Statistics
| Branch: | Revision:

root / block / qcow2-cluster.c @ 73f5e313

History | View | Annotate | Download (27 kB)

1
/*
2
 * Block driver for the QCOW version 2 format
3
 *
4
 * Copyright (c) 2004-2006 Fabrice Bellard
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24

    
25
#include <zlib.h>
26

    
27
#include "qemu-common.h"
28
#include "block_int.h"
29
#include "block/qcow2.h"
30

    
31
int qcow2_grow_l1_table(BlockDriverState *bs, int min_size, bool exact_size)
32
{
33
    BDRVQcowState *s = bs->opaque;
34
    int new_l1_size, new_l1_size2, ret, i;
35
    uint64_t *new_l1_table;
36
    int64_t new_l1_table_offset;
37
    uint8_t data[12];
38

    
39
    if (min_size <= s->l1_size)
40
        return 0;
41

    
42
    if (exact_size) {
43
        new_l1_size = min_size;
44
    } else {
45
        /* Bump size up to reduce the number of times we have to grow */
46
        new_l1_size = s->l1_size;
47
        if (new_l1_size == 0) {
48
            new_l1_size = 1;
49
        }
50
        while (min_size > new_l1_size) {
51
            new_l1_size = (new_l1_size * 3 + 1) / 2;
52
        }
53
    }
54

    
55
#ifdef DEBUG_ALLOC2
56
    fprintf(stderr, "grow l1_table from %d to %d\n", s->l1_size, new_l1_size);
57
#endif
58

    
59
    new_l1_size2 = sizeof(uint64_t) * new_l1_size;
60
    new_l1_table = g_malloc0(align_offset(new_l1_size2, 512));
61
    memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t));
62

    
63
    /* write new table (align to cluster) */
64
    BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE);
65
    new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2);
66
    if (new_l1_table_offset < 0) {
67
        g_free(new_l1_table);
68
        return new_l1_table_offset;
69
    }
70

    
71
    ret = qcow2_cache_flush(bs, s->refcount_block_cache);
72
    if (ret < 0) {
73
        goto fail;
74
    }
75

    
76
    BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE);
77
    for(i = 0; i < s->l1_size; i++)
78
        new_l1_table[i] = cpu_to_be64(new_l1_table[i]);
79
    ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset, new_l1_table, new_l1_size2);
80
    if (ret < 0)
81
        goto fail;
82
    for(i = 0; i < s->l1_size; i++)
83
        new_l1_table[i] = be64_to_cpu(new_l1_table[i]);
84

    
85
    /* set new table */
86
    BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE);
87
    cpu_to_be32w((uint32_t*)data, new_l1_size);
88
    cpu_to_be64wu((uint64_t*)(data + 4), new_l1_table_offset);
89
    ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size), data,sizeof(data));
90
    if (ret < 0) {
91
        goto fail;
92
    }
93
    g_free(s->l1_table);
94
    qcow2_free_clusters(bs, s->l1_table_offset, s->l1_size * sizeof(uint64_t));
95
    s->l1_table_offset = new_l1_table_offset;
96
    s->l1_table = new_l1_table;
97
    s->l1_size = new_l1_size;
98
    return 0;
99
 fail:
100
    g_free(new_l1_table);
101
    qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2);
102
    return ret;
103
}
104

    
105
/*
106
 * l2_load
107
 *
108
 * Loads a L2 table into memory. If the table is in the cache, the cache
109
 * is used; otherwise the L2 table is loaded from the image file.
110
 *
111
 * Returns a pointer to the L2 table on success, or NULL if the read from
112
 * the image file failed.
113
 */
114

    
115
static int l2_load(BlockDriverState *bs, uint64_t l2_offset,
116
    uint64_t **l2_table)
117
{
118
    BDRVQcowState *s = bs->opaque;
119
    int ret;
120

    
121
    ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset, (void**) l2_table);
122

    
123
    return ret;
124
}
125

    
126
/*
127
 * Writes one sector of the L1 table to the disk (can't update single entries
128
 * and we really don't want bdrv_pread to perform a read-modify-write)
129
 */
130
#define L1_ENTRIES_PER_SECTOR (512 / 8)
131
static int write_l1_entry(BlockDriverState *bs, int l1_index)
132
{
133
    BDRVQcowState *s = bs->opaque;
134
    uint64_t buf[L1_ENTRIES_PER_SECTOR];
135
    int l1_start_index;
136
    int i, ret;
137

    
138
    l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1);
139
    for (i = 0; i < L1_ENTRIES_PER_SECTOR; i++) {
140
        buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]);
141
    }
142

    
143
    BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE);
144
    ret = bdrv_pwrite_sync(bs->file, s->l1_table_offset + 8 * l1_start_index,
145
        buf, sizeof(buf));
146
    if (ret < 0) {
147
        return ret;
148
    }
149

    
150
    return 0;
151
}
152

    
153
/*
154
 * l2_allocate
155
 *
156
 * Allocate a new l2 entry in the file. If l1_index points to an already
157
 * used entry in the L2 table (i.e. we are doing a copy on write for the L2
158
 * table) copy the contents of the old L2 table into the newly allocated one.
159
 * Otherwise the new table is initialized with zeros.
160
 *
161
 */
162

    
163
static int l2_allocate(BlockDriverState *bs, int l1_index, uint64_t **table)
164
{
165
    BDRVQcowState *s = bs->opaque;
166
    uint64_t old_l2_offset;
167
    uint64_t *l2_table;
168
    int64_t l2_offset;
169
    int ret;
170

    
171
    old_l2_offset = s->l1_table[l1_index];
172

    
173
    /* allocate a new l2 entry */
174

    
175
    l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t));
176
    if (l2_offset < 0) {
177
        return l2_offset;
178
    }
179

    
180
    ret = qcow2_cache_flush(bs, s->refcount_block_cache);
181
    if (ret < 0) {
182
        goto fail;
183
    }
184

    
185
    /* allocate a new entry in the l2 cache */
186

    
187
    ret = qcow2_cache_get_empty(bs, s->l2_table_cache, l2_offset, (void**) table);
188
    if (ret < 0) {
189
        return ret;
190
    }
191

    
192
    l2_table = *table;
193

    
194
    if (old_l2_offset == 0) {
195
        /* if there was no old l2 table, clear the new table */
196
        memset(l2_table, 0, s->l2_size * sizeof(uint64_t));
197
    } else {
198
        uint64_t* old_table;
199

    
200
        /* if there was an old l2 table, read it from the disk */
201
        BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ);
202
        ret = qcow2_cache_get(bs, s->l2_table_cache, old_l2_offset,
203
            (void**) &old_table);
204
        if (ret < 0) {
205
            goto fail;
206
        }
207

    
208
        memcpy(l2_table, old_table, s->cluster_size);
209

    
210
        ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &old_table);
211
        if (ret < 0) {
212
            goto fail;
213
        }
214
    }
215

    
216
    /* write the l2 table to the file */
217
    BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE);
218

    
219
    qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
220
    ret = qcow2_cache_flush(bs, s->l2_table_cache);
221
    if (ret < 0) {
222
        goto fail;
223
    }
224

    
225
    /* update the L1 entry */
226
    s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED;
227
    ret = write_l1_entry(bs, l1_index);
228
    if (ret < 0) {
229
        goto fail;
230
    }
231

    
232
    *table = l2_table;
233
    return 0;
234

    
235
fail:
236
    qcow2_cache_put(bs, s->l2_table_cache, (void**) table);
237
    s->l1_table[l1_index] = old_l2_offset;
238
    return ret;
239
}
240

    
241
static int count_contiguous_clusters(uint64_t nb_clusters, int cluster_size,
242
        uint64_t *l2_table, uint64_t start, uint64_t mask)
243
{
244
    int i;
245
    uint64_t offset = be64_to_cpu(l2_table[0]) & ~mask;
246

    
247
    if (!offset)
248
        return 0;
249

    
250
    for (i = start; i < start + nb_clusters; i++)
251
        if (offset + (uint64_t) i * cluster_size != (be64_to_cpu(l2_table[i]) & ~mask))
252
            break;
253

    
254
        return (i - start);
255
}
256

    
257
static int count_contiguous_free_clusters(uint64_t nb_clusters, uint64_t *l2_table)
258
{
259
    int i = 0;
260

    
261
    while(nb_clusters-- && l2_table[i] == 0)
262
        i++;
263

    
264
    return i;
265
}
266

    
267
/* The crypt function is compatible with the linux cryptoloop
268
   algorithm for < 4 GB images. NOTE: out_buf == in_buf is
269
   supported */
270
void qcow2_encrypt_sectors(BDRVQcowState *s, int64_t sector_num,
271
                           uint8_t *out_buf, const uint8_t *in_buf,
272
                           int nb_sectors, int enc,
273
                           const AES_KEY *key)
274
{
275
    union {
276
        uint64_t ll[2];
277
        uint8_t b[16];
278
    } ivec;
279
    int i;
280

    
281
    for(i = 0; i < nb_sectors; i++) {
282
        ivec.ll[0] = cpu_to_le64(sector_num);
283
        ivec.ll[1] = 0;
284
        AES_cbc_encrypt(in_buf, out_buf, 512, key,
285
                        ivec.b, enc);
286
        sector_num++;
287
        in_buf += 512;
288
        out_buf += 512;
289
    }
290
}
291

    
292
static int coroutine_fn copy_sectors(BlockDriverState *bs,
293
                                     uint64_t start_sect,
294
                                     uint64_t cluster_offset,
295
                                     int n_start, int n_end)
296
{
297
    BDRVQcowState *s = bs->opaque;
298
    QEMUIOVector qiov;
299
    struct iovec iov;
300
    int n, ret;
301

    
302
    /*
303
     * If this is the last cluster and it is only partially used, we must only
304
     * copy until the end of the image, or bdrv_check_request will fail for the
305
     * bdrv_read/write calls below.
306
     */
307
    if (start_sect + n_end > bs->total_sectors) {
308
        n_end = bs->total_sectors - start_sect;
309
    }
310

    
311
    n = n_end - n_start;
312
    if (n <= 0) {
313
        return 0;
314
    }
315

    
316
    iov.iov_len = n * BDRV_SECTOR_SIZE;
317
    iov.iov_base = qemu_blockalign(bs, iov.iov_len);
318

    
319
    qemu_iovec_init_external(&qiov, &iov, 1);
320

    
321
    BLKDBG_EVENT(bs->file, BLKDBG_COW_READ);
322

    
323
    /* Call .bdrv_co_readv() directly instead of using the public block-layer
324
     * interface.  This avoids double I/O throttling and request tracking,
325
     * which can lead to deadlock when block layer copy-on-read is enabled.
326
     */
327
    ret = bs->drv->bdrv_co_readv(bs, start_sect + n_start, n, &qiov);
328
    if (ret < 0) {
329
        goto out;
330
    }
331

    
332
    if (s->crypt_method) {
333
        qcow2_encrypt_sectors(s, start_sect + n_start,
334
                        iov.iov_base, iov.iov_base, n, 1,
335
                        &s->aes_encrypt_key);
336
    }
337

    
338
    BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE);
339
    ret = bdrv_co_writev(bs->file, (cluster_offset >> 9) + n_start, n, &qiov);
340
    if (ret < 0) {
341
        goto out;
342
    }
343

    
344
    ret = 0;
345
out:
346
    qemu_vfree(iov.iov_base);
347
    return ret;
348
}
349

    
350

    
351
/*
352
 * get_cluster_offset
353
 *
354
 * For a given offset of the disk image, find the cluster offset in
355
 * qcow2 file. The offset is stored in *cluster_offset.
356
 *
357
 * on entry, *num is the number of contiguous sectors we'd like to
358
 * access following offset.
359
 *
360
 * on exit, *num is the number of contiguous sectors we can read.
361
 *
362
 * Return 0, if the offset is found
363
 * Return -errno, otherwise.
364
 *
365
 */
366

    
367
int qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset,
368
    int *num, uint64_t *cluster_offset)
369
{
370
    BDRVQcowState *s = bs->opaque;
371
    unsigned int l1_index, l2_index;
372
    uint64_t l2_offset, *l2_table;
373
    int l1_bits, c;
374
    unsigned int index_in_cluster, nb_clusters;
375
    uint64_t nb_available, nb_needed;
376
    int ret;
377

    
378
    index_in_cluster = (offset >> 9) & (s->cluster_sectors - 1);
379
    nb_needed = *num + index_in_cluster;
380

    
381
    l1_bits = s->l2_bits + s->cluster_bits;
382

    
383
    /* compute how many bytes there are between the offset and
384
     * the end of the l1 entry
385
     */
386

    
387
    nb_available = (1ULL << l1_bits) - (offset & ((1ULL << l1_bits) - 1));
388

    
389
    /* compute the number of available sectors */
390

    
391
    nb_available = (nb_available >> 9) + index_in_cluster;
392

    
393
    if (nb_needed > nb_available) {
394
        nb_needed = nb_available;
395
    }
396

    
397
    *cluster_offset = 0;
398

    
399
    /* seek the the l2 offset in the l1 table */
400

    
401
    l1_index = offset >> l1_bits;
402
    if (l1_index >= s->l1_size)
403
        goto out;
404

    
405
    l2_offset = s->l1_table[l1_index];
406

    
407
    /* seek the l2 table of the given l2 offset */
408

    
409
    if (!l2_offset)
410
        goto out;
411

    
412
    /* load the l2 table in memory */
413

    
414
    l2_offset &= ~QCOW_OFLAG_COPIED;
415
    ret = l2_load(bs, l2_offset, &l2_table);
416
    if (ret < 0) {
417
        return ret;
418
    }
419

    
420
    /* find the cluster offset for the given disk offset */
421

    
422
    l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
423
    *cluster_offset = be64_to_cpu(l2_table[l2_index]);
424
    nb_clusters = size_to_clusters(s, nb_needed << 9);
425

    
426
    if (!*cluster_offset) {
427
        /* how many empty clusters ? */
428
        c = count_contiguous_free_clusters(nb_clusters, &l2_table[l2_index]);
429
    } else {
430
        /* how many allocated clusters ? */
431
        c = count_contiguous_clusters(nb_clusters, s->cluster_size,
432
                &l2_table[l2_index], 0, QCOW_OFLAG_COPIED);
433
    }
434

    
435
    qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
436

    
437
   nb_available = (c * s->cluster_sectors);
438
out:
439
    if (nb_available > nb_needed)
440
        nb_available = nb_needed;
441

    
442
    *num = nb_available - index_in_cluster;
443

    
444
    *cluster_offset &=~QCOW_OFLAG_COPIED;
445
    return 0;
446
}
447

    
448
/*
449
 * get_cluster_table
450
 *
451
 * for a given disk offset, load (and allocate if needed)
452
 * the l2 table.
453
 *
454
 * the l2 table offset in the qcow2 file and the cluster index
455
 * in the l2 table are given to the caller.
456
 *
457
 * Returns 0 on success, -errno in failure case
458
 */
459
static int get_cluster_table(BlockDriverState *bs, uint64_t offset,
460
                             uint64_t **new_l2_table,
461
                             uint64_t *new_l2_offset,
462
                             int *new_l2_index)
463
{
464
    BDRVQcowState *s = bs->opaque;
465
    unsigned int l1_index, l2_index;
466
    uint64_t l2_offset;
467
    uint64_t *l2_table = NULL;
468
    int ret;
469

    
470
    /* seek the the l2 offset in the l1 table */
471

    
472
    l1_index = offset >> (s->l2_bits + s->cluster_bits);
473
    if (l1_index >= s->l1_size) {
474
        ret = qcow2_grow_l1_table(bs, l1_index + 1, false);
475
        if (ret < 0) {
476
            return ret;
477
        }
478
    }
479
    l2_offset = s->l1_table[l1_index];
480

    
481
    /* seek the l2 table of the given l2 offset */
482

    
483
    if (l2_offset & QCOW_OFLAG_COPIED) {
484
        /* load the l2 table in memory */
485
        l2_offset &= ~QCOW_OFLAG_COPIED;
486
        ret = l2_load(bs, l2_offset, &l2_table);
487
        if (ret < 0) {
488
            return ret;
489
        }
490
    } else {
491
        /* First allocate a new L2 table (and do COW if needed) */
492
        ret = l2_allocate(bs, l1_index, &l2_table);
493
        if (ret < 0) {
494
            return ret;
495
        }
496

    
497
        /* Then decrease the refcount of the old table */
498
        if (l2_offset) {
499
            qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t));
500
        }
501
        l2_offset = s->l1_table[l1_index] & ~QCOW_OFLAG_COPIED;
502
    }
503

    
504
    /* find the cluster offset for the given disk offset */
505

    
506
    l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
507

    
508
    *new_l2_table = l2_table;
509
    *new_l2_offset = l2_offset;
510
    *new_l2_index = l2_index;
511

    
512
    return 0;
513
}
514

    
515
/*
516
 * alloc_compressed_cluster_offset
517
 *
518
 * For a given offset of the disk image, return cluster offset in
519
 * qcow2 file.
520
 *
521
 * If the offset is not found, allocate a new compressed cluster.
522
 *
523
 * Return the cluster offset if successful,
524
 * Return 0, otherwise.
525
 *
526
 */
527

    
528
uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs,
529
                                               uint64_t offset,
530
                                               int compressed_size)
531
{
532
    BDRVQcowState *s = bs->opaque;
533
    int l2_index, ret;
534
    uint64_t l2_offset, *l2_table;
535
    int64_t cluster_offset;
536
    int nb_csectors;
537

    
538
    ret = get_cluster_table(bs, offset, &l2_table, &l2_offset, &l2_index);
539
    if (ret < 0) {
540
        return 0;
541
    }
542

    
543
    cluster_offset = be64_to_cpu(l2_table[l2_index]);
544
    if (cluster_offset & QCOW_OFLAG_COPIED) {
545
        qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
546
        return 0;
547
    }
548

    
549
    if (cluster_offset)
550
        qcow2_free_any_clusters(bs, cluster_offset, 1);
551

    
552
    cluster_offset = qcow2_alloc_bytes(bs, compressed_size);
553
    if (cluster_offset < 0) {
554
        qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
555
        return 0;
556
    }
557

    
558
    nb_csectors = ((cluster_offset + compressed_size - 1) >> 9) -
559
                  (cluster_offset >> 9);
560

    
561
    cluster_offset |= QCOW_OFLAG_COMPRESSED |
562
                      ((uint64_t)nb_csectors << s->csize_shift);
563

    
564
    /* update L2 table */
565

    
566
    /* compressed clusters never have the copied flag */
567

    
568
    BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED);
569
    qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
570
    l2_table[l2_index] = cpu_to_be64(cluster_offset);
571
    ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
572
    if (ret < 0) {
573
        return 0;
574
    }
575

    
576
    return cluster_offset;
577
}
578

    
579
int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m)
580
{
581
    BDRVQcowState *s = bs->opaque;
582
    int i, j = 0, l2_index, ret;
583
    uint64_t *old_cluster, start_sect, l2_offset, *l2_table;
584
    uint64_t cluster_offset = m->cluster_offset;
585
    bool cow = false;
586

    
587
    if (m->nb_clusters == 0)
588
        return 0;
589

    
590
    old_cluster = g_malloc(m->nb_clusters * sizeof(uint64_t));
591

    
592
    /* copy content of unmodified sectors */
593
    start_sect = (m->offset & ~(s->cluster_size - 1)) >> 9;
594
    if (m->n_start) {
595
        cow = true;
596
        qemu_co_mutex_unlock(&s->lock);
597
        ret = copy_sectors(bs, start_sect, cluster_offset, 0, m->n_start);
598
        qemu_co_mutex_lock(&s->lock);
599
        if (ret < 0)
600
            goto err;
601
    }
602

    
603
    if (m->nb_available & (s->cluster_sectors - 1)) {
604
        uint64_t end = m->nb_available & ~(uint64_t)(s->cluster_sectors - 1);
605
        cow = true;
606
        qemu_co_mutex_unlock(&s->lock);
607
        ret = copy_sectors(bs, start_sect + end, cluster_offset + (end << 9),
608
                m->nb_available - end, s->cluster_sectors);
609
        qemu_co_mutex_lock(&s->lock);
610
        if (ret < 0)
611
            goto err;
612
    }
613

    
614
    /*
615
     * Update L2 table.
616
     *
617
     * Before we update the L2 table to actually point to the new cluster, we
618
     * need to be sure that the refcounts have been increased and COW was
619
     * handled.
620
     */
621
    if (cow) {
622
        qcow2_cache_depends_on_flush(s->l2_table_cache);
623
    }
624

    
625
    qcow2_cache_set_dependency(bs, s->l2_table_cache, s->refcount_block_cache);
626
    ret = get_cluster_table(bs, m->offset, &l2_table, &l2_offset, &l2_index);
627
    if (ret < 0) {
628
        goto err;
629
    }
630
    qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
631

    
632
    for (i = 0; i < m->nb_clusters; i++) {
633
        /* if two concurrent writes happen to the same unallocated cluster
634
         * each write allocates separate cluster and writes data concurrently.
635
         * The first one to complete updates l2 table with pointer to its
636
         * cluster the second one has to do RMW (which is done above by
637
         * copy_sectors()), update l2 table with its cluster pointer and free
638
         * old cluster. This is what this loop does */
639
        if(l2_table[l2_index + i] != 0)
640
            old_cluster[j++] = l2_table[l2_index + i];
641

    
642
        l2_table[l2_index + i] = cpu_to_be64((cluster_offset +
643
                    (i << s->cluster_bits)) | QCOW_OFLAG_COPIED);
644
     }
645

    
646

    
647
    ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
648
    if (ret < 0) {
649
        goto err;
650
    }
651

    
652
    /*
653
     * If this was a COW, we need to decrease the refcount of the old cluster.
654
     * Also flush bs->file to get the right order for L2 and refcount update.
655
     */
656
    if (j != 0) {
657
        for (i = 0; i < j; i++) {
658
            qcow2_free_any_clusters(bs,
659
                be64_to_cpu(old_cluster[i]) & ~QCOW_OFLAG_COPIED, 1);
660
        }
661
    }
662

    
663
    ret = 0;
664
err:
665
    g_free(old_cluster);
666
    return ret;
667
 }
668

    
669
/*
670
 * alloc_cluster_offset
671
 *
672
 * For a given offset of the disk image, return cluster offset in qcow2 file.
673
 * If the offset is not found, allocate a new cluster.
674
 *
675
 * If the cluster was already allocated, m->nb_clusters is set to 0,
676
 * other fields in m are meaningless.
677
 *
678
 * If the cluster is newly allocated, m->nb_clusters is set to the number of
679
 * contiguous clusters that have been allocated. In this case, the other
680
 * fields of m are valid and contain information about the first allocated
681
 * cluster.
682
 *
683
 * If the request conflicts with another write request in flight, the coroutine
684
 * is queued and will be reentered when the dependency has completed.
685
 *
686
 * Return 0 on success and -errno in error cases
687
 */
688
int qcow2_alloc_cluster_offset(BlockDriverState *bs, uint64_t offset,
689
    int n_start, int n_end, int *num, QCowL2Meta *m)
690
{
691
    BDRVQcowState *s = bs->opaque;
692
    int l2_index, ret;
693
    uint64_t l2_offset, *l2_table;
694
    int64_t cluster_offset;
695
    unsigned int nb_clusters, i = 0;
696
    QCowL2Meta *old_alloc;
697

    
698
    ret = get_cluster_table(bs, offset, &l2_table, &l2_offset, &l2_index);
699
    if (ret < 0) {
700
        return ret;
701
    }
702

    
703
again:
704
    nb_clusters = size_to_clusters(s, n_end << 9);
705

    
706
    nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
707

    
708
    cluster_offset = be64_to_cpu(l2_table[l2_index]);
709

    
710
    /* We keep all QCOW_OFLAG_COPIED clusters */
711

    
712
    if (cluster_offset & QCOW_OFLAG_COPIED) {
713
        nb_clusters = count_contiguous_clusters(nb_clusters, s->cluster_size,
714
                &l2_table[l2_index], 0, 0);
715

    
716
        cluster_offset &= ~QCOW_OFLAG_COPIED;
717
        m->nb_clusters = 0;
718

    
719
        goto out;
720
    }
721

    
722
    /* for the moment, multiple compressed clusters are not managed */
723

    
724
    if (cluster_offset & QCOW_OFLAG_COMPRESSED)
725
        nb_clusters = 1;
726

    
727
    /* how many available clusters ? */
728

    
729
    while (i < nb_clusters) {
730
        i += count_contiguous_clusters(nb_clusters - i, s->cluster_size,
731
                &l2_table[l2_index], i, 0);
732
        if ((i >= nb_clusters) || be64_to_cpu(l2_table[l2_index + i])) {
733
            break;
734
        }
735

    
736
        i += count_contiguous_free_clusters(nb_clusters - i,
737
                &l2_table[l2_index + i]);
738
        if (i >= nb_clusters) {
739
            break;
740
        }
741

    
742
        cluster_offset = be64_to_cpu(l2_table[l2_index + i]);
743

    
744
        if ((cluster_offset & QCOW_OFLAG_COPIED) ||
745
                (cluster_offset & QCOW_OFLAG_COMPRESSED))
746
            break;
747
    }
748
    assert(i <= nb_clusters);
749
    nb_clusters = i;
750

    
751
    /*
752
     * Check if there already is an AIO write request in flight which allocates
753
     * the same cluster. In this case we need to wait until the previous
754
     * request has completed and updated the L2 table accordingly.
755
     */
756
    QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) {
757

    
758
        uint64_t start = offset >> s->cluster_bits;
759
        uint64_t end = start + nb_clusters;
760
        uint64_t old_start = old_alloc->offset >> s->cluster_bits;
761
        uint64_t old_end = old_start + old_alloc->nb_clusters;
762

    
763
        if (end < old_start || start > old_end) {
764
            /* No intersection */
765
        } else {
766
            if (start < old_start) {
767
                /* Stop at the start of a running allocation */
768
                nb_clusters = old_start - start;
769
            } else {
770
                nb_clusters = 0;
771
            }
772

    
773
            if (nb_clusters == 0) {
774
                /* Wait for the dependency to complete. We need to recheck
775
                 * the free/allocated clusters when we continue. */
776
                qemu_co_mutex_unlock(&s->lock);
777
                qemu_co_queue_wait(&old_alloc->dependent_requests);
778
                qemu_co_mutex_lock(&s->lock);
779
                goto again;
780
            }
781
        }
782
    }
783

    
784
    if (!nb_clusters) {
785
        abort();
786
    }
787

    
788
    /* save info needed for meta data update */
789
    m->offset = offset;
790
    m->n_start = n_start;
791
    m->nb_clusters = nb_clusters;
792

    
793
    QLIST_INSERT_HEAD(&s->cluster_allocs, m, next_in_flight);
794

    
795
    /* allocate a new cluster */
796

    
797
    cluster_offset = qcow2_alloc_clusters(bs, nb_clusters * s->cluster_size);
798
    if (cluster_offset < 0) {
799
        ret = cluster_offset;
800
        goto fail;
801
    }
802

    
803
out:
804
    ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
805
    if (ret < 0) {
806
        goto fail_put;
807
    }
808

    
809
    m->nb_available = MIN(nb_clusters << (s->cluster_bits - 9), n_end);
810
    m->cluster_offset = cluster_offset;
811

    
812
    *num = m->nb_available - n_start;
813

    
814
    return 0;
815

    
816
fail:
817
    qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
818
fail_put:
819
    QLIST_REMOVE(m, next_in_flight);
820
    return ret;
821
}
822

    
823
static int decompress_buffer(uint8_t *out_buf, int out_buf_size,
824
                             const uint8_t *buf, int buf_size)
825
{
826
    z_stream strm1, *strm = &strm1;
827
    int ret, out_len;
828

    
829
    memset(strm, 0, sizeof(*strm));
830

    
831
    strm->next_in = (uint8_t *)buf;
832
    strm->avail_in = buf_size;
833
    strm->next_out = out_buf;
834
    strm->avail_out = out_buf_size;
835

    
836
    ret = inflateInit2(strm, -12);
837
    if (ret != Z_OK)
838
        return -1;
839
    ret = inflate(strm, Z_FINISH);
840
    out_len = strm->next_out - out_buf;
841
    if ((ret != Z_STREAM_END && ret != Z_BUF_ERROR) ||
842
        out_len != out_buf_size) {
843
        inflateEnd(strm);
844
        return -1;
845
    }
846
    inflateEnd(strm);
847
    return 0;
848
}
849

    
850
int qcow2_decompress_cluster(BlockDriverState *bs, uint64_t cluster_offset)
851
{
852
    BDRVQcowState *s = bs->opaque;
853
    int ret, csize, nb_csectors, sector_offset;
854
    uint64_t coffset;
855

    
856
    coffset = cluster_offset & s->cluster_offset_mask;
857
    if (s->cluster_cache_offset != coffset) {
858
        nb_csectors = ((cluster_offset >> s->csize_shift) & s->csize_mask) + 1;
859
        sector_offset = coffset & 511;
860
        csize = nb_csectors * 512 - sector_offset;
861
        BLKDBG_EVENT(bs->file, BLKDBG_READ_COMPRESSED);
862
        ret = bdrv_read(bs->file, coffset >> 9, s->cluster_data, nb_csectors);
863
        if (ret < 0) {
864
            return ret;
865
        }
866
        if (decompress_buffer(s->cluster_cache, s->cluster_size,
867
                              s->cluster_data + sector_offset, csize) < 0) {
868
            return -EIO;
869
        }
870
        s->cluster_cache_offset = coffset;
871
    }
872
    return 0;
873
}
874

    
875
/*
876
 * This discards as many clusters of nb_clusters as possible at once (i.e.
877
 * all clusters in the same L2 table) and returns the number of discarded
878
 * clusters.
879
 */
880
static int discard_single_l2(BlockDriverState *bs, uint64_t offset,
881
    unsigned int nb_clusters)
882
{
883
    BDRVQcowState *s = bs->opaque;
884
    uint64_t l2_offset, *l2_table;
885
    int l2_index;
886
    int ret;
887
    int i;
888

    
889
    ret = get_cluster_table(bs, offset, &l2_table, &l2_offset, &l2_index);
890
    if (ret < 0) {
891
        return ret;
892
    }
893

    
894
    /* Limit nb_clusters to one L2 table */
895
    nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
896

    
897
    for (i = 0; i < nb_clusters; i++) {
898
        uint64_t old_offset;
899

    
900
        old_offset = be64_to_cpu(l2_table[l2_index + i]);
901
        old_offset &= ~QCOW_OFLAG_COPIED;
902

    
903
        if (old_offset == 0) {
904
            continue;
905
        }
906

    
907
        /* First remove L2 entries */
908
        qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
909
        l2_table[l2_index + i] = cpu_to_be64(0);
910

    
911
        /* Then decrease the refcount */
912
        qcow2_free_any_clusters(bs, old_offset, 1);
913
    }
914

    
915
    ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
916
    if (ret < 0) {
917
        return ret;
918
    }
919

    
920
    return nb_clusters;
921
}
922

    
923
int qcow2_discard_clusters(BlockDriverState *bs, uint64_t offset,
924
    int nb_sectors)
925
{
926
    BDRVQcowState *s = bs->opaque;
927
    uint64_t end_offset;
928
    unsigned int nb_clusters;
929
    int ret;
930

    
931
    end_offset = offset + (nb_sectors << BDRV_SECTOR_BITS);
932

    
933
    /* Round start up and end down */
934
    offset = align_offset(offset, s->cluster_size);
935
    end_offset &= ~(s->cluster_size - 1);
936

    
937
    if (offset > end_offset) {
938
        return 0;
939
    }
940

    
941
    nb_clusters = size_to_clusters(s, end_offset - offset);
942

    
943
    /* Each L2 table is handled by its own loop iteration */
944
    while (nb_clusters > 0) {
945
        ret = discard_single_l2(bs, offset, nb_clusters);
946
        if (ret < 0) {
947
            return ret;
948
        }
949

    
950
        nb_clusters -= ret;
951
        offset += (ret * s->cluster_size);
952
    }
953

    
954
    return 0;
955
}