Statistics
| Branch: | Revision:

root / target-i386 / kvm.c @ 75d49497

History | View | Annotate | Download (49.9 kB)

1
/*
2
 * QEMU KVM support
3
 *
4
 * Copyright (C) 2006-2008 Qumranet Technologies
5
 * Copyright IBM, Corp. 2008
6
 *
7
 * Authors:
8
 *  Anthony Liguori   <aliguori@us.ibm.com>
9
 *
10
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11
 * See the COPYING file in the top-level directory.
12
 *
13
 */
14

    
15
#include <sys/types.h>
16
#include <sys/ioctl.h>
17
#include <sys/mman.h>
18
#include <sys/utsname.h>
19

    
20
#include <linux/kvm.h>
21

    
22
#include "qemu-common.h"
23
#include "sysemu.h"
24
#include "kvm.h"
25
#include "cpu.h"
26
#include "gdbstub.h"
27
#include "host-utils.h"
28
#include "hw/pc.h"
29
#include "hw/apic.h"
30
#include "ioport.h"
31

    
32
#ifdef CONFIG_KVM_PARA
33
#include <linux/kvm_para.h>
34
#endif
35
//
36
//#define DEBUG_KVM
37

    
38
#ifdef DEBUG_KVM
39
#define DPRINTF(fmt, ...) \
40
    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
41
#else
42
#define DPRINTF(fmt, ...) \
43
    do { } while (0)
44
#endif
45

    
46
#define MSR_KVM_WALL_CLOCK  0x11
47
#define MSR_KVM_SYSTEM_TIME 0x12
48

    
49
#ifndef BUS_MCEERR_AR
50
#define BUS_MCEERR_AR 4
51
#endif
52
#ifndef BUS_MCEERR_AO
53
#define BUS_MCEERR_AO 5
54
#endif
55

    
56
const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
57
    KVM_CAP_INFO(SET_TSS_ADDR),
58
    KVM_CAP_INFO(EXT_CPUID),
59
    KVM_CAP_INFO(MP_STATE),
60
    KVM_CAP_LAST_INFO
61
};
62

    
63
static bool has_msr_star;
64
static bool has_msr_hsave_pa;
65
#if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
66
static bool has_msr_async_pf_en;
67
#endif
68
static int lm_capable_kernel;
69

    
70
static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
71
{
72
    struct kvm_cpuid2 *cpuid;
73
    int r, size;
74

    
75
    size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
76
    cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size);
77
    cpuid->nent = max;
78
    r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
79
    if (r == 0 && cpuid->nent >= max) {
80
        r = -E2BIG;
81
    }
82
    if (r < 0) {
83
        if (r == -E2BIG) {
84
            qemu_free(cpuid);
85
            return NULL;
86
        } else {
87
            fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
88
                    strerror(-r));
89
            exit(1);
90
        }
91
    }
92
    return cpuid;
93
}
94

    
95
uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
96
                                      uint32_t index, int reg)
97
{
98
    struct kvm_cpuid2 *cpuid;
99
    int i, max;
100
    uint32_t ret = 0;
101
    uint32_t cpuid_1_edx;
102

    
103
    max = 1;
104
    while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) {
105
        max *= 2;
106
    }
107

    
108
    for (i = 0; i < cpuid->nent; ++i) {
109
        if (cpuid->entries[i].function == function &&
110
            cpuid->entries[i].index == index) {
111
            switch (reg) {
112
            case R_EAX:
113
                ret = cpuid->entries[i].eax;
114
                break;
115
            case R_EBX:
116
                ret = cpuid->entries[i].ebx;
117
                break;
118
            case R_ECX:
119
                ret = cpuid->entries[i].ecx;
120
                break;
121
            case R_EDX:
122
                ret = cpuid->entries[i].edx;
123
                switch (function) {
124
                case 1:
125
                    /* KVM before 2.6.30 misreports the following features */
126
                    ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
127
                    break;
128
                case 0x80000001:
129
                    /* On Intel, kvm returns cpuid according to the Intel spec,
130
                     * so add missing bits according to the AMD spec:
131
                     */
132
                    cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
133
                    ret |= cpuid_1_edx & 0x183f7ff;
134
                    break;
135
                }
136
                break;
137
            }
138
        }
139
    }
140

    
141
    qemu_free(cpuid);
142

    
143
    return ret;
144
}
145

    
146
#ifdef CONFIG_KVM_PARA
147
struct kvm_para_features {
148
    int cap;
149
    int feature;
150
} para_features[] = {
151
    { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
152
    { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
153
    { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
154
#ifdef KVM_CAP_ASYNC_PF
155
    { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
156
#endif
157
    { -1, -1 }
158
};
159

    
160
static int get_para_features(CPUState *env)
161
{
162
    int i, features = 0;
163

    
164
    for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
165
        if (kvm_check_extension(env->kvm_state, para_features[i].cap)) {
166
            features |= (1 << para_features[i].feature);
167
        }
168
    }
169
#ifdef KVM_CAP_ASYNC_PF
170
    has_msr_async_pf_en = features & (1 << KVM_FEATURE_ASYNC_PF);
171
#endif
172
    return features;
173
}
174
#endif /* CONFIG_KVM_PARA */
175

    
176
#ifdef KVM_CAP_MCE
177
static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
178
                                     int *max_banks)
179
{
180
    int r;
181

    
182
    r = kvm_check_extension(s, KVM_CAP_MCE);
183
    if (r > 0) {
184
        *max_banks = r;
185
        return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
186
    }
187
    return -ENOSYS;
188
}
189

    
190
static void kvm_mce_inject(CPUState *env, target_phys_addr_t paddr, int code)
191
{
192
    uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
193
                      MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
194
    uint64_t mcg_status = MCG_STATUS_MCIP;
195

    
196
    if (code == BUS_MCEERR_AR) {
197
        status |= MCI_STATUS_AR | 0x134;
198
        mcg_status |= MCG_STATUS_EIPV;
199
    } else {
200
        status |= 0xc0;
201
        mcg_status |= MCG_STATUS_RIPV;
202
    }
203
    cpu_x86_inject_mce(NULL, env, 9, status, mcg_status, paddr,
204
                       (MCM_ADDR_PHYS << 6) | 0xc,
205
                       cpu_x86_support_mca_broadcast(env) ?
206
                       MCE_INJECT_BROADCAST : 0);
207
}
208
#endif /* KVM_CAP_MCE */
209

    
210
static void hardware_memory_error(void)
211
{
212
    fprintf(stderr, "Hardware memory error!\n");
213
    exit(1);
214
}
215

    
216
int kvm_arch_on_sigbus_vcpu(CPUState *env, int code, void *addr)
217
{
218
#ifdef KVM_CAP_MCE
219
    ram_addr_t ram_addr;
220
    target_phys_addr_t paddr;
221

    
222
    if ((env->mcg_cap & MCG_SER_P) && addr
223
        && (code == BUS_MCEERR_AR || code == BUS_MCEERR_AO)) {
224
        if (qemu_ram_addr_from_host(addr, &ram_addr) ||
225
            !kvm_physical_memory_addr_from_ram(env->kvm_state, ram_addr,
226
                                               &paddr)) {
227
            fprintf(stderr, "Hardware memory error for memory used by "
228
                    "QEMU itself instead of guest system!\n");
229
            /* Hope we are lucky for AO MCE */
230
            if (code == BUS_MCEERR_AO) {
231
                return 0;
232
            } else {
233
                hardware_memory_error();
234
            }
235
        }
236
        kvm_mce_inject(env, paddr, code);
237
    } else
238
#endif /* KVM_CAP_MCE */
239
    {
240
        if (code == BUS_MCEERR_AO) {
241
            return 0;
242
        } else if (code == BUS_MCEERR_AR) {
243
            hardware_memory_error();
244
        } else {
245
            return 1;
246
        }
247
    }
248
    return 0;
249
}
250

    
251
int kvm_arch_on_sigbus(int code, void *addr)
252
{
253
#ifdef KVM_CAP_MCE
254
    if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
255
        ram_addr_t ram_addr;
256
        target_phys_addr_t paddr;
257

    
258
        /* Hope we are lucky for AO MCE */
259
        if (qemu_ram_addr_from_host(addr, &ram_addr) ||
260
            !kvm_physical_memory_addr_from_ram(first_cpu->kvm_state, ram_addr,
261
                                               &paddr)) {
262
            fprintf(stderr, "Hardware memory error for memory used by "
263
                    "QEMU itself instead of guest system!: %p\n", addr);
264
            return 0;
265
        }
266
        kvm_mce_inject(first_cpu, paddr, code);
267
    } else
268
#endif /* KVM_CAP_MCE */
269
    {
270
        if (code == BUS_MCEERR_AO) {
271
            return 0;
272
        } else if (code == BUS_MCEERR_AR) {
273
            hardware_memory_error();
274
        } else {
275
            return 1;
276
        }
277
    }
278
    return 0;
279
}
280

    
281
static int kvm_inject_mce_oldstyle(CPUState *env)
282
{
283
#ifdef KVM_CAP_MCE
284
    if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) {
285
        unsigned int bank, bank_num = env->mcg_cap & 0xff;
286
        struct kvm_x86_mce mce;
287

    
288
        env->exception_injected = -1;
289

    
290
        /*
291
         * There must be at least one bank in use if an MCE is pending.
292
         * Find it and use its values for the event injection.
293
         */
294
        for (bank = 0; bank < bank_num; bank++) {
295
            if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
296
                break;
297
            }
298
        }
299
        assert(bank < bank_num);
300

    
301
        mce.bank = bank;
302
        mce.status = env->mce_banks[bank * 4 + 1];
303
        mce.mcg_status = env->mcg_status;
304
        mce.addr = env->mce_banks[bank * 4 + 2];
305
        mce.misc = env->mce_banks[bank * 4 + 3];
306

    
307
        return kvm_vcpu_ioctl(env, KVM_X86_SET_MCE, &mce);
308
    }
309
#endif /* KVM_CAP_MCE */
310
    return 0;
311
}
312

    
313
static void cpu_update_state(void *opaque, int running, int reason)
314
{
315
    CPUState *env = opaque;
316

    
317
    if (running) {
318
        env->tsc_valid = false;
319
    }
320
}
321

    
322
int kvm_arch_init_vcpu(CPUState *env)
323
{
324
    struct {
325
        struct kvm_cpuid2 cpuid;
326
        struct kvm_cpuid_entry2 entries[100];
327
    } __attribute__((packed)) cpuid_data;
328
    uint32_t limit, i, j, cpuid_i;
329
    uint32_t unused;
330
    struct kvm_cpuid_entry2 *c;
331
#ifdef CONFIG_KVM_PARA
332
    uint32_t signature[3];
333
#endif
334

    
335
    env->cpuid_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
336

    
337
    i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
338
    env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_ECX);
339
    env->cpuid_ext_features |= i;
340

    
341
    env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
342
                                                             0, R_EDX);
343
    env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
344
                                                             0, R_ECX);
345
    env->cpuid_svm_features  &= kvm_arch_get_supported_cpuid(env, 0x8000000A,
346
                                                             0, R_EDX);
347

    
348

    
349
    cpuid_i = 0;
350

    
351
#ifdef CONFIG_KVM_PARA
352
    /* Paravirtualization CPUIDs */
353
    memcpy(signature, "KVMKVMKVM\0\0\0", 12);
354
    c = &cpuid_data.entries[cpuid_i++];
355
    memset(c, 0, sizeof(*c));
356
    c->function = KVM_CPUID_SIGNATURE;
357
    c->eax = 0;
358
    c->ebx = signature[0];
359
    c->ecx = signature[1];
360
    c->edx = signature[2];
361

    
362
    c = &cpuid_data.entries[cpuid_i++];
363
    memset(c, 0, sizeof(*c));
364
    c->function = KVM_CPUID_FEATURES;
365
    c->eax = env->cpuid_kvm_features & get_para_features(env);
366
#endif
367

    
368
    cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
369

    
370
    for (i = 0; i <= limit; i++) {
371
        c = &cpuid_data.entries[cpuid_i++];
372

    
373
        switch (i) {
374
        case 2: {
375
            /* Keep reading function 2 till all the input is received */
376
            int times;
377

    
378
            c->function = i;
379
            c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
380
                       KVM_CPUID_FLAG_STATE_READ_NEXT;
381
            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
382
            times = c->eax & 0xff;
383

    
384
            for (j = 1; j < times; ++j) {
385
                c = &cpuid_data.entries[cpuid_i++];
386
                c->function = i;
387
                c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
388
                cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
389
            }
390
            break;
391
        }
392
        case 4:
393
        case 0xb:
394
        case 0xd:
395
            for (j = 0; ; j++) {
396
                c->function = i;
397
                c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
398
                c->index = j;
399
                cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
400

    
401
                if (i == 4 && c->eax == 0) {
402
                    break;
403
                }
404
                if (i == 0xb && !(c->ecx & 0xff00)) {
405
                    break;
406
                }
407
                if (i == 0xd && c->eax == 0) {
408
                    break;
409
                }
410
                c = &cpuid_data.entries[cpuid_i++];
411
            }
412
            break;
413
        default:
414
            c->function = i;
415
            c->flags = 0;
416
            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
417
            break;
418
        }
419
    }
420
    cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
421

    
422
    for (i = 0x80000000; i <= limit; i++) {
423
        c = &cpuid_data.entries[cpuid_i++];
424

    
425
        c->function = i;
426
        c->flags = 0;
427
        cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
428
    }
429

    
430
    cpuid_data.cpuid.nent = cpuid_i;
431

    
432
#ifdef KVM_CAP_MCE
433
    if (((env->cpuid_version >> 8)&0xF) >= 6
434
        && (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA)
435
        && kvm_check_extension(env->kvm_state, KVM_CAP_MCE) > 0) {
436
        uint64_t mcg_cap;
437
        int banks;
438
        int ret;
439

    
440
        ret = kvm_get_mce_cap_supported(env->kvm_state, &mcg_cap, &banks);
441
        if (ret < 0) {
442
            fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
443
            return ret;
444
        }
445

    
446
        if (banks > MCE_BANKS_DEF) {
447
            banks = MCE_BANKS_DEF;
448
        }
449
        mcg_cap &= MCE_CAP_DEF;
450
        mcg_cap |= banks;
451
        ret = kvm_vcpu_ioctl(env, KVM_X86_SETUP_MCE, &mcg_cap);
452
        if (ret < 0) {
453
            fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
454
            return ret;
455
        }
456

    
457
        env->mcg_cap = mcg_cap;
458
    }
459
#endif
460

    
461
    qemu_add_vm_change_state_handler(cpu_update_state, env);
462

    
463
    return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
464
}
465

    
466
void kvm_arch_reset_vcpu(CPUState *env)
467
{
468
    env->exception_injected = -1;
469
    env->interrupt_injected = -1;
470
    env->xcr0 = 1;
471
    if (kvm_irqchip_in_kernel()) {
472
        env->mp_state = cpu_is_bsp(env) ? KVM_MP_STATE_RUNNABLE :
473
                                          KVM_MP_STATE_UNINITIALIZED;
474
    } else {
475
        env->mp_state = KVM_MP_STATE_RUNNABLE;
476
    }
477
}
478

    
479
static int kvm_get_supported_msrs(KVMState *s)
480
{
481
    static int kvm_supported_msrs;
482
    int ret = 0;
483

    
484
    /* first time */
485
    if (kvm_supported_msrs == 0) {
486
        struct kvm_msr_list msr_list, *kvm_msr_list;
487

    
488
        kvm_supported_msrs = -1;
489

    
490
        /* Obtain MSR list from KVM.  These are the MSRs that we must
491
         * save/restore */
492
        msr_list.nmsrs = 0;
493
        ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
494
        if (ret < 0 && ret != -E2BIG) {
495
            return ret;
496
        }
497
        /* Old kernel modules had a bug and could write beyond the provided
498
           memory. Allocate at least a safe amount of 1K. */
499
        kvm_msr_list = qemu_mallocz(MAX(1024, sizeof(msr_list) +
500
                                              msr_list.nmsrs *
501
                                              sizeof(msr_list.indices[0])));
502

    
503
        kvm_msr_list->nmsrs = msr_list.nmsrs;
504
        ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
505
        if (ret >= 0) {
506
            int i;
507

    
508
            for (i = 0; i < kvm_msr_list->nmsrs; i++) {
509
                if (kvm_msr_list->indices[i] == MSR_STAR) {
510
                    has_msr_star = true;
511
                    continue;
512
                }
513
                if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
514
                    has_msr_hsave_pa = true;
515
                    continue;
516
                }
517
            }
518
        }
519

    
520
        free(kvm_msr_list);
521
    }
522

    
523
    return ret;
524
}
525

    
526
int kvm_arch_init(KVMState *s)
527
{
528
    uint64_t identity_base = 0xfffbc000;
529
    int ret;
530
    struct utsname utsname;
531

    
532
    ret = kvm_get_supported_msrs(s);
533
    if (ret < 0) {
534
        return ret;
535
    }
536

    
537
    uname(&utsname);
538
    lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
539

    
540
    /*
541
     * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
542
     * In order to use vm86 mode, an EPT identity map and a TSS  are needed.
543
     * Since these must be part of guest physical memory, we need to allocate
544
     * them, both by setting their start addresses in the kernel and by
545
     * creating a corresponding e820 entry. We need 4 pages before the BIOS.
546
     *
547
     * Older KVM versions may not support setting the identity map base. In
548
     * that case we need to stick with the default, i.e. a 256K maximum BIOS
549
     * size.
550
     */
551
#ifdef KVM_CAP_SET_IDENTITY_MAP_ADDR
552
    if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
553
        /* Allows up to 16M BIOSes. */
554
        identity_base = 0xfeffc000;
555

    
556
        ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
557
        if (ret < 0) {
558
            return ret;
559
        }
560
    }
561
#endif
562
    /* Set TSS base one page after EPT identity map. */
563
    ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
564
    if (ret < 0) {
565
        return ret;
566
    }
567

    
568
    /* Tell fw_cfg to notify the BIOS to reserve the range. */
569
    ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
570
    if (ret < 0) {
571
        fprintf(stderr, "e820_add_entry() table is full\n");
572
        return ret;
573
    }
574

    
575
    return 0;
576
}
577

    
578
static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
579
{
580
    lhs->selector = rhs->selector;
581
    lhs->base = rhs->base;
582
    lhs->limit = rhs->limit;
583
    lhs->type = 3;
584
    lhs->present = 1;
585
    lhs->dpl = 3;
586
    lhs->db = 0;
587
    lhs->s = 1;
588
    lhs->l = 0;
589
    lhs->g = 0;
590
    lhs->avl = 0;
591
    lhs->unusable = 0;
592
}
593

    
594
static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
595
{
596
    unsigned flags = rhs->flags;
597
    lhs->selector = rhs->selector;
598
    lhs->base = rhs->base;
599
    lhs->limit = rhs->limit;
600
    lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
601
    lhs->present = (flags & DESC_P_MASK) != 0;
602
    lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
603
    lhs->db = (flags >> DESC_B_SHIFT) & 1;
604
    lhs->s = (flags & DESC_S_MASK) != 0;
605
    lhs->l = (flags >> DESC_L_SHIFT) & 1;
606
    lhs->g = (flags & DESC_G_MASK) != 0;
607
    lhs->avl = (flags & DESC_AVL_MASK) != 0;
608
    lhs->unusable = 0;
609
}
610

    
611
static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
612
{
613
    lhs->selector = rhs->selector;
614
    lhs->base = rhs->base;
615
    lhs->limit = rhs->limit;
616
    lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
617
                 (rhs->present * DESC_P_MASK) |
618
                 (rhs->dpl << DESC_DPL_SHIFT) |
619
                 (rhs->db << DESC_B_SHIFT) |
620
                 (rhs->s * DESC_S_MASK) |
621
                 (rhs->l << DESC_L_SHIFT) |
622
                 (rhs->g * DESC_G_MASK) |
623
                 (rhs->avl * DESC_AVL_MASK);
624
}
625

    
626
static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
627
{
628
    if (set) {
629
        *kvm_reg = *qemu_reg;
630
    } else {
631
        *qemu_reg = *kvm_reg;
632
    }
633
}
634

    
635
static int kvm_getput_regs(CPUState *env, int set)
636
{
637
    struct kvm_regs regs;
638
    int ret = 0;
639

    
640
    if (!set) {
641
        ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
642
        if (ret < 0) {
643
            return ret;
644
        }
645
    }
646

    
647
    kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
648
    kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
649
    kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
650
    kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
651
    kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
652
    kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
653
    kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
654
    kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
655
#ifdef TARGET_X86_64
656
    kvm_getput_reg(&regs.r8, &env->regs[8], set);
657
    kvm_getput_reg(&regs.r9, &env->regs[9], set);
658
    kvm_getput_reg(&regs.r10, &env->regs[10], set);
659
    kvm_getput_reg(&regs.r11, &env->regs[11], set);
660
    kvm_getput_reg(&regs.r12, &env->regs[12], set);
661
    kvm_getput_reg(&regs.r13, &env->regs[13], set);
662
    kvm_getput_reg(&regs.r14, &env->regs[14], set);
663
    kvm_getput_reg(&regs.r15, &env->regs[15], set);
664
#endif
665

    
666
    kvm_getput_reg(&regs.rflags, &env->eflags, set);
667
    kvm_getput_reg(&regs.rip, &env->eip, set);
668

    
669
    if (set) {
670
        ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
671
    }
672

    
673
    return ret;
674
}
675

    
676
static int kvm_put_fpu(CPUState *env)
677
{
678
    struct kvm_fpu fpu;
679
    int i;
680

    
681
    memset(&fpu, 0, sizeof fpu);
682
    fpu.fsw = env->fpus & ~(7 << 11);
683
    fpu.fsw |= (env->fpstt & 7) << 11;
684
    fpu.fcw = env->fpuc;
685
    for (i = 0; i < 8; ++i) {
686
        fpu.ftwx |= (!env->fptags[i]) << i;
687
    }
688
    memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
689
    memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
690
    fpu.mxcsr = env->mxcsr;
691

    
692
    return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
693
}
694

    
695
#ifdef KVM_CAP_XSAVE
696
#define XSAVE_CWD_RIP     2
697
#define XSAVE_CWD_RDP     4
698
#define XSAVE_MXCSR       6
699
#define XSAVE_ST_SPACE    8
700
#define XSAVE_XMM_SPACE   40
701
#define XSAVE_XSTATE_BV   128
702
#define XSAVE_YMMH_SPACE  144
703
#endif
704

    
705
static int kvm_put_xsave(CPUState *env)
706
{
707
#ifdef KVM_CAP_XSAVE
708
    int i, r;
709
    struct kvm_xsave* xsave;
710
    uint16_t cwd, swd, twd, fop;
711

    
712
    if (!kvm_has_xsave()) {
713
        return kvm_put_fpu(env);
714
    }
715

    
716
    xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
717
    memset(xsave, 0, sizeof(struct kvm_xsave));
718
    cwd = swd = twd = fop = 0;
719
    swd = env->fpus & ~(7 << 11);
720
    swd |= (env->fpstt & 7) << 11;
721
    cwd = env->fpuc;
722
    for (i = 0; i < 8; ++i) {
723
        twd |= (!env->fptags[i]) << i;
724
    }
725
    xsave->region[0] = (uint32_t)(swd << 16) + cwd;
726
    xsave->region[1] = (uint32_t)(fop << 16) + twd;
727
    memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
728
            sizeof env->fpregs);
729
    memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
730
            sizeof env->xmm_regs);
731
    xsave->region[XSAVE_MXCSR] = env->mxcsr;
732
    *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
733
    memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
734
            sizeof env->ymmh_regs);
735
    r = kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave);
736
    qemu_free(xsave);
737
    return r;
738
#else
739
    return kvm_put_fpu(env);
740
#endif
741
}
742

    
743
static int kvm_put_xcrs(CPUState *env)
744
{
745
#ifdef KVM_CAP_XCRS
746
    struct kvm_xcrs xcrs;
747

    
748
    if (!kvm_has_xcrs()) {
749
        return 0;
750
    }
751

    
752
    xcrs.nr_xcrs = 1;
753
    xcrs.flags = 0;
754
    xcrs.xcrs[0].xcr = 0;
755
    xcrs.xcrs[0].value = env->xcr0;
756
    return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs);
757
#else
758
    return 0;
759
#endif
760
}
761

    
762
static int kvm_put_sregs(CPUState *env)
763
{
764
    struct kvm_sregs sregs;
765

    
766
    memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
767
    if (env->interrupt_injected >= 0) {
768
        sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
769
                (uint64_t)1 << (env->interrupt_injected % 64);
770
    }
771

    
772
    if ((env->eflags & VM_MASK)) {
773
        set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
774
        set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
775
        set_v8086_seg(&sregs.es, &env->segs[R_ES]);
776
        set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
777
        set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
778
        set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
779
    } else {
780
        set_seg(&sregs.cs, &env->segs[R_CS]);
781
        set_seg(&sregs.ds, &env->segs[R_DS]);
782
        set_seg(&sregs.es, &env->segs[R_ES]);
783
        set_seg(&sregs.fs, &env->segs[R_FS]);
784
        set_seg(&sregs.gs, &env->segs[R_GS]);
785
        set_seg(&sregs.ss, &env->segs[R_SS]);
786
    }
787

    
788
    set_seg(&sregs.tr, &env->tr);
789
    set_seg(&sregs.ldt, &env->ldt);
790

    
791
    sregs.idt.limit = env->idt.limit;
792
    sregs.idt.base = env->idt.base;
793
    sregs.gdt.limit = env->gdt.limit;
794
    sregs.gdt.base = env->gdt.base;
795

    
796
    sregs.cr0 = env->cr[0];
797
    sregs.cr2 = env->cr[2];
798
    sregs.cr3 = env->cr[3];
799
    sregs.cr4 = env->cr[4];
800

    
801
    sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
802
    sregs.apic_base = cpu_get_apic_base(env->apic_state);
803

    
804
    sregs.efer = env->efer;
805

    
806
    return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
807
}
808

    
809
static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
810
                              uint32_t index, uint64_t value)
811
{
812
    entry->index = index;
813
    entry->data = value;
814
}
815

    
816
static int kvm_put_msrs(CPUState *env, int level)
817
{
818
    struct {
819
        struct kvm_msrs info;
820
        struct kvm_msr_entry entries[100];
821
    } msr_data;
822
    struct kvm_msr_entry *msrs = msr_data.entries;
823
    int n = 0;
824

    
825
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
826
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
827
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
828
    if (has_msr_star) {
829
        kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
830
    }
831
    if (has_msr_hsave_pa) {
832
        kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
833
    }
834
#ifdef TARGET_X86_64
835
    if (lm_capable_kernel) {
836
        kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
837
        kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
838
        kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
839
        kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
840
    }
841
#endif
842
    if (level == KVM_PUT_FULL_STATE) {
843
        /*
844
         * KVM is yet unable to synchronize TSC values of multiple VCPUs on
845
         * writeback. Until this is fixed, we only write the offset to SMP
846
         * guests after migration, desynchronizing the VCPUs, but avoiding
847
         * huge jump-backs that would occur without any writeback at all.
848
         */
849
        if (smp_cpus == 1 || env->tsc != 0) {
850
            kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
851
        }
852
    }
853
    /*
854
     * The following paravirtual MSRs have side effects on the guest or are
855
     * too heavy for normal writeback. Limit them to reset or full state
856
     * updates.
857
     */
858
    if (level >= KVM_PUT_RESET_STATE) {
859
        kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
860
                          env->system_time_msr);
861
        kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
862
#if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
863
        if (has_msr_async_pf_en) {
864
            kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN,
865
                              env->async_pf_en_msr);
866
        }
867
#endif
868
    }
869
#ifdef KVM_CAP_MCE
870
    if (env->mcg_cap) {
871
        int i;
872

    
873
        kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
874
        kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
875
        for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
876
            kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
877
        }
878
    }
879
#endif
880

    
881
    msr_data.info.nmsrs = n;
882

    
883
    return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
884

    
885
}
886

    
887

    
888
static int kvm_get_fpu(CPUState *env)
889
{
890
    struct kvm_fpu fpu;
891
    int i, ret;
892

    
893
    ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
894
    if (ret < 0) {
895
        return ret;
896
    }
897

    
898
    env->fpstt = (fpu.fsw >> 11) & 7;
899
    env->fpus = fpu.fsw;
900
    env->fpuc = fpu.fcw;
901
    for (i = 0; i < 8; ++i) {
902
        env->fptags[i] = !((fpu.ftwx >> i) & 1);
903
    }
904
    memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
905
    memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
906
    env->mxcsr = fpu.mxcsr;
907

    
908
    return 0;
909
}
910

    
911
static int kvm_get_xsave(CPUState *env)
912
{
913
#ifdef KVM_CAP_XSAVE
914
    struct kvm_xsave* xsave;
915
    int ret, i;
916
    uint16_t cwd, swd, twd, fop;
917

    
918
    if (!kvm_has_xsave()) {
919
        return kvm_get_fpu(env);
920
    }
921

    
922
    xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
923
    ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave);
924
    if (ret < 0) {
925
        qemu_free(xsave);
926
        return ret;
927
    }
928

    
929
    cwd = (uint16_t)xsave->region[0];
930
    swd = (uint16_t)(xsave->region[0] >> 16);
931
    twd = (uint16_t)xsave->region[1];
932
    fop = (uint16_t)(xsave->region[1] >> 16);
933
    env->fpstt = (swd >> 11) & 7;
934
    env->fpus = swd;
935
    env->fpuc = cwd;
936
    for (i = 0; i < 8; ++i) {
937
        env->fptags[i] = !((twd >> i) & 1);
938
    }
939
    env->mxcsr = xsave->region[XSAVE_MXCSR];
940
    memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
941
            sizeof env->fpregs);
942
    memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
943
            sizeof env->xmm_regs);
944
    env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
945
    memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
946
            sizeof env->ymmh_regs);
947
    qemu_free(xsave);
948
    return 0;
949
#else
950
    return kvm_get_fpu(env);
951
#endif
952
}
953

    
954
static int kvm_get_xcrs(CPUState *env)
955
{
956
#ifdef KVM_CAP_XCRS
957
    int i, ret;
958
    struct kvm_xcrs xcrs;
959

    
960
    if (!kvm_has_xcrs()) {
961
        return 0;
962
    }
963

    
964
    ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs);
965
    if (ret < 0) {
966
        return ret;
967
    }
968

    
969
    for (i = 0; i < xcrs.nr_xcrs; i++) {
970
        /* Only support xcr0 now */
971
        if (xcrs.xcrs[0].xcr == 0) {
972
            env->xcr0 = xcrs.xcrs[0].value;
973
            break;
974
        }
975
    }
976
    return 0;
977
#else
978
    return 0;
979
#endif
980
}
981

    
982
static int kvm_get_sregs(CPUState *env)
983
{
984
    struct kvm_sregs sregs;
985
    uint32_t hflags;
986
    int bit, i, ret;
987

    
988
    ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
989
    if (ret < 0) {
990
        return ret;
991
    }
992

    
993
    /* There can only be one pending IRQ set in the bitmap at a time, so try
994
       to find it and save its number instead (-1 for none). */
995
    env->interrupt_injected = -1;
996
    for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
997
        if (sregs.interrupt_bitmap[i]) {
998
            bit = ctz64(sregs.interrupt_bitmap[i]);
999
            env->interrupt_injected = i * 64 + bit;
1000
            break;
1001
        }
1002
    }
1003

    
1004
    get_seg(&env->segs[R_CS], &sregs.cs);
1005
    get_seg(&env->segs[R_DS], &sregs.ds);
1006
    get_seg(&env->segs[R_ES], &sregs.es);
1007
    get_seg(&env->segs[R_FS], &sregs.fs);
1008
    get_seg(&env->segs[R_GS], &sregs.gs);
1009
    get_seg(&env->segs[R_SS], &sregs.ss);
1010

    
1011
    get_seg(&env->tr, &sregs.tr);
1012
    get_seg(&env->ldt, &sregs.ldt);
1013

    
1014
    env->idt.limit = sregs.idt.limit;
1015
    env->idt.base = sregs.idt.base;
1016
    env->gdt.limit = sregs.gdt.limit;
1017
    env->gdt.base = sregs.gdt.base;
1018

    
1019
    env->cr[0] = sregs.cr0;
1020
    env->cr[2] = sregs.cr2;
1021
    env->cr[3] = sregs.cr3;
1022
    env->cr[4] = sregs.cr4;
1023

    
1024
    cpu_set_apic_base(env->apic_state, sregs.apic_base);
1025

    
1026
    env->efer = sregs.efer;
1027
    //cpu_set_apic_tpr(env->apic_state, sregs.cr8);
1028

    
1029
#define HFLAG_COPY_MASK \
1030
    ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1031
       HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1032
       HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1033
       HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
1034

    
1035
    hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1036
    hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1037
    hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
1038
                (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
1039
    hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1040
    hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
1041
                (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
1042

    
1043
    if (env->efer & MSR_EFER_LMA) {
1044
        hflags |= HF_LMA_MASK;
1045
    }
1046

    
1047
    if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1048
        hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1049
    } else {
1050
        hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
1051
                    (DESC_B_SHIFT - HF_CS32_SHIFT);
1052
        hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
1053
                    (DESC_B_SHIFT - HF_SS32_SHIFT);
1054
        if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
1055
            !(hflags & HF_CS32_MASK)) {
1056
            hflags |= HF_ADDSEG_MASK;
1057
        } else {
1058
            hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
1059
                        env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
1060
        }
1061
    }
1062
    env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
1063

    
1064
    return 0;
1065
}
1066

    
1067
static int kvm_get_msrs(CPUState *env)
1068
{
1069
    struct {
1070
        struct kvm_msrs info;
1071
        struct kvm_msr_entry entries[100];
1072
    } msr_data;
1073
    struct kvm_msr_entry *msrs = msr_data.entries;
1074
    int ret, i, n;
1075

    
1076
    n = 0;
1077
    msrs[n++].index = MSR_IA32_SYSENTER_CS;
1078
    msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1079
    msrs[n++].index = MSR_IA32_SYSENTER_EIP;
1080
    if (has_msr_star) {
1081
        msrs[n++].index = MSR_STAR;
1082
    }
1083
    if (has_msr_hsave_pa) {
1084
        msrs[n++].index = MSR_VM_HSAVE_PA;
1085
    }
1086

    
1087
    if (!env->tsc_valid) {
1088
        msrs[n++].index = MSR_IA32_TSC;
1089
        env->tsc_valid = !vm_running;
1090
    }
1091

    
1092
#ifdef TARGET_X86_64
1093
    if (lm_capable_kernel) {
1094
        msrs[n++].index = MSR_CSTAR;
1095
        msrs[n++].index = MSR_KERNELGSBASE;
1096
        msrs[n++].index = MSR_FMASK;
1097
        msrs[n++].index = MSR_LSTAR;
1098
    }
1099
#endif
1100
    msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1101
    msrs[n++].index = MSR_KVM_WALL_CLOCK;
1102
#if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
1103
    if (has_msr_async_pf_en) {
1104
        msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
1105
    }
1106
#endif
1107

    
1108
#ifdef KVM_CAP_MCE
1109
    if (env->mcg_cap) {
1110
        msrs[n++].index = MSR_MCG_STATUS;
1111
        msrs[n++].index = MSR_MCG_CTL;
1112
        for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1113
            msrs[n++].index = MSR_MC0_CTL + i;
1114
        }
1115
    }
1116
#endif
1117

    
1118
    msr_data.info.nmsrs = n;
1119
    ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
1120
    if (ret < 0) {
1121
        return ret;
1122
    }
1123

    
1124
    for (i = 0; i < ret; i++) {
1125
        switch (msrs[i].index) {
1126
        case MSR_IA32_SYSENTER_CS:
1127
            env->sysenter_cs = msrs[i].data;
1128
            break;
1129
        case MSR_IA32_SYSENTER_ESP:
1130
            env->sysenter_esp = msrs[i].data;
1131
            break;
1132
        case MSR_IA32_SYSENTER_EIP:
1133
            env->sysenter_eip = msrs[i].data;
1134
            break;
1135
        case MSR_STAR:
1136
            env->star = msrs[i].data;
1137
            break;
1138
#ifdef TARGET_X86_64
1139
        case MSR_CSTAR:
1140
            env->cstar = msrs[i].data;
1141
            break;
1142
        case MSR_KERNELGSBASE:
1143
            env->kernelgsbase = msrs[i].data;
1144
            break;
1145
        case MSR_FMASK:
1146
            env->fmask = msrs[i].data;
1147
            break;
1148
        case MSR_LSTAR:
1149
            env->lstar = msrs[i].data;
1150
            break;
1151
#endif
1152
        case MSR_IA32_TSC:
1153
            env->tsc = msrs[i].data;
1154
            break;
1155
        case MSR_VM_HSAVE_PA:
1156
            env->vm_hsave = msrs[i].data;
1157
            break;
1158
        case MSR_KVM_SYSTEM_TIME:
1159
            env->system_time_msr = msrs[i].data;
1160
            break;
1161
        case MSR_KVM_WALL_CLOCK:
1162
            env->wall_clock_msr = msrs[i].data;
1163
            break;
1164
#ifdef KVM_CAP_MCE
1165
        case MSR_MCG_STATUS:
1166
            env->mcg_status = msrs[i].data;
1167
            break;
1168
        case MSR_MCG_CTL:
1169
            env->mcg_ctl = msrs[i].data;
1170
            break;
1171
#endif
1172
        default:
1173
#ifdef KVM_CAP_MCE
1174
            if (msrs[i].index >= MSR_MC0_CTL &&
1175
                msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1176
                env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
1177
            }
1178
#endif
1179
            break;
1180
#if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
1181
        case MSR_KVM_ASYNC_PF_EN:
1182
            env->async_pf_en_msr = msrs[i].data;
1183
            break;
1184
#endif
1185
        }
1186
    }
1187

    
1188
    return 0;
1189
}
1190

    
1191
static int kvm_put_mp_state(CPUState *env)
1192
{
1193
    struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
1194

    
1195
    return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
1196
}
1197

    
1198
static int kvm_get_mp_state(CPUState *env)
1199
{
1200
    struct kvm_mp_state mp_state;
1201
    int ret;
1202

    
1203
    ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
1204
    if (ret < 0) {
1205
        return ret;
1206
    }
1207
    env->mp_state = mp_state.mp_state;
1208
    if (kvm_irqchip_in_kernel()) {
1209
        env->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
1210
    }
1211
    return 0;
1212
}
1213

    
1214
static int kvm_put_vcpu_events(CPUState *env, int level)
1215
{
1216
#ifdef KVM_CAP_VCPU_EVENTS
1217
    struct kvm_vcpu_events events;
1218

    
1219
    if (!kvm_has_vcpu_events()) {
1220
        return 0;
1221
    }
1222

    
1223
    events.exception.injected = (env->exception_injected >= 0);
1224
    events.exception.nr = env->exception_injected;
1225
    events.exception.has_error_code = env->has_error_code;
1226
    events.exception.error_code = env->error_code;
1227

    
1228
    events.interrupt.injected = (env->interrupt_injected >= 0);
1229
    events.interrupt.nr = env->interrupt_injected;
1230
    events.interrupt.soft = env->soft_interrupt;
1231

    
1232
    events.nmi.injected = env->nmi_injected;
1233
    events.nmi.pending = env->nmi_pending;
1234
    events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
1235

    
1236
    events.sipi_vector = env->sipi_vector;
1237

    
1238
    events.flags = 0;
1239
    if (level >= KVM_PUT_RESET_STATE) {
1240
        events.flags |=
1241
            KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1242
    }
1243

    
1244
    return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
1245
#else
1246
    return 0;
1247
#endif
1248
}
1249

    
1250
static int kvm_get_vcpu_events(CPUState *env)
1251
{
1252
#ifdef KVM_CAP_VCPU_EVENTS
1253
    struct kvm_vcpu_events events;
1254
    int ret;
1255

    
1256
    if (!kvm_has_vcpu_events()) {
1257
        return 0;
1258
    }
1259

    
1260
    ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
1261
    if (ret < 0) {
1262
       return ret;
1263
    }
1264
    env->exception_injected =
1265
       events.exception.injected ? events.exception.nr : -1;
1266
    env->has_error_code = events.exception.has_error_code;
1267
    env->error_code = events.exception.error_code;
1268

    
1269
    env->interrupt_injected =
1270
        events.interrupt.injected ? events.interrupt.nr : -1;
1271
    env->soft_interrupt = events.interrupt.soft;
1272

    
1273
    env->nmi_injected = events.nmi.injected;
1274
    env->nmi_pending = events.nmi.pending;
1275
    if (events.nmi.masked) {
1276
        env->hflags2 |= HF2_NMI_MASK;
1277
    } else {
1278
        env->hflags2 &= ~HF2_NMI_MASK;
1279
    }
1280

    
1281
    env->sipi_vector = events.sipi_vector;
1282
#endif
1283

    
1284
    return 0;
1285
}
1286

    
1287
static int kvm_guest_debug_workarounds(CPUState *env)
1288
{
1289
    int ret = 0;
1290
#ifdef KVM_CAP_SET_GUEST_DEBUG
1291
    unsigned long reinject_trap = 0;
1292

    
1293
    if (!kvm_has_vcpu_events()) {
1294
        if (env->exception_injected == 1) {
1295
            reinject_trap = KVM_GUESTDBG_INJECT_DB;
1296
        } else if (env->exception_injected == 3) {
1297
            reinject_trap = KVM_GUESTDBG_INJECT_BP;
1298
        }
1299
        env->exception_injected = -1;
1300
    }
1301

    
1302
    /*
1303
     * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1304
     * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1305
     * by updating the debug state once again if single-stepping is on.
1306
     * Another reason to call kvm_update_guest_debug here is a pending debug
1307
     * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1308
     * reinject them via SET_GUEST_DEBUG.
1309
     */
1310
    if (reinject_trap ||
1311
        (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1312
        ret = kvm_update_guest_debug(env, reinject_trap);
1313
    }
1314
#endif /* KVM_CAP_SET_GUEST_DEBUG */
1315
    return ret;
1316
}
1317

    
1318
static int kvm_put_debugregs(CPUState *env)
1319
{
1320
#ifdef KVM_CAP_DEBUGREGS
1321
    struct kvm_debugregs dbgregs;
1322
    int i;
1323

    
1324
    if (!kvm_has_debugregs()) {
1325
        return 0;
1326
    }
1327

    
1328
    for (i = 0; i < 4; i++) {
1329
        dbgregs.db[i] = env->dr[i];
1330
    }
1331
    dbgregs.dr6 = env->dr[6];
1332
    dbgregs.dr7 = env->dr[7];
1333
    dbgregs.flags = 0;
1334

    
1335
    return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs);
1336
#else
1337
    return 0;
1338
#endif
1339
}
1340

    
1341
static int kvm_get_debugregs(CPUState *env)
1342
{
1343
#ifdef KVM_CAP_DEBUGREGS
1344
    struct kvm_debugregs dbgregs;
1345
    int i, ret;
1346

    
1347
    if (!kvm_has_debugregs()) {
1348
        return 0;
1349
    }
1350

    
1351
    ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs);
1352
    if (ret < 0) {
1353
        return ret;
1354
    }
1355
    for (i = 0; i < 4; i++) {
1356
        env->dr[i] = dbgregs.db[i];
1357
    }
1358
    env->dr[4] = env->dr[6] = dbgregs.dr6;
1359
    env->dr[5] = env->dr[7] = dbgregs.dr7;
1360
#endif
1361

    
1362
    return 0;
1363
}
1364

    
1365
int kvm_arch_put_registers(CPUState *env, int level)
1366
{
1367
    int ret;
1368

    
1369
    assert(cpu_is_stopped(env) || qemu_cpu_is_self(env));
1370

    
1371
    ret = kvm_getput_regs(env, 1);
1372
    if (ret < 0) {
1373
        return ret;
1374
    }
1375
    ret = kvm_put_xsave(env);
1376
    if (ret < 0) {
1377
        return ret;
1378
    }
1379
    ret = kvm_put_xcrs(env);
1380
    if (ret < 0) {
1381
        return ret;
1382
    }
1383
    ret = kvm_put_sregs(env);
1384
    if (ret < 0) {
1385
        return ret;
1386
    }
1387
    /* must be before kvm_put_msrs */
1388
    ret = kvm_inject_mce_oldstyle(env);
1389
    if (ret < 0) {
1390
        return ret;
1391
    }
1392
    ret = kvm_put_msrs(env, level);
1393
    if (ret < 0) {
1394
        return ret;
1395
    }
1396
    if (level >= KVM_PUT_RESET_STATE) {
1397
        ret = kvm_put_mp_state(env);
1398
        if (ret < 0) {
1399
            return ret;
1400
        }
1401
    }
1402
    ret = kvm_put_vcpu_events(env, level);
1403
    if (ret < 0) {
1404
        return ret;
1405
    }
1406
    ret = kvm_put_debugregs(env);
1407
    if (ret < 0) {
1408
        return ret;
1409
    }
1410
    /* must be last */
1411
    ret = kvm_guest_debug_workarounds(env);
1412
    if (ret < 0) {
1413
        return ret;
1414
    }
1415
    return 0;
1416
}
1417

    
1418
int kvm_arch_get_registers(CPUState *env)
1419
{
1420
    int ret;
1421

    
1422
    assert(cpu_is_stopped(env) || qemu_cpu_is_self(env));
1423

    
1424
    ret = kvm_getput_regs(env, 0);
1425
    if (ret < 0) {
1426
        return ret;
1427
    }
1428
    ret = kvm_get_xsave(env);
1429
    if (ret < 0) {
1430
        return ret;
1431
    }
1432
    ret = kvm_get_xcrs(env);
1433
    if (ret < 0) {
1434
        return ret;
1435
    }
1436
    ret = kvm_get_sregs(env);
1437
    if (ret < 0) {
1438
        return ret;
1439
    }
1440
    ret = kvm_get_msrs(env);
1441
    if (ret < 0) {
1442
        return ret;
1443
    }
1444
    ret = kvm_get_mp_state(env);
1445
    if (ret < 0) {
1446
        return ret;
1447
    }
1448
    ret = kvm_get_vcpu_events(env);
1449
    if (ret < 0) {
1450
        return ret;
1451
    }
1452
    ret = kvm_get_debugregs(env);
1453
    if (ret < 0) {
1454
        return ret;
1455
    }
1456
    return 0;
1457
}
1458

    
1459
void kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
1460
{
1461
    int ret;
1462

    
1463
    /* Inject NMI */
1464
    if (env->interrupt_request & CPU_INTERRUPT_NMI) {
1465
        env->interrupt_request &= ~CPU_INTERRUPT_NMI;
1466
        DPRINTF("injected NMI\n");
1467
        ret = kvm_vcpu_ioctl(env, KVM_NMI);
1468
        if (ret < 0) {
1469
            fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
1470
                    strerror(-ret));
1471
        }
1472
    }
1473

    
1474
    if (!kvm_irqchip_in_kernel()) {
1475
        /* Force the VCPU out of its inner loop to process the INIT request */
1476
        if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1477
            env->exit_request = 1;
1478
        }
1479

    
1480
        /* Try to inject an interrupt if the guest can accept it */
1481
        if (run->ready_for_interrupt_injection &&
1482
            (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1483
            (env->eflags & IF_MASK)) {
1484
            int irq;
1485

    
1486
            env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1487
            irq = cpu_get_pic_interrupt(env);
1488
            if (irq >= 0) {
1489
                struct kvm_interrupt intr;
1490

    
1491
                intr.irq = irq;
1492
                DPRINTF("injected interrupt %d\n", irq);
1493
                ret = kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
1494
                if (ret < 0) {
1495
                    fprintf(stderr,
1496
                            "KVM: injection failed, interrupt lost (%s)\n",
1497
                            strerror(-ret));
1498
                }
1499
            }
1500
        }
1501

    
1502
        /* If we have an interrupt but the guest is not ready to receive an
1503
         * interrupt, request an interrupt window exit.  This will
1504
         * cause a return to userspace as soon as the guest is ready to
1505
         * receive interrupts. */
1506
        if ((env->interrupt_request & CPU_INTERRUPT_HARD)) {
1507
            run->request_interrupt_window = 1;
1508
        } else {
1509
            run->request_interrupt_window = 0;
1510
        }
1511

    
1512
        DPRINTF("setting tpr\n");
1513
        run->cr8 = cpu_get_apic_tpr(env->apic_state);
1514
    }
1515
}
1516

    
1517
void kvm_arch_post_run(CPUState *env, struct kvm_run *run)
1518
{
1519
    if (run->if_flag) {
1520
        env->eflags |= IF_MASK;
1521
    } else {
1522
        env->eflags &= ~IF_MASK;
1523
    }
1524
    cpu_set_apic_tpr(env->apic_state, run->cr8);
1525
    cpu_set_apic_base(env->apic_state, run->apic_base);
1526
}
1527

    
1528
int kvm_arch_process_async_events(CPUState *env)
1529
{
1530
    if (env->interrupt_request & CPU_INTERRUPT_MCE) {
1531
        /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
1532
        assert(env->mcg_cap);
1533

    
1534
        env->interrupt_request &= ~CPU_INTERRUPT_MCE;
1535

    
1536
        kvm_cpu_synchronize_state(env);
1537

    
1538
        if (env->exception_injected == EXCP08_DBLE) {
1539
            /* this means triple fault */
1540
            qemu_system_reset_request();
1541
            env->exit_request = 1;
1542
            return 0;
1543
        }
1544
        env->exception_injected = EXCP12_MCHK;
1545
        env->has_error_code = 0;
1546

    
1547
        env->halted = 0;
1548
        if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
1549
            env->mp_state = KVM_MP_STATE_RUNNABLE;
1550
        }
1551
    }
1552

    
1553
    if (kvm_irqchip_in_kernel()) {
1554
        return 0;
1555
    }
1556

    
1557
    if (env->interrupt_request & (CPU_INTERRUPT_HARD | CPU_INTERRUPT_NMI)) {
1558
        env->halted = 0;
1559
    }
1560
    if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1561
        kvm_cpu_synchronize_state(env);
1562
        do_cpu_init(env);
1563
    }
1564
    if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1565
        kvm_cpu_synchronize_state(env);
1566
        do_cpu_sipi(env);
1567
    }
1568

    
1569
    return env->halted;
1570
}
1571

    
1572
static int kvm_handle_halt(CPUState *env)
1573
{
1574
    if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1575
          (env->eflags & IF_MASK)) &&
1576
        !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1577
        env->halted = 1;
1578
        return 0;
1579
    }
1580

    
1581
    return 1;
1582
}
1583

    
1584
static bool host_supports_vmx(void)
1585
{
1586
    uint32_t ecx, unused;
1587

    
1588
    host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
1589
    return ecx & CPUID_EXT_VMX;
1590
}
1591

    
1592
#define VMX_INVALID_GUEST_STATE 0x80000021
1593

    
1594
int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
1595
{
1596
    uint64_t code;
1597
    int ret = 0;
1598

    
1599
    switch (run->exit_reason) {
1600
    case KVM_EXIT_HLT:
1601
        DPRINTF("handle_hlt\n");
1602
        ret = kvm_handle_halt(env);
1603
        break;
1604
    case KVM_EXIT_SET_TPR:
1605
        ret = 1;
1606
        break;
1607
    case KVM_EXIT_FAIL_ENTRY:
1608
        code = run->fail_entry.hardware_entry_failure_reason;
1609
        fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
1610
                code);
1611
        if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
1612
            fprintf(stderr,
1613
                    "\nIf you're runnning a guest on an Intel machine without "
1614
                        "unrestricted mode\n"
1615
                    "support, the failure can be most likely due to the guest "
1616
                        "entering an invalid\n"
1617
                    "state for Intel VT. For example, the guest maybe running "
1618
                        "in big real mode\n"
1619
                    "which is not supported on less recent Intel processors."
1620
                        "\n\n");
1621
        }
1622
        ret = -1;
1623
        break;
1624
    case KVM_EXIT_EXCEPTION:
1625
        fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
1626
                run->ex.exception, run->ex.error_code);
1627
        ret = -1;
1628
        break;
1629
    default:
1630
        fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
1631
        ret = -1;
1632
        break;
1633
    }
1634

    
1635
    return ret;
1636
}
1637

    
1638
#ifdef KVM_CAP_SET_GUEST_DEBUG
1639
int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1640
{
1641
    static const uint8_t int3 = 0xcc;
1642

    
1643
    if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
1644
        cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1)) {
1645
        return -EINVAL;
1646
    }
1647
    return 0;
1648
}
1649

    
1650
int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1651
{
1652
    uint8_t int3;
1653

    
1654
    if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
1655
        cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
1656
        return -EINVAL;
1657
    }
1658
    return 0;
1659
}
1660

    
1661
static struct {
1662
    target_ulong addr;
1663
    int len;
1664
    int type;
1665
} hw_breakpoint[4];
1666

    
1667
static int nb_hw_breakpoint;
1668

    
1669
static int find_hw_breakpoint(target_ulong addr, int len, int type)
1670
{
1671
    int n;
1672

    
1673
    for (n = 0; n < nb_hw_breakpoint; n++) {
1674
        if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1675
            (hw_breakpoint[n].len == len || len == -1)) {
1676
            return n;
1677
        }
1678
    }
1679
    return -1;
1680
}
1681

    
1682
int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1683
                                  target_ulong len, int type)
1684
{
1685
    switch (type) {
1686
    case GDB_BREAKPOINT_HW:
1687
        len = 1;
1688
        break;
1689
    case GDB_WATCHPOINT_WRITE:
1690
    case GDB_WATCHPOINT_ACCESS:
1691
        switch (len) {
1692
        case 1:
1693
            break;
1694
        case 2:
1695
        case 4:
1696
        case 8:
1697
            if (addr & (len - 1)) {
1698
                return -EINVAL;
1699
            }
1700
            break;
1701
        default:
1702
            return -EINVAL;
1703
        }
1704
        break;
1705
    default:
1706
        return -ENOSYS;
1707
    }
1708

    
1709
    if (nb_hw_breakpoint == 4) {
1710
        return -ENOBUFS;
1711
    }
1712
    if (find_hw_breakpoint(addr, len, type) >= 0) {
1713
        return -EEXIST;
1714
    }
1715
    hw_breakpoint[nb_hw_breakpoint].addr = addr;
1716
    hw_breakpoint[nb_hw_breakpoint].len = len;
1717
    hw_breakpoint[nb_hw_breakpoint].type = type;
1718
    nb_hw_breakpoint++;
1719

    
1720
    return 0;
1721
}
1722

    
1723
int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1724
                                  target_ulong len, int type)
1725
{
1726
    int n;
1727

    
1728
    n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
1729
    if (n < 0) {
1730
        return -ENOENT;
1731
    }
1732
    nb_hw_breakpoint--;
1733
    hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1734

    
1735
    return 0;
1736
}
1737

    
1738
void kvm_arch_remove_all_hw_breakpoints(void)
1739
{
1740
    nb_hw_breakpoint = 0;
1741
}
1742

    
1743
static CPUWatchpoint hw_watchpoint;
1744

    
1745
int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info)
1746
{
1747
    int handle = 0;
1748
    int n;
1749

    
1750
    if (arch_info->exception == 1) {
1751
        if (arch_info->dr6 & (1 << 14)) {
1752
            if (cpu_single_env->singlestep_enabled) {
1753
                handle = 1;
1754
            }
1755
        } else {
1756
            for (n = 0; n < 4; n++) {
1757
                if (arch_info->dr6 & (1 << n)) {
1758
                    switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1759
                    case 0x0:
1760
                        handle = 1;
1761
                        break;
1762
                    case 0x1:
1763
                        handle = 1;
1764
                        cpu_single_env->watchpoint_hit = &hw_watchpoint;
1765
                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1766
                        hw_watchpoint.flags = BP_MEM_WRITE;
1767
                        break;
1768
                    case 0x3:
1769
                        handle = 1;
1770
                        cpu_single_env->watchpoint_hit = &hw_watchpoint;
1771
                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1772
                        hw_watchpoint.flags = BP_MEM_ACCESS;
1773
                        break;
1774
                    }
1775
                }
1776
            }
1777
        }
1778
    } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc)) {
1779
        handle = 1;
1780
    }
1781
    if (!handle) {
1782
        cpu_synchronize_state(cpu_single_env);
1783
        assert(cpu_single_env->exception_injected == -1);
1784

    
1785
        cpu_single_env->exception_injected = arch_info->exception;
1786
        cpu_single_env->has_error_code = 0;
1787
    }
1788

    
1789
    return handle;
1790
}
1791

    
1792
void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
1793
{
1794
    const uint8_t type_code[] = {
1795
        [GDB_BREAKPOINT_HW] = 0x0,
1796
        [GDB_WATCHPOINT_WRITE] = 0x1,
1797
        [GDB_WATCHPOINT_ACCESS] = 0x3
1798
    };
1799
    const uint8_t len_code[] = {
1800
        [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1801
    };
1802
    int n;
1803

    
1804
    if (kvm_sw_breakpoints_active(env)) {
1805
        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1806
    }
1807
    if (nb_hw_breakpoint > 0) {
1808
        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1809
        dbg->arch.debugreg[7] = 0x0600;
1810
        for (n = 0; n < nb_hw_breakpoint; n++) {
1811
            dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
1812
            dbg->arch.debugreg[7] |= (2 << (n * 2)) |
1813
                (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
1814
                ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
1815
        }
1816
    }
1817
}
1818
#endif /* KVM_CAP_SET_GUEST_DEBUG */
1819

    
1820
bool kvm_arch_stop_on_emulation_error(CPUState *env)
1821
{
1822
    return !(env->cr[0] & CR0_PE_MASK) ||
1823
           ((env->segs[R_CS].selector  & 3) != 3);
1824
}