Statistics
| Branch: | Revision:

root / hw / i8254.c @ 74475455

History | View | Annotate | Download (14.9 kB)

1
/*
2
 * QEMU 8253/8254 interval timer emulation
3
 *
4
 * Copyright (c) 2003-2004 Fabrice Bellard
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "hw.h"
25
#include "pc.h"
26
#include "isa.h"
27
#include "qemu-timer.h"
28

    
29
//#define DEBUG_PIT
30

    
31
#define RW_STATE_LSB 1
32
#define RW_STATE_MSB 2
33
#define RW_STATE_WORD0 3
34
#define RW_STATE_WORD1 4
35

    
36
typedef struct PITChannelState {
37
    int count; /* can be 65536 */
38
    uint16_t latched_count;
39
    uint8_t count_latched;
40
    uint8_t status_latched;
41
    uint8_t status;
42
    uint8_t read_state;
43
    uint8_t write_state;
44
    uint8_t write_latch;
45
    uint8_t rw_mode;
46
    uint8_t mode;
47
    uint8_t bcd; /* not supported */
48
    uint8_t gate; /* timer start */
49
    int64_t count_load_time;
50
    /* irq handling */
51
    int64_t next_transition_time;
52
    QEMUTimer *irq_timer;
53
    qemu_irq irq;
54
} PITChannelState;
55

    
56
typedef struct PITState {
57
    ISADevice dev;
58
    uint32_t irq;
59
    uint32_t iobase;
60
    PITChannelState channels[3];
61
} PITState;
62

    
63
static PITState pit_state;
64

    
65
static void pit_irq_timer_update(PITChannelState *s, int64_t current_time);
66

    
67
static int pit_get_count(PITChannelState *s)
68
{
69
    uint64_t d;
70
    int counter;
71

    
72
    d = muldiv64(qemu_get_clock_ns(vm_clock) - s->count_load_time, PIT_FREQ,
73
                 get_ticks_per_sec());
74
    switch(s->mode) {
75
    case 0:
76
    case 1:
77
    case 4:
78
    case 5:
79
        counter = (s->count - d) & 0xffff;
80
        break;
81
    case 3:
82
        /* XXX: may be incorrect for odd counts */
83
        counter = s->count - ((2 * d) % s->count);
84
        break;
85
    default:
86
        counter = s->count - (d % s->count);
87
        break;
88
    }
89
    return counter;
90
}
91

    
92
/* get pit output bit */
93
static int pit_get_out1(PITChannelState *s, int64_t current_time)
94
{
95
    uint64_t d;
96
    int out;
97

    
98
    d = muldiv64(current_time - s->count_load_time, PIT_FREQ,
99
                 get_ticks_per_sec());
100
    switch(s->mode) {
101
    default:
102
    case 0:
103
        out = (d >= s->count);
104
        break;
105
    case 1:
106
        out = (d < s->count);
107
        break;
108
    case 2:
109
        if ((d % s->count) == 0 && d != 0)
110
            out = 1;
111
        else
112
            out = 0;
113
        break;
114
    case 3:
115
        out = (d % s->count) < ((s->count + 1) >> 1);
116
        break;
117
    case 4:
118
    case 5:
119
        out = (d == s->count);
120
        break;
121
    }
122
    return out;
123
}
124

    
125
int pit_get_out(ISADevice *dev, int channel, int64_t current_time)
126
{
127
    PITState *pit = DO_UPCAST(PITState, dev, dev);
128
    PITChannelState *s = &pit->channels[channel];
129
    return pit_get_out1(s, current_time);
130
}
131

    
132
/* return -1 if no transition will occur.  */
133
static int64_t pit_get_next_transition_time(PITChannelState *s,
134
                                            int64_t current_time)
135
{
136
    uint64_t d, next_time, base;
137
    int period2;
138

    
139
    d = muldiv64(current_time - s->count_load_time, PIT_FREQ,
140
                 get_ticks_per_sec());
141
    switch(s->mode) {
142
    default:
143
    case 0:
144
    case 1:
145
        if (d < s->count)
146
            next_time = s->count;
147
        else
148
            return -1;
149
        break;
150
    case 2:
151
        base = (d / s->count) * s->count;
152
        if ((d - base) == 0 && d != 0)
153
            next_time = base + s->count;
154
        else
155
            next_time = base + s->count + 1;
156
        break;
157
    case 3:
158
        base = (d / s->count) * s->count;
159
        period2 = ((s->count + 1) >> 1);
160
        if ((d - base) < period2)
161
            next_time = base + period2;
162
        else
163
            next_time = base + s->count;
164
        break;
165
    case 4:
166
    case 5:
167
        if (d < s->count)
168
            next_time = s->count;
169
        else if (d == s->count)
170
            next_time = s->count + 1;
171
        else
172
            return -1;
173
        break;
174
    }
175
    /* convert to timer units */
176
    next_time = s->count_load_time + muldiv64(next_time, get_ticks_per_sec(),
177
                                              PIT_FREQ);
178
    /* fix potential rounding problems */
179
    /* XXX: better solution: use a clock at PIT_FREQ Hz */
180
    if (next_time <= current_time)
181
        next_time = current_time + 1;
182
    return next_time;
183
}
184

    
185
/* val must be 0 or 1 */
186
void pit_set_gate(ISADevice *dev, int channel, int val)
187
{
188
    PITState *pit = DO_UPCAST(PITState, dev, dev);
189
    PITChannelState *s = &pit->channels[channel];
190

    
191
    switch(s->mode) {
192
    default:
193
    case 0:
194
    case 4:
195
        /* XXX: just disable/enable counting */
196
        break;
197
    case 1:
198
    case 5:
199
        if (s->gate < val) {
200
            /* restart counting on rising edge */
201
            s->count_load_time = qemu_get_clock_ns(vm_clock);
202
            pit_irq_timer_update(s, s->count_load_time);
203
        }
204
        break;
205
    case 2:
206
    case 3:
207
        if (s->gate < val) {
208
            /* restart counting on rising edge */
209
            s->count_load_time = qemu_get_clock_ns(vm_clock);
210
            pit_irq_timer_update(s, s->count_load_time);
211
        }
212
        /* XXX: disable/enable counting */
213
        break;
214
    }
215
    s->gate = val;
216
}
217

    
218
int pit_get_gate(ISADevice *dev, int channel)
219
{
220
    PITState *pit = DO_UPCAST(PITState, dev, dev);
221
    PITChannelState *s = &pit->channels[channel];
222
    return s->gate;
223
}
224

    
225
int pit_get_initial_count(ISADevice *dev, int channel)
226
{
227
    PITState *pit = DO_UPCAST(PITState, dev, dev);
228
    PITChannelState *s = &pit->channels[channel];
229
    return s->count;
230
}
231

    
232
int pit_get_mode(ISADevice *dev, int channel)
233
{
234
    PITState *pit = DO_UPCAST(PITState, dev, dev);
235
    PITChannelState *s = &pit->channels[channel];
236
    return s->mode;
237
}
238

    
239
static inline void pit_load_count(PITChannelState *s, int val)
240
{
241
    if (val == 0)
242
        val = 0x10000;
243
    s->count_load_time = qemu_get_clock_ns(vm_clock);
244
    s->count = val;
245
    pit_irq_timer_update(s, s->count_load_time);
246
}
247

    
248
/* if already latched, do not latch again */
249
static void pit_latch_count(PITChannelState *s)
250
{
251
    if (!s->count_latched) {
252
        s->latched_count = pit_get_count(s);
253
        s->count_latched = s->rw_mode;
254
    }
255
}
256

    
257
static void pit_ioport_write(void *opaque, uint32_t addr, uint32_t val)
258
{
259
    PITState *pit = opaque;
260
    int channel, access;
261
    PITChannelState *s;
262

    
263
    addr &= 3;
264
    if (addr == 3) {
265
        channel = val >> 6;
266
        if (channel == 3) {
267
            /* read back command */
268
            for(channel = 0; channel < 3; channel++) {
269
                s = &pit->channels[channel];
270
                if (val & (2 << channel)) {
271
                    if (!(val & 0x20)) {
272
                        pit_latch_count(s);
273
                    }
274
                    if (!(val & 0x10) && !s->status_latched) {
275
                        /* status latch */
276
                        /* XXX: add BCD and null count */
277
                        s->status =  (pit_get_out1(s, qemu_get_clock_ns(vm_clock)) << 7) |
278
                            (s->rw_mode << 4) |
279
                            (s->mode << 1) |
280
                            s->bcd;
281
                        s->status_latched = 1;
282
                    }
283
                }
284
            }
285
        } else {
286
            s = &pit->channels[channel];
287
            access = (val >> 4) & 3;
288
            if (access == 0) {
289
                pit_latch_count(s);
290
            } else {
291
                s->rw_mode = access;
292
                s->read_state = access;
293
                s->write_state = access;
294

    
295
                s->mode = (val >> 1) & 7;
296
                s->bcd = val & 1;
297
                /* XXX: update irq timer ? */
298
            }
299
        }
300
    } else {
301
        s = &pit->channels[addr];
302
        switch(s->write_state) {
303
        default:
304
        case RW_STATE_LSB:
305
            pit_load_count(s, val);
306
            break;
307
        case RW_STATE_MSB:
308
            pit_load_count(s, val << 8);
309
            break;
310
        case RW_STATE_WORD0:
311
            s->write_latch = val;
312
            s->write_state = RW_STATE_WORD1;
313
            break;
314
        case RW_STATE_WORD1:
315
            pit_load_count(s, s->write_latch | (val << 8));
316
            s->write_state = RW_STATE_WORD0;
317
            break;
318
        }
319
    }
320
}
321

    
322
static uint32_t pit_ioport_read(void *opaque, uint32_t addr)
323
{
324
    PITState *pit = opaque;
325
    int ret, count;
326
    PITChannelState *s;
327

    
328
    addr &= 3;
329
    s = &pit->channels[addr];
330
    if (s->status_latched) {
331
        s->status_latched = 0;
332
        ret = s->status;
333
    } else if (s->count_latched) {
334
        switch(s->count_latched) {
335
        default:
336
        case RW_STATE_LSB:
337
            ret = s->latched_count & 0xff;
338
            s->count_latched = 0;
339
            break;
340
        case RW_STATE_MSB:
341
            ret = s->latched_count >> 8;
342
            s->count_latched = 0;
343
            break;
344
        case RW_STATE_WORD0:
345
            ret = s->latched_count & 0xff;
346
            s->count_latched = RW_STATE_MSB;
347
            break;
348
        }
349
    } else {
350
        switch(s->read_state) {
351
        default:
352
        case RW_STATE_LSB:
353
            count = pit_get_count(s);
354
            ret = count & 0xff;
355
            break;
356
        case RW_STATE_MSB:
357
            count = pit_get_count(s);
358
            ret = (count >> 8) & 0xff;
359
            break;
360
        case RW_STATE_WORD0:
361
            count = pit_get_count(s);
362
            ret = count & 0xff;
363
            s->read_state = RW_STATE_WORD1;
364
            break;
365
        case RW_STATE_WORD1:
366
            count = pit_get_count(s);
367
            ret = (count >> 8) & 0xff;
368
            s->read_state = RW_STATE_WORD0;
369
            break;
370
        }
371
    }
372
    return ret;
373
}
374

    
375
static void pit_irq_timer_update(PITChannelState *s, int64_t current_time)
376
{
377
    int64_t expire_time;
378
    int irq_level;
379

    
380
    if (!s->irq_timer)
381
        return;
382
    expire_time = pit_get_next_transition_time(s, current_time);
383
    irq_level = pit_get_out1(s, current_time);
384
    qemu_set_irq(s->irq, irq_level);
385
#ifdef DEBUG_PIT
386
    printf("irq_level=%d next_delay=%f\n",
387
           irq_level,
388
           (double)(expire_time - current_time) / get_ticks_per_sec());
389
#endif
390
    s->next_transition_time = expire_time;
391
    if (expire_time != -1)
392
        qemu_mod_timer(s->irq_timer, expire_time);
393
    else
394
        qemu_del_timer(s->irq_timer);
395
}
396

    
397
static void pit_irq_timer(void *opaque)
398
{
399
    PITChannelState *s = opaque;
400

    
401
    pit_irq_timer_update(s, s->next_transition_time);
402
}
403

    
404
static const VMStateDescription vmstate_pit_channel = {
405
    .name = "pit channel",
406
    .version_id = 2,
407
    .minimum_version_id = 2,
408
    .minimum_version_id_old = 2,
409
    .fields      = (VMStateField []) {
410
        VMSTATE_INT32(count, PITChannelState),
411
        VMSTATE_UINT16(latched_count, PITChannelState),
412
        VMSTATE_UINT8(count_latched, PITChannelState),
413
        VMSTATE_UINT8(status_latched, PITChannelState),
414
        VMSTATE_UINT8(status, PITChannelState),
415
        VMSTATE_UINT8(read_state, PITChannelState),
416
        VMSTATE_UINT8(write_state, PITChannelState),
417
        VMSTATE_UINT8(write_latch, PITChannelState),
418
        VMSTATE_UINT8(rw_mode, PITChannelState),
419
        VMSTATE_UINT8(mode, PITChannelState),
420
        VMSTATE_UINT8(bcd, PITChannelState),
421
        VMSTATE_UINT8(gate, PITChannelState),
422
        VMSTATE_INT64(count_load_time, PITChannelState),
423
        VMSTATE_INT64(next_transition_time, PITChannelState),
424
        VMSTATE_END_OF_LIST()
425
    }
426
};
427

    
428
static int pit_load_old(QEMUFile *f, void *opaque, int version_id)
429
{
430
    PITState *pit = opaque;
431
    PITChannelState *s;
432
    int i;
433

    
434
    if (version_id != 1)
435
        return -EINVAL;
436

    
437
    for(i = 0; i < 3; i++) {
438
        s = &pit->channels[i];
439
        s->count=qemu_get_be32(f);
440
        qemu_get_be16s(f, &s->latched_count);
441
        qemu_get_8s(f, &s->count_latched);
442
        qemu_get_8s(f, &s->status_latched);
443
        qemu_get_8s(f, &s->status);
444
        qemu_get_8s(f, &s->read_state);
445
        qemu_get_8s(f, &s->write_state);
446
        qemu_get_8s(f, &s->write_latch);
447
        qemu_get_8s(f, &s->rw_mode);
448
        qemu_get_8s(f, &s->mode);
449
        qemu_get_8s(f, &s->bcd);
450
        qemu_get_8s(f, &s->gate);
451
        s->count_load_time=qemu_get_be64(f);
452
        if (s->irq_timer) {
453
            s->next_transition_time=qemu_get_be64(f);
454
            qemu_get_timer(f, s->irq_timer);
455
        }
456
    }
457
    return 0;
458
}
459

    
460
static const VMStateDescription vmstate_pit = {
461
    .name = "i8254",
462
    .version_id = 2,
463
    .minimum_version_id = 2,
464
    .minimum_version_id_old = 1,
465
    .load_state_old = pit_load_old,
466
    .fields      = (VMStateField []) {
467
        VMSTATE_STRUCT_ARRAY(channels, PITState, 3, 2, vmstate_pit_channel, PITChannelState),
468
        VMSTATE_TIMER(channels[0].irq_timer, PITState),
469
        VMSTATE_END_OF_LIST()
470
    }
471
};
472

    
473
static void pit_reset(DeviceState *dev)
474
{
475
    PITState *pit = container_of(dev, PITState, dev.qdev);
476
    PITChannelState *s;
477
    int i;
478

    
479
    for(i = 0;i < 3; i++) {
480
        s = &pit->channels[i];
481
        s->mode = 3;
482
        s->gate = (i != 2);
483
        pit_load_count(s, 0);
484
    }
485
}
486

    
487
/* When HPET is operating in legacy mode, i8254 timer0 is disabled */
488
void hpet_pit_disable(void) {
489
    PITChannelState *s;
490
    s = &pit_state.channels[0];
491
    if (s->irq_timer)
492
        qemu_del_timer(s->irq_timer);
493
}
494

    
495
/* When HPET is reset or leaving legacy mode, it must reenable i8254
496
 * timer 0
497
 */
498

    
499
void hpet_pit_enable(void)
500
{
501
    PITState *pit = &pit_state;
502
    PITChannelState *s;
503
    s = &pit->channels[0];
504
    s->mode = 3;
505
    s->gate = 1;
506
    pit_load_count(s, 0);
507
}
508

    
509
static int pit_initfn(ISADevice *dev)
510
{
511
    PITState *pit = DO_UPCAST(PITState, dev, dev);
512
    PITChannelState *s;
513

    
514
    s = &pit->channels[0];
515
    /* the timer 0 is connected to an IRQ */
516
    s->irq_timer = qemu_new_timer_ns(vm_clock, pit_irq_timer, s);
517
    s->irq = isa_get_irq(pit->irq);
518

    
519
    register_ioport_write(pit->iobase, 4, 1, pit_ioport_write, pit);
520
    register_ioport_read(pit->iobase, 3, 1, pit_ioport_read, pit);
521
    isa_init_ioport(dev, pit->iobase);
522

    
523
    qdev_set_legacy_instance_id(&dev->qdev, pit->iobase, 2);
524

    
525
    return 0;
526
}
527

    
528
static ISADeviceInfo pit_info = {
529
    .qdev.name     = "isa-pit",
530
    .qdev.size     = sizeof(PITState),
531
    .qdev.vmsd     = &vmstate_pit,
532
    .qdev.reset    = pit_reset,
533
    .qdev.no_user  = 1,
534
    .init          = pit_initfn,
535
    .qdev.props = (Property[]) {
536
        DEFINE_PROP_UINT32("irq", PITState, irq,  -1),
537
        DEFINE_PROP_HEX32("iobase", PITState, iobase,  -1),
538
        DEFINE_PROP_END_OF_LIST(),
539
    },
540
};
541

    
542
static void pit_register(void)
543
{
544
    isa_qdev_register(&pit_info);
545
}
546
device_init(pit_register)