Statistics
| Branch: | Revision:

root / target-i386 / exec.h @ 79383c9c

History | View | Annotate | Download (9.7 kB)

1
/*
2
 *  i386 execution defines
3
 *
4
 *  Copyright (c) 2003 Fabrice Bellard
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, write to the Free Software
18
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19
 */
20
#include "config.h"
21
#include "dyngen-exec.h"
22

    
23
/* XXX: factorize this mess */
24
#ifdef TARGET_X86_64
25
#define TARGET_LONG_BITS 64
26
#else
27
#define TARGET_LONG_BITS 32
28
#endif
29

    
30
#include "cpu-defs.h"
31

    
32
register struct CPUX86State *env asm(AREG0);
33

    
34
#include "qemu-log.h"
35

    
36
#define EAX (env->regs[R_EAX])
37
#define ECX (env->regs[R_ECX])
38
#define EDX (env->regs[R_EDX])
39
#define EBX (env->regs[R_EBX])
40
#define ESP (env->regs[R_ESP])
41
#define EBP (env->regs[R_EBP])
42
#define ESI (env->regs[R_ESI])
43
#define EDI (env->regs[R_EDI])
44
#define EIP (env->eip)
45
#define DF  (env->df)
46

    
47
#define CC_SRC (env->cc_src)
48
#define CC_DST (env->cc_dst)
49
#define CC_OP  (env->cc_op)
50

    
51
/* float macros */
52
#define FT0    (env->ft0)
53
#define ST0    (env->fpregs[env->fpstt].d)
54
#define ST(n)  (env->fpregs[(env->fpstt + (n)) & 7].d)
55
#define ST1    ST(1)
56

    
57
#include "cpu.h"
58
#include "exec-all.h"
59

    
60
void cpu_x86_update_cr3(CPUX86State *env, target_ulong new_cr3);
61
void cpu_x86_update_cr4(CPUX86State *env, uint32_t new_cr4);
62
int cpu_x86_handle_mmu_fault(CPUX86State *env, target_ulong addr,
63
                             int is_write, int mmu_idx, int is_softmmu);
64
void __hidden cpu_lock(void);
65
void __hidden cpu_unlock(void);
66
void do_interrupt(int intno, int is_int, int error_code,
67
                  target_ulong next_eip, int is_hw);
68
void do_interrupt_user(int intno, int is_int, int error_code,
69
                       target_ulong next_eip);
70
void raise_interrupt(int intno, int is_int, int error_code,
71
                     int next_eip_addend);
72
void raise_exception_err(int exception_index, int error_code);
73
void raise_exception(int exception_index);
74
void do_smm_enter(void);
75
void __hidden cpu_loop_exit(void);
76

    
77
void OPPROTO op_movl_eflags_T0(void);
78
void OPPROTO op_movl_T0_eflags(void);
79

    
80
/* n must be a constant to be efficient */
81
static inline target_long lshift(target_long x, int n)
82
{
83
    if (n >= 0)
84
        return x << n;
85
    else
86
        return x >> (-n);
87
}
88

    
89
#include "helper.h"
90

    
91
static inline void svm_check_intercept(uint32_t type)
92
{
93
    helper_svm_check_intercept_param(type, 0);
94
}
95

    
96
#if !defined(CONFIG_USER_ONLY)
97

    
98
#include "softmmu_exec.h"
99

    
100
#endif /* !defined(CONFIG_USER_ONLY) */
101

    
102
#ifdef USE_X86LDOUBLE
103
/* use long double functions */
104
#define floatx_to_int32 floatx80_to_int32
105
#define floatx_to_int64 floatx80_to_int64
106
#define floatx_to_int32_round_to_zero floatx80_to_int32_round_to_zero
107
#define floatx_to_int64_round_to_zero floatx80_to_int64_round_to_zero
108
#define int32_to_floatx int32_to_floatx80
109
#define int64_to_floatx int64_to_floatx80
110
#define float32_to_floatx float32_to_floatx80
111
#define float64_to_floatx float64_to_floatx80
112
#define floatx_to_float32 floatx80_to_float32
113
#define floatx_to_float64 floatx80_to_float64
114
#define floatx_abs floatx80_abs
115
#define floatx_chs floatx80_chs
116
#define floatx_round_to_int floatx80_round_to_int
117
#define floatx_compare floatx80_compare
118
#define floatx_compare_quiet floatx80_compare_quiet
119
#else
120
#define floatx_to_int32 float64_to_int32
121
#define floatx_to_int64 float64_to_int64
122
#define floatx_to_int32_round_to_zero float64_to_int32_round_to_zero
123
#define floatx_to_int64_round_to_zero float64_to_int64_round_to_zero
124
#define int32_to_floatx int32_to_float64
125
#define int64_to_floatx int64_to_float64
126
#define float32_to_floatx float32_to_float64
127
#define float64_to_floatx(x, e) (x)
128
#define floatx_to_float32 float64_to_float32
129
#define floatx_to_float64(x, e) (x)
130
#define floatx_abs float64_abs
131
#define floatx_chs float64_chs
132
#define floatx_round_to_int float64_round_to_int
133
#define floatx_compare float64_compare
134
#define floatx_compare_quiet float64_compare_quiet
135
#endif
136

    
137
#define RC_MASK         0xc00
138
#define RC_NEAR                0x000
139
#define RC_DOWN                0x400
140
#define RC_UP                0x800
141
#define RC_CHOP                0xc00
142

    
143
#define MAXTAN 9223372036854775808.0
144

    
145
#ifdef USE_X86LDOUBLE
146

    
147
/* only for x86 */
148
typedef union {
149
    long double d;
150
    struct {
151
        unsigned long long lower;
152
        unsigned short upper;
153
    } l;
154
} CPU86_LDoubleU;
155

    
156
/* the following deal with x86 long double-precision numbers */
157
#define MAXEXPD 0x7fff
158
#define EXPBIAS 16383
159
#define EXPD(fp)        (fp.l.upper & 0x7fff)
160
#define SIGND(fp)        ((fp.l.upper) & 0x8000)
161
#define MANTD(fp)       (fp.l.lower)
162
#define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7fff)) | EXPBIAS
163

    
164
#else
165

    
166
/* NOTE: arm is horrible as double 32 bit words are stored in big endian ! */
167
typedef union {
168
    double d;
169
#if !defined(WORDS_BIGENDIAN) && !defined(__arm__)
170
    struct {
171
        uint32_t lower;
172
        int32_t upper;
173
    } l;
174
#else
175
    struct {
176
        int32_t upper;
177
        uint32_t lower;
178
    } l;
179
#endif
180
#ifndef __arm__
181
    int64_t ll;
182
#endif
183
} CPU86_LDoubleU;
184

    
185
/* the following deal with IEEE double-precision numbers */
186
#define MAXEXPD 0x7ff
187
#define EXPBIAS 1023
188
#define EXPD(fp)        (((fp.l.upper) >> 20) & 0x7FF)
189
#define SIGND(fp)        ((fp.l.upper) & 0x80000000)
190
#ifdef __arm__
191
#define MANTD(fp)        (fp.l.lower | ((uint64_t)(fp.l.upper & ((1 << 20) - 1)) << 32))
192
#else
193
#define MANTD(fp)        (fp.ll & ((1LL << 52) - 1))
194
#endif
195
#define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7ff << 20)) | (EXPBIAS << 20)
196
#endif
197

    
198
static inline void fpush(void)
199
{
200
    env->fpstt = (env->fpstt - 1) & 7;
201
    env->fptags[env->fpstt] = 0; /* validate stack entry */
202
}
203

    
204
static inline void fpop(void)
205
{
206
    env->fptags[env->fpstt] = 1; /* invvalidate stack entry */
207
    env->fpstt = (env->fpstt + 1) & 7;
208
}
209

    
210
#ifndef USE_X86LDOUBLE
211
static inline CPU86_LDouble helper_fldt(target_ulong ptr)
212
{
213
    CPU86_LDoubleU temp;
214
    int upper, e;
215
    uint64_t ll;
216

    
217
    /* mantissa */
218
    upper = lduw(ptr + 8);
219
    /* XXX: handle overflow ? */
220
    e = (upper & 0x7fff) - 16383 + EXPBIAS; /* exponent */
221
    e |= (upper >> 4) & 0x800; /* sign */
222
    ll = (ldq(ptr) >> 11) & ((1LL << 52) - 1);
223
#ifdef __arm__
224
    temp.l.upper = (e << 20) | (ll >> 32);
225
    temp.l.lower = ll;
226
#else
227
    temp.ll = ll | ((uint64_t)e << 52);
228
#endif
229
    return temp.d;
230
}
231

    
232
static inline void helper_fstt(CPU86_LDouble f, target_ulong ptr)
233
{
234
    CPU86_LDoubleU temp;
235
    int e;
236

    
237
    temp.d = f;
238
    /* mantissa */
239
    stq(ptr, (MANTD(temp) << 11) | (1LL << 63));
240
    /* exponent + sign */
241
    e = EXPD(temp) - EXPBIAS + 16383;
242
    e |= SIGND(temp) >> 16;
243
    stw(ptr + 8, e);
244
}
245
#else
246

    
247
/* we use memory access macros */
248

    
249
static inline CPU86_LDouble helper_fldt(target_ulong ptr)
250
{
251
    CPU86_LDoubleU temp;
252

    
253
    temp.l.lower = ldq(ptr);
254
    temp.l.upper = lduw(ptr + 8);
255
    return temp.d;
256
}
257

    
258
static inline void helper_fstt(CPU86_LDouble f, target_ulong ptr)
259
{
260
    CPU86_LDoubleU temp;
261

    
262
    temp.d = f;
263
    stq(ptr, temp.l.lower);
264
    stw(ptr + 8, temp.l.upper);
265
}
266

    
267
#endif /* USE_X86LDOUBLE */
268

    
269
#define FPUS_IE (1 << 0)
270
#define FPUS_DE (1 << 1)
271
#define FPUS_ZE (1 << 2)
272
#define FPUS_OE (1 << 3)
273
#define FPUS_UE (1 << 4)
274
#define FPUS_PE (1 << 5)
275
#define FPUS_SF (1 << 6)
276
#define FPUS_SE (1 << 7)
277
#define FPUS_B  (1 << 15)
278

    
279
#define FPUC_EM 0x3f
280

    
281
extern const CPU86_LDouble f15rk[7];
282

    
283
void fpu_raise_exception(void);
284
void restore_native_fp_state(CPUState *env);
285
void save_native_fp_state(CPUState *env);
286

    
287
extern const uint8_t parity_table[256];
288
extern const uint8_t rclw_table[32];
289
extern const uint8_t rclb_table[32];
290

    
291
static inline uint32_t compute_eflags(void)
292
{
293
    return env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
294
}
295

    
296
/* NOTE: CC_OP must be modified manually to CC_OP_EFLAGS */
297
static inline void load_eflags(int eflags, int update_mask)
298
{
299
    CC_SRC = eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
300
    DF = 1 - (2 * ((eflags >> 10) & 1));
301
    env->eflags = (env->eflags & ~update_mask) |
302
        (eflags & update_mask) | 0x2;
303
}
304

    
305
static inline void env_to_regs(void)
306
{
307
#ifdef reg_EAX
308
    EAX = env->regs[R_EAX];
309
#endif
310
#ifdef reg_ECX
311
    ECX = env->regs[R_ECX];
312
#endif
313
#ifdef reg_EDX
314
    EDX = env->regs[R_EDX];
315
#endif
316
#ifdef reg_EBX
317
    EBX = env->regs[R_EBX];
318
#endif
319
#ifdef reg_ESP
320
    ESP = env->regs[R_ESP];
321
#endif
322
#ifdef reg_EBP
323
    EBP = env->regs[R_EBP];
324
#endif
325
#ifdef reg_ESI
326
    ESI = env->regs[R_ESI];
327
#endif
328
#ifdef reg_EDI
329
    EDI = env->regs[R_EDI];
330
#endif
331
}
332

    
333
static inline void regs_to_env(void)
334
{
335
#ifdef reg_EAX
336
    env->regs[R_EAX] = EAX;
337
#endif
338
#ifdef reg_ECX
339
    env->regs[R_ECX] = ECX;
340
#endif
341
#ifdef reg_EDX
342
    env->regs[R_EDX] = EDX;
343
#endif
344
#ifdef reg_EBX
345
    env->regs[R_EBX] = EBX;
346
#endif
347
#ifdef reg_ESP
348
    env->regs[R_ESP] = ESP;
349
#endif
350
#ifdef reg_EBP
351
    env->regs[R_EBP] = EBP;
352
#endif
353
#ifdef reg_ESI
354
    env->regs[R_ESI] = ESI;
355
#endif
356
#ifdef reg_EDI
357
    env->regs[R_EDI] = EDI;
358
#endif
359
}
360

    
361
static inline int cpu_halted(CPUState *env) {
362
    /* handle exit of HALTED state */
363
    if (!env->halted)
364
        return 0;
365
    /* disable halt condition */
366
    if (((env->interrupt_request & CPU_INTERRUPT_HARD) &&
367
         (env->eflags & IF_MASK)) ||
368
        (env->interrupt_request & CPU_INTERRUPT_NMI)) {
369
        env->halted = 0;
370
        return 0;
371
    }
372
    return EXCP_HALTED;
373
}
374

    
375
/* load efer and update the corresponding hflags. XXX: do consistency
376
   checks with cpuid bits ? */
377
static inline void cpu_load_efer(CPUState *env, uint64_t val)
378
{
379
    env->efer = val;
380
    env->hflags &= ~(HF_LMA_MASK | HF_SVME_MASK);
381
    if (env->efer & MSR_EFER_LMA)
382
        env->hflags |= HF_LMA_MASK;
383
    if (env->efer & MSR_EFER_SVME)
384
        env->hflags |= HF_SVME_MASK;
385
}