Statistics
| Branch: | Revision:

root / target-i386 / kvm.c @ 76ae317f

History | View | Annotate | Download (24.6 kB)

1
/*
2
 * QEMU KVM support
3
 *
4
 * Copyright (C) 2006-2008 Qumranet Technologies
5
 * Copyright IBM, Corp. 2008
6
 *
7
 * Authors:
8
 *  Anthony Liguori   <aliguori@us.ibm.com>
9
 *
10
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11
 * See the COPYING file in the top-level directory.
12
 *
13
 */
14

    
15
#include <sys/types.h>
16
#include <sys/ioctl.h>
17
#include <sys/mman.h>
18

    
19
#include <linux/kvm.h>
20

    
21
#include "qemu-common.h"
22
#include "sysemu.h"
23
#include "kvm.h"
24
#include "cpu.h"
25
#include "gdbstub.h"
26

    
27
//#define DEBUG_KVM
28

    
29
#ifdef DEBUG_KVM
30
#define dprintf(fmt, ...) \
31
    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
32
#else
33
#define dprintf(fmt, ...) \
34
    do { } while (0)
35
#endif
36

    
37
#ifdef KVM_CAP_EXT_CPUID
38

    
39
static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
40
{
41
    struct kvm_cpuid2 *cpuid;
42
    int r, size;
43

    
44
    size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
45
    cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size);
46
    cpuid->nent = max;
47
    r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
48
    if (r == 0 && cpuid->nent >= max) {
49
        r = -E2BIG;
50
    }
51
    if (r < 0) {
52
        if (r == -E2BIG) {
53
            qemu_free(cpuid);
54
            return NULL;
55
        } else {
56
            fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
57
                    strerror(-r));
58
            exit(1);
59
        }
60
    }
61
    return cpuid;
62
}
63

    
64
uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function, int reg)
65
{
66
    struct kvm_cpuid2 *cpuid;
67
    int i, max;
68
    uint32_t ret = 0;
69
    uint32_t cpuid_1_edx;
70

    
71
    if (!kvm_check_extension(env->kvm_state, KVM_CAP_EXT_CPUID)) {
72
        return -1U;
73
    }
74

    
75
    max = 1;
76
    while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) {
77
        max *= 2;
78
    }
79

    
80
    for (i = 0; i < cpuid->nent; ++i) {
81
        if (cpuid->entries[i].function == function) {
82
            switch (reg) {
83
            case R_EAX:
84
                ret = cpuid->entries[i].eax;
85
                break;
86
            case R_EBX:
87
                ret = cpuid->entries[i].ebx;
88
                break;
89
            case R_ECX:
90
                ret = cpuid->entries[i].ecx;
91
                break;
92
            case R_EDX:
93
                ret = cpuid->entries[i].edx;
94
                if (function == 0x80000001) {
95
                    /* On Intel, kvm returns cpuid according to the Intel spec,
96
                     * so add missing bits according to the AMD spec:
97
                     */
98
                    cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, R_EDX);
99
                    ret |= cpuid_1_edx & 0xdfeff7ff;
100
                }
101
                break;
102
            }
103
        }
104
    }
105

    
106
    qemu_free(cpuid);
107

    
108
    return ret;
109
}
110

    
111
#else
112

    
113
uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function, int reg)
114
{
115
    return -1U;
116
}
117

    
118
#endif
119

    
120
int kvm_arch_init_vcpu(CPUState *env)
121
{
122
    struct {
123
        struct kvm_cpuid2 cpuid;
124
        struct kvm_cpuid_entry2 entries[100];
125
    } __attribute__((packed)) cpuid_data;
126
    uint32_t limit, i, j, cpuid_i;
127
    uint32_t unused;
128

    
129
    cpuid_i = 0;
130

    
131
    cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
132

    
133
    for (i = 0; i <= limit; i++) {
134
        struct kvm_cpuid_entry2 *c = &cpuid_data.entries[cpuid_i++];
135

    
136
        switch (i) {
137
        case 2: {
138
            /* Keep reading function 2 till all the input is received */
139
            int times;
140

    
141
            c->function = i;
142
            c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
143
                       KVM_CPUID_FLAG_STATE_READ_NEXT;
144
            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
145
            times = c->eax & 0xff;
146

    
147
            for (j = 1; j < times; ++j) {
148
                c = &cpuid_data.entries[cpuid_i++];
149
                c->function = i;
150
                c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
151
                cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
152
            }
153
            break;
154
        }
155
        case 4:
156
        case 0xb:
157
        case 0xd:
158
            for (j = 0; ; j++) {
159
                c->function = i;
160
                c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
161
                c->index = j;
162
                cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
163

    
164
                if (i == 4 && c->eax == 0)
165
                    break;
166
                if (i == 0xb && !(c->ecx & 0xff00))
167
                    break;
168
                if (i == 0xd && c->eax == 0)
169
                    break;
170

    
171
                c = &cpuid_data.entries[cpuid_i++];
172
            }
173
            break;
174
        default:
175
            c->function = i;
176
            c->flags = 0;
177
            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
178
            break;
179
        }
180
    }
181
    cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
182

    
183
    for (i = 0x80000000; i <= limit; i++) {
184
        struct kvm_cpuid_entry2 *c = &cpuid_data.entries[cpuid_i++];
185

    
186
        c->function = i;
187
        c->flags = 0;
188
        cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
189
    }
190

    
191
    cpuid_data.cpuid.nent = cpuid_i;
192

    
193
    return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
194
}
195

    
196
static int kvm_has_msr_star(CPUState *env)
197
{
198
    static int has_msr_star;
199
    int ret;
200

    
201
    /* first time */
202
    if (has_msr_star == 0) {        
203
        struct kvm_msr_list msr_list, *kvm_msr_list;
204

    
205
        has_msr_star = -1;
206

    
207
        /* Obtain MSR list from KVM.  These are the MSRs that we must
208
         * save/restore */
209
        msr_list.nmsrs = 0;
210
        ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, &msr_list);
211
        if (ret < 0)
212
            return 0;
213

    
214
        kvm_msr_list = qemu_mallocz(sizeof(msr_list) +
215
                                    msr_list.nmsrs * sizeof(msr_list.indices[0]));
216

    
217
        kvm_msr_list->nmsrs = msr_list.nmsrs;
218
        ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
219
        if (ret >= 0) {
220
            int i;
221

    
222
            for (i = 0; i < kvm_msr_list->nmsrs; i++) {
223
                if (kvm_msr_list->indices[i] == MSR_STAR) {
224
                    has_msr_star = 1;
225
                    break;
226
                }
227
            }
228
        }
229

    
230
        free(kvm_msr_list);
231
    }
232

    
233
    if (has_msr_star == 1)
234
        return 1;
235
    return 0;
236
}
237

    
238
int kvm_arch_init(KVMState *s, int smp_cpus)
239
{
240
    int ret;
241

    
242
    /* create vm86 tss.  KVM uses vm86 mode to emulate 16-bit code
243
     * directly.  In order to use vm86 mode, a TSS is needed.  Since this
244
     * must be part of guest physical memory, we need to allocate it.  Older
245
     * versions of KVM just assumed that it would be at the end of physical
246
     * memory but that doesn't work with more than 4GB of memory.  We simply
247
     * refuse to work with those older versions of KVM. */
248
    ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_SET_TSS_ADDR);
249
    if (ret <= 0) {
250
        fprintf(stderr, "kvm does not support KVM_CAP_SET_TSS_ADDR\n");
251
        return ret;
252
    }
253

    
254
    /* this address is 3 pages before the bios, and the bios should present
255
     * as unavaible memory.  FIXME, need to ensure the e820 map deals with
256
     * this?
257
     */
258
    return kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, 0xfffbd000);
259
}
260
                    
261
static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
262
{
263
    lhs->selector = rhs->selector;
264
    lhs->base = rhs->base;
265
    lhs->limit = rhs->limit;
266
    lhs->type = 3;
267
    lhs->present = 1;
268
    lhs->dpl = 3;
269
    lhs->db = 0;
270
    lhs->s = 1;
271
    lhs->l = 0;
272
    lhs->g = 0;
273
    lhs->avl = 0;
274
    lhs->unusable = 0;
275
}
276

    
277
static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
278
{
279
    unsigned flags = rhs->flags;
280
    lhs->selector = rhs->selector;
281
    lhs->base = rhs->base;
282
    lhs->limit = rhs->limit;
283
    lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
284
    lhs->present = (flags & DESC_P_MASK) != 0;
285
    lhs->dpl = rhs->selector & 3;
286
    lhs->db = (flags >> DESC_B_SHIFT) & 1;
287
    lhs->s = (flags & DESC_S_MASK) != 0;
288
    lhs->l = (flags >> DESC_L_SHIFT) & 1;
289
    lhs->g = (flags & DESC_G_MASK) != 0;
290
    lhs->avl = (flags & DESC_AVL_MASK) != 0;
291
    lhs->unusable = 0;
292
}
293

    
294
static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
295
{
296
    lhs->selector = rhs->selector;
297
    lhs->base = rhs->base;
298
    lhs->limit = rhs->limit;
299
    lhs->flags =
300
        (rhs->type << DESC_TYPE_SHIFT)
301
        | (rhs->present * DESC_P_MASK)
302
        | (rhs->dpl << DESC_DPL_SHIFT)
303
        | (rhs->db << DESC_B_SHIFT)
304
        | (rhs->s * DESC_S_MASK)
305
        | (rhs->l << DESC_L_SHIFT)
306
        | (rhs->g * DESC_G_MASK)
307
        | (rhs->avl * DESC_AVL_MASK);
308
}
309

    
310
static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
311
{
312
    if (set)
313
        *kvm_reg = *qemu_reg;
314
    else
315
        *qemu_reg = *kvm_reg;
316
}
317

    
318
static int kvm_getput_regs(CPUState *env, int set)
319
{
320
    struct kvm_regs regs;
321
    int ret = 0;
322

    
323
    if (!set) {
324
        ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
325
        if (ret < 0)
326
            return ret;
327
    }
328

    
329
    kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
330
    kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
331
    kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
332
    kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
333
    kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
334
    kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
335
    kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
336
    kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
337
#ifdef TARGET_X86_64
338
    kvm_getput_reg(&regs.r8, &env->regs[8], set);
339
    kvm_getput_reg(&regs.r9, &env->regs[9], set);
340
    kvm_getput_reg(&regs.r10, &env->regs[10], set);
341
    kvm_getput_reg(&regs.r11, &env->regs[11], set);
342
    kvm_getput_reg(&regs.r12, &env->regs[12], set);
343
    kvm_getput_reg(&regs.r13, &env->regs[13], set);
344
    kvm_getput_reg(&regs.r14, &env->regs[14], set);
345
    kvm_getput_reg(&regs.r15, &env->regs[15], set);
346
#endif
347

    
348
    kvm_getput_reg(&regs.rflags, &env->eflags, set);
349
    kvm_getput_reg(&regs.rip, &env->eip, set);
350

    
351
    if (set)
352
        ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
353

    
354
    return ret;
355
}
356

    
357
static int kvm_put_fpu(CPUState *env)
358
{
359
    struct kvm_fpu fpu;
360
    int i;
361

    
362
    memset(&fpu, 0, sizeof fpu);
363
    fpu.fsw = env->fpus & ~(7 << 11);
364
    fpu.fsw |= (env->fpstt & 7) << 11;
365
    fpu.fcw = env->fpuc;
366
    for (i = 0; i < 8; ++i)
367
        fpu.ftwx |= (!env->fptags[i]) << i;
368
    memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
369
    memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
370
    fpu.mxcsr = env->mxcsr;
371

    
372
    return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
373
}
374

    
375
static int kvm_put_sregs(CPUState *env)
376
{
377
    struct kvm_sregs sregs;
378

    
379
    memcpy(sregs.interrupt_bitmap,
380
           env->interrupt_bitmap,
381
           sizeof(sregs.interrupt_bitmap));
382

    
383
    if ((env->eflags & VM_MASK)) {
384
            set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
385
            set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
386
            set_v8086_seg(&sregs.es, &env->segs[R_ES]);
387
            set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
388
            set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
389
            set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
390
    } else {
391
            set_seg(&sregs.cs, &env->segs[R_CS]);
392
            set_seg(&sregs.ds, &env->segs[R_DS]);
393
            set_seg(&sregs.es, &env->segs[R_ES]);
394
            set_seg(&sregs.fs, &env->segs[R_FS]);
395
            set_seg(&sregs.gs, &env->segs[R_GS]);
396
            set_seg(&sregs.ss, &env->segs[R_SS]);
397

    
398
            if (env->cr[0] & CR0_PE_MASK) {
399
                /* force ss cpl to cs cpl */
400
                sregs.ss.selector = (sregs.ss.selector & ~3) |
401
                        (sregs.cs.selector & 3);
402
                sregs.ss.dpl = sregs.ss.selector & 3;
403
            }
404
    }
405

    
406
    set_seg(&sregs.tr, &env->tr);
407
    set_seg(&sregs.ldt, &env->ldt);
408

    
409
    sregs.idt.limit = env->idt.limit;
410
    sregs.idt.base = env->idt.base;
411
    sregs.gdt.limit = env->gdt.limit;
412
    sregs.gdt.base = env->gdt.base;
413

    
414
    sregs.cr0 = env->cr[0];
415
    sregs.cr2 = env->cr[2];
416
    sregs.cr3 = env->cr[3];
417
    sregs.cr4 = env->cr[4];
418

    
419
    sregs.cr8 = cpu_get_apic_tpr(env);
420
    sregs.apic_base = cpu_get_apic_base(env);
421

    
422
    sregs.efer = env->efer;
423

    
424
    return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
425
}
426

    
427
static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
428
                              uint32_t index, uint64_t value)
429
{
430
    entry->index = index;
431
    entry->data = value;
432
}
433

    
434
static int kvm_put_msrs(CPUState *env)
435
{
436
    struct {
437
        struct kvm_msrs info;
438
        struct kvm_msr_entry entries[100];
439
    } msr_data;
440
    struct kvm_msr_entry *msrs = msr_data.entries;
441
    int n = 0;
442

    
443
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
444
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
445
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
446
    if (kvm_has_msr_star(env))
447
        kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
448
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
449
#ifdef TARGET_X86_64
450
    /* FIXME if lm capable */
451
    kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
452
    kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
453
    kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
454
    kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
455
#endif
456
    msr_data.info.nmsrs = n;
457

    
458
    return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
459

    
460
}
461

    
462

    
463
static int kvm_get_fpu(CPUState *env)
464
{
465
    struct kvm_fpu fpu;
466
    int i, ret;
467

    
468
    ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
469
    if (ret < 0)
470
        return ret;
471

    
472
    env->fpstt = (fpu.fsw >> 11) & 7;
473
    env->fpus = fpu.fsw;
474
    env->fpuc = fpu.fcw;
475
    for (i = 0; i < 8; ++i)
476
        env->fptags[i] = !((fpu.ftwx >> i) & 1);
477
    memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
478
    memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
479
    env->mxcsr = fpu.mxcsr;
480

    
481
    return 0;
482
}
483

    
484
static int kvm_get_sregs(CPUState *env)
485
{
486
    struct kvm_sregs sregs;
487
    uint32_t hflags;
488
    int ret;
489

    
490
    ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
491
    if (ret < 0)
492
        return ret;
493

    
494
    memcpy(env->interrupt_bitmap, 
495
           sregs.interrupt_bitmap,
496
           sizeof(sregs.interrupt_bitmap));
497

    
498
    get_seg(&env->segs[R_CS], &sregs.cs);
499
    get_seg(&env->segs[R_DS], &sregs.ds);
500
    get_seg(&env->segs[R_ES], &sregs.es);
501
    get_seg(&env->segs[R_FS], &sregs.fs);
502
    get_seg(&env->segs[R_GS], &sregs.gs);
503
    get_seg(&env->segs[R_SS], &sregs.ss);
504

    
505
    get_seg(&env->tr, &sregs.tr);
506
    get_seg(&env->ldt, &sregs.ldt);
507

    
508
    env->idt.limit = sregs.idt.limit;
509
    env->idt.base = sregs.idt.base;
510
    env->gdt.limit = sregs.gdt.limit;
511
    env->gdt.base = sregs.gdt.base;
512

    
513
    env->cr[0] = sregs.cr0;
514
    env->cr[2] = sregs.cr2;
515
    env->cr[3] = sregs.cr3;
516
    env->cr[4] = sregs.cr4;
517

    
518
    cpu_set_apic_base(env, sregs.apic_base);
519

    
520
    env->efer = sregs.efer;
521
    //cpu_set_apic_tpr(env, sregs.cr8);
522

    
523
#define HFLAG_COPY_MASK ~( \
524
                        HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
525
                        HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
526
                        HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
527
                        HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
528

    
529

    
530

    
531
    hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
532
    hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
533
    hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
534
            (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
535
    hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
536
    hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
537
            (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
538

    
539
    if (env->efer & MSR_EFER_LMA) {
540
        hflags |= HF_LMA_MASK;
541
    }
542

    
543
    if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
544
        hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
545
    } else {
546
        hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
547
                (DESC_B_SHIFT - HF_CS32_SHIFT);
548
        hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
549
                (DESC_B_SHIFT - HF_SS32_SHIFT);
550
        if (!(env->cr[0] & CR0_PE_MASK) ||
551
                   (env->eflags & VM_MASK) ||
552
                   !(hflags & HF_CS32_MASK)) {
553
                hflags |= HF_ADDSEG_MASK;
554
            } else {
555
                hflags |= ((env->segs[R_DS].base |
556
                                env->segs[R_ES].base |
557
                                env->segs[R_SS].base) != 0) <<
558
                    HF_ADDSEG_SHIFT;
559
            }
560
    }
561
    env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
562

    
563
    return 0;
564
}
565

    
566
static int kvm_get_msrs(CPUState *env)
567
{
568
    struct {
569
        struct kvm_msrs info;
570
        struct kvm_msr_entry entries[100];
571
    } msr_data;
572
    struct kvm_msr_entry *msrs = msr_data.entries;
573
    int ret, i, n;
574

    
575
    n = 0;
576
    msrs[n++].index = MSR_IA32_SYSENTER_CS;
577
    msrs[n++].index = MSR_IA32_SYSENTER_ESP;
578
    msrs[n++].index = MSR_IA32_SYSENTER_EIP;
579
    if (kvm_has_msr_star(env))
580
        msrs[n++].index = MSR_STAR;
581
    msrs[n++].index = MSR_IA32_TSC;
582
#ifdef TARGET_X86_64
583
    /* FIXME lm_capable_kernel */
584
    msrs[n++].index = MSR_CSTAR;
585
    msrs[n++].index = MSR_KERNELGSBASE;
586
    msrs[n++].index = MSR_FMASK;
587
    msrs[n++].index = MSR_LSTAR;
588
#endif
589
    msr_data.info.nmsrs = n;
590
    ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
591
    if (ret < 0)
592
        return ret;
593

    
594
    for (i = 0; i < ret; i++) {
595
        switch (msrs[i].index) {
596
        case MSR_IA32_SYSENTER_CS:
597
            env->sysenter_cs = msrs[i].data;
598
            break;
599
        case MSR_IA32_SYSENTER_ESP:
600
            env->sysenter_esp = msrs[i].data;
601
            break;
602
        case MSR_IA32_SYSENTER_EIP:
603
            env->sysenter_eip = msrs[i].data;
604
            break;
605
        case MSR_STAR:
606
            env->star = msrs[i].data;
607
            break;
608
#ifdef TARGET_X86_64
609
        case MSR_CSTAR:
610
            env->cstar = msrs[i].data;
611
            break;
612
        case MSR_KERNELGSBASE:
613
            env->kernelgsbase = msrs[i].data;
614
            break;
615
        case MSR_FMASK:
616
            env->fmask = msrs[i].data;
617
            break;
618
        case MSR_LSTAR:
619
            env->lstar = msrs[i].data;
620
            break;
621
#endif
622
        case MSR_IA32_TSC:
623
            env->tsc = msrs[i].data;
624
            break;
625
        }
626
    }
627

    
628
    return 0;
629
}
630

    
631
int kvm_arch_put_registers(CPUState *env)
632
{
633
    int ret;
634

    
635
    ret = kvm_getput_regs(env, 1);
636
    if (ret < 0)
637
        return ret;
638

    
639
    ret = kvm_put_fpu(env);
640
    if (ret < 0)
641
        return ret;
642

    
643
    ret = kvm_put_sregs(env);
644
    if (ret < 0)
645
        return ret;
646

    
647
    ret = kvm_put_msrs(env);
648
    if (ret < 0)
649
        return ret;
650

    
651
    return 0;
652
}
653

    
654
int kvm_arch_get_registers(CPUState *env)
655
{
656
    int ret;
657

    
658
    ret = kvm_getput_regs(env, 0);
659
    if (ret < 0)
660
        return ret;
661

    
662
    ret = kvm_get_fpu(env);
663
    if (ret < 0)
664
        return ret;
665

    
666
    ret = kvm_get_sregs(env);
667
    if (ret < 0)
668
        return ret;
669

    
670
    ret = kvm_get_msrs(env);
671
    if (ret < 0)
672
        return ret;
673

    
674
    return 0;
675
}
676

    
677
int kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
678
{
679
    /* Try to inject an interrupt if the guest can accept it */
680
    if (run->ready_for_interrupt_injection &&
681
        (env->interrupt_request & CPU_INTERRUPT_HARD) &&
682
        (env->eflags & IF_MASK)) {
683
        int irq;
684

    
685
        env->interrupt_request &= ~CPU_INTERRUPT_HARD;
686
        irq = cpu_get_pic_interrupt(env);
687
        if (irq >= 0) {
688
            struct kvm_interrupt intr;
689
            intr.irq = irq;
690
            /* FIXME: errors */
691
            dprintf("injected interrupt %d\n", irq);
692
            kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
693
        }
694
    }
695

    
696
    /* If we have an interrupt but the guest is not ready to receive an
697
     * interrupt, request an interrupt window exit.  This will
698
     * cause a return to userspace as soon as the guest is ready to
699
     * receive interrupts. */
700
    if ((env->interrupt_request & CPU_INTERRUPT_HARD))
701
        run->request_interrupt_window = 1;
702
    else
703
        run->request_interrupt_window = 0;
704

    
705
    dprintf("setting tpr\n");
706
    run->cr8 = cpu_get_apic_tpr(env);
707

    
708
    return 0;
709
}
710

    
711
int kvm_arch_post_run(CPUState *env, struct kvm_run *run)
712
{
713
    if (run->if_flag)
714
        env->eflags |= IF_MASK;
715
    else
716
        env->eflags &= ~IF_MASK;
717
    
718
    cpu_set_apic_tpr(env, run->cr8);
719
    cpu_set_apic_base(env, run->apic_base);
720

    
721
    return 0;
722
}
723

    
724
static int kvm_handle_halt(CPUState *env)
725
{
726
    if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
727
          (env->eflags & IF_MASK)) &&
728
        !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
729
        env->halted = 1;
730
        env->exception_index = EXCP_HLT;
731
        return 0;
732
    }
733

    
734
    return 1;
735
}
736

    
737
int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
738
{
739
    int ret = 0;
740

    
741
    switch (run->exit_reason) {
742
    case KVM_EXIT_HLT:
743
        dprintf("handle_hlt\n");
744
        ret = kvm_handle_halt(env);
745
        break;
746
    }
747

    
748
    return ret;
749
}
750

    
751
#ifdef KVM_CAP_SET_GUEST_DEBUG
752
int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
753
{
754
    const static uint8_t int3 = 0xcc;
755

    
756
    if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
757
        cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1))
758
        return -EINVAL;
759
    return 0;
760
}
761

    
762
int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
763
{
764
    uint8_t int3;
765

    
766
    if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
767
        cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1))
768
        return -EINVAL;
769
    return 0;
770
}
771

    
772
static struct {
773
    target_ulong addr;
774
    int len;
775
    int type;
776
} hw_breakpoint[4];
777

    
778
static int nb_hw_breakpoint;
779

    
780
static int find_hw_breakpoint(target_ulong addr, int len, int type)
781
{
782
    int n;
783

    
784
    for (n = 0; n < nb_hw_breakpoint; n++)
785
        if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
786
            (hw_breakpoint[n].len == len || len == -1))
787
            return n;
788
    return -1;
789
}
790

    
791
int kvm_arch_insert_hw_breakpoint(target_ulong addr,
792
                                  target_ulong len, int type)
793
{
794
    switch (type) {
795
    case GDB_BREAKPOINT_HW:
796
        len = 1;
797
        break;
798
    case GDB_WATCHPOINT_WRITE:
799
    case GDB_WATCHPOINT_ACCESS:
800
        switch (len) {
801
        case 1:
802
            break;
803
        case 2:
804
        case 4:
805
        case 8:
806
            if (addr & (len - 1))
807
                return -EINVAL;
808
            break;
809
        default:
810
            return -EINVAL;
811
        }
812
        break;
813
    default:
814
        return -ENOSYS;
815
    }
816

    
817
    if (nb_hw_breakpoint == 4)
818
        return -ENOBUFS;
819

    
820
    if (find_hw_breakpoint(addr, len, type) >= 0)
821
        return -EEXIST;
822

    
823
    hw_breakpoint[nb_hw_breakpoint].addr = addr;
824
    hw_breakpoint[nb_hw_breakpoint].len = len;
825
    hw_breakpoint[nb_hw_breakpoint].type = type;
826
    nb_hw_breakpoint++;
827

    
828
    return 0;
829
}
830

    
831
int kvm_arch_remove_hw_breakpoint(target_ulong addr,
832
                                  target_ulong len, int type)
833
{
834
    int n;
835

    
836
    n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
837
    if (n < 0)
838
        return -ENOENT;
839

    
840
    nb_hw_breakpoint--;
841
    hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
842

    
843
    return 0;
844
}
845

    
846
void kvm_arch_remove_all_hw_breakpoints(void)
847
{
848
    nb_hw_breakpoint = 0;
849
}
850

    
851
static CPUWatchpoint hw_watchpoint;
852

    
853
int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info)
854
{
855
    int handle = 0;
856
    int n;
857

    
858
    if (arch_info->exception == 1) {
859
        if (arch_info->dr6 & (1 << 14)) {
860
            if (cpu_single_env->singlestep_enabled)
861
                handle = 1;
862
        } else {
863
            for (n = 0; n < 4; n++)
864
                if (arch_info->dr6 & (1 << n))
865
                    switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
866
                    case 0x0:
867
                        handle = 1;
868
                        break;
869
                    case 0x1:
870
                        handle = 1;
871
                        cpu_single_env->watchpoint_hit = &hw_watchpoint;
872
                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
873
                        hw_watchpoint.flags = BP_MEM_WRITE;
874
                        break;
875
                    case 0x3:
876
                        handle = 1;
877
                        cpu_single_env->watchpoint_hit = &hw_watchpoint;
878
                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
879
                        hw_watchpoint.flags = BP_MEM_ACCESS;
880
                        break;
881
                    }
882
        }
883
    } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc))
884
        handle = 1;
885

    
886
    if (!handle)
887
        kvm_update_guest_debug(cpu_single_env,
888
                        (arch_info->exception == 1) ?
889
                        KVM_GUESTDBG_INJECT_DB : KVM_GUESTDBG_INJECT_BP);
890

    
891
    return handle;
892
}
893

    
894
void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
895
{
896
    const uint8_t type_code[] = {
897
        [GDB_BREAKPOINT_HW] = 0x0,
898
        [GDB_WATCHPOINT_WRITE] = 0x1,
899
        [GDB_WATCHPOINT_ACCESS] = 0x3
900
    };
901
    const uint8_t len_code[] = {
902
        [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
903
    };
904
    int n;
905

    
906
    if (kvm_sw_breakpoints_active(env))
907
        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
908

    
909
    if (nb_hw_breakpoint > 0) {
910
        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
911
        dbg->arch.debugreg[7] = 0x0600;
912
        for (n = 0; n < nb_hw_breakpoint; n++) {
913
            dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
914
            dbg->arch.debugreg[7] |= (2 << (n * 2)) |
915
                (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
916
                (len_code[hw_breakpoint[n].len] << (18 + n*4));
917
        }
918
    }
919
}
920
#endif /* KVM_CAP_SET_GUEST_DEBUG */