu_get_be32(f);
6235
    env->cp15.c2_data = qemu_get_be32(f);
6236
    env->cp15.c2_insn = qemu_get_be32(f);
6237
    env->cp15.c3 = qemu_get_be32(f);
6238
    env->cp15.c5_insn = qemu_get_be32(f);
6239
    env->cp15.c5_data = qemu_get_be32(f);
6240
    for (i = 0; i < 8; i++) {
6241
        env->cp15.c6_region[i] = qemu_get_be32(f);
6242
    }
6243
    env->cp15.c6_insn = qemu_get_be32(f);
6244
    env->cp15.c6_data = qemu_get_be32(f);
6245
    env->cp15.c9_insn = qemu_get_be32(f);
6246
    env->cp15.c9_data = qemu_get_be32(f);
6247
    env->cp15.c13_fcse = qemu_get_be32(f);
6248
    env->cp15.c13_context = qemu_get_be32(f);
6249
    env->cp15.c13_tls1 = qemu_get_be32(f);
6250
    env->cp15.c13_tls2 = qemu_get_be32(f);
6251
    env->cp15.c13_tls3 = qemu_get_be32(f);
6252
    env->cp15.c15_cpar = qemu_get_be32(f);
6253

    
6254
    env->features = qemu_get_be32(f);
6255

    
6256
    if (arm_feature(env, ARM_FEATURE_VFP)) {
6257
        for (i = 0;  i < 16; i++) {
6258
            CPU_DoubleU u;
6259
            u.l.upper = qemu_get_be32(f);
6260
            u.l.lower = qemu_get_be32(f);
6261
            env->vfp.regs[i] = u.d;
6262
        }
6263
        for (i = 0; i < 16; i++) {
6264
            env->vfp.xregs[i] = qemu_get_be32(f);
6265
        }
6266

    
6267
        /* TODO: Should use proper FPSCR access functions.  */
6268
        env->vfp.vec_len = qemu_get_be32(f);
6269
        env->vfp.vec_stride = qemu_get_be32(f);
6270

    
6271
        if (arm_feature(env, ARM_FEATURE_VFP3)) {
6272
            for (i = 0;  i < 16; i++) {
6273
                CPU_DoubleU u;
6274
                u.l.upper = qemu_get_be32(f);
6275
                u.l.lower = qemu_get_be32(f);
6276
                env->vfp.regs[i] = u.d;
6277
            }
6278
        }
6279
    }
6280

    
6281
    if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
6282
        for (i = 0; i < 16; i++) {
6283
            env->iwmmxt.regs[i] = qemu_get_be64(f);
6284
        }
6285
        for (i = 0; i < 16; i++) {
6286
            env->iwmmxt.cregs[i] = qemu_get_be32(f);
6287
        }
6288
    }
6289

    
6290
    if (arm_feature(env, ARM_FEATURE_M)) {
6291
        env->v7m.other_sp = qemu_get_be32(f);
6292
        env->v7m.vecbase = qemu_get_be32(f);
6293
        env->v7m.basepri = qemu_get_be32(f);
6294
        env->v7m.control = qemu_get_be32(f);
6295
        env->v7m.current_sp = qemu_get_be32(f);
6296
        env->v7m.exception = qemu_get_be32(f);
6297
    }
6298

    
6299
    return 0;
6300
}
6301

    
6302
#else
6303

    
6304
//#warning No CPU save/restore functions
6305

    
6306
#endif
6307

    
6308
/***********************************************************/
6309
/* ram save/restore */
6310

    
6311
static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
6312
{
6313
    int v;
6314

    
6315
    v = qemu_get_byte(f);
6316
    switch(v) {
6317
    case 0:
6318
        if (qemu_get_buffer(f, buf, len) != len)
6319
            return -EIO;
6320
        break;
6321
    case 1:
6322
        v = qemu_get_byte(f);
6323
        memset(buf, v, len);
6324
        break;
6325
    default:
6326
        return -EINVAL;
6327
    }
6328
    return 0;
6329
}
6330

    
6331
static int ram_load_v1(QEMUFile *f, void *opaque)
6332
{
6333
    int i, ret;
6334

    
6335
    if (qemu_get_be32(f) != phys_ram_size)
6336
        return -EINVAL;
6337
    for(i = 0; i < phys_ram_size; i+= TARGET_PAGE_SIZE) {
6338
        ret = ram_get_page(f, phys_ram_base + i, TARGET_PAGE_SIZE);
6339
        if (ret)
6340
            return ret;
6341
    }
6342
    return 0;
6343
}
6344

    
6345
#define BDRV_HASH_BLOCK_SIZE 1024
6346
#define IOBUF_SIZE 4096
6347
#define RAM_CBLOCK_MAGIC 0xfabe
6348

    
6349
typedef struct RamCompressState {
6350
    z_stream zstream;
6351
    QEMUFile *f;
6352
    uint8_t buf[IOBUF_SIZE];
6353
} RamCompressState;
6354

    
6355
static int ram_compress_open(RamCompressState *s, QEMUFile *f)
6356
{
6357
    int ret;
6358
    memset(s, 0, sizeof(*s));
6359
    s->f = f;
6360
    ret = deflateInit2(&s->zstream, 1,
6361
                       Z_DEFLATED, 15,
6362
                       9, Z_DEFAULT_STRATEGY);
6363
    if (ret != Z_OK)
6364
        return -1;
6365
    s->zstream.avail_out = IOBUF_SIZE;
6366
    s->zstream.next_out = s->buf;
6367
    return 0;
6368
}
6369

    
6370
static void ram_put_cblock(RamCompressState *s, const uint8_t *buf, int len)
6371
{
6372
    qemu_put_be16(s->f, RAM_CBLOCK_MAGIC);
6373
    qemu_put_be16(s->f, len);
6374
    qemu_put_buffer(s->f, buf, len);
6375
}
6376

    
6377
static int ram_compress_buf(RamCompressState *s, const uint8_t *buf, int len)
6378
{
6379
    int ret;
6380

    
6381
    s->zstream.avail_in = len;
6382
    s->zstream.next_in = (uint8_t *)buf;
6383
    while (s->zstream.avail_in > 0) {
6384
        ret = deflate(&s->zstream, Z_NO_FLUSH);
6385
        if (ret != Z_OK)
6386
            return -1;
6387
        if (s->zstream.avail_out == 0) {
6388
            ram_put_cblock(s, s->buf, IOBUF_SIZE);
6389
            s->zstream.avail_out = IOBUF_SIZE;
6390
            s->zstream.next_out = s->buf;
6391
        }
6392
    }
6393
    return 0;
6394
}
6395

    
6396
static void ram_compress_close(RamCompressState *s)
6397
{
6398
    int len, ret;
6399

    
6400
    /* compress last bytes */
6401
    for(;;) {
6402
        ret = deflate(&s->zstream, Z_FINISH);
6403
        if (ret == Z_OK || ret == Z_STREAM_END) {
6404
            len = IOBUF_SIZE - s->zstream.avail_out;
6405
            if (len > 0) {
6406
                ram_put_cblock(s, s->buf, len);
6407
            }
6408
            s->zstream.avail_out = IOBUF_SIZE;
6409
            s->zstream.next_out = s->buf;
6410
            if (ret == Z_STREAM_END)
6411
                break;
6412
        } else {
6413
            goto fail;
6414
        }
6415
    }
6416
fail:
6417
    deflateEnd(&s->zstream);
6418
}
6419

    
6420
typedef struct RamDecompressState {
6421
    z_stream zstream;
6422
    QEMUFile *f;
6423
    uint8_t buf[IOBUF_SIZE];
6424
} RamDecompressState;
6425

    
6426
static int ram_decompress_open(RamDecompressState *s, QEMUFile *f)
6427
{
6428
    int ret;
6429
    memset(s, 0, sizeof(*s));
6430
    s->f = f;
6431
    ret = inflateInit(&s->zstream);
6432
    if (ret != Z_OK)
6433
        return -1;
6434
    return 0;
6435
}
6436

    
6437
static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len)
6438
{
6439
    int ret, clen;
6440

    
6441
    s->zstream.avail_out = len;
6442
    s->zstream.next_out = buf;
6443
    while (s->zstream.avail_out > 0) {
6444
        if (s->zstream.avail_in == 0) {
6445
            if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC)
6446
                return -1;
6447
            clen = qemu_get_be16(s->f);
6448
            if (clen > IOBUF_SIZE)
6449
                return -1;
6450
            qemu_get_buffer(s->f, s->buf, clen);
6451
            s->zstream.avail_in = clen;
6452
            s->zstream.next_in = s->buf;
6453
        }
6454
        ret = inflate(&s->zstream, Z_PARTIAL_FLUSH);
6455
        if (ret != Z_OK && ret != Z_STREAM_END) {
6456
            return -1;
6457
        }
6458
    }
6459
    return 0;
6460
}
6461

    
6462
static void ram_decompress_close(RamDecompressState *s)
6463
{
6464
    inflateEnd(&s->zstream);
6465
}
6466

    
6467
static void ram_save(QEMUFile *f, void *opaque)
6468
{
6469
    int i;
6470
    RamCompressState s1, *s = &s1;
6471
    uint8_t buf[10];
6472

    
6473
    qemu_put_be32(f, phys_ram_size);
6474
    if (ram_compress_open(s, f) < 0)
6475
        return;
6476
    for(i = 0; i < phys_ram_size; i+= BDRV_HASH_BLOCK_SIZE) {
6477
#if 0
6478
        if (tight_savevm_enabled) {
6479
            int64_t sector_num;
6480
            int j;
6481

6482
            /* find if the memory block is available on a virtual
6483
               block device */
6484
            sector_num = -1;
6485
            for(j = 0; j < MAX_DISKS; j++) {
6486
                if (bs_table[j]) {
6487
                    sector_num = bdrv_hash_find(bs_table[j],
6488
                                                phys_ram_base + i, BDRV_HASH_BLOCK_SIZE);
6489
                    if (sector_num >= 0)
6490
                        break;
6491
                }
6492
            }
6493
            if (j == MAX_DISKS)
6494
                goto normal_compress;
6495
            buf[0] = 1;
6496
            buf[1] = j;
6497
            cpu_to_be64wu((uint64_t *)(buf + 2), sector_num);
6498
            ram_compress_buf(s, buf, 10);
6499
        } else
6500
#endif
6501
        {
6502
            //        normal_compress:
6503
            buf[0] = 0;
6504
            ram_compress_buf(s, buf, 1);
6505
            ram_compress_buf(s, phys_ram_base + i, BDRV_HASH_BLOCK_SIZE);
6506
        }
6507
    }
6508
    ram_compress_close(s);
6509
}
6510

    
6511
static int ram_load(QEMUFile *f, void *opaque, int version_id)
6512
{
6513
    RamDecompressState s1, *s = &s1;
6514
    uint8_t buf[10];
6515
    int i;
6516

    
6517
    if (version_id == 1)
6518
        return ram_load_v1(f, opaque);
6519
    if (version_id != 2)
6520
        return -EINVAL;
6521
    if (qemu_get_be32(f) != phys_ram_size)
6522
        return -EINVAL;
6523
    if (ram_decompress_open(s, f) < 0)
6524
        return -EINVAL;
6525
    for(i = 0; i < phys_ram_size; i+= BDRV_HASH_BLOCK_SIZE) {
6526
        if (ram_decompress_buf(s, buf, 1) < 0) {
6527
            fprintf(stderr, "Error while reading ram block header\n");
6528
            goto error;
6529
        }
6530
        if (buf[0] == 0) {
6531
            if (ram_decompress_buf(s, phys_ram_base + i, BDRV_HASH_BLOCK_SIZE) < 0) {
6532
                fprintf(stderr, "Error while reading ram block address=0x%08x", i);
6533
                goto error;
6534
            }
6535
        } else
6536
#if 0
6537
        if (buf[0] == 1) {
6538
            int bs_index;
6539
            int64_t sector_num;
6540

6541
            ram_decompress_buf(s, buf + 1, 9);
6542
            bs_index = buf[1];
6543
            sector_num = be64_to_cpupu((const uint64_t *)(buf + 2));
6544
            if (bs_index >= MAX_DISKS || bs_table[bs_index] == NULL) {
6545
                fprintf(stderr, "Invalid block device index %d\n", bs_index);
6546
                goto error;
6547
            }
6548
            if (bdrv_read(bs_table[bs_index], sector_num, phys_ram_base + i,
6549
                          BDRV_HASH_BLOCK_SIZE / 512) < 0) {
6550
                fprintf(stderr, "Error while reading sector %d:%" PRId64 "\n",
6551
                        bs_index, sector_num);
6552
                goto error;
6553
            }
6554
        } else
6555
#endif
6556
        {
6557
        error:
6558
            printf("Error block header\n");
6559
            return -EINVAL;
6560
        }
6561
    }
6562
    ram_decompress_close(s);
6563
    return 0;
6564
}
6565

    
6566
/***********************************************************/
6567
/* bottom halves (can be seen as timers which expire ASAP) */
6568

    
6569
struct QEMUBH {
6570
    QEMUBHFunc *cb;
6571
    void *opaque;
6572
    int scheduled;
6573
    QEMUBH *next;
6574
};
6575

    
6576
static QEMUBH *first_bh = NULL;
6577

    
6578
QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
6579
{
6580
    QEMUBH *bh;
6581
    bh = qemu_mallocz(sizeof(QEMUBH));
6582
    if (!bh)
6583
        return NULL;
6584
    bh->cb = cb;
6585
    bh->opaque = opaque;
6586
    return bh;
6587
}
6588

    
6589
int qemu_bh_poll(void)
6590
{
6591
    QEMUBH *bh, **pbh;
6592
    int ret;
6593

    
6594
    ret = 0;
6595
    for(;;) {
6596
        pbh = &first_bh;
6597
        bh = *pbh;
6598
        if (!bh)
6599
            break;
6600
        ret = 1;
6601
        *pbh = bh->next;
6602
        bh->scheduled = 0;
6603
        bh->cb(bh->opaque);
6604
    }
6605
    return ret;
6606
}
6607

    
6608
void qemu_bh_schedule(QEMUBH *bh)
6609
{
6610
    CPUState *env = cpu_single_env;
6611
    if (bh->scheduled)
6612
        return;
6613
    bh->scheduled = 1;
6614
    bh->next = first_bh;
6615
    first_bh = bh;
6616

    
6617
    /* stop the currently executing CPU to execute the BH ASAP */
6618
    if (env) {
6619
        cpu_interrupt(env, CPU_INTERRUPT_EXIT);
6620
    }
6621
}
6622

    
6623
void qemu_bh_cancel(QEMUBH *bh)
6624
{
6625
    QEMUBH **pbh;
6626
    if (bh->scheduled) {
6627
        pbh = &first_bh;
6628
        while (*pbh != bh)
6629
            pbh = &(*pbh)->next;
6630
        *pbh = bh->next;
6631
        bh->scheduled = 0;
6632
    }
6633
}
6634

    
6635
void qemu_bh_delete(QEMUBH *bh)
6636
{
6637
    qemu_bh_cancel(bh);
6638
    qemu_free(bh);
6639
}
6640

    
6641
/***********************************************************/
6642
/* machine registration */
6643

    
6644
QEMUMachine *first_machine = NULL;
6645

    
6646
int qemu_register_machine(QEMUMachine *m)
6647
{
6648
    QEMUMachine **pm;
6649
    pm = &first_machine;
6650
    while (*pm != NULL)
6651
        pm = &(*pm)->next;
6652
    m->next = NULL;
6653
    *pm = m;
6654
    return 0;
6655
}
6656

    
6657
static QEMUMachine *find_machine(const char *name)
6658
{
6659
    QEMUMachine *m;
6660

    
6661
    for(m = first_machine; m != NULL; m = m->next) {
6662
        if (!strcmp(m->name, name))
6663
            return m;
6664
    }
6665
    return NULL;
6666
}
6667

    
6668
/***********************************************************/
6669
/* main execution loop */
6670

    
6671
static void gui_update(void *opaque)
6672
{
6673
    DisplayState *ds = opaque;
6674
    ds->dpy_refresh(ds);
6675
    qemu_mod_timer(ds->gui_timer, GUI_REFRESH_INTERVAL + qemu_get_clock(rt_clock));
6676
}
6677

    
6678
struct vm_change_state_entry {
6679
    VMChangeStateHandler *cb;
6680
    void *opaque;
6681
    LIST_ENTRY (vm_change_state_entry) entries;
6682
};
6683

    
6684
static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
6685

    
6686
VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
6687
                                                     void *opaque)
6688
{
6689
    VMChangeStateEntry *e;
6690

    
6691
    e = qemu_mallocz(sizeof (*e));
6692
    if (!e)
6693
        return NULL;
6694

    
6695
    e->cb = cb;
6696
    e->opaque = opaque;
6697
    LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
6698
    return e;
6699
}
6700

    
6701
void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
6702
{
6703
    LIST_REMOVE (e, entries);
6704
    qemu_free (e);
6705
}
6706

    
6707
static void vm_state_notify(int running)
6708
{
6709
    VMChangeStateEntry *e;
6710

    
6711
    for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
6712
        e->cb(e->opaque, running);
6713
    }
6714
}
6715

    
6716
/* XXX: support several handlers */
6717
static VMStopHandler *vm_stop_cb;
6718
static void *vm_stop_opaque;
6719

    
6720
int qemu_add_vm_stop_handler(VMStopHandler *cb, void *opaque)
6721
{
6722
    vm_stop_cb = cb;
6723
    vm_stop_opaque = opaque;
6724
    return 0;
6725
}
6726

    
6727
void qemu_del_vm_stop_handler(VMStopHandler *cb, void *opaque)
6728
{
6729
    vm_stop_cb = NULL;
6730
}
6731

    
6732
void vm_start(void)
6733
{
6734
    if (!vm_running) {
6735
        cpu_enable_ticks();
6736
        vm_running = 1;
6737
        vm_state_notify(1);
6738
        qemu_rearm_alarm_timer(alarm_timer);
6739
    }
6740
}
6741

    
6742
void vm_stop(int reason)
6743
{
6744
    if (vm_running) {
6745
        cpu_disable_ticks();
6746
        vm_running = 0;
6747
        if (reason != 0) {
6748
            if (vm_stop_cb) {
6749
                vm_stop_cb(vm_stop_opaque, reason);
6750
            }
6751
        }
6752
        vm_state_notify(0);
6753
    }
6754
}
6755

    
6756
/* reset/shutdown handler */
6757

    
6758
typedef struct QEMUResetEntry {
6759
    QEMUResetHandler *func;
6760
    void *opaque;
6761
    struct QEMUResetEntry *next;
6762
} QEMUResetEntry;
6763

    
6764
static QEMUResetEntry *first_reset_entry;
6765
static int reset_requested;
6766
static int shutdown_requested;
6767
static int powerdown_requested;
6768

    
6769
void qemu_register_reset(QEMUResetHandler *func, void *opaque)
6770
{
6771
    QEMUResetEntry **pre, *re;
6772

    
6773
    pre = &first_reset_entry;
6774
    while (*pre != NULL)
6775
        pre = &(*pre)->next;
6776
    re = qemu_mallocz(sizeof(QEMUResetEntry));
6777
    re->func = func;
6778
    re->opaque = opaque;
6779
    re->next = NULL;
6780
    *pre = re;
6781
}
6782

    
6783
static void qemu_system_reset(void)
6784
{
6785
    QEMUResetEntry *re;
6786

    
6787
    /* reset all devices */
6788
    for(re = first_reset_entry; re != NULL; re = re->next) {
6789
        re->func(re->opaque);
6790
    }
6791
}
6792

    
6793
void qemu_system_reset_request(void)
6794
{
6795
    if (no_reboot) {
6796
        shutdown_requested = 1;
6797
    } else {
6798
        reset_requested = 1;
6799
    }
6800
    if (cpu_single_env)
6801
        cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
6802
}
6803

    
6804
void qemu_system_shutdown_request(void)
6805
{
6806
    shutdown_requested = 1;
6807
    if (cpu_single_env)
6808
        cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
6809
}
6810

    
6811
void qemu_system_powerdown_request(void)
6812
{
6813
    powerdown_requested = 1;
6814
    if (cpu_single_env)
6815
        cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
6816
}
6817

    
6818
void main_loop_wait(int timeout)
6819
{
6820
    IOHandlerRecord *ioh;
6821
    fd_set rfds, wfds, xfds;
6822
    int ret, nfds;
6823
#ifdef _WIN32
6824
    int ret2, i;
6825
#endif
6826
    struct timeval tv;
6827
    PollingEntry *pe;
6828

    
6829

    
6830
    /* XXX: need to suppress polling by better using win32 events */
6831
    ret = 0;
6832
    for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
6833
        ret |= pe->func(pe->opaque);
6834
    }
6835
#ifdef _WIN32
6836
    if (ret == 0) {
6837
        int err;
6838
        WaitObjects *w = &wait_objects;
6839

    
6840
        ret = WaitForMultipleObjects(w->num, w->events, FALSE, timeout);
6841
        if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
6842
            if (w->func[ret - WAIT_OBJECT_0])
6843
                w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
6844

    
6845
            /* Check for additional signaled events */
6846
            for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
6847

    
6848
                /* Check if event is signaled */
6849
                ret2 = WaitForSingleObject(w->events[i], 0);
6850
                if(ret2 == WAIT_OBJECT_0) {
6851
                    if (w->func[i])
6852
                        w->func[i](w->opaque[i]);
6853
                } else if (ret2 == WAIT_TIMEOUT) {
6854
                } else {
6855
                    err = GetLastError();
6856
                    fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
6857
                }
6858
            }
6859
        } else if (ret == WAIT_TIMEOUT) {
6860
        } else {
6861
            err = GetLastError();
6862
            fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
6863
        }
6864
    }
6865
#endif
6866
    /* poll any events */
6867
    /* XXX: separate device handlers from system ones */
6868
    nfds = -1;
6869
    FD_ZERO(&rfds);
6870
    FD_ZERO(&wfds);
6871
    FD_ZERO(&xfds);
6872
    for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
6873
        if (ioh->deleted)
6874
            continue;
6875
        if (ioh->fd_read &&
6876
            (!ioh->fd_read_poll ||
6877
             ioh->fd_read_poll(ioh->opaque) != 0)) {
6878
            FD_SET(ioh->fd, &rfds);
6879
            if (ioh->fd > nfds)
6880
                nfds = ioh->fd;
6881
        }
6882
        if (ioh->fd_write) {
6883
            FD_SET(ioh->fd, &wfds);
6884
            if (ioh->fd > nfds)
6885
                nfds = ioh->fd;
6886
        }
6887
    }
6888

    
6889
    tv.tv_sec = 0;
6890
#ifdef _WIN32
6891
    tv.tv_usec = 0;
6892
#else
6893
    tv.tv_usec = timeout * 1000;
6894
#endif
6895
#if defined(CONFIG_SLIRP)
6896
    if (slirp_inited) {
6897
        slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
6898
    }
6899
#endif
6900
    ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
6901
    if (ret > 0) {
6902
        IOHandlerRecord **pioh;
6903

    
6904
        for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
6905
            if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
6906
                ioh->fd_read(ioh->opaque);
6907
            }
6908
            if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
6909
                ioh->fd_write(ioh->opaque);
6910
            }
6911
        }
6912

    
6913
        /* remove deleted IO handlers */
6914
        pioh = &first_io_handler;
6915
        while (*pioh) {
6916
            ioh = *pioh;
6917
            if (ioh->deleted) {
6918
                *pioh = ioh->next;
6919
                qemu_free(ioh);
6920
            } else
6921
                pioh = &ioh->next;
6922
        }
6923
    }
6924
#if defined(CONFIG_SLIRP)
6925
    if (slirp_inited) {
6926
        if (ret < 0) {
6927
            FD_ZERO(&rfds);
6928
            FD_ZERO(&wfds);
6929
            FD_ZERO(&xfds);
6930
        }
6931
        slirp_select_poll(&rfds, &wfds, &xfds);
6932
    }
6933
#endif
6934
    qemu_aio_poll();
6935

    
6936
    if (vm_running) {
6937
        qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL],
6938
                        qemu_get_clock(vm_clock));
6939
        /* run dma transfers, if any */
6940
        DMA_run();
6941
    }
6942

    
6943
    /* real time timers */
6944
    qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME],
6945
                    qemu_get_clock(rt_clock));
6946

    
6947
    /* Check bottom-halves last in case any of the earlier events triggered
6948
       them.  */
6949
    qemu_bh_poll();
6950

    
6951
}
6952

    
6953
static CPUState *cur_cpu;
6954

    
6955
static int main_loop(void)
6956
{
6957
    int ret, timeout;
6958
#ifdef CONFIG_PROFILER
6959
    int64_t ti;
6960
#endif
6961
    CPUState *env;
6962

    
6963
    cur_cpu = first_cpu;
6964
    for(;;) {
6965
        if (vm_running) {
6966

    
6967
            env = cur_cpu;
6968
            for(;;) {
6969
                /* get next cpu */
6970
                env = env->next_cpu;
6971
                if (!env)
6972
                    env = first_cpu;
6973
#ifdef CONFIG_PROFILER
6974
                ti = profile_getclock();
6975
#endif
6976
                ret = cpu_exec(env);
6977
#ifdef CONFIG_PROFILER
6978
                qemu_time += profile_getclock() - ti;
6979
#endif
6980
                if (ret == EXCP_HLT) {
6981
                    /* Give the next CPU a chance to run.  */
6982
                    cur_cpu = env;
6983
                    continue;
6984
                }
6985
                if (ret != EXCP_HALTED)
6986
                    break;
6987
                /* all CPUs are halted ? */
6988
                if (env == cur_cpu)
6989
                    break;
6990
            }
6991
            cur_cpu = env;
6992

    
6993
            if (shutdown_requested) {
6994
                ret = EXCP_INTERRUPT;
6995
                break;
6996
            }
6997
            if (reset_requested) {
6998
                reset_requested = 0;
6999
                qemu_system_reset();
7000
                ret = EXCP_INTERRUPT;
7001
            }
7002
            if (powerdown_requested) {
7003
                powerdown_requested = 0;
7004
                qemu_system_powerdown();
7005
                ret = EXCP_INTERRUPT;
7006
            }
7007
            if (ret == EXCP_DEBUG) {
7008
                vm_stop(EXCP_DEBUG);
7009
            }
7010
            /* If all cpus are halted then wait until the next IRQ */
7011
            /* XXX: use timeout computed from timers */
7012
            if (ret == EXCP_HALTED)
7013
                timeout = 10;
7014
            else
7015
                timeout = 0;
7016
        } else {
7017
            timeout = 10;
7018
        }
7019
#ifdef CONFIG_PROFILER
7020
        ti = profile_getclock();
7021
#endif
7022
        main_loop_wait(timeout);
7023
#ifdef CONFIG_PROFILER
7024
        dev_time += profile_getclock() - ti;
7025
#endif
7026
    }
7027
    cpu_disable_ticks();
7028
    return ret;
7029
}
7030

    
7031
static void help(int exitcode)
7032
{
7033
    printf("QEMU PC emulator version " QEMU_VERSION ", Copyright (c) 2003-2007 Fabrice Bellard\n"
7034
           "usage: %s [options] [disk_image]\n"
7035
           "\n"
7036
           "'disk_image' is a raw hard image image for IDE hard disk 0\n"
7037
           "\n"
7038
           "Standard options:\n"
7039
           "-M machine      select emulated machine (-M ? for list)\n"
7040
           "-cpu cpu        select CPU (-cpu ? for list)\n"
7041
           "-fda/-fdb file  use 'file' as floppy disk 0/1 image\n"
7042
           "-hda/-hdb file  use 'file' as IDE hard disk 0/1 image\n"
7043
           "-hdc/-hdd file  use 'file' as IDE hard disk 2/3 image\n"
7044
           "-cdrom file     use 'file' as IDE cdrom image (cdrom is ide1 master)\n"
7045
           "-mtdblock file  use 'file' as on-board Flash memory image\n"
7046
           "-sd file        use 'file' as SecureDigital card image\n"
7047
           "-pflash file    use 'file' as a parallel flash image\n"
7048
           "-boot [a|c|d|n] boot on floppy (a), hard disk (c), CD-ROM (d), or network (n)\n"
7049
           "-snapshot       write to temporary files instead of disk image files\n"
7050
#ifdef CONFIG_SDL
7051
           "-no-frame       open SDL window without a frame and window decorations\n"
7052
           "-alt-grab       use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt)\n"
7053
           "-no-quit        disable SDL window close capability\n"
7054
#endif
7055
#ifdef TARGET_I386
7056
           "-no-fd-bootchk  disable boot signature checking for floppy disks\n"
7057
#endif
7058
           "-m megs         set virtual RAM size to megs MB [default=%d]\n"
7059
           "-smp n          set the number of CPUs to 'n' [default=1]\n"
7060
           "-nographic      disable graphical output and redirect serial I/Os to console\n"
7061
           "-portrait       rotate graphical output 90 deg left (only PXA LCD)\n"
7062
#ifndef _WIN32
7063
           "-k language     use keyboard layout (for example \"fr\" for French)\n"
7064
#endif
7065
#ifdef HAS_AUDIO
7066
           "-audio-help     print list of audio drivers and their options\n"
7067
           "-soundhw c1,... enable audio support\n"
7068
           "                and only specified sound cards (comma separated list)\n"
7069
           "                use -soundhw ? to get the list of supported cards\n"
7070
           "                use -soundhw all to enable all of them\n"
7071
#endif
7072
           "-localtime      set the real time clock to local time [default=utc]\n"
7073
           "-full-screen    start in full screen\n"
7074
#ifdef TARGET_I386
7075
           "-win2k-hack     use it when installing Windows 2000 to avoid a disk full bug\n"
7076
#endif
7077
           "-usb            enable the USB driver (will be the default soon)\n"
7078
           "-usbdevice name add the host or guest USB device 'name'\n"
7079
#if defined(TARGET_PPC) || defined(TARGET_SPARC)
7080
           "-g WxH[xDEPTH]  Set the initial graphical resolution and depth\n"
7081
#endif
7082
           "-name string    set the name of the guest\n"
7083
           "\n"
7084
           "Network options:\n"
7085
           "-net nic[,vlan=n][,macaddr=addr][,model=type]\n"
7086
           "                create a new Network Interface Card and connect it to VLAN 'n'\n"
7087
#ifdef CONFIG_SLIRP
7088
           "-net user[,vlan=n][,hostname=host]\n"
7089
           "                connect the user mode network stack to VLAN 'n' and send\n"
7090
           "                hostname 'host' to DHCP clients\n"
7091
#endif
7092
#ifdef _WIN32
7093
           "-net tap[,vlan=n],ifname=name\n"
7094
           "                connect the host TAP network interface to VLAN 'n'\n"
7095
#else
7096
           "-net tap[,vlan=n][,fd=h][,ifname=name][,script=file][,downscript=dfile]\n"
7097
           "                connect the host TAP network interface to VLAN 'n' and use the\n"
7098
           "                network scripts 'file' (default=%s)\n"
7099
           "                and 'dfile' (default=%s);\n"
7100
           "                use '[down]script=no' to disable script execution;\n"
7101
           "                use 'fd=h' to connect to an already opened TAP interface\n"
7102
#endif
7103
           "-net socket[,vlan=n][,fd=h][,listen=[host]:port][,connect=host:port]\n"
7104
           "                connect the vlan 'n' to another VLAN using a socket connection\n"
7105
           "-net socket[,vlan=n][,fd=h][,mcast=maddr:port]\n"
7106
           "                connect the vlan 'n' to multicast maddr and port\n"
7107
           "-net none       use it alone to have zero network devices; if no -net option\n"
7108
           "                is provided, the default is '-net nic -net user'\n"
7109
           "\n"
7110
#ifdef CONFIG_SLIRP
7111
           "-tftp dir       allow tftp access to files in dir [-net user]\n"
7112
           "-bootp file     advertise file in BOOTP replies\n"
7113
#ifndef _WIN32
7114
           "-smb dir        allow SMB access to files in 'dir' [-net user]\n"
7115
#endif
7116
           "-redir [tcp|udp]:host-port:[guest-host]:guest-port\n"
7117
           "                redirect TCP or UDP connections from host to guest [-net user]\n"
7118
#endif
7119
           "\n"
7120
           "Linux boot specific:\n"
7121
           "-kernel bzImage use 'bzImage' as kernel image\n"
7122
           "-append cmdline use 'cmdline' as kernel command line\n"
7123
           "-initrd file    use 'file' as initial ram disk\n"
7124
           "\n"
7125
           "Debug/Expert options:\n"
7126
           "-monitor dev    redirect the monitor to char device 'dev'\n"
7127
           "-serial dev     redirect the serial port to char device 'dev'\n"
7128
           "-parallel dev   redirect the parallel port to char device 'dev'\n"
7129
           "-pidfile file   Write PID to 'file'\n"
7130
           "-S              freeze CPU at startup (use 'c' to start execution)\n"
7131
           "-s              wait gdb connection to port\n"
7132
           "-p port         set gdb connection port [default=%s]\n"
7133
           "-d item1,...    output log to %s (use -d ? for a list of log items)\n"
7134
           "-hdachs c,h,s[,t]  force hard disk 0 physical geometry and the optional BIOS\n"
7135
           "                translation (t=none or lba) (usually qemu can guess them)\n"
7136
           "-L path         set the directory for the BIOS, VGA BIOS and keymaps\n"
7137
#ifdef USE_KQEMU
7138
           "-kernel-kqemu   enable KQEMU full virtualization (default is user mode only)\n"
7139
           "-no-kqemu       disable KQEMU kernel module usage\n"
7140
#endif
7141
#ifdef TARGET_I386
7142
           "-std-vga        simulate a standard VGA card with VESA Bochs Extensions\n"
7143
           "                (default is CL-GD5446 PCI VGA)\n"
7144
           "-no-acpi        disable ACPI\n"
7145
#endif
7146
           "-no-reboot      exit instead of rebooting\n"
7147
           "-loadvm file    start right away with a saved state (loadvm in monitor)\n"
7148
           "-vnc display    start a VNC server on display\n"
7149
#ifndef _WIN32
7150
           "-daemonize      daemonize QEMU after initializing\n"
7151
#endif
7152
           "-option-rom rom load a file, rom, into the option ROM space\n"
7153
#ifdef TARGET_SPARC
7154
           "-prom-env variable=value  set OpenBIOS nvram variables\n"
7155
#endif
7156
           "-clock          force the use of the given methods for timer alarm.\n"
7157
           "                To see what timers are available use -clock help\n"
7158
           "\n"
7159
           "During emulation, the following keys are useful:\n"
7160
           "ctrl-alt-f      toggle full screen\n"
7161
           "ctrl-alt-n      switch to virtual console 'n'\n"
7162
           "ctrl-alt        toggle mouse and keyboard grab\n"
7163
           "\n"
7164
           "When using -nographic, press 'ctrl-a h' to get some help.\n"
7165
           ,
7166
           "qemu",
7167
           DEFAULT_RAM_SIZE,
7168
#ifndef _WIN32
7169
           DEFAULT_NETWORK_SCRIPT,
7170
           DEFAULT_NETWORK_DOWN_SCRIPT,
7171
#endif
7172
           DEFAULT_GDBSTUB_PORT,
7173
           "/tmp/qemu.log");
7174
    exit(exitcode);
7175
}
7176

    
7177
#define HAS_ARG 0x0001
7178

    
7179
enum {
7180
    QEMU_OPTION_h,
7181

    
7182
    QEMU_OPTION_M,
7183
    QEMU_OPTION_cpu,
7184
    QEMU_OPTION_fda,
7185
    QEMU_OPTION_fdb,
7186
    QEMU_OPTION_hda,
7187
    QEMU_OPTION_hdb,
7188
    QEMU_OPTION_hdc,
7189
    QEMU_OPTION_hdd,
7190
    QEMU_OPTION_cdrom,
7191
    QEMU_OPTION_mtdblock,
7192
    QEMU_OPTION_sd,
7193
    QEMU_OPTION_pflash,
7194
    QEMU_OPTION_boot,
7195
    QEMU_OPTION_snapshot,
7196
#ifdef TARGET_I386
7197
    QEMU_OPTION_no_fd_bootchk,
7198
#endif
7199
    QEMU_OPTION_m,
7200
    QEMU_OPTION_nographic,
7201
    QEMU_OPTION_portrait,
7202
#ifdef HAS_AUDIO
7203
    QEMU_OPTION_audio_help,
7204
    QEMU_OPTION_soundhw,
7205
#endif
7206

    
7207
    QEMU_OPTION_net,
7208
    QEMU_OPTION_tftp,
7209
    QEMU_OPTION_bootp,
7210
    QEMU_OPTION_smb,
7211
    QEMU_OPTION_redir,
7212

    
7213
    QEMU_OPTION_kernel,
7214
    QEMU_OPTION_append,
7215
    QEMU_OPTION_initrd,
7216

    
7217
    QEMU_OPTION_S,
7218
    QEMU_OPTION_s,
7219
    QEMU_OPTION_p,
7220
    QEMU_OPTION_d,
7221
    QEMU_OPTION_hdachs,
7222
    QEMU_OPTION_L,
7223
    QEMU_OPTION_bios,
7224
    QEMU_OPTION_no_code_copy,
7225
    QEMU_OPTION_k,
7226
    QEMU_OPTION_localtime,
7227
    QEMU_OPTION_cirrusvga,
7228
    QEMU_OPTION_vmsvga,
7229
    QEMU_OPTION_g,
7230
    QEMU_OPTION_std_vga,
7231
    QEMU_OPTION_echr,
7232
    QEMU_OPTION_monitor,
7233
    QEMU_OPTION_serial,
7234
    QEMU_OPTION_parallel,
7235
    QEMU_OPTION_loadvm,
7236
    QEMU_OPTION_full_screen,
7237
    QEMU_OPTION_no_frame,
7238
    QEMU_OPTION_alt_grab,
7239
    QEMU_OPTION_no_quit,
7240
    QEMU_OPTION_pidfile,
7241
    QEMU_OPTION_no_kqemu,
7242
    QEMU_OPTION_kernel_kqemu,
7243
    QEMU_OPTION_win2k_hack,
7244
    QEMU_OPTION_usb,
7245
    QEMU_OPTION_usbdevice,
7246
    QEMU_OPTION_smp,
7247
    QEMU_OPTION_vnc,
7248
    QEMU_OPTION_no_acpi,
7249
    QEMU_OPTION_no_reboot,
7250
    QEMU_OPTION_show_cursor,
7251
    QEMU_OPTION_daemonize,
7252
    QEMU_OPTION_option_rom,
7253
    QEMU_OPTION_semihosting,
7254
    QEMU_OPTION_name,
7255
    QEMU_OPTION_prom_env,
7256
    QEMU_OPTION_old_param,
7257
    QEMU_OPTION_clock,
7258
    QEMU_OPTION_startdate,
7259
};
7260

    
7261
typedef struct QEMUOption {
7262
    const char *name;
7263
    int flags;
7264
    int index;
7265
} QEMUOption;
7266

    
7267
const QEMUOption qemu_options[] = {
7268
    { "h", 0, QEMU_OPTION_h },
7269
    { "help", 0, QEMU_OPTION_h },
7270

    
7271
    { "M", HAS_ARG, QEMU_OPTION_M },
7272
    { "cpu", HAS_ARG, QEMU_OPTION_cpu },
7273
    { "fda", HAS_ARG, QEMU_OPTION_fda },
7274
    { "fdb", HAS_ARG, QEMU_OPTION_fdb },
7275
    { "hda", HAS_ARG, QEMU_OPTION_hda },
7276
    { "hdb", HAS_ARG, QEMU_OPTION_hdb },
7277
    { "hdc", HAS_ARG, QEMU_OPTION_hdc },
7278
    { "hdd", HAS_ARG, QEMU_OPTION_hdd },
7279
    { "cdrom", HAS_ARG, QEMU_OPTION_cdrom },
7280
    { "mtdblock", HAS_ARG, QEMU_OPTION_mtdblock },
7281
    { "sd", HAS_ARG, QEMU_OPTION_sd },
7282
    { "pflash", HAS_ARG, QEMU_OPTION_pflash },
7283
    { "boot", HAS_ARG, QEMU_OPTION_boot },
7284
    { "snapshot", 0, QEMU_OPTION_snapshot },
7285
#ifdef TARGET_I386
7286
    { "no-fd-bootchk", 0, QEMU_OPTION_no_fd_bootchk },
7287
#endif
7288
    { "m", HAS_ARG, QEMU_OPTION_m },
7289
    { "nographic", 0, QEMU_OPTION_nographic },
7290
    { "portrait", 0, QEMU_OPTION_portrait },
7291
    { "k", HAS_ARG, QEMU_OPTION_k },
7292
#ifdef HAS_AUDIO
7293
    { "audio-help", 0, QEMU_OPTION_audio_help },
7294
    { "soundhw", HAS_ARG, QEMU_OPTION_soundhw },
7295
#endif
7296

    
7297
    { "net", HAS_ARG, QEMU_OPTION_net},
7298
#ifdef CONFIG_SLIRP
7299
    { "tftp", HAS_ARG, QEMU_OPTION_tftp },
7300
    { "bootp", HAS_ARG, QEMU_OPTION_bootp },
7301
#ifndef _WIN32
7302
    { "smb", HAS_ARG, QEMU_OPTION_smb },
7303
#endif
7304
    { "redir", HAS_ARG, QEMU_OPTION_redir },
7305
#endif
7306

    
7307
    { "kernel", HAS_ARG, QEMU_OPTION_kernel },
7308
    { "append", HAS_ARG, QEMU_OPTION_append },
7309
    { "initrd", HAS_ARG, QEMU_OPTION_initrd },
7310

    
7311
    { "S", 0, QEMU_OPTION_S },
7312
    { "s", 0, QEMU_OPTION_s },
7313
    { "p", HAS_ARG, QEMU_OPTION_p },
7314
    { "d", HAS_ARG, QEMU_OPTION_d },
7315
    { "hdachs", HAS_ARG, QEMU_OPTION_hdachs },
7316
    { "L", HAS_ARG, QEMU_OPTION_L },
7317
    { "bios", HAS_ARG, QEMU_OPTION_bios },
7318
    { "no-code-copy", 0, QEMU_OPTION_no_code_copy },
7319
#ifdef USE_KQEMU
7320
    { "no-kqemu", 0, QEMU_OPTION_no_kqemu },
7321
    { "kernel-kqemu", 0, QEMU_OPTION_kernel_kqemu },
7322
#endif
7323
#if defined(TARGET_PPC) || defined(TARGET_SPARC)
7324
    { "g", 1, QEMU_OPTION_g },
7325
#endif
7326
    { "localtime", 0, QEMU_OPTION_localtime },
7327
    { "std-vga", 0, QEMU_OPTION_std_vga },
7328
    { "echr", HAS_ARG, QEMU_OPTION_echr },
7329
    { "monitor", HAS_ARG, QEMU_OPTION_monitor },
7330
    { "serial", HAS_ARG, QEMU_OPTION_serial },
7331
    { "parallel", HAS_ARG, QEMU_OPTION_parallel },
7332
    { "loadvm", HAS_ARG, QEMU_OPTION_loadvm },
7333
    { "full-screen", 0, QEMU_OPTION_full_screen },
7334
#ifdef CONFIG_SDL
7335
    { "no-frame", 0, QEMU_OPTION_no_frame },
7336
    { "alt-grab", 0, QEMU_OPTION_alt_grab },
7337
    { "no-quit", 0, QEMU_OPTION_no_quit },
7338
#endif
7339
    { "pidfile", HAS_ARG, QEMU_OPTION_pidfile },
7340
    { "win2k-hack", 0, QEMU_OPTION_win2k_hack },
7341
    { "usbdevice", HAS_ARG, QEMU_OPTION_usbdevice },
7342
    { "smp", HAS_ARG, QEMU_OPTION_smp },
7343
    { "vnc", HAS_ARG, QEMU_OPTION_vnc },
7344

    
7345
    /* temporary options */
7346
    { "usb", 0, QEMU_OPTION_usb },
7347
    { "cirrusvga", 0, QEMU_OPTION_cirrusvga },
7348
    { "vmwarevga", 0, QEMU_OPTION_vmsvga },
7349
    { "no-acpi", 0, QEMU_OPTION_no_acpi },
7350
    { "no-reboot", 0, QEMU_OPTION_no_reboot },
7351
    { "show-cursor", 0, QEMU_OPTION_show_cursor },
7352
    { "daemonize", 0, QEMU_OPTION_daemonize },
7353
    { "option-rom", HAS_ARG, QEMU_OPTION_option_rom },
7354
#if defined(TARGET_ARM) || defined(TARGET_M68K)
7355
    { "semihosting", 0, QEMU_OPTION_semihosting },
7356
#endif
7357
    { "name", HAS_ARG, QEMU_OPTION_name },
7358
#if defined(TARGET_SPARC)
7359
    { "prom-env", HAS_ARG, QEMU_OPTION_prom_env },
7360
#endif
7361
#if defined(TARGET_ARM)
7362
    { "old-param", 0, QEMU_OPTION_old_param },
7363
#endif
7364
    { "clock", HAS_ARG, QEMU_OPTION_clock },
7365
    { "startdate", HAS_ARG, QEMU_OPTION_startdate },
7366
    { NULL },
7367
};
7368

    
7369
/* password input */
7370

    
7371
int qemu_key_check(BlockDriverState *bs, const char *name)
7372
{
7373
    char password[256];
7374
    int i;
7375

    
7376
    if (!bdrv_is_encrypted(bs))
7377
        return 0;
7378

    
7379
    term_printf("%s is encrypted.\n", name);
7380
    for(i = 0; i < 3; i++) {
7381
        monitor_readline("Password: ", 1, password, sizeof(password));
7382
        if (bdrv_set_key(bs, password) == 0)
7383
            return 0;
7384
        term_printf("invalid password\n");
7385
    }
7386
    return -EPERM;
7387
}
7388

    
7389
static BlockDriverState *get_bdrv(int index)
7390
{
7391
    BlockDriverState *bs;
7392

    
7393
    if (index < 4) {
7394
        bs = bs_table[index];
7395
    } else if (index < 6) {
7396
        bs = fd_table[index - 4];
7397
    } else {
7398
        bs = NULL;
7399
    }
7400
    return bs;
7401
}
7402

    
7403
static void read_passwords(void)
7404
{
7405
    BlockDriverState *bs;
7406
    int i;
7407

    
7408
    for(i = 0; i < 6; i++) {
7409
        bs = get_bdrv(i);
7410
        if (bs)
7411
            qemu_key_check(bs, bdrv_get_device_name(bs));
7412
    }
7413
}
7414

    
7415
/* XXX: currently we cannot use simultaneously different CPUs */
7416
static void register_machines(void)
7417
{
7418
#if defined(TARGET_I386)
7419
    qemu_register_machine(&pc_machine);
7420
    qemu_register_machine(&isapc_machine);
7421
#elif defined(TARGET_PPC)
7422
    qemu_register_machine(&heathrow_machine);
7423
    qemu_register_machine(&core99_machine);
7424
    qemu_register_machine(&prep_machine);
7425
    qemu_register_machine(&ref405ep_machine);
7426
    qemu_register_machine(&taihu_machine);
7427
#elif defined(TARGET_MIPS)
7428
    qemu_register_machine(&mips_machine);
7429
    qemu_register_machine(&mips_malta_machine);
7430
    qemu_register_machine(&mips_pica61_machine);
7431
    qemu_register_machine(&mips_mipssim_machine);
7432
#elif defined(TARGET_SPARC)
7433
#ifdef TARGET_SPARC64
7434
    qemu_register_machine(&sun4u_machine);
7435
#else
7436
    qemu_register_machine(&ss5_machine);
7437
    qemu_register_machine(&ss10_machine);
7438
    qemu_register_machine(&ss600mp_machine);
7439
#endif
7440
#elif defined(TARGET_ARM)
7441
    qemu_register_machine(&integratorcp_machine);
7442
    qemu_register_machine(&versatilepb_machine);
7443
    qemu_register_machine(&versatileab_machine);
7444
    qemu_register_machine(&realview_machine);
7445
    qemu_register_machine(&akitapda_machine);
7446
    qemu_register_machine(&spitzpda_machine);
7447
    qemu_register_machine(&borzoipda_machine);
7448
    qemu_register_machine(&terrierpda_machine);
7449
    qemu_register_machine(&palmte_machine);
7450
    qemu_register_machine(&lm3s811evb_machine);
7451
    qemu_register_machine(&lm3s6965evb_machine);
7452
    qemu_register_machine(&connex_machine);
7453
#elif defined(TARGET_SH4)
7454
    qemu_register_machine(&shix_machine);
7455
    qemu_register_machine(&r2d_machine);
7456
#elif defined(TARGET_ALPHA)
7457
    /* XXX: TODO */
7458
#elif defined(TARGET_M68K)
7459
    qemu_register_machine(&mcf5208evb_machine);
7460
    qemu_register_machine(&an5206_machine);
7461
    qemu_register_machine(&dummy_m68k_machine);
7462
#elif defined(TARGET_CRIS)
7463
    qemu_register_machine(&bareetraxfs_machine);
7464
#else
7465
#error unsupported CPU
7466
#endif
7467
}
7468

    
7469
#ifdef HAS_AUDIO
7470
struct soundhw soundhw[] = {
7471
#ifdef HAS_AUDIO_CHOICE
7472
#ifdef TARGET_I386
7473
    {
7474
        "pcspk",
7475
        "PC speaker",
7476
        0,
7477
        1,
7478
        { .init_isa = pcspk_audio_init }
7479
    },
7480
#endif
7481
    {
7482
        "sb16",
7483
        "Creative Sound Blaster 16",
7484
        0,
7485
        1,
7486
        { .init_isa = SB16_init }
7487
    },
7488

    
7489
#ifdef CONFIG_ADLIB
7490
    {
7491
        "adlib",
7492
#ifdef HAS_YMF262
7493
        "Yamaha YMF262 (OPL3)",
7494
#else
7495
        "Yamaha YM3812 (OPL2)",
7496
#endif
7497
        0,
7498
        1,
7499
        { .init_isa = Adlib_init }
7500
    },
7501
#endif
7502

    
7503
#ifdef CONFIG_GUS
7504
    {
7505
        "gus",
7506
        "Gravis Ultrasound GF1",
7507
        0,
7508
        1,
7509
        { .init_isa = GUS_init }
7510
    },
7511
#endif
7512

    
7513
    {
7514
        "es1370",
7515
        "ENSONIQ AudioPCI ES1370",
7516
        0,
7517
        0,
7518
        { .init_pci = es1370_init }
7519
    },
7520
#endif
7521

    
7522
    { NULL, NULL, 0, 0, { NULL } }
7523
};
7524

    
7525
static void select_soundhw (const char *optarg)
7526
{
7527
    struct soundhw *c;
7528

    
7529
    if (*optarg == '?') {
7530
    show_valid_cards:
7531

    
7532
        printf ("Valid sound card names (comma separated):\n");
7533
        for (c = soundhw; c->name; ++c) {
7534
            printf ("%-11s %s\n", c->name, c->descr);
7535
        }
7536
        printf ("\n-soundhw all will enable all of the above\n");
7537
        exit (*optarg != '?');
7538
    }
7539
    else {
7540
        size_t l;
7541
        const char *p;
7542
        char *e;
7543
        int bad_card = 0;
7544

    
7545
        if (!strcmp (optarg, "all")) {
7546
            for (c = soundhw; c->name; ++c) {
7547
                c->enabled = 1;
7548
            }
7549
            return;
7550
        }
7551

    
7552
        p = optarg;
7553
        while (*p) {
7554
            e = strchr (p, ',');
7555
            l = !e ? strlen (p) : (size_t) (e - p);
7556

    
7557
            for (c = soundhw; c->name; ++c) {
7558
                if (!strncmp (c->name, p, l)) {
7559
                    c->enabled = 1;
7560
                    break;
7561
                }
7562
            }
7563

    
7564
            if (!c->name) {
7565
                if (l > 80) {
7566
                    fprintf (stderr,
7567
                             "Unknown sound card name (too big to show)\n");
7568
                }
7569
                else {
7570
                    fprintf (stderr, "Unknown sound card name `%.*s'\n",
7571
                             (int) l, p);
7572
                }
7573
                bad_card = 1;
7574
            }
7575
            p += l + (e != NULL);
7576
        }
7577

    
7578
        if (bad_card)
7579
            goto show_valid_cards;
7580
    }
7581
}
7582
#endif
7583

    
7584
#ifdef _WIN32
7585
static BOOL WINAPI qemu_ctrl_handler(DWORD type)
7586
{
7587
    exit(STATUS_CONTROL_C_EXIT);
7588
    return TRUE;
7589
}
7590
#endif
7591

    
7592
#define MAX_NET_CLIENTS 32
7593

    
7594
int main(int argc, char **argv)
7595
{
7596
#ifdef CONFIG_GDBSTUB
7597
    int use_gdbstub;
7598
    const char *gdbstub_port;
7599
#endif
7600
    uint32_t boot_devices_bitmap = 0;
7601
    int i, cdrom_index, pflash_index;
7602
    int snapshot, linux_boot, net_boot;
7603
    const char *initrd_filename;
7604
    const char *hd_filename[MAX_DISKS], *fd_filename[MAX_FD];
7605
    const char *pflash_filename[MAX_PFLASH];
7606
    const char *sd_filename;
7607
    const char *mtd_filename;
7608
    const char *kernel_filename, *kernel_cmdline;
7609
    const char *boot_devices = "";
7610
    DisplayState *ds = &display_state;
7611
    int cyls, heads, secs, translation;
7612
    char net_clients[MAX_NET_CLIENTS][256];
7613
    int nb_net_clients;
7614
    int optind;
7615
    const char *r, *optarg;
7616
    CharDriverState *monitor_hd;
7617
    char monitor_device[128];
7618
    char serial_devices[MAX_SERIAL_PORTS][128];
7619
    int serial_device_index;
7620
    char parallel_devices[MAX_PARALLEL_PORTS][128];
7621
    int parallel_device_index;
7622
    const char *loadvm = NULL;
7623
    QEMUMachine *machine;
7624
    const char *cpu_model;
7625
    char usb_devices[MAX_USB_CMDLINE][128];
7626
    int usb_devices_index;
7627
    int fds[2];
7628
    const char *pid_file = NULL;
7629
    VLANState *vlan;
7630

    
7631
    LIST_INIT (&vm_change_state_head);
7632
#ifndef _WIN32
7633
    {
7634
        struct sigaction act;
7635
        sigfillset(&act.sa_mask);
7636
        act.sa_flags = 0;
7637
        act.sa_handler = SIG_IGN;
7638
        sigaction(SIGPIPE, &act, NULL);
7639
    }
7640
#else
7641
    SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
7642
    /* Note: cpu_interrupt() is currently not SMP safe, so we force
7643
       QEMU to run on a single CPU */
7644
    {
7645
        HANDLE h;
7646
        DWORD mask, smask;
7647
        int i;
7648
        h = GetCurrentProcess();
7649
        if (GetProcessAffinityMask(h, &mask, &smask)) {
7650
            for(i = 0; i < 32; i++) {
7651
                if (mask & (1 << i))
7652
                    break;
7653
            }
7654
            if (i != 32) {
7655
                mask = 1 << i;
7656
                SetProcessAffinityMask(h, mask);
7657
            }
7658
        }
7659
    }
7660
#endif
7661

    
7662
    register_machines();
7663
    machine = first_machine;
7664
    cpu_model = NULL;
7665
    initrd_filename = NULL;
7666
    for(i = 0; i < MAX_FD; i++)
7667
        fd_filename[i] = NULL;
7668
    for(i = 0; i < MAX_DISKS; i++)
7669
        hd_filename[i] = NULL;
7670
    for(i = 0; i < MAX_PFLASH; i++)
7671
        pflash_filename[i] = NULL;
7672
    pflash_index = 0;
7673
    sd_filename = NULL;
7674
    mtd_filename = NULL;
7675
    ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
7676
    vga_ram_size = VGA_RAM_SIZE;
7677
#ifdef CONFIG_GDBSTUB
7678
    use_gdbstub = 0;
7679
    gdbstub_port = DEFAULT_GDBSTUB_PORT;
7680
#endif
7681
    snapshot = 0;
7682
    nographic = 0;
7683
    kernel_filename = NULL;
7684
    kernel_cmdline = "";
7685
#ifdef TARGET_PPC
7686
    cdrom_index = 1;
7687
#else
7688
    cdrom_index = 2;
7689
#endif
7690
    cyls = heads = secs = 0;
7691
    translation = BIOS_ATA_TRANSLATION_AUTO;
7692
    pstrcpy(monitor_device, sizeof(monitor_device), "vc");
7693

    
7694
    pstrcpy(serial_devices[0], sizeof(serial_devices[0]), "vc");
7695
    for(i = 1; i < MAX_SERIAL_PORTS; i++)
7696
        serial_devices[i][0] = '\0';
7697
    serial_device_index = 0;
7698

    
7699
    pstrcpy(parallel_devices[0], sizeof(parallel_devices[0]), "vc");
7700
    for(i = 1; i < MAX_PARALLEL_PORTS; i++)
7701
        parallel_devices[i][0] = '\0';
7702
    parallel_device_index = 0;
7703

    
7704
    usb_devices_index = 0;
7705

    
7706
    nb_net_clients = 0;
7707

    
7708
    nb_nics = 0;
7709
    /* default mac address of the first network interface */
7710

    
7711
    optind = 1;
7712
    for(;;) {
7713
        if (optind >= argc)
7714
            break;
7715
        r = argv[optind];
7716
        if (r[0] != '-') {
7717
            hd_filename[0] = argv[optind++];
7718
        } else {
7719
            const QEMUOption *popt;
7720

    
7721
            optind++;
7722
            /* Treat --foo the same as -foo.  */
7723
            if (r[1] == '-')
7724
                r++;
7725
            popt = qemu_options;
7726
            for(;;) {
7727
                if (!popt->name) {
7728
                    fprintf(stderr, "%s: invalid option -- '%s'\n",
7729
                            argv[0], r);
7730
                    exit(1);
7731
                }
7732
                if (!strcmp(popt->name, r + 1))
7733
                    break;
7734
                popt++;
7735
            }
7736
            if (popt->flags & HAS_ARG) {
7737
                if (optind >= argc) {
7738
                    fprintf(stderr, "%s: option '%s' requires an argument\n",
7739
                            argv[0], r);
7740
                    exit(1);
7741
                }
7742
                optarg = argv[optind++];
7743
            } else {
7744
                optarg = NULL;
7745
            }
7746

    
7747
            switch(popt->index) {
7748
            case QEMU_OPTION_M:
7749
                machine = find_machine(optarg);
7750
                if (!machine) {
7751
                    QEMUMachine *m;
7752
                    printf("Supported machines are:\n");
7753
                    for(m = first_machine; m != NULL; m = m->next) {
7754
                        printf("%-10s %s%s\n",
7755
                               m->name, m->desc,
7756
                               m == first_machine ? " (default)" : "");
7757
                    }
7758
                    exit(*optarg != '?');
7759
                }
7760
                break;
7761
            case QEMU_OPTION_cpu:
7762
                /* hw initialization will check this */
7763
                if (*optarg == '?') {
7764
/* XXX: implement xxx_cpu_list for targets that still miss it */
7765
#if defined(cpu_list)
7766
                    cpu_list(stdout, &fprintf);
7767
#endif
7768
                    exit(0);
7769
                } else {
7770
                    cpu_model = optarg;
7771
                }
7772
                break;
7773
            case QEMU_OPTION_initrd:
7774
                initrd_filename = optarg;
7775
                break;
7776
            case QEMU_OPTION_hda:
7777
            case QEMU_OPTION_hdb:
7778
            case QEMU_OPTION_hdc:
7779
            case QEMU_OPTION_hdd:
7780
                {
7781
                    int hd_index;
7782
                    hd_index = popt->index - QEMU_OPTION_hda;
7783
                    hd_filename[hd_index] = optarg;
7784
                    if (hd_index == cdrom_index)
7785
                        cdrom_index = -1;
7786
                }
7787
                break;
7788
            case QEMU_OPTION_mtdblock:
7789
                mtd_filename = optarg;
7790
                break;
7791
            case QEMU_OPTION_sd:
7792
                sd_filename = optarg;
7793
                break;
7794
            case QEMU_OPTION_pflash:
7795
                if (pflash_index >= MAX_PFLASH) {
7796
                    fprintf(stderr, "qemu: too many parallel flash images\n");
7797
                    exit(1);
7798
                }
7799
                pflash_filename[pflash_index++] = optarg;
7800
                break;
7801
            case QEMU_OPTION_snapshot:
7802
                snapshot = 1;
7803
                break;
7804
            case QEMU_OPTION_hdachs:
7805
                {
7806
                    const char *p;
7807
                    p = optarg;
7808
                    cyls = strtol(p, (char **)&p, 0);
7809
                    if (cyls < 1 || cyls > 16383)
7810
                        goto chs_fail;
7811
                    if (*p != ',')
7812
                        goto chs_fail;
7813
                    p++;
7814
                    heads = strtol(p, (char **)&p, 0);
7815
                    if (heads < 1 || heads > 16)
7816
                        goto chs_fail;
7817
                    if (*p != ',')
7818
                        goto chs_fail;
7819
                    p++;
7820
                    secs = strtol(p, (char **)&p, 0);
7821
                    if (secs < 1 || secs > 63)
7822
                        goto chs_fail;
7823
                    if (*p == ',') {
7824
                        p++;
7825
                        if (!strcmp(p, "none"))
7826
                            translation = BIOS_ATA_TRANSLATION_NONE;
7827
                        else if (!strcmp(p, "lba"))
7828
                            translation = BIOS_ATA_TRANSLATION_LBA;
7829
                        else if (!strcmp(p, "auto"))
7830
                            translation = BIOS_ATA_TRANSLATION_AUTO;
7831
                        else
7832
                            goto chs_fail;
7833
                    } else if (*p != '\0') {
7834
                    chs_fail:
7835
                        fprintf(stderr, "qemu: invalid physical CHS format\n");
7836
                        exit(1);
7837
                    }
7838
                }
7839
                break;
7840
            case QEMU_OPTION_nographic:
7841
                pstrcpy(serial_devices[0], sizeof(serial_devices[0]), "stdio");
7842
                pstrcpy(parallel_devices[0], sizeof(parallel_devices[0]), "null");
7843
                pstrcpy(monitor_device, sizeof(monitor_device), "stdio");
7844
                nographic = 1;
7845
                break;
7846
            case QEMU_OPTION_portrait:
7847
                graphic_rotate = 1;
7848
                break;
7849
            case QEMU_OPTION_kernel:
7850
                kernel_filename = optarg;
7851
                break;
7852
            case QEMU_OPTION_append:
7853
                kernel_cmdline = optarg;
7854
                break;
7855
            case QEMU_OPTION_cdrom:
7856
                if (cdrom_index >= 0) {
7857
                    hd_filename[cdrom_index] = optarg;
7858
                }
7859
                break;
7860
            case QEMU_OPTION_boot:
7861
                boot_devices = optarg;
7862
                /* We just do some generic consistency checks */
7863
                {
7864
                    /* Could easily be extended to 64 devices if needed */
7865
                    const unsigned char *p;
7866
                    
7867
                    boot_devices_bitmap = 0;
7868
                    for (p = boot_devices; *p != '\0'; p++) {
7869
                        /* Allowed boot devices are:
7870
                         * a b     : floppy disk drives
7871
                         * c ... f : IDE disk drives
7872
                         * g ... m : machine implementation dependant drives
7873
                         * n ... p : network devices
7874
                         * It's up to each machine implementation to check
7875
                         * if the given boot devices match the actual hardware
7876
                         * implementation and firmware features.
7877
                         */
7878
                        if (*p < 'a' || *p > 'q') {
7879
                            fprintf(stderr, "Invalid boot device '%c'\n", *p);
7880
                            exit(1);
7881
                        }
7882
                        if (boot_devices_bitmap & (1 << (*p - 'a'))) {
7883
                            fprintf(stderr,
7884
                                    "Boot device '%c' was given twice\n",*p);
7885
                            exit(1);
7886
                        }
7887
                        boot_devices_bitmap |= 1 << (*p - 'a');
7888
                    }
7889
                }
7890
                break;
7891
            case QEMU_OPTION_fda:
7892
                fd_filename[0] = optarg;
7893
                break;
7894
            case QEMU_OPTION_fdb:
7895
                fd_filename[1] = optarg;
7896
                break;
7897
#ifdef TARGET_I386
7898
            case QEMU_OPTION_no_fd_bootchk:
7899
                fd_bootchk = 0;
7900
                break;
7901
#endif
7902
            case QEMU_OPTION_no_code_copy:
7903
                code_copy_enabled = 0;
7904
                break;
7905
            case QEMU_OPTION_net:
7906
                if (nb_net_clients >= MAX_NET_CLIENTS) {
7907
                    fprintf(stderr, "qemu: too many network clients\n");
7908
                    exit(1);
7909
                }
7910
                pstrcpy(net_clients[nb_net_clients],
7911
                        sizeof(net_clients[0]),
7912
                        optarg);
7913
                nb_net_clients++;
7914
                break;
7915
#ifdef CONFIG_SLIRP
7916
            case QEMU_OPTION_tftp:
7917
                tftp_prefix = optarg;
7918
                break;
7919
            case QEMU_OPTION_bootp:
7920
                bootp_filename = optarg;
7921
                break;
7922
#ifndef _WIN32
7923
            case QEMU_OPTION_smb:
7924
                net_slirp_smb(optarg);
7925
                break;
7926
#endif
7927
            case QEMU_OPTION_redir:
7928
                net_slirp_redir(optarg);
7929
                break;
7930
#endif
7931
#ifdef HAS_AUDIO
7932
            case QEMU_OPTION_audio_help:
7933
                AUD_help ();
7934
                exit (0);
7935
                break;
7936
            case QEMU_OPTION_soundhw:
7937
                select_soundhw (optarg);
7938
                break;
7939
#endif
7940
            case QEMU_OPTION_h:
7941
                help(0);
7942
                break;
7943
            case QEMU_OPTION_m:
7944
                ram_size = atoi(optarg) * 1024 * 1024;
7945
                if (ram_size <= 0)
7946
                    help(1);
7947
                if (ram_size > PHYS_RAM_MAX_SIZE) {
7948
                    fprintf(stderr, "qemu: at most %d MB RAM can be simulated\n",
7949
                            PHYS_RAM_MAX_SIZE / (1024 * 1024));
7950
                    exit(1);
7951
                }
7952
                break;
7953
            case QEMU_OPTION_d:
7954
                {
7955
                    int mask;
7956
                    CPULogItem *item;
7957

    
7958
                    mask = cpu_str_to_log_mask(optarg);
7959
                    if (!mask) {
7960
                        printf("Log items (comma separated):\n");
7961
                    for(item = cpu_log_items; item->mask != 0; item++) {
7962
                        printf("%-10s %s\n", item->name, item->help);
7963
                    }
7964
                    exit(1);
7965
                    }
7966
                    cpu_set_log(mask);
7967
                }
7968
                break;
7969
#ifdef CONFIG_GDBSTUB
7970
            case QEMU_OPTION_s:
7971
                use_gdbstub = 1;
7972
                break;
7973
            case QEMU_OPTION_p:
7974
                gdbstub_port = optarg;
7975
                break;
7976
#endif
7977
            case QEMU_OPTION_L:
7978
                bios_dir = optarg;
7979
                break;
7980
            case QEMU_OPTION_bios:
7981
                bios_name = optarg;
7982
                break;
7983
            case QEMU_OPTION_S:
7984
                autostart = 0;
7985
                break;
7986
            case QEMU_OPTION_k:
7987
                keyboard_layout = optarg;
7988
                break;
7989
            case QEMU_OPTION_localtime:
7990
                rtc_utc = 0;
7991
                break;
7992
            case QEMU_OPTION_cirrusvga:
7993
                cirrus_vga_enabled = 1;
7994
                vmsvga_enabled = 0;
7995
                break;
7996
            case QEMU_OPTION_vmsvga:
7997
                cirrus_vga_enabled = 0;
7998
                vmsvga_enabled = 1;
7999
                break;
8000
            case QEMU_OPTION_std_vga:
8001
                cirrus_vga_enabled = 0;
8002
                vmsvga_enabled = 0;
8003
                break;
8004
            case QEMU_OPTION_g:
8005
                {
8006
                    const char *p;
8007
                    int w, h, depth;
8008
                    p = optarg;
8009
                    w = strtol(p, (char **)&p, 10);
8010
                    if (w <= 0) {
8011
                    graphic_error:
8012
                        fprintf(stderr, "qemu: invalid resolution or depth\n");
8013
                        exit(1);
8014
                    }
8015
                    if (*p != 'x')
8016
                        goto graphic_error;
8017
                    p++;
8018
                    h = strtol(p, (char **)&p, 10);
8019
                    if (h <= 0)
8020
                        goto graphic_error;
8021
                    if (*p == 'x') {
8022
                        p++;
8023
                        depth = strtol(p, (char **)&p, 10);
8024
                        if (depth != 8 && depth != 15 && depth != 16 &&
8025
                            depth != 24 && depth != 32)
8026
                            goto graphic_error;
8027
                    } else if (*p == '\0') {
8028
                        depth = graphic_depth;
8029
                    } else {
8030
                        goto graphic_error;
8031
                    }
8032

    
8033
                    graphic_width = w;
8034
                    graphic_height = h;
8035
                    graphic_depth = depth;
8036
                }
8037
                break;
8038
            case QEMU_OPTION_echr:
8039
                {
8040
                    char *r;
8041
                    term_escape_char = strtol(optarg, &r, 0);
8042
                    if (r == optarg)
8043
                        printf("Bad argument to echr\n");
8044
                    break;
8045
                }
8046
            case QEMU_OPTION_monitor:
8047
                pstrcpy(monitor_device, sizeof(monitor_device), optarg);
8048
                break;
8049
            case QEMU_OPTION_serial:
8050
                if (serial_device_index >= MAX_SERIAL_PORTS) {
8051
                    fprintf(stderr, "qemu: too many serial ports\n");
8052
                    exit(1);
8053
                }
8054
                pstrcpy(serial_devices[serial_device_index],
8055
                        sizeof(serial_devices[0]), optarg);
8056
                serial_device_index++;
8057
                break;
8058
            case QEMU_OPTION_parallel:
8059
                if (parallel_device_index >= MAX_PARALLEL_PORTS) {
8060
                    fprintf(stderr, "qemu: too many parallel ports\n");
8061
                    exit(1);
8062
                }
8063
                pstrcpy(parallel_devices[parallel_device_index],
8064
                        sizeof(parallel_devices[0]), optarg);
8065
                parallel_device_index++;
8066
                break;
8067
            case QEMU_OPTION_loadvm:
8068
                loadvm = optarg;
8069
                break;
8070
            case QEMU_OPTION_full_screen:
8071
                full_screen = 1;
8072
                break;
8073
#ifdef CONFIG_SDL
8074
            case QEMU_OPTION_no_frame:
8075
                no_frame = 1;
8076
                break;
8077
            case QEMU_OPTION_alt_grab:
8078
                alt_grab = 1;
8079
                break;
8080
            case QEMU_OPTION_no_quit:
8081
                no_quit = 1;
8082
                break;
8083
#endif
8084
            case QEMU_OPTION_pidfile:
8085
                pid_file = optarg;
8086
                break;
8087
#ifdef TARGET_I386
8088
            case QEMU_OPTION_win2k_hack:
8089
                win2k_install_hack = 1;
8090
                break;
8091
#endif
8092
#ifdef USE_KQEMU
8093
            case QEMU_OPTION_no_kqemu:
8094
                kqemu_allowed = 0;
8095
                break;
8096
            case QEMU_OPTION_kernel_kqemu:
8097
                kqemu_allowed = 2;
8098
                break;
8099
#endif
8100
            case QEMU_OPTION_usb:
8101
                usb_enabled = 1;
8102
                break;
8103
            case QEMU_OPTION_usbdevice:
8104
                usb_enabled = 1;
8105
                if (usb_devices_index >= MAX_USB_CMDLINE) {
8106
                    fprintf(stderr, "Too many USB devices\n");
8107
                    exit(1);
8108
                }
8109
                pstrcpy(usb_devices[usb_devices_index],
8110
                        sizeof(usb_devices[usb_devices_index]),
8111
                        optarg);
8112
                usb_devices_index++;
8113
                break;
8114
            case QEMU_OPTION_smp:
8115
                smp_cpus = atoi(optarg);
8116
                if (smp_cpus < 1 || smp_cpus > MAX_CPUS) {
8117
                    fprintf(stderr, "Invalid number of CPUs\n");
8118
                    exit(1);
8119
                }
8120
                break;
8121
            case QEMU_OPTION_vnc:
8122
                vnc_display = optarg;
8123
                break;
8124
            case QEMU_OPTION_no_acpi:
8125
                acpi_enabled = 0;
8126
                break;
8127
            case QEMU_OPTION_no_reboot:
8128
                no_reboot = 1;
8129
                break;
8130
            case QEMU_OPTION_show_cursor:
8131
                cursor_hide = 0;
8132
                break;
8133
            case QEMU_OPTION_daemonize:
8134
                daemonize = 1;
8135
                break;
8136
            case QEMU_OPTION_option_rom:
8137
                if (nb_option_roms >= MAX_OPTION_ROMS) {
8138
                    fprintf(stderr, "Too many option ROMs\n");
8139
                    exit(1);
8140
                }
8141
                option_rom[nb_option_roms] = optarg;
8142
                nb_option_roms++;
8143
                break;
8144
            case QEMU_OPTION_semihosting:
8145
                semihosting_enabled = 1;
8146
                break;
8147
            case QEMU_OPTION_name:
8148
                qemu_name = optarg;
8149
                break;
8150
#ifdef TARGET_SPARC
8151
            case QEMU_OPTION_prom_env:
8152
                if (nb_prom_envs >= MAX_PROM_ENVS) {
8153
                    fprintf(stderr, "Too many prom variables\n");
8154
                    exit(1);
8155
                }
8156
                prom_envs[nb_prom_envs] = optarg;
8157
                nb_prom_envs++;
8158
                break;
8159
#endif
8160
#ifdef TARGET_ARM
8161
            case QEMU_OPTION_old_param:
8162
                old_param = 1;
8163
#endif
8164
            case QEMU_OPTION_clock:
8165
                configure_alarms(optarg);
8166
                break;
8167
            case QEMU_OPTION_startdate:
8168
                {
8169
                    struct tm tm;
8170
                    if (!strcmp(optarg, "now")) {
8171
                        rtc_start_date = -1;
8172
                    } else {
8173
                        if (sscanf(optarg, "%d-%d-%dT%d:%d:%d",
8174
                               &tm.tm_year,
8175
                               &tm.tm_mon,
8176
                               &tm.tm_mday,
8177
                               &tm.tm_hour,
8178
                               &tm.tm_min,
8179
                               &tm.tm_sec) == 6) {
8180
                            /* OK */
8181
                        } else if (sscanf(optarg, "%d-%d-%d",
8182
                                          &tm.tm_year,
8183
                                          &tm.tm_mon,
8184
                                          &tm.tm_mday) == 3) {
8185
                            tm.tm_hour = 0;
8186
                            tm.tm_min = 0;
8187
                            tm.tm_sec = 0;
8188
                        } else {
8189
                            goto date_fail;
8190
                        }
8191
                        tm.tm_year -= 1900;
8192
                        tm.tm_mon--;
8193
                        rtc_start_date = mktimegm(&tm);
8194
                        if (rtc_start_date == -1) {
8195
                        date_fail:
8196
                            fprintf(stderr, "Invalid date format. Valid format are:\n"
8197
                                    "'now' or '2006-06-17T16:01:21' or '2006-06-17'\n");
8198
                            exit(1);
8199
                        }
8200
                    }
8201
                }
8202
                break;
8203
            }
8204
        }
8205
    }
8206

    
8207
#ifndef _WIN32
8208
    if (daemonize && !nographic && vnc_display == NULL) {
8209
        fprintf(stderr, "Can only daemonize if using -nographic or -vnc\n");
8210
        daemonize = 0;
8211
    }
8212

    
8213
    if (daemonize) {
8214
        pid_t pid;
8215

    
8216
        if (pipe(fds) == -1)
8217
            exit(1);
8218

    
8219
        pid = fork();
8220
        if (pid > 0) {
8221
            uint8_t status;
8222
            ssize_t len;
8223

    
8224
            close(fds[1]);
8225

    
8226
        again:
8227
            len = read(fds[0], &status, 1);
8228
            if (len == -1 && (errno == EINTR))
8229
                goto again;
8230

    
8231
            if (len != 1)
8232
                exit(1);
8233
            else if (status == 1) {
8234
                fprintf(stderr, "Could not acquire pidfile\n");
8235
                exit(1);
8236
            } else
8237
                exit(0);
8238
        } else if (pid < 0)
8239
            exit(1);
8240

    
8241
        setsid();
8242

    
8243
        pid = fork();
8244
        if (pid > 0)
8245
            exit(0);
8246
        else if (pid < 0)
8247
            exit(1);
8248

    
8249
        umask(027);
8250
        chdir("/");
8251

    
8252
        signal(SIGTSTP, SIG_IGN);
8253
        signal(SIGTTOU, SIG_IGN);
8254
        signal(SIGTTIN, SIG_IGN);
8255
    }
8256
#endif
8257

    
8258
    if (pid_file && qemu_create_pidfile(pid_file) != 0) {
8259
        if (daemonize) {
8260
            uint8_t status = 1;
8261
            write(fds[1], &status, 1);
8262
        } else
8263
            fprintf(stderr, "Could not acquire pid file\n");
8264
        exit(1);
8265
    }
8266

    
8267
#ifdef USE_KQEMU
8268
    if (smp_cpus > 1)
8269
        kqemu_allowed = 0;
8270
#endif
8271
    linux_boot = (kernel_filename != NULL);
8272
    net_boot = (boot_devices_bitmap >> ('n' - 'a')) & 0xF;
8273

    
8274
    /* XXX: this should not be: some embedded targets just have flash */
8275
    if (!linux_boot && net_boot == 0 &&
8276
        hd_filename[0] == NULL &&
8277
        (cdrom_index >= 0 && hd_filename[cdrom_index] == NULL) &&
8278
        fd_filename[0] == NULL &&
8279
        pflash_filename[0] == NULL)
8280
        help(1);
8281

    
8282
    /* boot to floppy or the default cd if no hard disk defined yet */
8283
    if (!boot_devices[0]) {
8284
        if (hd_filename[0] != NULL)
8285
            boot_devices = "c";
8286
        else if (fd_filename[0] != NULL)
8287
            boot_devices = "a";
8288
        else
8289
            boot_devices = "d";
8290
    }
8291
    setvbuf(stdout, NULL, _IOLBF, 0);
8292

    
8293
    init_timers();
8294
    init_timer_alarm();
8295
    qemu_aio_init();
8296

    
8297
#ifdef _WIN32
8298
    socket_init();
8299
#endif
8300

    
8301
    /* init network clients */
8302
    if (nb_net_clients == 0) {
8303
        /* if no clients, we use a default config */
8304
        pstrcpy(net_clients[0], sizeof(net_clients[0]),
8305
                "nic");
8306
        pstrcpy(net_clients[1], sizeof(net_clients[0]),
8307
                "user");
8308
        nb_net_clients = 2;
8309
    }
8310

    
8311
    for(i = 0;i < nb_net_clients; i++) {
8312
        if (net_client_init(net_clients[i]) < 0)
8313
            exit(1);
8314
    }
8315
    for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
8316
        if (vlan->nb_guest_devs == 0 && vlan->nb_host_devs == 0)
8317
            continue;
8318
        if (vlan->nb_guest_devs == 0) {
8319
            fprintf(stderr, "Invalid vlan (%d) with no nics\n", vlan->id);
8320
            exit(1);
8321
        }
8322
        if (vlan->nb_host_devs == 0)
8323
            fprintf(stderr,
8324
                    "Warning: vlan %d is not connected to host network\n",
8325
                    vlan->id);
8326
    }
8327

    
8328
#ifdef TARGET_I386
8329
    /* XXX: this should be moved in the PC machine instanciation code */
8330
    if (net_boot != 0) {
8331
        int netroms = 0;
8332
        for (i = 0; i < nb_nics && i < 4; i++) {
8333
            const char *model = nd_table[i].model;
8334
            char buf[1024];
8335
            if (net_boot & (1 << i)) {
8336
                if (model == NULL)
8337
                    model = "ne2k_pci";
8338
                snprintf(buf, sizeof(buf), "%s/pxe-%s.bin", bios_dir, model);
8339
                if (get_image_size(buf) > 0) {
8340
                    if (nb_option_roms >= MAX_OPTION_ROMS) {
8341
                        fprintf(stderr, "Too many option ROMs\n");
8342
                        exit(1);
8343
                    }
8344
                    option_rom[nb_option_roms] = strdup(buf);
8345
                    nb_option_roms++;
8346
                    netroms++;
8347
                }
8348
            }
8349
        }
8350
        if (netroms == 0) {
8351
            fprintf(stderr, "No valid PXE rom found for network device\n");
8352
            exit(1);
8353
        }
8354
    }
8355
#endif
8356

    
8357
    /* init the memory */
8358
    phys_ram_size = ram_size + vga_ram_size + MAX_BIOS_SIZE;
8359

    
8360
    phys_ram_base = qemu_vmalloc(phys_ram_size);
8361
    if (!phys_ram_base) {
8362
        fprintf(stderr, "Could not allocate physical memory\n");
8363
        exit(1);
8364
    }
8365

    
8366
    /* we always create the cdrom drive, even if no disk is there */
8367
    bdrv_init();
8368
    if (cdrom_index >= 0) {
8369
        bs_table[cdrom_index] = bdrv_new("cdrom");
8370
        bdrv_set_type_hint(bs_table[cdrom_index], BDRV_TYPE_CDROM);
8371
    }
8372

    
8373
    /* open the virtual block devices */
8374
    for(i = 0; i < MAX_DISKS; i++) {
8375
        if (hd_filename[i]) {
8376
            if (!bs_table[i]) {
8377
                char buf[64];
8378
                snprintf(buf, sizeof(buf), "hd%c", i + 'a');
8379
                bs_table[i] = bdrv_new(buf);
8380
            }
8381
            if (bdrv_open(bs_table[i], hd_filename[i], snapshot ? BDRV_O_SNAPSHOT : 0) < 0) {
8382
                fprintf(stderr, "qemu: could not open hard disk image '%s'\n",
8383
                        hd_filename[i]);
8384
                exit(1);
8385
            }
8386
            if (i == 0 && cyls != 0) {
8387
                bdrv_set_geometry_hint(bs_table[i], cyls, heads, secs);
8388
                bdrv_set_translation_hint(bs_table[i], translation);
8389
            }
8390
        }
8391
    }
8392

    
8393
    /* we always create at least one floppy disk */
8394
    fd_table[0] = bdrv_new("fda");
8395
    bdrv_set_type_hint(fd_table[0], BDRV_TYPE_FLOPPY);
8396

    
8397
    for(i = 0; i < MAX_FD; i++) {
8398
        if (fd_filename[i]) {
8399
            if (!fd_table[i]) {
8400
                char buf[64];
8401
                snprintf(buf, sizeof(buf), "fd%c", i + 'a');
8402
                fd_table[i] = bdrv_new(buf);
8403
                bdrv_set_type_hint(fd_table[i], BDRV_TYPE_FLOPPY);
8404
            }
8405
            if (fd_filename[i][0] != '\0') {
8406
                if (bdrv_open(fd_table[i], fd_filename[i],
8407
                              snapshot ? BDRV_O_SNAPSHOT : 0) < 0) {
8408
                    fprintf(stderr, "qemu: could not open floppy disk image '%s'\n",
8409
                            fd_filename[i]);
8410
                    exit(1);
8411
                }
8412
            }
8413
        }
8414
    }
8415

    
8416
    /* Open the virtual parallel flash block devices */
8417
    for(i = 0; i < MAX_PFLASH; i++) {
8418
        if (pflash_filename[i]) {
8419
            if (!pflash_table[i]) {
8420
                char buf[64];
8421
                snprintf(buf, sizeof(buf), "fl%c", i + 'a');
8422
                pflash_table[i] = bdrv_new(buf);
8423
            }
8424
            if (bdrv_open(pflash_table[i], pflash_filename[i],
8425
                          snapshot ? BDRV_O_SNAPSHOT : 0) < 0) {
8426
                fprintf(stderr, "qemu: could not open flash image '%s'\n",
8427
                        pflash_filename[i]);
8428
                exit(1);
8429
            }
8430
        }
8431
    }
8432

    
8433
    sd_bdrv = bdrv_new ("sd");
8434
    /* FIXME: This isn't really a floppy, but it's a reasonable
8435
       approximation.  */
8436
    bdrv_set_type_hint(sd_bdrv, BDRV_TYPE_FLOPPY);
8437
    if (sd_filename) {
8438
        if (bdrv_open(sd_bdrv, sd_filename,
8439
                      snapshot ? BDRV_O_SNAPSHOT : 0) < 0) {
8440
            fprintf(stderr, "qemu: could not open SD card image %s\n",
8441
                    sd_filename);
8442
        } else
8443
            qemu_key_check(sd_bdrv, sd_filename);
8444
    }
8445

    
8446
    if (mtd_filename) {
8447
        mtd_bdrv = bdrv_new ("mtd");
8448
        if (bdrv_open(mtd_bdrv, mtd_filename,
8449
                      snapshot ? BDRV_O_SNAPSHOT : 0) < 0 ||
8450
            qemu_key_check(mtd_bdrv, mtd_filename)) {
8451
            fprintf(stderr, "qemu: could not open Flash image %s\n",
8452
                    mtd_filename);
8453
            bdrv_delete(mtd_bdrv);
8454
            mtd_bdrv = 0;
8455
        }
8456
    }
8457

    
8458
    register_savevm("timer", 0, 2, timer_save, timer_load, NULL);
8459
    register_savevm("ram", 0, 2, ram_save, ram_load, NULL);
8460

    
8461
    init_ioports();
8462

    
8463
    /* terminal init */
8464
    memset(&display_state, 0, sizeof(display_state));
8465
    if (nographic) {
8466
        /* nearly nothing to do */
8467
        dumb_display_init(ds);
8468
    } else if (vnc_display != NULL) {
8469
        vnc_display_init(ds);
8470
        if (vnc_display_open(ds, vnc_display) < 0)
8471
            exit(1);
8472
    } else {
8473
#if defined(CONFIG_SDL)
8474
        sdl_display_init(ds, full_screen, no_frame);
8475
#elif defined(CONFIG_COCOA)
8476
        cocoa_display_init(ds, full_screen);
8477
#else
8478
        dumb_display_init(ds);
8479
#endif
8480
    }
8481

    
8482
    /* Maintain compatibility with multiple stdio monitors */
8483
    if (!strcmp(monitor_device,"stdio")) {
8484
        for (i = 0; i < MAX_SERIAL_PORTS; i++) {
8485
            if (!strcmp(serial_devices[i],"mon:stdio")) {
8486
                monitor_device[0] = '\0';
8487
                break;
8488
            } else if (!strcmp(serial_devices[i],"stdio")) {
8489
                monitor_device[0] = '\0';
8490
                pstrcpy(serial_devices[0], sizeof(serial_devices[0]), "mon:stdio");
8491
                break;
8492
            }
8493
        }
8494
    }
8495
    if (monitor_device[0] != '\0') {
8496
        monitor_hd = qemu_chr_open(monitor_device);
8497
        if (!monitor_hd) {
8498
            fprintf(stderr, "qemu: could not open monitor device '%s'\n", monitor_device);
8499
            exit(1);
8500
        }
8501
        monitor_init(monitor_hd, !nographic);
8502
    }
8503

    
8504
    for(i = 0; i < MAX_SERIAL_PORTS; i++) {
8505
        const char *devname = serial_devices[i];
8506
        if (devname[0] != '\0' && strcmp(devname, "none")) {
8507
            serial_hds[i] = qemu_chr_open(devname);
8508
            if (!serial_hds[i]) {
8509
                fprintf(stderr, "qemu: could not open serial device '%s'\n",
8510
                        devname);
8511
                exit(1);
8512
            }
8513
            if (strstart(devname, "vc", 0))
8514
                qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
8515
        }
8516
    }
8517

    
8518
    for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
8519
        const char *devname = parallel_devices[i];
8520
        if (devname[0] != '\0' && strcmp(devname, "none")) {
8521
            parallel_hds[i] = qemu_chr_open(devname);
8522
            if (!parallel_hds[i]) {
8523
                fprintf(stderr, "qemu: could not open parallel device '%s'\n",
8524
                        devname);
8525
                exit(1);
8526
            }
8527
            if (strstart(devname, "vc", 0))
8528
                qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
8529
        }
8530
    }
8531

    
8532
    machine->init(ram_size, vga_ram_size, boot_devices,
8533
                  ds, fd_filename, snapshot,
8534
                  kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
8535

    
8536
    /* init USB devices */
8537
    if (usb_enabled) {
8538
        for(i = 0; i < usb_devices_index; i++) {
8539
            if (usb_device_add(usb_devices[i]) < 0) {
8540
                fprintf(stderr, "Warning: could not add USB device %s\n",
8541
                        usb_devices[i]);
8542
            }
8543
        }
8544
    }
8545

    
8546
    if (display_state.dpy_refresh) {
8547
        display_state.gui_timer = qemu_new_timer(rt_clock, gui_update, &display_state);
8548
        qemu_mod_timer(display_state.gui_timer, qemu_get_clock(rt_clock));
8549
    }
8550

    
8551
#ifdef CONFIG_GDBSTUB
8552
    if (use_gdbstub) {
8553
        /* XXX: use standard host:port notation and modify options
8554
           accordingly. */
8555
        if (gdbserver_start(gdbstub_port) < 0) {
8556
            fprintf(stderr, "qemu: could not open gdbstub device on port '%s'\n",
8557
                    gdbstub_port);
8558
            exit(1);
8559
        }
8560
    }
8561
#endif
8562

    
8563
    if (loadvm)
8564
        do_loadvm(loadvm);
8565

    
8566
    {
8567
        /* XXX: simplify init */
8568
        read_passwords();
8569
        if (autostart) {
8570
            vm_start();
8571
        }
8572
    }
8573

    
8574
    if (daemonize) {
8575
        uint8_t status = 0;
8576
        ssize_t len;
8577
        int fd;
8578

    
8579
    again1:
8580
        len = write(fds[1], &status, 1);
8581
        if (len == -1 && (errno == EINTR))
8582
            goto again1;
8583

    
8584
        if (len != 1)
8585
            exit(1);
8586

    
8587
        TFR(fd = open("/dev/null", O_RDWR));
8588
        if (fd == -1)
8589
            exit(1);
8590

    
8591
        dup2(fd, 0);
8592
        dup2(fd, 1);
8593
        dup2(fd, 2);
8594

    
8595
        close(fd);
8596
    }
8597

    
8598
    main_loop();
8599
    quit_timers();
8600

    
8601
#if !defined(_WIN32)
8602
    /* close network clients */
8603
    for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
8604
        VLANClientState *vc;
8605

    
8606
        for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
8607
            if (vc->fd_read == tap_receive) {
8608
                char ifname[64];
8609
                TAPState *s = vc->opaque;
8610

    
8611
                if (sscanf(vc->info_str, "tap: ifname=%63s ", ifname) == 1 &&
8612
                    s->down_script[0])
8613
                    launch_script(s->down_script, ifname, s->fd);
8614
            }
8615
    }
8616
    }
8617
#endif
8618
    return 0;
8619
}