Statistics
| Branch: | Revision:

root / gdbstub.c @ 79808573

History | View | Annotate | Download (38.5 kB)

1
/*
2
 * gdb server stub
3
 *
4
 * Copyright (c) 2003-2005 Fabrice Bellard
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, write to the Free Software
18
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19
 */
20
#include "config.h"
21
#ifdef CONFIG_USER_ONLY
22
#include <stdlib.h>
23
#include <stdio.h>
24
#include <stdarg.h>
25
#include <string.h>
26
#include <errno.h>
27
#include <unistd.h>
28
#include <fcntl.h>
29

    
30
#include "qemu.h"
31
#else
32
#include "qemu-common.h"
33
#include "qemu-char.h"
34
#include "sysemu.h"
35
#include "gdbstub.h"
36
#endif
37

    
38
#include "qemu_socket.h"
39
#ifdef _WIN32
40
/* XXX: these constants may be independent of the host ones even for Unix */
41
#ifndef SIGTRAP
42
#define SIGTRAP 5
43
#endif
44
#ifndef SIGINT
45
#define SIGINT 2
46
#endif
47
#else
48
#include <signal.h>
49
#endif
50

    
51
//#define DEBUG_GDB
52

    
53
enum RSState {
54
    RS_IDLE,
55
    RS_GETLINE,
56
    RS_CHKSUM1,
57
    RS_CHKSUM2,
58
    RS_SYSCALL,
59
};
60
typedef struct GDBState {
61
    CPUState *env; /* current CPU */
62
    enum RSState state; /* parsing state */
63
    char line_buf[4096];
64
    int line_buf_index;
65
    int line_csum;
66
    uint8_t last_packet[4100];
67
    int last_packet_len;
68
#ifdef CONFIG_USER_ONLY
69
    int fd;
70
    int running_state;
71
#else
72
    CharDriverState *chr;
73
#endif
74
} GDBState;
75

    
76
/* By default use no IRQs and no timers while single stepping so as to
77
 * make single stepping like an ICE HW step.
78
 */
79
static int sstep_flags = SSTEP_ENABLE|SSTEP_NOIRQ|SSTEP_NOTIMER;
80

    
81
#ifdef CONFIG_USER_ONLY
82
/* XXX: This is not thread safe.  Do we care?  */
83
static int gdbserver_fd = -1;
84

    
85
/* XXX: remove this hack.  */
86
static GDBState gdbserver_state;
87

    
88
static int get_char(GDBState *s)
89
{
90
    uint8_t ch;
91
    int ret;
92

    
93
    for(;;) {
94
        ret = recv(s->fd, &ch, 1, 0);
95
        if (ret < 0) {
96
            if (errno != EINTR && errno != EAGAIN)
97
                return -1;
98
        } else if (ret == 0) {
99
            return -1;
100
        } else {
101
            break;
102
        }
103
    }
104
    return ch;
105
}
106
#endif
107

    
108
/* GDB stub state for use by semihosting syscalls.  */
109
static GDBState *gdb_syscall_state;
110
static gdb_syscall_complete_cb gdb_current_syscall_cb;
111

    
112
enum {
113
    GDB_SYS_UNKNOWN,
114
    GDB_SYS_ENABLED,
115
    GDB_SYS_DISABLED,
116
} gdb_syscall_mode;
117

    
118
/* If gdb is connected when the first semihosting syscall occurs then use
119
   remote gdb syscalls.  Otherwise use native file IO.  */
120
int use_gdb_syscalls(void)
121
{
122
    if (gdb_syscall_mode == GDB_SYS_UNKNOWN) {
123
        gdb_syscall_mode = (gdb_syscall_state ? GDB_SYS_ENABLED
124
                                              : GDB_SYS_DISABLED);
125
    }
126
    return gdb_syscall_mode == GDB_SYS_ENABLED;
127
}
128

    
129
/* Resume execution.  */
130
static inline void gdb_continue(GDBState *s)
131
{
132
#ifdef CONFIG_USER_ONLY
133
    s->running_state = 1;
134
#else
135
    vm_start();
136
#endif
137
}
138

    
139
static void put_buffer(GDBState *s, const uint8_t *buf, int len)
140
{
141
#ifdef CONFIG_USER_ONLY
142
    int ret;
143

    
144
    while (len > 0) {
145
        ret = send(s->fd, buf, len, 0);
146
        if (ret < 0) {
147
            if (errno != EINTR && errno != EAGAIN)
148
                return;
149
        } else {
150
            buf += ret;
151
            len -= ret;
152
        }
153
    }
154
#else
155
    qemu_chr_write(s->chr, buf, len);
156
#endif
157
}
158

    
159
static inline int fromhex(int v)
160
{
161
    if (v >= '0' && v <= '9')
162
        return v - '0';
163
    else if (v >= 'A' && v <= 'F')
164
        return v - 'A' + 10;
165
    else if (v >= 'a' && v <= 'f')
166
        return v - 'a' + 10;
167
    else
168
        return 0;
169
}
170

    
171
static inline int tohex(int v)
172
{
173
    if (v < 10)
174
        return v + '0';
175
    else
176
        return v - 10 + 'a';
177
}
178

    
179
static void memtohex(char *buf, const uint8_t *mem, int len)
180
{
181
    int i, c;
182
    char *q;
183
    q = buf;
184
    for(i = 0; i < len; i++) {
185
        c = mem[i];
186
        *q++ = tohex(c >> 4);
187
        *q++ = tohex(c & 0xf);
188
    }
189
    *q = '\0';
190
}
191

    
192
static void hextomem(uint8_t *mem, const char *buf, int len)
193
{
194
    int i;
195

    
196
    for(i = 0; i < len; i++) {
197
        mem[i] = (fromhex(buf[0]) << 4) | fromhex(buf[1]);
198
        buf += 2;
199
    }
200
}
201

    
202
/* return -1 if error, 0 if OK */
203
static int put_packet(GDBState *s, char *buf)
204
{
205
    int len, csum, i;
206
    uint8_t *p;
207

    
208
#ifdef DEBUG_GDB
209
    printf("reply='%s'\n", buf);
210
#endif
211

    
212
    for(;;) {
213
        p = s->last_packet;
214
        *(p++) = '$';
215
        len = strlen(buf);
216
        memcpy(p, buf, len);
217
        p += len;
218
        csum = 0;
219
        for(i = 0; i < len; i++) {
220
            csum += buf[i];
221
        }
222
        *(p++) = '#';
223
        *(p++) = tohex((csum >> 4) & 0xf);
224
        *(p++) = tohex((csum) & 0xf);
225

    
226
        s->last_packet_len = p - s->last_packet;
227
        put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
228

    
229
#ifdef CONFIG_USER_ONLY
230
        i = get_char(s);
231
        if (i < 0)
232
            return -1;
233
        if (i == '+')
234
            break;
235
#else
236
        break;
237
#endif
238
    }
239
    return 0;
240
}
241

    
242
#if defined(TARGET_I386)
243

    
244
#ifdef TARGET_X86_64
245
static const uint8_t gdb_x86_64_regs[16] = {
246
    R_EAX, R_EBX, R_ECX, R_EDX, R_ESI, R_EDI, R_EBP, R_ESP,
247
    8, 9, 10, 11, 12, 13, 14, 15,
248
};
249
#endif
250

    
251
static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
252
{
253
    int i, fpus, nb_regs;
254
    uint8_t *p;
255

    
256
    p = mem_buf;
257
#ifdef TARGET_X86_64
258
    if (env->hflags & HF_CS64_MASK) {
259
        nb_regs = 16;
260
        for(i = 0; i < 16; i++) {
261
            *(uint64_t *)p = tswap64(env->regs[gdb_x86_64_regs[i]]);
262
            p += 8;
263
        }
264
        *(uint64_t *)p = tswap64(env->eip);
265
        p += 8;
266
    } else
267
#endif
268
    {
269
        nb_regs = 8;
270
        for(i = 0; i < 8; i++) {
271
            *(uint32_t *)p = tswap32(env->regs[i]);
272
            p += 4;
273
        }
274
        *(uint32_t *)p = tswap32(env->eip);
275
        p += 4;
276
    }
277

    
278
    *(uint32_t *)p = tswap32(env->eflags);
279
    p += 4;
280
    *(uint32_t *)p = tswap32(env->segs[R_CS].selector);
281
    p += 4;
282
    *(uint32_t *)p = tswap32(env->segs[R_SS].selector);
283
    p += 4;
284
    *(uint32_t *)p = tswap32(env->segs[R_DS].selector);
285
    p += 4;
286
    *(uint32_t *)p = tswap32(env->segs[R_ES].selector);
287
    p += 4;
288
    *(uint32_t *)p = tswap32(env->segs[R_FS].selector);
289
    p += 4;
290
    *(uint32_t *)p = tswap32(env->segs[R_GS].selector);
291
    p += 4;
292
    for(i = 0; i < 8; i++) {
293
        /* XXX: convert floats */
294
#ifdef USE_X86LDOUBLE
295
        memcpy(p, &env->fpregs[i], 10);
296
#else
297
        memset(p, 0, 10);
298
#endif
299
        p += 10;
300
    }
301
    *(uint32_t *)p = tswap32(env->fpuc); /* fctrl */
302
    p += 4;
303
    fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
304
    *(uint32_t *)p = tswap32(fpus); /* fstat */
305
    p += 4;
306
    *(uint32_t *)p = 0; /* ftag */
307
    p += 4;
308
    *(uint32_t *)p = 0; /* fiseg */
309
    p += 4;
310
    *(uint32_t *)p = 0; /* fioff */
311
    p += 4;
312
    *(uint32_t *)p = 0; /* foseg */
313
    p += 4;
314
    *(uint32_t *)p = 0; /* fooff */
315
    p += 4;
316
    *(uint32_t *)p = 0; /* fop */
317
    p += 4;
318
    for(i = 0; i < nb_regs; i++) {
319
        *(uint64_t *)p = tswap64(env->xmm_regs[i].XMM_Q(0));
320
        p += 8;
321
        *(uint64_t *)p = tswap64(env->xmm_regs[i].XMM_Q(1));
322
        p += 8;
323
    }
324
    *(uint32_t *)p = tswap32(env->mxcsr);
325
    p += 4;
326
    return p - mem_buf;
327
}
328

    
329
static inline void cpu_gdb_load_seg(CPUState *env, const uint8_t **pp, 
330
                                    int sreg)
331
{
332
    const uint8_t *p;
333
    uint32_t sel;
334
    p = *pp;
335
    sel = tswap32(*(uint32_t *)p);
336
    p += 4;
337
    if (sel != env->segs[sreg].selector) {
338
#if defined(CONFIG_USER_ONLY)
339
        cpu_x86_load_seg(env, sreg, sel);
340
#else
341
        /* XXX: do it with a debug function which does not raise an
342
           exception */
343
#endif
344
    }
345
    *pp = p;
346
}
347

    
348
static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
349
{
350
    const uint8_t *p = mem_buf;
351
    int i, nb_regs;
352
    uint16_t fpus;
353

    
354
#ifdef TARGET_X86_64
355
    if (env->hflags & HF_CS64_MASK) {
356
        nb_regs = 16;
357
        for(i = 0; i < 16; i++) {
358
            env->regs[gdb_x86_64_regs[i]] = tswap64(*(uint64_t *)p);
359
            p += 8;
360
        }
361
        env->eip = tswap64(*(uint64_t *)p);
362
        p += 8;
363
    } else
364
#endif
365
    {
366
        nb_regs = 8;
367
        for(i = 0; i < 8; i++) {
368
            env->regs[i] = tswap32(*(uint32_t *)p);
369
            p += 4;
370
        }
371
        env->eip = tswap32(*(uint32_t *)p);
372
        p += 4;
373
    }
374
    env->eflags = tswap32(*(uint32_t *)p);
375
    p += 4;
376
    cpu_gdb_load_seg(env, &p, R_CS);
377
    cpu_gdb_load_seg(env, &p, R_SS);
378
    cpu_gdb_load_seg(env, &p, R_DS);
379
    cpu_gdb_load_seg(env, &p, R_ES);
380
    cpu_gdb_load_seg(env, &p, R_FS);
381
    cpu_gdb_load_seg(env, &p, R_GS);
382
    
383
    /* FPU state */
384
    for(i = 0; i < 8; i++) {
385
        /* XXX: convert floats */
386
#ifdef USE_X86LDOUBLE
387
        memcpy(&env->fpregs[i], p, 10);
388
#endif
389
        p += 10;
390
    }
391
    env->fpuc = tswap32(*(uint32_t *)p); /* fctrl */
392
    p += 4;
393
    fpus = tswap32(*(uint32_t *)p);
394
    p += 4;
395
    env->fpstt = (fpus >> 11) & 7;
396
    env->fpus = fpus & ~0x3800;
397
    p += 4 * 6;
398
    
399
    if (size >= ((p - mem_buf) + 16 * nb_regs + 4)) {
400
        /* SSE state */
401
        for(i = 0; i < nb_regs; i++) {
402
            env->xmm_regs[i].XMM_Q(0) = tswap64(*(uint64_t *)p);
403
            p += 8;
404
            env->xmm_regs[i].XMM_Q(1) = tswap64(*(uint64_t *)p);
405
            p += 8;
406
        }
407
        env->mxcsr = tswap32(*(uint32_t *)p);
408
        p += 4;
409
    }
410
}
411

    
412
#elif defined (TARGET_PPC)
413
static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
414
{
415
    uint32_t *registers = (uint32_t *)mem_buf, tmp;
416
    int i;
417

    
418
    /* fill in gprs */
419
    for(i = 0; i < 32; i++) {
420
        registers[i] = tswapl(env->gpr[i]);
421
    }
422
    /* fill in fprs */
423
    for (i = 0; i < 32; i++) {
424
        registers[(i * 2) + 32] = tswapl(*((uint32_t *)&env->fpr[i]));
425
        registers[(i * 2) + 33] = tswapl(*((uint32_t *)&env->fpr[i] + 1));
426
    }
427
    /* nip, msr, ccr, lnk, ctr, xer, mq */
428
    registers[96] = tswapl(env->nip);
429
    registers[97] = tswapl(env->msr);
430
    tmp = 0;
431
    for (i = 0; i < 8; i++)
432
        tmp |= env->crf[i] << (32 - ((i + 1) * 4));
433
    registers[98] = tswapl(tmp);
434
    registers[99] = tswapl(env->lr);
435
    registers[100] = tswapl(env->ctr);
436
    registers[101] = tswapl(ppc_load_xer(env));
437
    registers[102] = 0;
438

    
439
    return 103 * 4;
440
}
441

    
442
static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
443
{
444
    uint32_t *registers = (uint32_t *)mem_buf;
445
    int i;
446

    
447
    /* fill in gprs */
448
    for (i = 0; i < 32; i++) {
449
        env->gpr[i] = tswapl(registers[i]);
450
    }
451
    /* fill in fprs */
452
    for (i = 0; i < 32; i++) {
453
        *((uint32_t *)&env->fpr[i]) = tswapl(registers[(i * 2) + 32]);
454
        *((uint32_t *)&env->fpr[i] + 1) = tswapl(registers[(i * 2) + 33]);
455
    }
456
    /* nip, msr, ccr, lnk, ctr, xer, mq */
457
    env->nip = tswapl(registers[96]);
458
    ppc_store_msr(env, tswapl(registers[97]));
459
    registers[98] = tswapl(registers[98]);
460
    for (i = 0; i < 8; i++)
461
        env->crf[i] = (registers[98] >> (32 - ((i + 1) * 4))) & 0xF;
462
    env->lr = tswapl(registers[99]);
463
    env->ctr = tswapl(registers[100]);
464
    ppc_store_xer(env, tswapl(registers[101]));
465
}
466
#elif defined (TARGET_SPARC)
467
static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
468
{
469
    target_ulong *registers = (target_ulong *)mem_buf;
470
    int i;
471

    
472
    /* fill in g0..g7 */
473
    for(i = 0; i < 8; i++) {
474
        registers[i] = tswapl(env->gregs[i]);
475
    }
476
    /* fill in register window */
477
    for(i = 0; i < 24; i++) {
478
        registers[i + 8] = tswapl(env->regwptr[i]);
479
    }
480
#ifndef TARGET_SPARC64
481
    /* fill in fprs */
482
    for (i = 0; i < 32; i++) {
483
        registers[i + 32] = tswapl(*((uint32_t *)&env->fpr[i]));
484
    }
485
    /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
486
    registers[64] = tswapl(env->y);
487
    {
488
        target_ulong tmp;
489

    
490
        tmp = GET_PSR(env);
491
        registers[65] = tswapl(tmp);
492
    }
493
    registers[66] = tswapl(env->wim);
494
    registers[67] = tswapl(env->tbr);
495
    registers[68] = tswapl(env->pc);
496
    registers[69] = tswapl(env->npc);
497
    registers[70] = tswapl(env->fsr);
498
    registers[71] = 0; /* csr */
499
    registers[72] = 0;
500
    return 73 * sizeof(target_ulong);
501
#else
502
    /* fill in fprs */
503
    for (i = 0; i < 64; i += 2) {
504
        uint64_t tmp;
505

    
506
        tmp = ((uint64_t)*(uint32_t *)&env->fpr[i]) << 32;
507
        tmp |= *(uint32_t *)&env->fpr[i + 1];
508
        registers[i / 2 + 32] = tswap64(tmp);
509
    }
510
    registers[64] = tswapl(env->pc);
511
    registers[65] = tswapl(env->npc);
512
    registers[66] = tswapl(((uint64_t)GET_CCR(env) << 32) |
513
                           ((env->asi & 0xff) << 24) |
514
                           ((env->pstate & 0xfff) << 8) |
515
                           GET_CWP64(env));
516
    registers[67] = tswapl(env->fsr);
517
    registers[68] = tswapl(env->fprs);
518
    registers[69] = tswapl(env->y);
519
    return 70 * sizeof(target_ulong);
520
#endif
521
}
522

    
523
static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
524
{
525
    target_ulong *registers = (target_ulong *)mem_buf;
526
    int i;
527

    
528
    /* fill in g0..g7 */
529
    for(i = 0; i < 7; i++) {
530
        env->gregs[i] = tswapl(registers[i]);
531
    }
532
    /* fill in register window */
533
    for(i = 0; i < 24; i++) {
534
        env->regwptr[i] = tswapl(registers[i + 8]);
535
    }
536
#ifndef TARGET_SPARC64
537
    /* fill in fprs */
538
    for (i = 0; i < 32; i++) {
539
        *((uint32_t *)&env->fpr[i]) = tswapl(registers[i + 32]);
540
    }
541
    /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
542
    env->y = tswapl(registers[64]);
543
    PUT_PSR(env, tswapl(registers[65]));
544
    env->wim = tswapl(registers[66]);
545
    env->tbr = tswapl(registers[67]);
546
    env->pc = tswapl(registers[68]);
547
    env->npc = tswapl(registers[69]);
548
    env->fsr = tswapl(registers[70]);
549
#else
550
    for (i = 0; i < 64; i += 2) {
551
        uint64_t tmp;
552

    
553
        tmp = tswap64(registers[i / 2 + 32]);
554
        *((uint32_t *)&env->fpr[i]) = tmp >> 32;
555
        *((uint32_t *)&env->fpr[i + 1]) = tmp & 0xffffffff;
556
    }
557
    env->pc = tswapl(registers[64]);
558
    env->npc = tswapl(registers[65]);
559
    {
560
        uint64_t tmp = tswapl(registers[66]);
561

    
562
        PUT_CCR(env, tmp >> 32);
563
        env->asi = (tmp >> 24) & 0xff;
564
        env->pstate = (tmp >> 8) & 0xfff;
565
        PUT_CWP64(env, tmp & 0xff);
566
    }
567
    env->fsr = tswapl(registers[67]);
568
    env->fprs = tswapl(registers[68]);
569
    env->y = tswapl(registers[69]);
570
#endif
571
}
572
#elif defined (TARGET_ARM)
573
static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
574
{
575
    int i;
576
    uint8_t *ptr;
577

    
578
    ptr = mem_buf;
579
    /* 16 core integer registers (4 bytes each).  */
580
    for (i = 0; i < 16; i++)
581
      {
582
        *(uint32_t *)ptr = tswapl(env->regs[i]);
583
        ptr += 4;
584
      }
585
    /* 8 FPA registers (12 bytes each), FPS (4 bytes).
586
       Not yet implemented.  */
587
    memset (ptr, 0, 8 * 12 + 4);
588
    ptr += 8 * 12 + 4;
589
    /* CPSR (4 bytes).  */
590
    *(uint32_t *)ptr = tswapl (cpsr_read(env));
591
    ptr += 4;
592

    
593
    return ptr - mem_buf;
594
}
595

    
596
static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
597
{
598
    int i;
599
    uint8_t *ptr;
600

    
601
    ptr = mem_buf;
602
    /* Core integer registers.  */
603
    for (i = 0; i < 16; i++)
604
      {
605
        env->regs[i] = tswapl(*(uint32_t *)ptr);
606
        ptr += 4;
607
      }
608
    /* Ignore FPA regs and scr.  */
609
    ptr += 8 * 12 + 4;
610
    cpsr_write (env, tswapl(*(uint32_t *)ptr), 0xffffffff);
611
}
612
#elif defined (TARGET_M68K)
613
static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
614
{
615
    int i;
616
    uint8_t *ptr;
617
    CPU_DoubleU u;
618

    
619
    ptr = mem_buf;
620
    /* D0-D7 */
621
    for (i = 0; i < 8; i++) {
622
        *(uint32_t *)ptr = tswapl(env->dregs[i]);
623
        ptr += 4;
624
    }
625
    /* A0-A7 */
626
    for (i = 0; i < 8; i++) {
627
        *(uint32_t *)ptr = tswapl(env->aregs[i]);
628
        ptr += 4;
629
    }
630
    *(uint32_t *)ptr = tswapl(env->sr);
631
    ptr += 4;
632
    *(uint32_t *)ptr = tswapl(env->pc);
633
    ptr += 4;
634
    /* F0-F7.  The 68881/68040 have 12-bit extended precision registers.
635
       ColdFire has 8-bit double precision registers.  */
636
    for (i = 0; i < 8; i++) {
637
        u.d = env->fregs[i];
638
        *(uint32_t *)ptr = tswap32(u.l.upper);
639
        *(uint32_t *)ptr = tswap32(u.l.lower);
640
    }
641
    /* FP control regs (not implemented).  */
642
    memset (ptr, 0, 3 * 4);
643
    ptr += 3 * 4;
644

    
645
    return ptr - mem_buf;
646
}
647

    
648
static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
649
{
650
    int i;
651
    uint8_t *ptr;
652
    CPU_DoubleU u;
653

    
654
    ptr = mem_buf;
655
    /* D0-D7 */
656
    for (i = 0; i < 8; i++) {
657
        env->dregs[i] = tswapl(*(uint32_t *)ptr);
658
        ptr += 4;
659
    }
660
    /* A0-A7 */
661
    for (i = 0; i < 8; i++) {
662
        env->aregs[i] = tswapl(*(uint32_t *)ptr);
663
        ptr += 4;
664
    }
665
    env->sr = tswapl(*(uint32_t *)ptr);
666
    ptr += 4;
667
    env->pc = tswapl(*(uint32_t *)ptr);
668
    ptr += 4;
669
    /* F0-F7.  The 68881/68040 have 12-bit extended precision registers.
670
       ColdFire has 8-bit double precision registers.  */
671
    for (i = 0; i < 8; i++) {
672
        u.l.upper = tswap32(*(uint32_t *)ptr);
673
        u.l.lower = tswap32(*(uint32_t *)ptr);
674
        env->fregs[i] = u.d;
675
    }
676
    /* FP control regs (not implemented).  */
677
    ptr += 3 * 4;
678
}
679
#elif defined (TARGET_MIPS)
680
static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
681
{
682
    int i;
683
    uint8_t *ptr;
684

    
685
    ptr = mem_buf;
686
    for (i = 0; i < 32; i++)
687
      {
688
        *(target_ulong *)ptr = tswapl(env->gpr[env->current_tc][i]);
689
        ptr += sizeof(target_ulong);
690
      }
691

    
692
    *(target_ulong *)ptr = (int32_t)tswap32(env->CP0_Status);
693
    ptr += sizeof(target_ulong);
694

    
695
    *(target_ulong *)ptr = tswapl(env->LO[env->current_tc][0]);
696
    ptr += sizeof(target_ulong);
697

    
698
    *(target_ulong *)ptr = tswapl(env->HI[env->current_tc][0]);
699
    ptr += sizeof(target_ulong);
700

    
701
    *(target_ulong *)ptr = tswapl(env->CP0_BadVAddr);
702
    ptr += sizeof(target_ulong);
703

    
704
    *(target_ulong *)ptr = (int32_t)tswap32(env->CP0_Cause);
705
    ptr += sizeof(target_ulong);
706

    
707
    *(target_ulong *)ptr = tswapl(env->PC[env->current_tc]);
708
    ptr += sizeof(target_ulong);
709

    
710
    if (env->CP0_Config1 & (1 << CP0C1_FP))
711
      {
712
        for (i = 0; i < 32; i++)
713
          {
714
            if (env->CP0_Status & (1 << CP0St_FR))
715
              *(target_ulong *)ptr = tswapl(env->fpu->fpr[i].d);
716
            else
717
              *(target_ulong *)ptr = tswap32(env->fpu->fpr[i].w[FP_ENDIAN_IDX]);
718
            ptr += sizeof(target_ulong);
719
          }
720

    
721
        *(target_ulong *)ptr = (int32_t)tswap32(env->fpu->fcr31);
722
        ptr += sizeof(target_ulong);
723

    
724
        *(target_ulong *)ptr = (int32_t)tswap32(env->fpu->fcr0);
725
        ptr += sizeof(target_ulong);
726
      }
727

    
728
    /* "fp", pseudo frame pointer. Not yet implemented in gdb. */
729
    *(target_ulong *)ptr = 0;
730
    ptr += sizeof(target_ulong);
731

    
732
    /* Registers for embedded use, we just pad them. */
733
    for (i = 0; i < 16; i++)
734
      {
735
        *(target_ulong *)ptr = 0;
736
        ptr += sizeof(target_ulong);
737
      }
738

    
739
    /* Processor ID. */
740
    *(target_ulong *)ptr = (int32_t)tswap32(env->CP0_PRid);
741
    ptr += sizeof(target_ulong);
742

    
743
    return ptr - mem_buf;
744
}
745

    
746
/* convert MIPS rounding mode in FCR31 to IEEE library */
747
static unsigned int ieee_rm[] =
748
  {
749
    float_round_nearest_even,
750
    float_round_to_zero,
751
    float_round_up,
752
    float_round_down
753
  };
754
#define RESTORE_ROUNDING_MODE \
755
    set_float_rounding_mode(ieee_rm[env->fpu->fcr31 & 3], &env->fpu->fp_status)
756

    
757
static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
758
{
759
    int i;
760
    uint8_t *ptr;
761

    
762
    ptr = mem_buf;
763
    for (i = 0; i < 32; i++)
764
      {
765
        env->gpr[env->current_tc][i] = tswapl(*(target_ulong *)ptr);
766
        ptr += sizeof(target_ulong);
767
      }
768

    
769
    env->CP0_Status = tswapl(*(target_ulong *)ptr);
770
    ptr += sizeof(target_ulong);
771

    
772
    env->LO[env->current_tc][0] = tswapl(*(target_ulong *)ptr);
773
    ptr += sizeof(target_ulong);
774

    
775
    env->HI[env->current_tc][0] = tswapl(*(target_ulong *)ptr);
776
    ptr += sizeof(target_ulong);
777

    
778
    env->CP0_BadVAddr = tswapl(*(target_ulong *)ptr);
779
    ptr += sizeof(target_ulong);
780

    
781
    env->CP0_Cause = tswapl(*(target_ulong *)ptr);
782
    ptr += sizeof(target_ulong);
783

    
784
    env->PC[env->current_tc] = tswapl(*(target_ulong *)ptr);
785
    ptr += sizeof(target_ulong);
786

    
787
    if (env->CP0_Config1 & (1 << CP0C1_FP))
788
      {
789
        for (i = 0; i < 32; i++)
790
          {
791
            if (env->CP0_Status & (1 << CP0St_FR))
792
              env->fpu->fpr[i].d = tswapl(*(target_ulong *)ptr);
793
            else
794
              env->fpu->fpr[i].w[FP_ENDIAN_IDX] = tswapl(*(target_ulong *)ptr);
795
            ptr += sizeof(target_ulong);
796
          }
797

    
798
        env->fpu->fcr31 = tswapl(*(target_ulong *)ptr) & 0xFF83FFFF;
799
        ptr += sizeof(target_ulong);
800

    
801
        /* The remaining registers are assumed to be read-only. */
802

    
803
        /* set rounding mode */
804
        RESTORE_ROUNDING_MODE;
805

    
806
#ifndef CONFIG_SOFTFLOAT
807
        /* no floating point exception for native float */
808
        SET_FP_ENABLE(env->fcr31, 0);
809
#endif
810
      }
811
}
812
#elif defined (TARGET_SH4)
813

    
814
/* Hint: Use "set architecture sh4" in GDB to see fpu registers */
815

    
816
static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
817
{
818
  uint32_t *ptr = (uint32_t *)mem_buf;
819
  int i;
820

    
821
#define SAVE(x) *ptr++=tswapl(x)
822
  if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
823
      for (i = 0; i < 8; i++) SAVE(env->gregs[i + 16]);
824
  } else {
825
      for (i = 0; i < 8; i++) SAVE(env->gregs[i]);
826
  }
827
  for (i = 8; i < 16; i++) SAVE(env->gregs[i]);
828
  SAVE (env->pc);
829
  SAVE (env->pr);
830
  SAVE (env->gbr);
831
  SAVE (env->vbr);
832
  SAVE (env->mach);
833
  SAVE (env->macl);
834
  SAVE (env->sr);
835
  SAVE (env->fpul);
836
  SAVE (env->fpscr);
837
  for (i = 0; i < 16; i++)
838
      SAVE(env->fregs[i + ((env->fpscr & FPSCR_FR) ? 16 : 0)]);
839
  SAVE (env->ssr);
840
  SAVE (env->spc);
841
  for (i = 0; i < 8; i++) SAVE(env->gregs[i]);
842
  for (i = 0; i < 8; i++) SAVE(env->gregs[i + 16]);
843
  return ((uint8_t *)ptr - mem_buf);
844
}
845

    
846
static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
847
{
848
  uint32_t *ptr = (uint32_t *)mem_buf;
849
  int i;
850

    
851
#define LOAD(x) (x)=*ptr++;
852
  if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
853
      for (i = 0; i < 8; i++) LOAD(env->gregs[i + 16]);
854
  } else {
855
      for (i = 0; i < 8; i++) LOAD(env->gregs[i]);
856
  }
857
  for (i = 8; i < 16; i++) LOAD(env->gregs[i]);
858
  LOAD (env->pc);
859
  LOAD (env->pr);
860
  LOAD (env->gbr);
861
  LOAD (env->vbr);
862
  LOAD (env->mach);
863
  LOAD (env->macl);
864
  LOAD (env->sr);
865
  LOAD (env->fpul);
866
  LOAD (env->fpscr);
867
  for (i = 0; i < 16; i++)
868
      LOAD(env->fregs[i + ((env->fpscr & FPSCR_FR) ? 16 : 0)]);
869
  LOAD (env->ssr);
870
  LOAD (env->spc);
871
  for (i = 0; i < 8; i++) LOAD(env->gregs[i]);
872
  for (i = 0; i < 8; i++) LOAD(env->gregs[i + 16]);
873
}
874
#elif defined (TARGET_CRIS)
875

    
876
static int cris_save_32 (unsigned char *d, uint32_t value)
877
{
878
        *d++ = (value);
879
        *d++ = (value >>= 8);
880
        *d++ = (value >>= 8);
881
        *d++ = (value >>= 8);
882
        return 4;
883
}
884
static int cris_save_16 (unsigned char *d, uint32_t value)
885
{
886
        *d++ = (value);
887
        *d++ = (value >>= 8);
888
        return 2;
889
}
890
static int cris_save_8 (unsigned char *d, uint32_t value)
891
{
892
        *d++ = (value);
893
        return 1;
894
}
895

    
896
/* FIXME: this will bug on archs not supporting unaligned word accesses.  */
897
static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
898
{
899
  uint8_t *ptr = mem_buf;
900
  uint8_t srs;
901
  int i;
902

    
903
  for (i = 0; i < 16; i++)
904
          ptr += cris_save_32 (ptr, env->regs[i]);
905

    
906
  srs = env->pregs[PR_SRS];
907

    
908
  ptr += cris_save_8 (ptr, env->pregs[0]);
909
  ptr += cris_save_8 (ptr, env->pregs[1]);
910
  ptr += cris_save_32 (ptr, env->pregs[2]);
911
  ptr += cris_save_8 (ptr, srs);
912
  ptr += cris_save_16 (ptr, env->pregs[4]);
913

    
914
  for (i = 5; i < 16; i++)
915
          ptr += cris_save_32 (ptr, env->pregs[i]);
916

    
917
  ptr += cris_save_32 (ptr, env->pc);
918

    
919
  for (i = 0; i < 16; i++)
920
          ptr += cris_save_32 (ptr, env->sregs[srs][i]);
921

    
922
  return ((uint8_t *)ptr - mem_buf);
923
}
924

    
925
static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
926
{
927
  uint32_t *ptr = (uint32_t *)mem_buf;
928
  int i;
929

    
930
#define LOAD(x) (x)=*ptr++;
931
  for (i = 0; i < 16; i++) LOAD(env->regs[i]);
932
  LOAD (env->pc);
933
}
934
#else
935
static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
936
{
937
    return 0;
938
}
939

    
940
static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
941
{
942
}
943

    
944
#endif
945

    
946
static int gdb_handle_packet(GDBState *s, CPUState *env, const char *line_buf)
947
{
948
    const char *p;
949
    int ch, reg_size, type;
950
    char buf[4096];
951
    uint8_t mem_buf[4096];
952
    uint32_t *registers;
953
    target_ulong addr, len;
954

    
955
#ifdef DEBUG_GDB
956
    printf("command='%s'\n", line_buf);
957
#endif
958
    p = line_buf;
959
    ch = *p++;
960
    switch(ch) {
961
    case '?':
962
        /* TODO: Make this return the correct value for user-mode.  */
963
        snprintf(buf, sizeof(buf), "S%02x", SIGTRAP);
964
        put_packet(s, buf);
965
        break;
966
    case 'c':
967
        if (*p != '\0') {
968
            addr = strtoull(p, (char **)&p, 16);
969
#if defined(TARGET_I386)
970
            env->eip = addr;
971
#elif defined (TARGET_PPC)
972
            env->nip = addr;
973
#elif defined (TARGET_SPARC)
974
            env->pc = addr;
975
            env->npc = addr + 4;
976
#elif defined (TARGET_ARM)
977
            env->regs[15] = addr;
978
#elif defined (TARGET_SH4)
979
            env->pc = addr;
980
#elif defined (TARGET_MIPS)
981
            env->PC[env->current_tc] = addr;
982
#elif defined (TARGET_CRIS)
983
            env->pc = addr;
984
#endif
985
        }
986
        gdb_continue(s);
987
        return RS_IDLE;
988
    case 's':
989
        if (*p != '\0') {
990
            addr = strtoull(p, (char **)&p, 16);
991
#if defined(TARGET_I386)
992
            env->eip = addr;
993
#elif defined (TARGET_PPC)
994
            env->nip = addr;
995
#elif defined (TARGET_SPARC)
996
            env->pc = addr;
997
            env->npc = addr + 4;
998
#elif defined (TARGET_ARM)
999
            env->regs[15] = addr;
1000
#elif defined (TARGET_SH4)
1001
            env->pc = addr;
1002
#elif defined (TARGET_MIPS)
1003
            env->PC[env->current_tc] = addr;
1004
#elif defined (TARGET_CRIS)
1005
            env->pc = addr;
1006
#endif
1007
        }
1008
        cpu_single_step(env, sstep_flags);
1009
        gdb_continue(s);
1010
        return RS_IDLE;
1011
    case 'F':
1012
        {
1013
            target_ulong ret;
1014
            target_ulong err;
1015

    
1016
            ret = strtoull(p, (char **)&p, 16);
1017
            if (*p == ',') {
1018
                p++;
1019
                err = strtoull(p, (char **)&p, 16);
1020
            } else {
1021
                err = 0;
1022
            }
1023
            if (*p == ',')
1024
                p++;
1025
            type = *p;
1026
            if (gdb_current_syscall_cb)
1027
                gdb_current_syscall_cb(s->env, ret, err);
1028
            if (type == 'C') {
1029
                put_packet(s, "T02");
1030
            } else {
1031
                gdb_continue(s);
1032
            }
1033
        }
1034
        break;
1035
    case 'g':
1036
        reg_size = cpu_gdb_read_registers(env, mem_buf);
1037
        memtohex(buf, mem_buf, reg_size);
1038
        put_packet(s, buf);
1039
        break;
1040
    case 'G':
1041
        registers = (void *)mem_buf;
1042
        len = strlen(p) / 2;
1043
        hextomem((uint8_t *)registers, p, len);
1044
        cpu_gdb_write_registers(env, mem_buf, len);
1045
        put_packet(s, "OK");
1046
        break;
1047
    case 'm':
1048
        addr = strtoull(p, (char **)&p, 16);
1049
        if (*p == ',')
1050
            p++;
1051
        len = strtoull(p, NULL, 16);
1052
        if (cpu_memory_rw_debug(env, addr, mem_buf, len, 0) != 0) {
1053
            put_packet (s, "E14");
1054
        } else {
1055
            memtohex(buf, mem_buf, len);
1056
            put_packet(s, buf);
1057
        }
1058
        break;
1059
    case 'M':
1060
        addr = strtoull(p, (char **)&p, 16);
1061
        if (*p == ',')
1062
            p++;
1063
        len = strtoull(p, (char **)&p, 16);
1064
        if (*p == ':')
1065
            p++;
1066
        hextomem(mem_buf, p, len);
1067
        if (cpu_memory_rw_debug(env, addr, mem_buf, len, 1) != 0)
1068
            put_packet(s, "E14");
1069
        else
1070
            put_packet(s, "OK");
1071
        break;
1072
    case 'Z':
1073
        type = strtoul(p, (char **)&p, 16);
1074
        if (*p == ',')
1075
            p++;
1076
        addr = strtoull(p, (char **)&p, 16);
1077
        if (*p == ',')
1078
            p++;
1079
        len = strtoull(p, (char **)&p, 16);
1080
        if (type == 0 || type == 1) {
1081
            if (cpu_breakpoint_insert(env, addr) < 0)
1082
                goto breakpoint_error;
1083
            put_packet(s, "OK");
1084
#ifndef CONFIG_USER_ONLY
1085
        } else if (type == 2) {
1086
            if (cpu_watchpoint_insert(env, addr) < 0)
1087
                goto breakpoint_error;
1088
            put_packet(s, "OK");
1089
#endif
1090
        } else {
1091
        breakpoint_error:
1092
            put_packet(s, "E22");
1093
        }
1094
        break;
1095
    case 'z':
1096
        type = strtoul(p, (char **)&p, 16);
1097
        if (*p == ',')
1098
            p++;
1099
        addr = strtoull(p, (char **)&p, 16);
1100
        if (*p == ',')
1101
            p++;
1102
        len = strtoull(p, (char **)&p, 16);
1103
        if (type == 0 || type == 1) {
1104
            cpu_breakpoint_remove(env, addr);
1105
            put_packet(s, "OK");
1106
#ifndef CONFIG_USER_ONLY
1107
        } else if (type == 2) {
1108
            cpu_watchpoint_remove(env, addr);
1109
            put_packet(s, "OK");
1110
#endif
1111
        } else {
1112
            goto breakpoint_error;
1113
        }
1114
        break;
1115
    case 'q':
1116
    case 'Q':
1117
        /* parse any 'q' packets here */
1118
        if (!strcmp(p,"qemu.sstepbits")) {
1119
            /* Query Breakpoint bit definitions */
1120
            sprintf(buf,"ENABLE=%x,NOIRQ=%x,NOTIMER=%x",
1121
                    SSTEP_ENABLE,
1122
                    SSTEP_NOIRQ,
1123
                    SSTEP_NOTIMER);
1124
            put_packet(s, buf);
1125
            break;
1126
        } else if (strncmp(p,"qemu.sstep",10) == 0) {
1127
            /* Display or change the sstep_flags */
1128
            p += 10;
1129
            if (*p != '=') {
1130
                /* Display current setting */
1131
                sprintf(buf,"0x%x", sstep_flags);
1132
                put_packet(s, buf);
1133
                break;
1134
            }
1135
            p++;
1136
            type = strtoul(p, (char **)&p, 16);
1137
            sstep_flags = type;
1138
            put_packet(s, "OK");
1139
            break;
1140
        }
1141
#ifdef CONFIG_LINUX_USER
1142
        else if (strncmp(p, "Offsets", 7) == 0) {
1143
            TaskState *ts = env->opaque;
1144

    
1145
            sprintf(buf,
1146
                    "Text=" TARGET_ABI_FMT_lx ";Data=" TARGET_ABI_FMT_lx
1147
                    ";Bss=" TARGET_ABI_FMT_lx,
1148
                    ts->info->code_offset,
1149
                    ts->info->data_offset,
1150
                    ts->info->data_offset);
1151
            put_packet(s, buf);
1152
            break;
1153
        }
1154
#endif
1155
        /* Fall through.  */
1156
    default:
1157
        /* put empty packet */
1158
        buf[0] = '\0';
1159
        put_packet(s, buf);
1160
        break;
1161
    }
1162
    return RS_IDLE;
1163
}
1164

    
1165
extern void tb_flush(CPUState *env);
1166

    
1167
#ifndef CONFIG_USER_ONLY
1168
static void gdb_vm_stopped(void *opaque, int reason)
1169
{
1170
    GDBState *s = opaque;
1171
    char buf[256];
1172
    int ret;
1173

    
1174
    if (s->state == RS_SYSCALL)
1175
        return;
1176

    
1177
    /* disable single step if it was enable */
1178
    cpu_single_step(s->env, 0);
1179

    
1180
    if (reason == EXCP_DEBUG) {
1181
        if (s->env->watchpoint_hit) {
1182
            snprintf(buf, sizeof(buf), "T%02xwatch:" TARGET_FMT_lx ";",
1183
                     SIGTRAP,
1184
                     s->env->watchpoint[s->env->watchpoint_hit - 1].vaddr);
1185
            put_packet(s, buf);
1186
            s->env->watchpoint_hit = 0;
1187
            return;
1188
        }
1189
        tb_flush(s->env);
1190
        ret = SIGTRAP;
1191
    } else if (reason == EXCP_INTERRUPT) {
1192
        ret = SIGINT;
1193
    } else {
1194
        ret = 0;
1195
    }
1196
    snprintf(buf, sizeof(buf), "S%02x", ret);
1197
    put_packet(s, buf);
1198
}
1199
#endif
1200

    
1201
/* Send a gdb syscall request.
1202
   This accepts limited printf-style format specifiers, specifically:
1203
    %x  - target_ulong argument printed in hex.
1204
    %lx - 64-bit argument printed in hex.
1205
    %s  - string pointer (target_ulong) and length (int) pair.  */
1206
void gdb_do_syscall(gdb_syscall_complete_cb cb, char *fmt, ...)
1207
{
1208
    va_list va;
1209
    char buf[256];
1210
    char *p;
1211
    target_ulong addr;
1212
    uint64_t i64;
1213
    GDBState *s;
1214

    
1215
    s = gdb_syscall_state;
1216
    if (!s)
1217
        return;
1218
    gdb_current_syscall_cb = cb;
1219
    s->state = RS_SYSCALL;
1220
#ifndef CONFIG_USER_ONLY
1221
    vm_stop(EXCP_DEBUG);
1222
#endif
1223
    s->state = RS_IDLE;
1224
    va_start(va, fmt);
1225
    p = buf;
1226
    *(p++) = 'F';
1227
    while (*fmt) {
1228
        if (*fmt == '%') {
1229
            fmt++;
1230
            switch (*fmt++) {
1231
            case 'x':
1232
                addr = va_arg(va, target_ulong);
1233
                p += sprintf(p, TARGET_FMT_lx, addr);
1234
                break;
1235
            case 'l':
1236
                if (*(fmt++) != 'x')
1237
                    goto bad_format;
1238
                i64 = va_arg(va, uint64_t);
1239
                p += sprintf(p, "%" PRIx64, i64);
1240
                break;
1241
            case 's':
1242
                addr = va_arg(va, target_ulong);
1243
                p += sprintf(p, TARGET_FMT_lx "/%x", addr, va_arg(va, int));
1244
                break;
1245
            default:
1246
            bad_format:
1247
                fprintf(stderr, "gdbstub: Bad syscall format string '%s'\n",
1248
                        fmt - 1);
1249
                break;
1250
            }
1251
        } else {
1252
            *(p++) = *(fmt++);
1253
        }
1254
    }
1255
    *p = 0;
1256
    va_end(va);
1257
    put_packet(s, buf);
1258
#ifdef CONFIG_USER_ONLY
1259
    gdb_handlesig(s->env, 0);
1260
#else
1261
    cpu_interrupt(s->env, CPU_INTERRUPT_EXIT);
1262
#endif
1263
}
1264

    
1265
static void gdb_read_byte(GDBState *s, int ch)
1266
{
1267
    CPUState *env = s->env;
1268
    int i, csum;
1269
    uint8_t reply;
1270

    
1271
#ifndef CONFIG_USER_ONLY
1272
    if (s->last_packet_len) {
1273
        /* Waiting for a response to the last packet.  If we see the start
1274
           of a new command then abandon the previous response.  */
1275
        if (ch == '-') {
1276
#ifdef DEBUG_GDB
1277
            printf("Got NACK, retransmitting\n");
1278
#endif
1279
            put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
1280
        }
1281
#ifdef DEBUG_GDB
1282
        else if (ch == '+')
1283
            printf("Got ACK\n");
1284
        else
1285
            printf("Got '%c' when expecting ACK/NACK\n", ch);
1286
#endif
1287
        if (ch == '+' || ch == '$')
1288
            s->last_packet_len = 0;
1289
        if (ch != '$')
1290
            return;
1291
    }
1292
    if (vm_running) {
1293
        /* when the CPU is running, we cannot do anything except stop
1294
           it when receiving a char */
1295
        vm_stop(EXCP_INTERRUPT);
1296
    } else
1297
#endif
1298
    {
1299
        switch(s->state) {
1300
        case RS_IDLE:
1301
            if (ch == '$') {
1302
                s->line_buf_index = 0;
1303
                s->state = RS_GETLINE;
1304
            }
1305
            break;
1306
        case RS_GETLINE:
1307
            if (ch == '#') {
1308
            s->state = RS_CHKSUM1;
1309
            } else if (s->line_buf_index >= sizeof(s->line_buf) - 1) {
1310
                s->state = RS_IDLE;
1311
            } else {
1312
            s->line_buf[s->line_buf_index++] = ch;
1313
            }
1314
            break;
1315
        case RS_CHKSUM1:
1316
            s->line_buf[s->line_buf_index] = '\0';
1317
            s->line_csum = fromhex(ch) << 4;
1318
            s->state = RS_CHKSUM2;
1319
            break;
1320
        case RS_CHKSUM2:
1321
            s->line_csum |= fromhex(ch);
1322
            csum = 0;
1323
            for(i = 0; i < s->line_buf_index; i++) {
1324
                csum += s->line_buf[i];
1325
            }
1326
            if (s->line_csum != (csum & 0xff)) {
1327
                reply = '-';
1328
                put_buffer(s, &reply, 1);
1329
                s->state = RS_IDLE;
1330
            } else {
1331
                reply = '+';
1332
                put_buffer(s, &reply, 1);
1333
                s->state = gdb_handle_packet(s, env, s->line_buf);
1334
            }
1335
            break;
1336
        default:
1337
            abort();
1338
        }
1339
    }
1340
}
1341

    
1342
#ifdef CONFIG_USER_ONLY
1343
int
1344
gdb_handlesig (CPUState *env, int sig)
1345
{
1346
  GDBState *s;
1347
  char buf[256];
1348
  int n;
1349

    
1350
  if (gdbserver_fd < 0)
1351
    return sig;
1352

    
1353
  s = &gdbserver_state;
1354

    
1355
  /* disable single step if it was enabled */
1356
  cpu_single_step(env, 0);
1357
  tb_flush(env);
1358

    
1359
  if (sig != 0)
1360
    {
1361
      snprintf(buf, sizeof(buf), "S%02x", sig);
1362
      put_packet(s, buf);
1363
    }
1364

    
1365
  sig = 0;
1366
  s->state = RS_IDLE;
1367
  s->running_state = 0;
1368
  while (s->running_state == 0) {
1369
      n = read (s->fd, buf, 256);
1370
      if (n > 0)
1371
        {
1372
          int i;
1373

    
1374
          for (i = 0; i < n; i++)
1375
            gdb_read_byte (s, buf[i]);
1376
        }
1377
      else if (n == 0 || errno != EAGAIN)
1378
        {
1379
          /* XXX: Connection closed.  Should probably wait for annother
1380
             connection before continuing.  */
1381
          return sig;
1382
        }
1383
  }
1384
  return sig;
1385
}
1386

    
1387
/* Tell the remote gdb that the process has exited.  */
1388
void gdb_exit(CPUState *env, int code)
1389
{
1390
  GDBState *s;
1391
  char buf[4];
1392

    
1393
  if (gdbserver_fd < 0)
1394
    return;
1395

    
1396
  s = &gdbserver_state;
1397

    
1398
  snprintf(buf, sizeof(buf), "W%02x", code);
1399
  put_packet(s, buf);
1400
}
1401

    
1402

    
1403
static void gdb_accept(void *opaque)
1404
{
1405
    GDBState *s;
1406
    struct sockaddr_in sockaddr;
1407
    socklen_t len;
1408
    int val, fd;
1409

    
1410
    for(;;) {
1411
        len = sizeof(sockaddr);
1412
        fd = accept(gdbserver_fd, (struct sockaddr *)&sockaddr, &len);
1413
        if (fd < 0 && errno != EINTR) {
1414
            perror("accept");
1415
            return;
1416
        } else if (fd >= 0) {
1417
            break;
1418
        }
1419
    }
1420

    
1421
    /* set short latency */
1422
    val = 1;
1423
    setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val));
1424

    
1425
    s = &gdbserver_state;
1426
    memset (s, 0, sizeof (GDBState));
1427
    s->env = first_cpu; /* XXX: allow to change CPU */
1428
    s->fd = fd;
1429

    
1430
    gdb_syscall_state = s;
1431

    
1432
    fcntl(fd, F_SETFL, O_NONBLOCK);
1433
}
1434

    
1435
static int gdbserver_open(int port)
1436
{
1437
    struct sockaddr_in sockaddr;
1438
    int fd, val, ret;
1439

    
1440
    fd = socket(PF_INET, SOCK_STREAM, 0);
1441
    if (fd < 0) {
1442
        perror("socket");
1443
        return -1;
1444
    }
1445

    
1446
    /* allow fast reuse */
1447
    val = 1;
1448
    setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (char *)&val, sizeof(val));
1449

    
1450
    sockaddr.sin_family = AF_INET;
1451
    sockaddr.sin_port = htons(port);
1452
    sockaddr.sin_addr.s_addr = 0;
1453
    ret = bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
1454
    if (ret < 0) {
1455
        perror("bind");
1456
        return -1;
1457
    }
1458
    ret = listen(fd, 0);
1459
    if (ret < 0) {
1460
        perror("listen");
1461
        return -1;
1462
    }
1463
    return fd;
1464
}
1465

    
1466
int gdbserver_start(int port)
1467
{
1468
    gdbserver_fd = gdbserver_open(port);
1469
    if (gdbserver_fd < 0)
1470
        return -1;
1471
    /* accept connections */
1472
    gdb_accept (NULL);
1473
    return 0;
1474
}
1475
#else
1476
static int gdb_chr_can_receive(void *opaque)
1477
{
1478
  return 1;
1479
}
1480

    
1481
static void gdb_chr_receive(void *opaque, const uint8_t *buf, int size)
1482
{
1483
    GDBState *s = opaque;
1484
    int i;
1485

    
1486
    for (i = 0; i < size; i++) {
1487
        gdb_read_byte(s, buf[i]);
1488
    }
1489
}
1490

    
1491
static void gdb_chr_event(void *opaque, int event)
1492
{
1493
    switch (event) {
1494
    case CHR_EVENT_RESET:
1495
        vm_stop(EXCP_INTERRUPT);
1496
        gdb_syscall_state = opaque;
1497
        break;
1498
    default:
1499
        break;
1500
    }
1501
}
1502

    
1503
int gdbserver_start(const char *port)
1504
{
1505
    GDBState *s;
1506
    char gdbstub_port_name[128];
1507
    int port_num;
1508
    char *p;
1509
    CharDriverState *chr;
1510

    
1511
    if (!port || !*port)
1512
      return -1;
1513

    
1514
    port_num = strtol(port, &p, 10);
1515
    if (*p == 0) {
1516
        /* A numeric value is interpreted as a port number.  */
1517
        snprintf(gdbstub_port_name, sizeof(gdbstub_port_name),
1518
                 "tcp::%d,nowait,nodelay,server", port_num);
1519
        port = gdbstub_port_name;
1520
    }
1521

    
1522
    chr = qemu_chr_open(port);
1523
    if (!chr)
1524
        return -1;
1525

    
1526
    s = qemu_mallocz(sizeof(GDBState));
1527
    if (!s) {
1528
        return -1;
1529
    }
1530
    s->env = first_cpu; /* XXX: allow to change CPU */
1531
    s->chr = chr;
1532
    qemu_chr_add_handlers(chr, gdb_chr_can_receive, gdb_chr_receive,
1533
                          gdb_chr_event, s);
1534
    qemu_add_vm_stop_handler(gdb_vm_stopped, s);
1535
    return 0;
1536
}
1537
#endif