Statistics
| Branch: | Revision:

root / hw / mc146818rtc.c @ 731ba0ce

History | View | Annotate | Download (16.9 kB)

1
/*
2
 * QEMU MC146818 RTC emulation
3
 *
4
 * Copyright (c) 2003-2004 Fabrice Bellard
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "hw.h"
25
#include "qemu-timer.h"
26
#include "sysemu.h"
27
#include "pc.h"
28
#include "isa.h"
29

    
30
//#define DEBUG_CMOS
31

    
32
#define RTC_SECONDS             0
33
#define RTC_SECONDS_ALARM       1
34
#define RTC_MINUTES             2
35
#define RTC_MINUTES_ALARM       3
36
#define RTC_HOURS               4
37
#define RTC_HOURS_ALARM         5
38
#define RTC_ALARM_DONT_CARE    0xC0
39

    
40
#define RTC_DAY_OF_WEEK         6
41
#define RTC_DAY_OF_MONTH        7
42
#define RTC_MONTH               8
43
#define RTC_YEAR                9
44

    
45
#define RTC_REG_A               10
46
#define RTC_REG_B               11
47
#define RTC_REG_C               12
48
#define RTC_REG_D               13
49

    
50
#define REG_A_UIP 0x80
51

    
52
#define REG_B_SET 0x80
53
#define REG_B_PIE 0x40
54
#define REG_B_AIE 0x20
55
#define REG_B_UIE 0x10
56

    
57
struct RTCState {
58
    uint8_t cmos_data[128];
59
    uint8_t cmos_index;
60
    struct tm current_tm;
61
    qemu_irq irq;
62
    target_phys_addr_t base;
63
    int it_shift;
64
    /* periodic timer */
65
    QEMUTimer *periodic_timer;
66
    int64_t next_periodic_time;
67
    /* second update */
68
    int64_t next_second_time;
69
    QEMUTimer *second_timer;
70
    QEMUTimer *second_timer2;
71
};
72

    
73
static void rtc_set_time(RTCState *s);
74
static void rtc_copy_date(RTCState *s);
75

    
76
static void rtc_timer_update(RTCState *s, int64_t current_time)
77
{
78
    int period_code, period;
79
    int64_t cur_clock, next_irq_clock;
80

    
81
    period_code = s->cmos_data[RTC_REG_A] & 0x0f;
82
    if (period_code != 0 &&
83
        (s->cmos_data[RTC_REG_B] & REG_B_PIE)) {
84
        if (period_code <= 2)
85
            period_code += 7;
86
        /* period in 32 Khz cycles */
87
        period = 1 << (period_code - 1);
88
        /* compute 32 khz clock */
89
        cur_clock = muldiv64(current_time, 32768, ticks_per_sec);
90
        next_irq_clock = (cur_clock & ~(period - 1)) + period;
91
        s->next_periodic_time = muldiv64(next_irq_clock, ticks_per_sec, 32768) + 1;
92
        qemu_mod_timer(s->periodic_timer, s->next_periodic_time);
93
    } else {
94
        qemu_del_timer(s->periodic_timer);
95
    }
96
}
97

    
98
static void rtc_periodic_timer(void *opaque)
99
{
100
    RTCState *s = opaque;
101

    
102
    rtc_timer_update(s, s->next_periodic_time);
103
    s->cmos_data[RTC_REG_C] |= 0xc0;
104
    qemu_irq_raise(s->irq);
105
}
106

    
107
static void cmos_ioport_write(void *opaque, uint32_t addr, uint32_t data)
108
{
109
    RTCState *s = opaque;
110

    
111
    if ((addr & 1) == 0) {
112
        s->cmos_index = data & 0x7f;
113
    } else {
114
#ifdef DEBUG_CMOS
115
        printf("cmos: write index=0x%02x val=0x%02x\n",
116
               s->cmos_index, data);
117
#endif
118
        switch(s->cmos_index) {
119
        case RTC_SECONDS_ALARM:
120
        case RTC_MINUTES_ALARM:
121
        case RTC_HOURS_ALARM:
122
            /* XXX: not supported */
123
            s->cmos_data[s->cmos_index] = data;
124
            break;
125
        case RTC_SECONDS:
126
        case RTC_MINUTES:
127
        case RTC_HOURS:
128
        case RTC_DAY_OF_WEEK:
129
        case RTC_DAY_OF_MONTH:
130
        case RTC_MONTH:
131
        case RTC_YEAR:
132
            s->cmos_data[s->cmos_index] = data;
133
            /* if in set mode, do not update the time */
134
            if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
135
                rtc_set_time(s);
136
            }
137
            break;
138
        case RTC_REG_A:
139
            /* UIP bit is read only */
140
            s->cmos_data[RTC_REG_A] = (data & ~REG_A_UIP) |
141
                (s->cmos_data[RTC_REG_A] & REG_A_UIP);
142
            rtc_timer_update(s, qemu_get_clock(vm_clock));
143
            break;
144
        case RTC_REG_B:
145
            if (data & REG_B_SET) {
146
                /* set mode: reset UIP mode */
147
                s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
148
                data &= ~REG_B_UIE;
149
            } else {
150
                /* if disabling set mode, update the time */
151
                if (s->cmos_data[RTC_REG_B] & REG_B_SET) {
152
                    rtc_set_time(s);
153
                }
154
            }
155
            s->cmos_data[RTC_REG_B] = data;
156
            rtc_timer_update(s, qemu_get_clock(vm_clock));
157
            break;
158
        case RTC_REG_C:
159
        case RTC_REG_D:
160
            /* cannot write to them */
161
            break;
162
        default:
163
            s->cmos_data[s->cmos_index] = data;
164
            break;
165
        }
166
    }
167
}
168

    
169
static inline int to_bcd(RTCState *s, int a)
170
{
171
    if (s->cmos_data[RTC_REG_B] & 0x04) {
172
        return a;
173
    } else {
174
        return ((a / 10) << 4) | (a % 10);
175
    }
176
}
177

    
178
static inline int from_bcd(RTCState *s, int a)
179
{
180
    if (s->cmos_data[RTC_REG_B] & 0x04) {
181
        return a;
182
    } else {
183
        return ((a >> 4) * 10) + (a & 0x0f);
184
    }
185
}
186

    
187
static void rtc_set_time(RTCState *s)
188
{
189
    struct tm *tm = &s->current_tm;
190

    
191
    tm->tm_sec = from_bcd(s, s->cmos_data[RTC_SECONDS]);
192
    tm->tm_min = from_bcd(s, s->cmos_data[RTC_MINUTES]);
193
    tm->tm_hour = from_bcd(s, s->cmos_data[RTC_HOURS] & 0x7f);
194
    if (!(s->cmos_data[RTC_REG_B] & 0x02) &&
195
        (s->cmos_data[RTC_HOURS] & 0x80)) {
196
        tm->tm_hour += 12;
197
    }
198
    tm->tm_wday = from_bcd(s, s->cmos_data[RTC_DAY_OF_WEEK]);
199
    tm->tm_mday = from_bcd(s, s->cmos_data[RTC_DAY_OF_MONTH]);
200
    tm->tm_mon = from_bcd(s, s->cmos_data[RTC_MONTH]) - 1;
201
    tm->tm_year = from_bcd(s, s->cmos_data[RTC_YEAR]) + 100;
202
}
203

    
204
static void rtc_copy_date(RTCState *s)
205
{
206
    const struct tm *tm = &s->current_tm;
207

    
208
    s->cmos_data[RTC_SECONDS] = to_bcd(s, tm->tm_sec);
209
    s->cmos_data[RTC_MINUTES] = to_bcd(s, tm->tm_min);
210
    if (s->cmos_data[RTC_REG_B] & 0x02) {
211
        /* 24 hour format */
212
        s->cmos_data[RTC_HOURS] = to_bcd(s, tm->tm_hour);
213
    } else {
214
        /* 12 hour format */
215
        s->cmos_data[RTC_HOURS] = to_bcd(s, tm->tm_hour % 12);
216
        if (tm->tm_hour >= 12)
217
            s->cmos_data[RTC_HOURS] |= 0x80;
218
    }
219
    s->cmos_data[RTC_DAY_OF_WEEK] = to_bcd(s, tm->tm_wday);
220
    s->cmos_data[RTC_DAY_OF_MONTH] = to_bcd(s, tm->tm_mday);
221
    s->cmos_data[RTC_MONTH] = to_bcd(s, tm->tm_mon + 1);
222
    s->cmos_data[RTC_YEAR] = to_bcd(s, tm->tm_year % 100);
223
}
224

    
225
/* month is between 0 and 11. */
226
static int get_days_in_month(int month, int year)
227
{
228
    static const int days_tab[12] = {
229
        31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
230
    };
231
    int d;
232
    if ((unsigned )month >= 12)
233
        return 31;
234
    d = days_tab[month];
235
    if (month == 1) {
236
        if ((year % 4) == 0 && ((year % 100) != 0 || (year % 400) == 0))
237
            d++;
238
    }
239
    return d;
240
}
241

    
242
/* update 'tm' to the next second */
243
static void rtc_next_second(struct tm *tm)
244
{
245
    int days_in_month;
246

    
247
    tm->tm_sec++;
248
    if ((unsigned)tm->tm_sec >= 60) {
249
        tm->tm_sec = 0;
250
        tm->tm_min++;
251
        if ((unsigned)tm->tm_min >= 60) {
252
            tm->tm_min = 0;
253
            tm->tm_hour++;
254
            if ((unsigned)tm->tm_hour >= 24) {
255
                tm->tm_hour = 0;
256
                /* next day */
257
                tm->tm_wday++;
258
                if ((unsigned)tm->tm_wday >= 7)
259
                    tm->tm_wday = 0;
260
                days_in_month = get_days_in_month(tm->tm_mon,
261
                                                  tm->tm_year + 1900);
262
                tm->tm_mday++;
263
                if (tm->tm_mday < 1) {
264
                    tm->tm_mday = 1;
265
                } else if (tm->tm_mday > days_in_month) {
266
                    tm->tm_mday = 1;
267
                    tm->tm_mon++;
268
                    if (tm->tm_mon >= 12) {
269
                        tm->tm_mon = 0;
270
                        tm->tm_year++;
271
                    }
272
                }
273
            }
274
        }
275
    }
276
}
277

    
278

    
279
static void rtc_update_second(void *opaque)
280
{
281
    RTCState *s = opaque;
282
    int64_t delay;
283

    
284
    /* if the oscillator is not in normal operation, we do not update */
285
    if ((s->cmos_data[RTC_REG_A] & 0x70) != 0x20) {
286
        s->next_second_time += ticks_per_sec;
287
        qemu_mod_timer(s->second_timer, s->next_second_time);
288
    } else {
289
        rtc_next_second(&s->current_tm);
290

    
291
        if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
292
            /* update in progress bit */
293
            s->cmos_data[RTC_REG_A] |= REG_A_UIP;
294
        }
295
        /* should be 244 us = 8 / 32768 seconds, but currently the
296
           timers do not have the necessary resolution. */
297
        delay = (ticks_per_sec * 1) / 100;
298
        if (delay < 1)
299
            delay = 1;
300
        qemu_mod_timer(s->second_timer2,
301
                       s->next_second_time + delay);
302
    }
303
}
304

    
305
static void rtc_update_second2(void *opaque)
306
{
307
    RTCState *s = opaque;
308

    
309
    if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
310
        rtc_copy_date(s);
311
    }
312

    
313
    /* check alarm */
314
    if (s->cmos_data[RTC_REG_B] & REG_B_AIE) {
315
        if (((s->cmos_data[RTC_SECONDS_ALARM] & 0xc0) == 0xc0 ||
316
             s->cmos_data[RTC_SECONDS_ALARM] == s->current_tm.tm_sec) &&
317
            ((s->cmos_data[RTC_MINUTES_ALARM] & 0xc0) == 0xc0 ||
318
             s->cmos_data[RTC_MINUTES_ALARM] == s->current_tm.tm_mon) &&
319
            ((s->cmos_data[RTC_HOURS_ALARM] & 0xc0) == 0xc0 ||
320
             s->cmos_data[RTC_HOURS_ALARM] == s->current_tm.tm_hour)) {
321

    
322
            s->cmos_data[RTC_REG_C] |= 0xa0;
323
            qemu_irq_raise(s->irq);
324
        }
325
    }
326

    
327
    /* update ended interrupt */
328
    if (s->cmos_data[RTC_REG_B] & REG_B_UIE) {
329
        s->cmos_data[RTC_REG_C] |= 0x90;
330
        qemu_irq_raise(s->irq);
331
    }
332

    
333
    /* clear update in progress bit */
334
    s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
335

    
336
    s->next_second_time += ticks_per_sec;
337
    qemu_mod_timer(s->second_timer, s->next_second_time);
338
}
339

    
340
static uint32_t cmos_ioport_read(void *opaque, uint32_t addr)
341
{
342
    RTCState *s = opaque;
343
    int ret;
344
    if ((addr & 1) == 0) {
345
        return 0xff;
346
    } else {
347
        switch(s->cmos_index) {
348
        case RTC_SECONDS:
349
        case RTC_MINUTES:
350
        case RTC_HOURS:
351
        case RTC_DAY_OF_WEEK:
352
        case RTC_DAY_OF_MONTH:
353
        case RTC_MONTH:
354
        case RTC_YEAR:
355
            ret = s->cmos_data[s->cmos_index];
356
            break;
357
        case RTC_REG_A:
358
            ret = s->cmos_data[s->cmos_index];
359
            break;
360
        case RTC_REG_C:
361
            ret = s->cmos_data[s->cmos_index];
362
            qemu_irq_lower(s->irq);
363
            s->cmos_data[RTC_REG_C] = 0x00;
364
            break;
365
        default:
366
            ret = s->cmos_data[s->cmos_index];
367
            break;
368
        }
369
#ifdef DEBUG_CMOS
370
        printf("cmos: read index=0x%02x val=0x%02x\n",
371
               s->cmos_index, ret);
372
#endif
373
        return ret;
374
    }
375
}
376

    
377
void rtc_set_memory(RTCState *s, int addr, int val)
378
{
379
    if (addr >= 0 && addr <= 127)
380
        s->cmos_data[addr] = val;
381
}
382

    
383
void rtc_set_date(RTCState *s, const struct tm *tm)
384
{
385
    s->current_tm = *tm;
386
    rtc_copy_date(s);
387
}
388

    
389
/* PC cmos mappings */
390
#define REG_IBM_CENTURY_BYTE        0x32
391
#define REG_IBM_PS2_CENTURY_BYTE    0x37
392

    
393
static void rtc_set_date_from_host(RTCState *s)
394
{
395
    struct tm tm;
396
    int val;
397

    
398
    /* set the CMOS date */
399
    qemu_get_timedate(&tm, 0);
400
    rtc_set_date(s, &tm);
401

    
402
    val = to_bcd(s, (tm.tm_year / 100) + 19);
403
    rtc_set_memory(s, REG_IBM_CENTURY_BYTE, val);
404
    rtc_set_memory(s, REG_IBM_PS2_CENTURY_BYTE, val);
405
}
406

    
407
static void rtc_save(QEMUFile *f, void *opaque)
408
{
409
    RTCState *s = opaque;
410

    
411
    qemu_put_buffer(f, s->cmos_data, 128);
412
    qemu_put_8s(f, &s->cmos_index);
413

    
414
    qemu_put_be32(f, s->current_tm.tm_sec);
415
    qemu_put_be32(f, s->current_tm.tm_min);
416
    qemu_put_be32(f, s->current_tm.tm_hour);
417
    qemu_put_be32(f, s->current_tm.tm_wday);
418
    qemu_put_be32(f, s->current_tm.tm_mday);
419
    qemu_put_be32(f, s->current_tm.tm_mon);
420
    qemu_put_be32(f, s->current_tm.tm_year);
421

    
422
    qemu_put_timer(f, s->periodic_timer);
423
    qemu_put_be64(f, s->next_periodic_time);
424

    
425
    qemu_put_be64(f, s->next_second_time);
426
    qemu_put_timer(f, s->second_timer);
427
    qemu_put_timer(f, s->second_timer2);
428
}
429

    
430
static int rtc_load(QEMUFile *f, void *opaque, int version_id)
431
{
432
    RTCState *s = opaque;
433

    
434
    if (version_id != 1)
435
        return -EINVAL;
436

    
437
    qemu_get_buffer(f, s->cmos_data, 128);
438
    qemu_get_8s(f, &s->cmos_index);
439

    
440
    s->current_tm.tm_sec=qemu_get_be32(f);
441
    s->current_tm.tm_min=qemu_get_be32(f);
442
    s->current_tm.tm_hour=qemu_get_be32(f);
443
    s->current_tm.tm_wday=qemu_get_be32(f);
444
    s->current_tm.tm_mday=qemu_get_be32(f);
445
    s->current_tm.tm_mon=qemu_get_be32(f);
446
    s->current_tm.tm_year=qemu_get_be32(f);
447

    
448
    qemu_get_timer(f, s->periodic_timer);
449
    s->next_periodic_time=qemu_get_be64(f);
450

    
451
    s->next_second_time=qemu_get_be64(f);
452
    qemu_get_timer(f, s->second_timer);
453
    qemu_get_timer(f, s->second_timer2);
454
    return 0;
455
}
456

    
457
RTCState *rtc_init(int base, qemu_irq irq)
458
{
459
    RTCState *s;
460

    
461
    s = qemu_mallocz(sizeof(RTCState));
462
    if (!s)
463
        return NULL;
464

    
465
    s->irq = irq;
466
    s->cmos_data[RTC_REG_A] = 0x26;
467
    s->cmos_data[RTC_REG_B] = 0x02;
468
    s->cmos_data[RTC_REG_C] = 0x00;
469
    s->cmos_data[RTC_REG_D] = 0x80;
470

    
471
    rtc_set_date_from_host(s);
472

    
473
    s->periodic_timer = qemu_new_timer(vm_clock,
474
                                       rtc_periodic_timer, s);
475
    s->second_timer = qemu_new_timer(vm_clock,
476
                                     rtc_update_second, s);
477
    s->second_timer2 = qemu_new_timer(vm_clock,
478
                                      rtc_update_second2, s);
479

    
480
    s->next_second_time = qemu_get_clock(vm_clock) + (ticks_per_sec * 99) / 100;
481
    qemu_mod_timer(s->second_timer2, s->next_second_time);
482

    
483
    register_ioport_write(base, 2, 1, cmos_ioport_write, s);
484
    register_ioport_read(base, 2, 1, cmos_ioport_read, s);
485

    
486
    register_savevm("mc146818rtc", base, 1, rtc_save, rtc_load, s);
487
    return s;
488
}
489

    
490
/* Memory mapped interface */
491
static uint32_t cmos_mm_readb (void *opaque, target_phys_addr_t addr)
492
{
493
    RTCState *s = opaque;
494

    
495
    return cmos_ioport_read(s, (addr - s->base) >> s->it_shift) & 0xFF;
496
}
497

    
498
static void cmos_mm_writeb (void *opaque,
499
                            target_phys_addr_t addr, uint32_t value)
500
{
501
    RTCState *s = opaque;
502

    
503
    cmos_ioport_write(s, (addr - s->base) >> s->it_shift, value & 0xFF);
504
}
505

    
506
static uint32_t cmos_mm_readw (void *opaque, target_phys_addr_t addr)
507
{
508
    RTCState *s = opaque;
509
    uint32_t val;
510

    
511
    val = cmos_ioport_read(s, (addr - s->base) >> s->it_shift) & 0xFFFF;
512
#ifdef TARGET_WORDS_BIGENDIAN
513
    val = bswap16(val);
514
#endif
515
    return val;
516
}
517

    
518
static void cmos_mm_writew (void *opaque,
519
                            target_phys_addr_t addr, uint32_t value)
520
{
521
    RTCState *s = opaque;
522
#ifdef TARGET_WORDS_BIGENDIAN
523
    value = bswap16(value);
524
#endif
525
    cmos_ioport_write(s, (addr - s->base) >> s->it_shift, value & 0xFFFF);
526
}
527

    
528
static uint32_t cmos_mm_readl (void *opaque, target_phys_addr_t addr)
529
{
530
    RTCState *s = opaque;
531
    uint32_t val;
532

    
533
    val = cmos_ioport_read(s, (addr - s->base) >> s->it_shift);
534
#ifdef TARGET_WORDS_BIGENDIAN
535
    val = bswap32(val);
536
#endif
537
    return val;
538
}
539

    
540
static void cmos_mm_writel (void *opaque,
541
                            target_phys_addr_t addr, uint32_t value)
542
{
543
    RTCState *s = opaque;
544
#ifdef TARGET_WORDS_BIGENDIAN
545
    value = bswap32(value);
546
#endif
547
    cmos_ioport_write(s, (addr - s->base) >> s->it_shift, value);
548
}
549

    
550
static CPUReadMemoryFunc *rtc_mm_read[] = {
551
    &cmos_mm_readb,
552
    &cmos_mm_readw,
553
    &cmos_mm_readl,
554
};
555

    
556
static CPUWriteMemoryFunc *rtc_mm_write[] = {
557
    &cmos_mm_writeb,
558
    &cmos_mm_writew,
559
    &cmos_mm_writel,
560
};
561

    
562
RTCState *rtc_mm_init(target_phys_addr_t base, int it_shift, qemu_irq irq)
563
{
564
    RTCState *s;
565
    int io_memory;
566

    
567
    s = qemu_mallocz(sizeof(RTCState));
568
    if (!s)
569
        return NULL;
570

    
571
    s->irq = irq;
572
    s->cmos_data[RTC_REG_A] = 0x26;
573
    s->cmos_data[RTC_REG_B] = 0x02;
574
    s->cmos_data[RTC_REG_C] = 0x00;
575
    s->cmos_data[RTC_REG_D] = 0x80;
576
    s->base = base;
577

    
578
    rtc_set_date_from_host(s);
579

    
580
    s->periodic_timer = qemu_new_timer(vm_clock,
581
                                       rtc_periodic_timer, s);
582
    s->second_timer = qemu_new_timer(vm_clock,
583
                                     rtc_update_second, s);
584
    s->second_timer2 = qemu_new_timer(vm_clock,
585
                                      rtc_update_second2, s);
586

    
587
    s->next_second_time = qemu_get_clock(vm_clock) + (ticks_per_sec * 99) / 100;
588
    qemu_mod_timer(s->second_timer2, s->next_second_time);
589

    
590
    io_memory = cpu_register_io_memory(0, rtc_mm_read, rtc_mm_write, s);
591
    cpu_register_physical_memory(base, 2 << it_shift, io_memory);
592

    
593
    register_savevm("mc146818rtc", base, 1, rtc_save, rtc_load, s);
594
    return s;
595
}