Statistics
| Branch: | Revision:

root / hw / m25p80.c @ 7830cf78

History | View | Annotate | Download (19.3 kB)

1
/*
2
 * ST M25P80 emulator. Emulate all SPI flash devices based on the m25p80 command
3
 * set. Known devices table current as of Jun/2012 and taken from linux.
4
 * See drivers/mtd/devices/m25p80.c.
5
 *
6
 * Copyright (C) 2011 Edgar E. Iglesias <edgar.iglesias@gmail.com>
7
 * Copyright (C) 2012 Peter A. G. Crosthwaite <peter.crosthwaite@petalogix.com>
8
 * Copyright (C) 2012 PetaLogix
9
 *
10
 * This program is free software; you can redistribute it and/or
11
 * modify it under the terms of the GNU General Public License as
12
 * published by the Free Software Foundation; either version 2 or
13
 * (at your option) a later version of the License.
14
 *
15
 * This program is distributed in the hope that it will be useful,
16
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18
 * GNU General Public License for more details.
19
 *
20
 * You should have received a copy of the GNU General Public License along
21
 * with this program; if not, see <http://www.gnu.org/licenses/>.
22
 */
23

    
24
#include "hw.h"
25
#include "sysemu/blockdev.h"
26
#include "ssi.h"
27
#include "devices.h"
28

    
29
#ifdef M25P80_ERR_DEBUG
30
#define DB_PRINT(...) do { \
31
    fprintf(stderr,  ": %s: ", __func__); \
32
    fprintf(stderr, ## __VA_ARGS__); \
33
    } while (0);
34
#else
35
    #define DB_PRINT(...)
36
#endif
37

    
38
/* Fields for FlashPartInfo->flags */
39

    
40
/* erase capabilities */
41
#define ER_4K 1
42
#define ER_32K 2
43
/* set to allow the page program command to write 0s back to 1. Useful for
44
 * modelling EEPROM with SPI flash command set
45
 */
46
#define WR_1 0x100
47

    
48
typedef struct FlashPartInfo {
49
    const char *part_name;
50
    /* jedec code. (jedec >> 16) & 0xff is the 1st byte, >> 8 the 2nd etc */
51
    uint32_t jedec;
52
    /* extended jedec code */
53
    uint16_t ext_jedec;
54
    /* there is confusion between manufacturers as to what a sector is. In this
55
     * device model, a "sector" is the size that is erased by the ERASE_SECTOR
56
     * command (opcode 0xd8).
57
     */
58
    uint32_t sector_size;
59
    uint32_t n_sectors;
60
    uint32_t page_size;
61
    uint8_t flags;
62
} FlashPartInfo;
63

    
64
/* adapted from linux */
65

    
66
#define INFO(_part_name, _jedec, _ext_jedec, _sector_size, _n_sectors, _flags)\
67
    .part_name = (_part_name),\
68
    .jedec = (_jedec),\
69
    .ext_jedec = (_ext_jedec),\
70
    .sector_size = (_sector_size),\
71
    .n_sectors = (_n_sectors),\
72
    .page_size = 256,\
73
    .flags = (_flags),\
74

    
75
#define JEDEC_NUMONYX 0x20
76
#define JEDEC_WINBOND 0xEF
77
#define JEDEC_SPANSION 0x01
78

    
79
static const FlashPartInfo known_devices[] = {
80
    /* Atmel -- some are (confusingly) marketed as "DataFlash" */
81
    { INFO("at25fs010",   0x1f6601,      0,  32 << 10,   4, ER_4K) },
82
    { INFO("at25fs040",   0x1f6604,      0,  64 << 10,   8, ER_4K) },
83

    
84
    { INFO("at25df041a",  0x1f4401,      0,  64 << 10,   8, ER_4K) },
85
    { INFO("at25df321a",  0x1f4701,      0,  64 << 10,  64, ER_4K) },
86
    { INFO("at25df641",   0x1f4800,      0,  64 << 10, 128, ER_4K) },
87

    
88
    { INFO("at26f004",    0x1f0400,      0,  64 << 10,   8, ER_4K) },
89
    { INFO("at26df081a",  0x1f4501,      0,  64 << 10,  16, ER_4K) },
90
    { INFO("at26df161a",  0x1f4601,      0,  64 << 10,  32, ER_4K) },
91
    { INFO("at26df321",   0x1f4700,      0,  64 << 10,  64, ER_4K) },
92

    
93
    /* EON -- en25xxx */
94
    { INFO("en25f32",     0x1c3116,      0,  64 << 10,  64, ER_4K) },
95
    { INFO("en25p32",     0x1c2016,      0,  64 << 10,  64, 0) },
96
    { INFO("en25q32b",    0x1c3016,      0,  64 << 10,  64, 0) },
97
    { INFO("en25p64",     0x1c2017,      0,  64 << 10, 128, 0) },
98

    
99
    /* Intel/Numonyx -- xxxs33b */
100
    { INFO("160s33b",     0x898911,      0,  64 << 10,  32, 0) },
101
    { INFO("320s33b",     0x898912,      0,  64 << 10,  64, 0) },
102
    { INFO("640s33b",     0x898913,      0,  64 << 10, 128, 0) },
103

    
104
    /* Macronix */
105
    { INFO("mx25l4005a",  0xc22013,      0,  64 << 10,   8, ER_4K) },
106
    { INFO("mx25l8005",   0xc22014,      0,  64 << 10,  16, 0) },
107
    { INFO("mx25l1606e",  0xc22015,      0,  64 << 10,  32, ER_4K) },
108
    { INFO("mx25l3205d",  0xc22016,      0,  64 << 10,  64, 0) },
109
    { INFO("mx25l6405d",  0xc22017,      0,  64 << 10, 128, 0) },
110
    { INFO("mx25l12805d", 0xc22018,      0,  64 << 10, 256, 0) },
111
    { INFO("mx25l12855e", 0xc22618,      0,  64 << 10, 256, 0) },
112
    { INFO("mx25l25635e", 0xc22019,      0,  64 << 10, 512, 0) },
113
    { INFO("mx25l25655e", 0xc22619,      0,  64 << 10, 512, 0) },
114

    
115
    /* Spansion -- single (large) sector size only, at least
116
     * for the chips listed here (without boot sectors).
117
     */
118
    { INFO("s25sl004a",   0x010212,      0,  64 << 10,   8, 0) },
119
    { INFO("s25sl008a",   0x010213,      0,  64 << 10,  16, 0) },
120
    { INFO("s25sl016a",   0x010214,      0,  64 << 10,  32, 0) },
121
    { INFO("s25sl032a",   0x010215,      0,  64 << 10,  64, 0) },
122
    { INFO("s25sl032p",   0x010215, 0x4d00,  64 << 10,  64, ER_4K) },
123
    { INFO("s25sl064a",   0x010216,      0,  64 << 10, 128, 0) },
124
    { INFO("s25fl256s0",  0x010219, 0x4d00, 256 << 10, 128, 0) },
125
    { INFO("s25fl256s1",  0x010219, 0x4d01,  64 << 10, 512, 0) },
126
    { INFO("s25fl512s",   0x010220, 0x4d00, 256 << 10, 256, 0) },
127
    { INFO("s70fl01gs",   0x010221, 0x4d00, 256 << 10, 256, 0) },
128
    { INFO("s25sl12800",  0x012018, 0x0300, 256 << 10,  64, 0) },
129
    { INFO("s25sl12801",  0x012018, 0x0301,  64 << 10, 256, 0) },
130
    { INFO("s25fl129p0",  0x012018, 0x4d00, 256 << 10,  64, 0) },
131
    { INFO("s25fl129p1",  0x012018, 0x4d01,  64 << 10, 256, 0) },
132
    { INFO("s25fl016k",   0xef4015,      0,  64 << 10,  32, ER_4K | ER_32K) },
133
    { INFO("s25fl064k",   0xef4017,      0,  64 << 10, 128, ER_4K | ER_32K) },
134

    
135
    /* SST -- large erase sizes are "overlays", "sectors" are 4<< 10 */
136
    { INFO("sst25vf040b", 0xbf258d,      0,  64 << 10,   8, ER_4K) },
137
    { INFO("sst25vf080b", 0xbf258e,      0,  64 << 10,  16, ER_4K) },
138
    { INFO("sst25vf016b", 0xbf2541,      0,  64 << 10,  32, ER_4K) },
139
    { INFO("sst25vf032b", 0xbf254a,      0,  64 << 10,  64, ER_4K) },
140
    { INFO("sst25wf512",  0xbf2501,      0,  64 << 10,   1, ER_4K) },
141
    { INFO("sst25wf010",  0xbf2502,      0,  64 << 10,   2, ER_4K) },
142
    { INFO("sst25wf020",  0xbf2503,      0,  64 << 10,   4, ER_4K) },
143
    { INFO("sst25wf040",  0xbf2504,      0,  64 << 10,   8, ER_4K) },
144

    
145
    /* ST Microelectronics -- newer production may have feature updates */
146
    { INFO("m25p05",      0x202010,      0,  32 << 10,   2, 0) },
147
    { INFO("m25p10",      0x202011,      0,  32 << 10,   4, 0) },
148
    { INFO("m25p20",      0x202012,      0,  64 << 10,   4, 0) },
149
    { INFO("m25p40",      0x202013,      0,  64 << 10,   8, 0) },
150
    { INFO("m25p80",      0x202014,      0,  64 << 10,  16, 0) },
151
    { INFO("m25p16",      0x202015,      0,  64 << 10,  32, 0) },
152
    { INFO("m25p32",      0x202016,      0,  64 << 10,  64, 0) },
153
    { INFO("m25p64",      0x202017,      0,  64 << 10, 128, 0) },
154
    { INFO("m25p128",     0x202018,      0, 256 << 10,  64, 0) },
155

    
156
    { INFO("m45pe10",     0x204011,      0,  64 << 10,   2, 0) },
157
    { INFO("m45pe80",     0x204014,      0,  64 << 10,  16, 0) },
158
    { INFO("m45pe16",     0x204015,      0,  64 << 10,  32, 0) },
159

    
160
    { INFO("m25pe80",     0x208014,      0,  64 << 10,  16, 0) },
161
    { INFO("m25pe16",     0x208015,      0,  64 << 10,  32, ER_4K) },
162

    
163
    { INFO("m25px32",     0x207116,      0,  64 << 10,  64, ER_4K) },
164
    { INFO("m25px32-s0",  0x207316,      0,  64 << 10,  64, ER_4K) },
165
    { INFO("m25px32-s1",  0x206316,      0,  64 << 10,  64, ER_4K) },
166
    { INFO("m25px64",     0x207117,      0,  64 << 10, 128, 0) },
167

    
168
    /* Winbond -- w25x "blocks" are 64k, "sectors" are 4KiB */
169
    { INFO("w25x10",      0xef3011,      0,  64 << 10,   2, ER_4K) },
170
    { INFO("w25x20",      0xef3012,      0,  64 << 10,   4, ER_4K) },
171
    { INFO("w25x40",      0xef3013,      0,  64 << 10,   8, ER_4K) },
172
    { INFO("w25x80",      0xef3014,      0,  64 << 10,  16, ER_4K) },
173
    { INFO("w25x16",      0xef3015,      0,  64 << 10,  32, ER_4K) },
174
    { INFO("w25x32",      0xef3016,      0,  64 << 10,  64, ER_4K) },
175
    { INFO("w25q32",      0xef4016,      0,  64 << 10,  64, ER_4K) },
176
    { INFO("w25x64",      0xef3017,      0,  64 << 10, 128, ER_4K) },
177
    { INFO("w25q64",      0xef4017,      0,  64 << 10, 128, ER_4K) },
178

    
179
    /* Numonyx -- n25q128 */
180
    { INFO("n25q128",      0x20ba18,      0,  64 << 10, 256, 0) },
181
};
182

    
183
typedef enum {
184
    NOP = 0,
185
    WRSR = 0x1,
186
    WRDI = 0x4,
187
    RDSR = 0x5,
188
    WREN = 0x6,
189
    JEDEC_READ = 0x9f,
190
    BULK_ERASE = 0xc7,
191

    
192
    READ = 0x3,
193
    FAST_READ = 0xb,
194
    DOR = 0x3b,
195
    QOR = 0x6b,
196
    DIOR = 0xbb,
197
    QIOR = 0xeb,
198

    
199
    PP = 0x2,
200
    DPP = 0xa2,
201
    QPP = 0x32,
202

    
203
    ERASE_4K = 0x20,
204
    ERASE_32K = 0x52,
205
    ERASE_SECTOR = 0xd8,
206
} FlashCMD;
207

    
208
typedef enum {
209
    STATE_IDLE,
210
    STATE_PAGE_PROGRAM,
211
    STATE_READ,
212
    STATE_COLLECTING_DATA,
213
    STATE_READING_DATA,
214
} CMDState;
215

    
216
typedef struct Flash {
217
    SSISlave ssidev;
218
    uint32_t r;
219

    
220
    BlockDriverState *bdrv;
221

    
222
    uint8_t *storage;
223
    uint32_t size;
224
    int page_size;
225

    
226
    uint8_t state;
227
    uint8_t data[16];
228
    uint32_t len;
229
    uint32_t pos;
230
    uint8_t needed_bytes;
231
    uint8_t cmd_in_progress;
232
    uint64_t cur_addr;
233
    bool write_enable;
234

    
235
    int64_t dirty_page;
236

    
237
    const FlashPartInfo *pi;
238

    
239
} Flash;
240

    
241
typedef struct M25P80Class {
242
    SSISlaveClass parent_class;
243
    FlashPartInfo *pi;
244
} M25P80Class;
245

    
246
#define TYPE_M25P80 "m25p80-generic"
247
#define M25P80(obj) \
248
     OBJECT_CHECK(Flash, (obj), TYPE_M25P80)
249
#define M25P80_CLASS(klass) \
250
     OBJECT_CLASS_CHECK(M25P80Class, (klass), TYPE_M25P80)
251
#define M25P80_GET_CLASS(obj) \
252
     OBJECT_GET_CLASS(M25P80Class, (obj), TYPE_M25P80)
253

    
254
static void bdrv_sync_complete(void *opaque, int ret)
255
{
256
    /* do nothing. Masters do not directly interact with the backing store,
257
     * only the working copy so no mutexing required.
258
     */
259
}
260

    
261
static void flash_sync_page(Flash *s, int page)
262
{
263
    if (s->bdrv) {
264
        int bdrv_sector, nb_sectors;
265
        QEMUIOVector iov;
266

    
267
        bdrv_sector = (page * s->pi->page_size) / BDRV_SECTOR_SIZE;
268
        nb_sectors = DIV_ROUND_UP(s->pi->page_size, BDRV_SECTOR_SIZE);
269
        qemu_iovec_init(&iov, 1);
270
        qemu_iovec_add(&iov, s->storage + bdrv_sector * BDRV_SECTOR_SIZE,
271
                                                nb_sectors * BDRV_SECTOR_SIZE);
272
        bdrv_aio_writev(s->bdrv, bdrv_sector, &iov, nb_sectors,
273
                                                bdrv_sync_complete, NULL);
274
    }
275
}
276

    
277
static inline void flash_sync_area(Flash *s, int64_t off, int64_t len)
278
{
279
    int64_t start, end, nb_sectors;
280
    QEMUIOVector iov;
281

    
282
    if (!s->bdrv) {
283
        return;
284
    }
285

    
286
    assert(!(len % BDRV_SECTOR_SIZE));
287
    start = off / BDRV_SECTOR_SIZE;
288
    end = (off + len) / BDRV_SECTOR_SIZE;
289
    nb_sectors = end - start;
290
    qemu_iovec_init(&iov, 1);
291
    qemu_iovec_add(&iov, s->storage + (start * BDRV_SECTOR_SIZE),
292
                                        nb_sectors * BDRV_SECTOR_SIZE);
293
    bdrv_aio_writev(s->bdrv, start, &iov, nb_sectors, bdrv_sync_complete, NULL);
294
}
295

    
296
static void flash_erase(Flash *s, int offset, FlashCMD cmd)
297
{
298
    uint32_t len;
299
    uint8_t capa_to_assert = 0;
300

    
301
    switch (cmd) {
302
    case ERASE_4K:
303
        len = 4 << 10;
304
        capa_to_assert = ER_4K;
305
        break;
306
    case ERASE_32K:
307
        len = 32 << 10;
308
        capa_to_assert = ER_32K;
309
        break;
310
    case ERASE_SECTOR:
311
        len = s->pi->sector_size;
312
        break;
313
    case BULK_ERASE:
314
        len = s->size;
315
        break;
316
    default:
317
        abort();
318
    }
319

    
320
    DB_PRINT("offset = %#x, len = %d\n", offset, len);
321
    if ((s->pi->flags & capa_to_assert) != capa_to_assert) {
322
        hw_error("m25p80: %dk erase size not supported by device\n", len);
323
    }
324

    
325
    if (!s->write_enable) {
326
        DB_PRINT("erase with write protect!\n");
327
        return;
328
    }
329
    memset(s->storage + offset, 0xff, len);
330
    flash_sync_area(s, offset, len);
331
}
332

    
333
static inline void flash_sync_dirty(Flash *s, int64_t newpage)
334
{
335
    if (s->dirty_page >= 0 && s->dirty_page != newpage) {
336
        flash_sync_page(s, s->dirty_page);
337
        s->dirty_page = newpage;
338
    }
339
}
340

    
341
static inline
342
void flash_write8(Flash *s, uint64_t addr, uint8_t data)
343
{
344
    int64_t page = addr / s->pi->page_size;
345
    uint8_t prev = s->storage[s->cur_addr];
346

    
347
    if (!s->write_enable) {
348
        DB_PRINT("write with write protect!\n");
349
    }
350

    
351
    if ((prev ^ data) & data) {
352
        DB_PRINT("programming zero to one! addr=%lx  %x -> %x\n",
353
                  addr, prev, data);
354
    }
355

    
356
    if (s->pi->flags & WR_1) {
357
        s->storage[s->cur_addr] = data;
358
    } else {
359
        s->storage[s->cur_addr] &= data;
360
    }
361

    
362
    flash_sync_dirty(s, page);
363
    s->dirty_page = page;
364
}
365

    
366
static void complete_collecting_data(Flash *s)
367
{
368
    s->cur_addr = s->data[0] << 16;
369
    s->cur_addr |= s->data[1] << 8;
370
    s->cur_addr |= s->data[2];
371

    
372
    s->state = STATE_IDLE;
373

    
374
    switch (s->cmd_in_progress) {
375
    case DPP:
376
    case QPP:
377
    case PP:
378
        s->state = STATE_PAGE_PROGRAM;
379
        break;
380
    case READ:
381
    case FAST_READ:
382
    case DOR:
383
    case QOR:
384
    case DIOR:
385
    case QIOR:
386
        s->state = STATE_READ;
387
        break;
388
    case ERASE_4K:
389
    case ERASE_32K:
390
    case ERASE_SECTOR:
391
        flash_erase(s, s->cur_addr, s->cmd_in_progress);
392
        break;
393
    case WRSR:
394
        if (s->write_enable) {
395
            s->write_enable = false;
396
        }
397
        break;
398
    default:
399
        break;
400
    }
401
}
402

    
403
static void decode_new_cmd(Flash *s, uint32_t value)
404
{
405
    s->cmd_in_progress = value;
406
    DB_PRINT("decoded new command:%x\n", value);
407

    
408
    switch (value) {
409

    
410
    case ERASE_4K:
411
    case ERASE_32K:
412
    case ERASE_SECTOR:
413
    case READ:
414
    case DPP:
415
    case QPP:
416
    case PP:
417
        s->needed_bytes = 3;
418
        s->pos = 0;
419
        s->len = 0;
420
        s->state = STATE_COLLECTING_DATA;
421
        break;
422

    
423
    case FAST_READ:
424
    case DOR:
425
    case QOR:
426
        s->needed_bytes = 4;
427
        s->pos = 0;
428
        s->len = 0;
429
        s->state = STATE_COLLECTING_DATA;
430
        break;
431

    
432
    case DIOR:
433
        switch ((s->pi->jedec >> 16) & 0xFF) {
434
        case JEDEC_WINBOND:
435
        case JEDEC_SPANSION:
436
            s->needed_bytes = 4;
437
            break;
438
        case JEDEC_NUMONYX:
439
        default:
440
            s->needed_bytes = 5;
441
        }
442
        s->pos = 0;
443
        s->len = 0;
444
        s->state = STATE_COLLECTING_DATA;
445
        break;
446

    
447
    case QIOR:
448
        switch ((s->pi->jedec >> 16) & 0xFF) {
449
        case JEDEC_WINBOND:
450
        case JEDEC_SPANSION:
451
            s->needed_bytes = 6;
452
            break;
453
        case JEDEC_NUMONYX:
454
        default:
455
            s->needed_bytes = 8;
456
        }
457
        s->pos = 0;
458
        s->len = 0;
459
        s->state = STATE_COLLECTING_DATA;
460
        break;
461

    
462
    case WRSR:
463
        if (s->write_enable) {
464
            s->needed_bytes = 1;
465
            s->pos = 0;
466
            s->len = 0;
467
            s->state = STATE_COLLECTING_DATA;
468
        }
469
        break;
470

    
471
    case WRDI:
472
        s->write_enable = false;
473
        break;
474
    case WREN:
475
        s->write_enable = true;
476
        break;
477

    
478
    case RDSR:
479
        s->data[0] = (!!s->write_enable) << 1;
480
        s->pos = 0;
481
        s->len = 1;
482
        s->state = STATE_READING_DATA;
483
        break;
484

    
485
    case JEDEC_READ:
486
        DB_PRINT("populated jedec code\n");
487
        s->data[0] = (s->pi->jedec >> 16) & 0xff;
488
        s->data[1] = (s->pi->jedec >> 8) & 0xff;
489
        s->data[2] = s->pi->jedec & 0xff;
490
        if (s->pi->ext_jedec) {
491
            s->data[3] = (s->pi->ext_jedec >> 8) & 0xff;
492
            s->data[4] = s->pi->ext_jedec & 0xff;
493
            s->len = 5;
494
        } else {
495
            s->len = 3;
496
        }
497
        s->pos = 0;
498
        s->state = STATE_READING_DATA;
499
        break;
500

    
501
    case BULK_ERASE:
502
        if (s->write_enable) {
503
            DB_PRINT("chip erase\n");
504
            flash_erase(s, 0, BULK_ERASE);
505
        } else {
506
            DB_PRINT("chip erase with write protect!\n");
507
        }
508
        break;
509
    case NOP:
510
        break;
511
    default:
512
        DB_PRINT("Unknown cmd %x\n", value);
513
        break;
514
    }
515
}
516

    
517
static int m25p80_cs(SSISlave *ss, bool select)
518
{
519
    Flash *s = FROM_SSI_SLAVE(Flash, ss);
520

    
521
    if (select) {
522
        s->len = 0;
523
        s->pos = 0;
524
        s->state = STATE_IDLE;
525
        flash_sync_dirty(s, -1);
526
    }
527

    
528
    DB_PRINT("%sselect\n", select ? "de" : "");
529

    
530
    return 0;
531
}
532

    
533
static uint32_t m25p80_transfer8(SSISlave *ss, uint32_t tx)
534
{
535
    Flash *s = FROM_SSI_SLAVE(Flash, ss);
536
    uint32_t r = 0;
537

    
538
    switch (s->state) {
539

    
540
    case STATE_PAGE_PROGRAM:
541
        DB_PRINT("page program cur_addr=%lx data=%x\n", s->cur_addr,
542
                 (uint8_t)tx);
543
        flash_write8(s, s->cur_addr, (uint8_t)tx);
544
        s->cur_addr++;
545
        break;
546

    
547
    case STATE_READ:
548
        r = s->storage[s->cur_addr];
549
        DB_PRINT("READ 0x%lx=%x\n", s->cur_addr, r);
550
        s->cur_addr = (s->cur_addr + 1) % s->size;
551
        break;
552

    
553
    case STATE_COLLECTING_DATA:
554
        s->data[s->len] = (uint8_t)tx;
555
        s->len++;
556

    
557
        if (s->len == s->needed_bytes) {
558
            complete_collecting_data(s);
559
        }
560
        break;
561

    
562
    case STATE_READING_DATA:
563
        r = s->data[s->pos];
564
        s->pos++;
565
        if (s->pos == s->len) {
566
            s->pos = 0;
567
            s->state = STATE_IDLE;
568
        }
569
        break;
570

    
571
    default:
572
    case STATE_IDLE:
573
        decode_new_cmd(s, (uint8_t)tx);
574
        break;
575
    }
576

    
577
    return r;
578
}
579

    
580
static int m25p80_init(SSISlave *ss)
581
{
582
    DriveInfo *dinfo;
583
    Flash *s = FROM_SSI_SLAVE(Flash, ss);
584
    M25P80Class *mc = M25P80_GET_CLASS(s);
585

    
586
    s->pi = mc->pi;
587

    
588
    s->size = s->pi->sector_size * s->pi->n_sectors;
589
    s->dirty_page = -1;
590
    s->storage = qemu_blockalign(s->bdrv, s->size);
591

    
592
    dinfo = drive_get_next(IF_MTD);
593

    
594
    if (dinfo && dinfo->bdrv) {
595
        DB_PRINT("Binding to IF_MTD drive\n");
596
        s->bdrv = dinfo->bdrv;
597
        /* FIXME: Move to late init */
598
        if (bdrv_read(s->bdrv, 0, s->storage, DIV_ROUND_UP(s->size,
599
                                                    BDRV_SECTOR_SIZE))) {
600
            fprintf(stderr, "Failed to initialize SPI flash!\n");
601
            return 1;
602
        }
603
    } else {
604
        memset(s->storage, 0xFF, s->size);
605
    }
606

    
607
    return 0;
608
}
609

    
610
static void m25p80_pre_save(void *opaque)
611
{
612
    flash_sync_dirty((Flash *)opaque, -1);
613
}
614

    
615
static const VMStateDescription vmstate_m25p80 = {
616
    .name = "xilinx_spi",
617
    .version_id = 1,
618
    .minimum_version_id = 1,
619
    .minimum_version_id_old = 1,
620
    .pre_save = m25p80_pre_save,
621
    .fields = (VMStateField[]) {
622
        VMSTATE_UINT8(state, Flash),
623
        VMSTATE_UINT8_ARRAY(data, Flash, 16),
624
        VMSTATE_UINT32(len, Flash),
625
        VMSTATE_UINT32(pos, Flash),
626
        VMSTATE_UINT8(needed_bytes, Flash),
627
        VMSTATE_UINT8(cmd_in_progress, Flash),
628
        VMSTATE_UINT64(cur_addr, Flash),
629
        VMSTATE_BOOL(write_enable, Flash),
630
        VMSTATE_END_OF_LIST()
631
    }
632
};
633

    
634
static void m25p80_class_init(ObjectClass *klass, void *data)
635
{
636
    DeviceClass *dc = DEVICE_CLASS(klass);
637
    SSISlaveClass *k = SSI_SLAVE_CLASS(klass);
638
    M25P80Class *mc = M25P80_CLASS(klass);
639

    
640
    k->init = m25p80_init;
641
    k->transfer = m25p80_transfer8;
642
    k->set_cs = m25p80_cs;
643
    k->cs_polarity = SSI_CS_LOW;
644
    dc->vmsd = &vmstate_m25p80;
645
    mc->pi = data;
646
}
647

    
648
static const TypeInfo m25p80_info = {
649
    .name           = TYPE_M25P80,
650
    .parent         = TYPE_SSI_SLAVE,
651
    .instance_size  = sizeof(Flash),
652
    .class_size     = sizeof(M25P80Class),
653
    .abstract       = true,
654
};
655

    
656
static void m25p80_register_types(void)
657
{
658
    int i;
659

    
660
    type_register_static(&m25p80_info);
661
    for (i = 0; i < ARRAY_SIZE(known_devices); ++i) {
662
        TypeInfo ti = {
663
            .name       = known_devices[i].part_name,
664
            .parent     = TYPE_M25P80,
665
            .class_init = m25p80_class_init,
666
            .class_data = (void *)&known_devices[i],
667
        };
668
        type_register(&ti);
669
    }
670
}
671

    
672
type_init(m25p80_register_types)