Statistics
| Branch: | Revision:

root / qemu-doc.texi @ 79f85c3a

History | View | Annotate | Download (99.1 kB)

1 386405f7 bellard
\input texinfo @c -*- texinfo -*-
2 debc7065 bellard
@c %**start of header
3 debc7065 bellard
@setfilename qemu-doc.info
4 8f40c388 bellard
@settitle QEMU Emulator User Documentation
5 debc7065 bellard
@exampleindent 0
6 debc7065 bellard
@paragraphindent 0
7 debc7065 bellard
@c %**end of header
8 386405f7 bellard
9 0806e3f6 bellard
@iftex
10 386405f7 bellard
@titlepage
11 386405f7 bellard
@sp 7
12 8f40c388 bellard
@center @titlefont{QEMU Emulator}
13 debc7065 bellard
@sp 1
14 debc7065 bellard
@center @titlefont{User Documentation}
15 386405f7 bellard
@sp 3
16 386405f7 bellard
@end titlepage
17 0806e3f6 bellard
@end iftex
18 386405f7 bellard
19 debc7065 bellard
@ifnottex
20 debc7065 bellard
@node Top
21 debc7065 bellard
@top
22 debc7065 bellard
23 debc7065 bellard
@menu
24 debc7065 bellard
* Introduction::
25 debc7065 bellard
* Installation::
26 debc7065 bellard
* QEMU PC System emulator::
27 debc7065 bellard
* QEMU System emulator for non PC targets::
28 83195237 bellard
* QEMU User space emulator::
29 debc7065 bellard
* compilation:: Compilation from the sources
30 debc7065 bellard
* Index::
31 debc7065 bellard
@end menu
32 debc7065 bellard
@end ifnottex
33 debc7065 bellard
34 debc7065 bellard
@contents
35 debc7065 bellard
36 debc7065 bellard
@node Introduction
37 386405f7 bellard
@chapter Introduction
38 386405f7 bellard
39 debc7065 bellard
@menu
40 debc7065 bellard
* intro_features:: Features
41 debc7065 bellard
@end menu
42 debc7065 bellard
43 debc7065 bellard
@node intro_features
44 322d0c66 bellard
@section Features
45 386405f7 bellard
46 1f673135 bellard
QEMU is a FAST! processor emulator using dynamic translation to
47 1f673135 bellard
achieve good emulation speed.
48 1eb20527 bellard
49 1eb20527 bellard
QEMU has two operating modes:
50 0806e3f6 bellard
51 0806e3f6 bellard
@itemize @minus
52 0806e3f6 bellard
53 5fafdf24 ths
@item
54 1f673135 bellard
Full system emulation. In this mode, QEMU emulates a full system (for
55 3f9f3aa1 bellard
example a PC), including one or several processors and various
56 3f9f3aa1 bellard
peripherals. It can be used to launch different Operating Systems
57 3f9f3aa1 bellard
without rebooting the PC or to debug system code.
58 1eb20527 bellard
59 5fafdf24 ths
@item
60 83195237 bellard
User mode emulation. In this mode, QEMU can launch
61 83195237 bellard
processes compiled for one CPU on another CPU. It can be used to
62 1f673135 bellard
launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
63 1f673135 bellard
to ease cross-compilation and cross-debugging.
64 1eb20527 bellard
65 1eb20527 bellard
@end itemize
66 1eb20527 bellard
67 7c3fc84d bellard
QEMU can run without an host kernel driver and yet gives acceptable
68 5fafdf24 ths
performance.
69 322d0c66 bellard
70 52c00a5f bellard
For system emulation, the following hardware targets are supported:
71 52c00a5f bellard
@itemize
72 9d0a8e6f bellard
@item PC (x86 or x86_64 processor)
73 3f9f3aa1 bellard
@item ISA PC (old style PC without PCI bus)
74 52c00a5f bellard
@item PREP (PowerPC processor)
75 9d0a8e6f bellard
@item G3 BW PowerMac (PowerPC processor)
76 9d0a8e6f bellard
@item Mac99 PowerMac (PowerPC processor, in progress)
77 ee76f82e blueswir1
@item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
78 c7ba218d blueswir1
@item Sun4u/Sun4v (64-bit Sparc processor, in progress)
79 d9aedc32 ths
@item Malta board (32-bit and 64-bit MIPS processors)
80 88cb0a02 aurel32
@item MIPS Magnum (64-bit MIPS processor)
81 9ee6e8bb pbrook
@item ARM Integrator/CP (ARM)
82 9ee6e8bb pbrook
@item ARM Versatile baseboard (ARM)
83 9ee6e8bb pbrook
@item ARM RealView Emulation baseboard (ARM)
84 ef4c3856 balrog
@item Spitz, Akita, Borzoi, Terrier and Tosa PDAs (PXA270 processor)
85 9ee6e8bb pbrook
@item Luminary Micro LM3S811EVB (ARM Cortex-M3)
86 9ee6e8bb pbrook
@item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
87 707e011b pbrook
@item Freescale MCF5208EVB (ColdFire V2).
88 209a4e69 pbrook
@item Arnewsh MCF5206 evaluation board (ColdFire V2).
89 02645926 balrog
@item Palm Tungsten|E PDA (OMAP310 processor)
90 c30bb264 balrog
@item N800 and N810 tablets (OMAP2420 processor)
91 57cd6e97 balrog
@item MusicPal (MV88W8618 ARM processor)
92 ef4c3856 balrog
@item Gumstix "Connex" and "Verdex" motherboards (PXA255/270).
93 ef4c3856 balrog
@item Siemens SX1 smartphone (OMAP310 processor)
94 52c00a5f bellard
@end itemize
95 386405f7 bellard
96 d9aedc32 ths
For user emulation, x86, PowerPC, ARM, 32-bit MIPS, Sparc32/64 and ColdFire(m68k) CPUs are supported.
97 0806e3f6 bellard
98 debc7065 bellard
@node Installation
99 5b9f457a bellard
@chapter Installation
100 5b9f457a bellard
101 15a34c63 bellard
If you want to compile QEMU yourself, see @ref{compilation}.
102 15a34c63 bellard
103 debc7065 bellard
@menu
104 debc7065 bellard
* install_linux::   Linux
105 debc7065 bellard
* install_windows:: Windows
106 debc7065 bellard
* install_mac::     Macintosh
107 debc7065 bellard
@end menu
108 debc7065 bellard
109 debc7065 bellard
@node install_linux
110 1f673135 bellard
@section Linux
111 1f673135 bellard
112 7c3fc84d bellard
If a precompiled package is available for your distribution - you just
113 7c3fc84d bellard
have to install it. Otherwise, see @ref{compilation}.
114 5b9f457a bellard
115 debc7065 bellard
@node install_windows
116 1f673135 bellard
@section Windows
117 8cd0ac2f bellard
118 15a34c63 bellard
Download the experimental binary installer at
119 debc7065 bellard
@url{http://www.free.oszoo.org/@/download.html}.
120 d691f669 bellard
121 debc7065 bellard
@node install_mac
122 1f673135 bellard
@section Mac OS X
123 d691f669 bellard
124 15a34c63 bellard
Download the experimental binary installer at
125 debc7065 bellard
@url{http://www.free.oszoo.org/@/download.html}.
126 df0f11a0 bellard
127 debc7065 bellard
@node QEMU PC System emulator
128 3f9f3aa1 bellard
@chapter QEMU PC System emulator
129 1eb20527 bellard
130 debc7065 bellard
@menu
131 debc7065 bellard
* pcsys_introduction:: Introduction
132 debc7065 bellard
* pcsys_quickstart::   Quick Start
133 debc7065 bellard
* sec_invocation::     Invocation
134 debc7065 bellard
* pcsys_keys::         Keys
135 debc7065 bellard
* pcsys_monitor::      QEMU Monitor
136 debc7065 bellard
* disk_images::        Disk Images
137 debc7065 bellard
* pcsys_network::      Network emulation
138 debc7065 bellard
* direct_linux_boot::  Direct Linux Boot
139 debc7065 bellard
* pcsys_usb::          USB emulation
140 f858dcae ths
* vnc_security::       VNC security
141 debc7065 bellard
* gdb_usage::          GDB usage
142 debc7065 bellard
* pcsys_os_specific::  Target OS specific information
143 debc7065 bellard
@end menu
144 debc7065 bellard
145 debc7065 bellard
@node pcsys_introduction
146 0806e3f6 bellard
@section Introduction
147 0806e3f6 bellard
148 0806e3f6 bellard
@c man begin DESCRIPTION
149 0806e3f6 bellard
150 3f9f3aa1 bellard
The QEMU PC System emulator simulates the
151 3f9f3aa1 bellard
following peripherals:
152 0806e3f6 bellard
153 0806e3f6 bellard
@itemize @minus
154 5fafdf24 ths
@item
155 15a34c63 bellard
i440FX host PCI bridge and PIIX3 PCI to ISA bridge
156 0806e3f6 bellard
@item
157 15a34c63 bellard
Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
158 15a34c63 bellard
extensions (hardware level, including all non standard modes).
159 0806e3f6 bellard
@item
160 0806e3f6 bellard
PS/2 mouse and keyboard
161 5fafdf24 ths
@item
162 15a34c63 bellard
2 PCI IDE interfaces with hard disk and CD-ROM support
163 1f673135 bellard
@item
164 1f673135 bellard
Floppy disk
165 5fafdf24 ths
@item
166 c4a7060c blueswir1
PCI/ISA PCI network adapters
167 0806e3f6 bellard
@item
168 05d5818c bellard
Serial ports
169 05d5818c bellard
@item
170 c0fe3827 bellard
Creative SoundBlaster 16 sound card
171 c0fe3827 bellard
@item
172 c0fe3827 bellard
ENSONIQ AudioPCI ES1370 sound card
173 c0fe3827 bellard
@item
174 e5c9a13e balrog
Intel 82801AA AC97 Audio compatible sound card
175 e5c9a13e balrog
@item
176 c0fe3827 bellard
Adlib(OPL2) - Yamaha YM3812 compatible chip
177 b389dbfb bellard
@item
178 26463dbc balrog
Gravis Ultrasound GF1 sound card
179 26463dbc balrog
@item
180 cc53d26d malc
CS4231A compatible sound card
181 cc53d26d malc
@item
182 b389dbfb bellard
PCI UHCI USB controller and a virtual USB hub.
183 0806e3f6 bellard
@end itemize
184 0806e3f6 bellard
185 3f9f3aa1 bellard
SMP is supported with up to 255 CPUs.
186 3f9f3aa1 bellard
187 cc53d26d malc
Note that adlib, ac97, gus and cs4231a are only available when QEMU
188 0c58ac1c malc
was configured with --audio-card-list option containing the name(s) of
189 e5178e8d malc
required card(s).
190 c0fe3827 bellard
191 15a34c63 bellard
QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
192 15a34c63 bellard
VGA BIOS.
193 15a34c63 bellard
194 c0fe3827 bellard
QEMU uses YM3812 emulation by Tatsuyuki Satoh.
195 c0fe3827 bellard
196 26463dbc balrog
QEMU uses GUS emulation(GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
197 26463dbc balrog
by Tibor "TS" Sch?tz.
198 423d65f4 balrog
199 cc53d26d malc
CS4231A is the chip used in Windows Sound System and GUSMAX products
200 cc53d26d malc
201 0806e3f6 bellard
@c man end
202 0806e3f6 bellard
203 debc7065 bellard
@node pcsys_quickstart
204 1eb20527 bellard
@section Quick Start
205 1eb20527 bellard
206 285dc330 bellard
Download and uncompress the linux image (@file{linux.img}) and type:
207 0806e3f6 bellard
208 0806e3f6 bellard
@example
209 285dc330 bellard
qemu linux.img
210 0806e3f6 bellard
@end example
211 0806e3f6 bellard
212 0806e3f6 bellard
Linux should boot and give you a prompt.
213 0806e3f6 bellard
214 6cc721cf bellard
@node sec_invocation
215 ec410fc9 bellard
@section Invocation
216 ec410fc9 bellard
217 ec410fc9 bellard
@example
218 0806e3f6 bellard
@c man begin SYNOPSIS
219 89dfe898 ths
usage: qemu [options] [@var{disk_image}]
220 0806e3f6 bellard
@c man end
221 ec410fc9 bellard
@end example
222 ec410fc9 bellard
223 0806e3f6 bellard
@c man begin OPTIONS
224 9d4520d0 bellard
@var{disk_image} is a raw hard disk image for IDE hard disk 0.
225 ec410fc9 bellard
226 ec410fc9 bellard
General options:
227 ec410fc9 bellard
@table @option
228 89dfe898 ths
@item -M @var{machine}
229 89dfe898 ths
Select the emulated @var{machine} (@code{-M ?} for list)
230 3dbbdc25 bellard
231 89dfe898 ths
@item -fda @var{file}
232 89dfe898 ths
@item -fdb @var{file}
233 debc7065 bellard
Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}). You can
234 19cb3738 bellard
use the host floppy by using @file{/dev/fd0} as filename (@pxref{host_drives}).
235 2be3bc02 bellard
236 89dfe898 ths
@item -hda @var{file}
237 89dfe898 ths
@item -hdb @var{file}
238 89dfe898 ths
@item -hdc @var{file}
239 89dfe898 ths
@item -hdd @var{file}
240 debc7065 bellard
Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
241 1f47a922 bellard
242 89dfe898 ths
@item -cdrom @var{file}
243 89dfe898 ths
Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and
244 be3edd95 bellard
@option{-cdrom} at the same time). You can use the host CD-ROM by
245 19cb3738 bellard
using @file{/dev/cdrom} as filename (@pxref{host_drives}).
246 181f1558 bellard
247 e0e7ada1 balrog
@item -drive @var{option}[,@var{option}[,@var{option}[,...]]]
248 e0e7ada1 balrog
249 e0e7ada1 balrog
Define a new drive. Valid options are:
250 e0e7ada1 balrog
251 e0e7ada1 balrog
@table @code
252 e0e7ada1 balrog
@item file=@var{file}
253 e0e7ada1 balrog
This option defines which disk image (@pxref{disk_images}) to use with
254 609497ab balrog
this drive. If the filename contains comma, you must double it
255 609497ab balrog
(for instance, "file=my,,file" to use file "my,file").
256 e0e7ada1 balrog
@item if=@var{interface}
257 e0e7ada1 balrog
This option defines on which type on interface the drive is connected.
258 6e02c38d aliguori
Available types are: ide, scsi, sd, mtd, floppy, pflash, virtio.
259 e0e7ada1 balrog
@item bus=@var{bus},unit=@var{unit}
260 e0e7ada1 balrog
These options define where is connected the drive by defining the bus number and
261 e0e7ada1 balrog
the unit id.
262 e0e7ada1 balrog
@item index=@var{index}
263 e0e7ada1 balrog
This option defines where is connected the drive by using an index in the list
264 e0e7ada1 balrog
of available connectors of a given interface type.
265 e0e7ada1 balrog
@item media=@var{media}
266 e0e7ada1 balrog
This option defines the type of the media: disk or cdrom.
267 e0e7ada1 balrog
@item cyls=@var{c},heads=@var{h},secs=@var{s}[,trans=@var{t}]
268 e0e7ada1 balrog
These options have the same definition as they have in @option{-hdachs}.
269 e0e7ada1 balrog
@item snapshot=@var{snapshot}
270 e0e7ada1 balrog
@var{snapshot} is "on" or "off" and allows to enable snapshot for given drive (see @option{-snapshot}).
271 33f00271 balrog
@item cache=@var{cache}
272 9f7965c7 aliguori
@var{cache} is "none", "writeback", or "writethrough" and controls how the host cache is used to access block data.
273 1e72d3b7 aurel32
@item format=@var{format}
274 1e72d3b7 aurel32
Specify which disk @var{format} will be used rather than detecting
275 1e72d3b7 aurel32
the format.  Can be used to specifiy format=raw to avoid interpreting
276 1e72d3b7 aurel32
an untrusted format header.
277 e0e7ada1 balrog
@end table
278 e0e7ada1 balrog
279 9f7965c7 aliguori
By default, writethrough caching is used for all block device.  This means that
280 9f7965c7 aliguori
the host page cache will be used to read and write data but write notification
281 9f7965c7 aliguori
will be sent to the guest only when the data has been reported as written by
282 9f7965c7 aliguori
the storage subsystem.
283 9f7965c7 aliguori
284 9f7965c7 aliguori
Writeback caching will report data writes as completed as soon as the data is
285 9f7965c7 aliguori
present in the host page cache.  This is safe as long as you trust your host.
286 9f7965c7 aliguori
If your host crashes or loses power, then the guest may experience data
287 9f7965c7 aliguori
corruption.  When using the @option{-snapshot} option, writeback caching is
288 9f7965c7 aliguori
used by default.
289 9f7965c7 aliguori
290 9f7965c7 aliguori
The host page can be avoided entirely with @option{cache=none}.  This will
291 9f7965c7 aliguori
attempt to do disk IO directly to the guests memory.  QEMU may still perform
292 9f7965c7 aliguori
an internal copy of the data.
293 9f7965c7 aliguori
294 4dc822d7 aliguori
Some block drivers perform badly with @option{cache=writethrough}, most notably,
295 4dc822d7 aliguori
qcow2.  If performance is more important than correctness,
296 4dc822d7 aliguori
@option{cache=writeback} should be used with qcow2.  By default, if no explicit
297 4dc822d7 aliguori
caching is specified for a qcow2 disk image, @option{cache=writeback} will be
298 4dc822d7 aliguori
used.  For all other disk types, @option{cache=writethrough} is the default.
299 4dc822d7 aliguori
300 e0e7ada1 balrog
Instead of @option{-cdrom} you can use:
301 e0e7ada1 balrog
@example
302 e0e7ada1 balrog
qemu -drive file=file,index=2,media=cdrom
303 e0e7ada1 balrog
@end example
304 e0e7ada1 balrog
305 e0e7ada1 balrog
Instead of @option{-hda}, @option{-hdb}, @option{-hdc}, @option{-hdd}, you can
306 e0e7ada1 balrog
use:
307 e0e7ada1 balrog
@example
308 e0e7ada1 balrog
qemu -drive file=file,index=0,media=disk
309 e0e7ada1 balrog
qemu -drive file=file,index=1,media=disk
310 e0e7ada1 balrog
qemu -drive file=file,index=2,media=disk
311 e0e7ada1 balrog
qemu -drive file=file,index=3,media=disk
312 e0e7ada1 balrog
@end example
313 e0e7ada1 balrog
314 e0e7ada1 balrog
You can connect a CDROM to the slave of ide0:
315 e0e7ada1 balrog
@example
316 e0e7ada1 balrog
qemu -drive file=file,if=ide,index=1,media=cdrom
317 e0e7ada1 balrog
@end example
318 e0e7ada1 balrog
319 e0e7ada1 balrog
If you don't specify the "file=" argument, you define an empty drive:
320 e0e7ada1 balrog
@example
321 e0e7ada1 balrog
qemu -drive if=ide,index=1,media=cdrom
322 e0e7ada1 balrog
@end example
323 e0e7ada1 balrog
324 e0e7ada1 balrog
You can connect a SCSI disk with unit ID 6 on the bus #0:
325 e0e7ada1 balrog
@example
326 e0e7ada1 balrog
qemu -drive file=file,if=scsi,bus=0,unit=6
327 e0e7ada1 balrog
@end example
328 e0e7ada1 balrog
329 e0e7ada1 balrog
Instead of @option{-fda}, @option{-fdb}, you can use:
330 e0e7ada1 balrog
@example
331 e0e7ada1 balrog
qemu -drive file=file,index=0,if=floppy
332 e0e7ada1 balrog
qemu -drive file=file,index=1,if=floppy
333 e0e7ada1 balrog
@end example
334 e0e7ada1 balrog
335 e0e7ada1 balrog
By default, @var{interface} is "ide" and @var{index} is automatically
336 e0e7ada1 balrog
incremented:
337 e0e7ada1 balrog
@example
338 e0e7ada1 balrog
qemu -drive file=a -drive file=b"
339 e0e7ada1 balrog
@end example
340 e0e7ada1 balrog
is interpreted like:
341 e0e7ada1 balrog
@example
342 e0e7ada1 balrog
qemu -hda a -hdb b
343 e0e7ada1 balrog
@end example
344 e0e7ada1 balrog
345 eec85c2a ths
@item -boot [a|c|d|n]
346 eec85c2a ths
Boot on floppy (a), hard disk (c), CD-ROM (d), or Etherboot (n). Hard disk boot
347 eec85c2a ths
is the default.
348 1f47a922 bellard
349 181f1558 bellard
@item -snapshot
350 1f47a922 bellard
Write to temporary files instead of disk image files. In this case,
351 1f47a922 bellard
the raw disk image you use is not written back. You can however force
352 42550fde ths
the write back by pressing @key{C-a s} (@pxref{disk_images}).
353 ec410fc9 bellard
354 52ca8d6a bellard
@item -no-fd-bootchk
355 52ca8d6a bellard
Disable boot signature checking for floppy disks in Bochs BIOS. It may
356 52ca8d6a bellard
be needed to boot from old floppy disks.
357 52ca8d6a bellard
358 89dfe898 ths
@item -m @var{megs}
359 00f82b8a aurel32
Set virtual RAM size to @var{megs} megabytes. Default is 128 MiB.  Optionally,
360 00f82b8a aurel32
a suffix of ``M'' or ``G'' can be used to signify a value in megabytes or
361 00f82b8a aurel32
gigabytes respectively.
362 ec410fc9 bellard
363 34a3d239 blueswir1
@item -cpu @var{model}
364 34a3d239 blueswir1
Select CPU model (-cpu ? for list and additional feature selection)
365 34a3d239 blueswir1
366 89dfe898 ths
@item -smp @var{n}
367 3f9f3aa1 bellard
Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
368 a785e42e blueswir1
CPUs are supported. On Sparc32 target, Linux limits the number of usable CPUs
369 a785e42e blueswir1
to 4.
370 3f9f3aa1 bellard
371 1d14ffa9 bellard
@item -audio-help
372 1d14ffa9 bellard
373 1d14ffa9 bellard
Will show the audio subsystem help: list of drivers, tunable
374 1d14ffa9 bellard
parameters.
375 1d14ffa9 bellard
376 89dfe898 ths
@item -soundhw @var{card1}[,@var{card2},...] or -soundhw all
377 1d14ffa9 bellard
378 1d14ffa9 bellard
Enable audio and selected sound hardware. Use ? to print all
379 1d14ffa9 bellard
available sound hardware.
380 1d14ffa9 bellard
381 1d14ffa9 bellard
@example
382 9b3469cc malc
qemu -soundhw sb16,adlib disk.img
383 9b3469cc malc
qemu -soundhw es1370 disk.img
384 9b3469cc malc
qemu -soundhw ac97 disk.img
385 9b3469cc malc
qemu -soundhw all disk.img
386 1d14ffa9 bellard
qemu -soundhw ?
387 1d14ffa9 bellard
@end example
388 a8c490cd bellard
389 e5c9a13e balrog
Note that Linux's i810_audio OSS kernel (for AC97) module might
390 e5c9a13e balrog
require manually specifying clocking.
391 e5c9a13e balrog
392 e5c9a13e balrog
@example
393 e5c9a13e balrog
modprobe i810_audio clocking=48000
394 e5c9a13e balrog
@end example
395 e5c9a13e balrog
396 15a34c63 bellard
@item -localtime
397 15a34c63 bellard
Set the real time clock to local time (the default is to UTC
398 15a34c63 bellard
time). This option is needed to have correct date in MS-DOS or
399 15a34c63 bellard
Windows.
400 15a34c63 bellard
401 89dfe898 ths
@item -startdate @var{date}
402 1addc7c5 aurel32
Set the initial date of the real time clock. Valid formats for
403 7e0af5d0 bellard
@var{date} are: @code{now} or @code{2006-06-17T16:01:21} or
404 7e0af5d0 bellard
@code{2006-06-17}. The default value is @code{now}.
405 7e0af5d0 bellard
406 89dfe898 ths
@item -pidfile @var{file}
407 f7cce898 bellard
Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
408 f7cce898 bellard
from a script.
409 f7cce898 bellard
410 71e3ceb8 ths
@item -daemonize
411 71e3ceb8 ths
Daemonize the QEMU process after initialization.  QEMU will not detach from
412 71e3ceb8 ths
standard IO until it is ready to receive connections on any of its devices.
413 71e3ceb8 ths
This option is a useful way for external programs to launch QEMU without having
414 71e3ceb8 ths
to cope with initialization race conditions.
415 71e3ceb8 ths
416 9d0a8e6f bellard
@item -win2k-hack
417 9d0a8e6f bellard
Use it when installing Windows 2000 to avoid a disk full bug. After
418 9d0a8e6f bellard
Windows 2000 is installed, you no longer need this option (this option
419 9d0a8e6f bellard
slows down the IDE transfers).
420 9d0a8e6f bellard
421 89dfe898 ths
@item -option-rom @var{file}
422 89dfe898 ths
Load the contents of @var{file} as an option ROM.
423 89dfe898 ths
This option is useful to load things like EtherBoot.
424 9ae02555 ths
425 89dfe898 ths
@item -name @var{name}
426 89dfe898 ths
Sets the @var{name} of the guest.
427 1addc7c5 aurel32
This name will be displayed in the SDL window caption.
428 89dfe898 ths
The @var{name} will also be used for the VNC server.
429 c35734b2 ths
430 0806e3f6 bellard
@end table
431 0806e3f6 bellard
432 f858dcae ths
Display options:
433 f858dcae ths
@table @option
434 f858dcae ths
435 f858dcae ths
@item -nographic
436 f858dcae ths
437 f858dcae ths
Normally, QEMU uses SDL to display the VGA output. With this option,
438 f858dcae ths
you can totally disable graphical output so that QEMU is a simple
439 f858dcae ths
command line application. The emulated serial port is redirected on
440 f858dcae ths
the console. Therefore, you can still use QEMU to debug a Linux kernel
441 f858dcae ths
with a serial console.
442 f858dcae ths
443 052caf70 aurel32
@item -curses
444 052caf70 aurel32
445 052caf70 aurel32
Normally, QEMU uses SDL to display the VGA output.  With this option,
446 052caf70 aurel32
QEMU can display the VGA output when in text mode using a 
447 052caf70 aurel32
curses/ncurses interface.  Nothing is displayed in graphical mode.
448 052caf70 aurel32
449 f858dcae ths
@item -no-frame
450 f858dcae ths
451 f858dcae ths
Do not use decorations for SDL windows and start them using the whole
452 f858dcae ths
available screen space. This makes the using QEMU in a dedicated desktop
453 f858dcae ths
workspace more convenient.
454 f858dcae ths
455 99aa9e4c aurel32
@item -no-quit
456 99aa9e4c aurel32
457 99aa9e4c aurel32
Disable SDL window close capability.
458 99aa9e4c aurel32
459 f858dcae ths
@item -full-screen
460 f858dcae ths
Start in full screen.
461 f858dcae ths
462 89dfe898 ths
@item -vnc @var{display}[,@var{option}[,@var{option}[,...]]]
463 f858dcae ths
464 f858dcae ths
Normally, QEMU uses SDL to display the VGA output.  With this option,
465 f858dcae ths
you can have QEMU listen on VNC display @var{display} and redirect the VGA
466 f858dcae ths
display over the VNC session.  It is very useful to enable the usb
467 f858dcae ths
tablet device when using this option (option @option{-usbdevice
468 f858dcae ths
tablet}). When using the VNC display, you must use the @option{-k}
469 f858dcae ths
parameter to set the keyboard layout if you are not using en-us. Valid
470 f858dcae ths
syntax for the @var{display} is
471 f858dcae ths
472 f858dcae ths
@table @code
473 f858dcae ths
474 3aa3eea3 balrog
@item @var{host}:@var{d}
475 f858dcae ths
476 3aa3eea3 balrog
TCP connections will only be allowed from @var{host} on display @var{d}.
477 3aa3eea3 balrog
By convention the TCP port is 5900+@var{d}. Optionally, @var{host} can
478 3aa3eea3 balrog
be omitted in which case the server will accept connections from any host.
479 f858dcae ths
480 3aa3eea3 balrog
@item @code{unix}:@var{path}
481 f858dcae ths
482 f858dcae ths
Connections will be allowed over UNIX domain sockets where @var{path} is the
483 f858dcae ths
location of a unix socket to listen for connections on.
484 f858dcae ths
485 89dfe898 ths
@item none
486 f858dcae ths
487 3aa3eea3 balrog
VNC is initialized but not started. The monitor @code{change} command
488 3aa3eea3 balrog
can be used to later start the VNC server.
489 f858dcae ths
490 f858dcae ths
@end table
491 f858dcae ths
492 f858dcae ths
Following the @var{display} value there may be one or more @var{option} flags
493 f858dcae ths
separated by commas. Valid options are
494 f858dcae ths
495 f858dcae ths
@table @code
496 f858dcae ths
497 3aa3eea3 balrog
@item reverse
498 3aa3eea3 balrog
499 3aa3eea3 balrog
Connect to a listening VNC client via a ``reverse'' connection. The
500 3aa3eea3 balrog
client is specified by the @var{display}. For reverse network
501 3aa3eea3 balrog
connections (@var{host}:@var{d},@code{reverse}), the @var{d} argument
502 3aa3eea3 balrog
is a TCP port number, not a display number.
503 3aa3eea3 balrog
504 89dfe898 ths
@item password
505 f858dcae ths
506 f858dcae ths
Require that password based authentication is used for client connections.
507 f858dcae ths
The password must be set separately using the @code{change} command in the
508 f858dcae ths
@ref{pcsys_monitor}
509 f858dcae ths
510 89dfe898 ths
@item tls
511 f858dcae ths
512 f858dcae ths
Require that client use TLS when communicating with the VNC server. This
513 f858dcae ths
uses anonymous TLS credentials so is susceptible to a man-in-the-middle
514 f858dcae ths
attack. It is recommended that this option be combined with either the
515 f858dcae ths
@var{x509} or @var{x509verify} options.
516 f858dcae ths
517 89dfe898 ths
@item x509=@var{/path/to/certificate/dir}
518 f858dcae ths
519 89dfe898 ths
Valid if @option{tls} is specified. Require that x509 credentials are used
520 f858dcae ths
for negotiating the TLS session. The server will send its x509 certificate
521 f858dcae ths
to the client. It is recommended that a password be set on the VNC server
522 f858dcae ths
to provide authentication of the client when this is used. The path following
523 f858dcae ths
this option specifies where the x509 certificates are to be loaded from.
524 f858dcae ths
See the @ref{vnc_security} section for details on generating certificates.
525 f858dcae ths
526 89dfe898 ths
@item x509verify=@var{/path/to/certificate/dir}
527 f858dcae ths
528 89dfe898 ths
Valid if @option{tls} is specified. Require that x509 credentials are used
529 f858dcae ths
for negotiating the TLS session. The server will send its x509 certificate
530 f858dcae ths
to the client, and request that the client send its own x509 certificate.
531 f858dcae ths
The server will validate the client's certificate against the CA certificate,
532 f858dcae ths
and reject clients when validation fails. If the certificate authority is
533 f858dcae ths
trusted, this is a sufficient authentication mechanism. You may still wish
534 f858dcae ths
to set a password on the VNC server as a second authentication layer. The
535 f858dcae ths
path following this option specifies where the x509 certificates are to
536 f858dcae ths
be loaded from. See the @ref{vnc_security} section for details on generating
537 f858dcae ths
certificates.
538 f858dcae ths
539 f858dcae ths
@end table
540 f858dcae ths
541 89dfe898 ths
@item -k @var{language}
542 f858dcae ths
543 f858dcae ths
Use keyboard layout @var{language} (for example @code{fr} for
544 f858dcae ths
French). This option is only needed where it is not easy to get raw PC
545 f858dcae ths
keycodes (e.g. on Macs, with some X11 servers or with a VNC
546 f858dcae ths
display). You don't normally need to use it on PC/Linux or PC/Windows
547 f858dcae ths
hosts.
548 f858dcae ths
549 f858dcae ths
The available layouts are:
550 f858dcae ths
@example
551 f858dcae ths
ar  de-ch  es  fo     fr-ca  hu  ja  mk     no  pt-br  sv
552 f858dcae ths
da  en-gb  et  fr     fr-ch  is  lt  nl     pl  ru     th
553 f858dcae ths
de  en-us  fi  fr-be  hr     it  lv  nl-be  pt  sl     tr
554 f858dcae ths
@end example
555 f858dcae ths
556 f858dcae ths
The default is @code{en-us}.
557 f858dcae ths
558 f858dcae ths
@end table
559 f858dcae ths
560 b389dbfb bellard
USB options:
561 b389dbfb bellard
@table @option
562 b389dbfb bellard
563 b389dbfb bellard
@item -usb
564 b389dbfb bellard
Enable the USB driver (will be the default soon)
565 b389dbfb bellard
566 89dfe898 ths
@item -usbdevice @var{devname}
567 0aff66b5 pbrook
Add the USB device @var{devname}. @xref{usb_devices}.
568 8fccda83 ths
569 8fccda83 ths
@table @code
570 8fccda83 ths
571 8fccda83 ths
@item mouse
572 8fccda83 ths
Virtual Mouse. This will override the PS/2 mouse emulation when activated.
573 8fccda83 ths
574 8fccda83 ths
@item tablet
575 8fccda83 ths
Pointer device that uses absolute coordinates (like a touchscreen). This
576 8fccda83 ths
means qemu is able to report the mouse position without having to grab the
577 8fccda83 ths
mouse. Also overrides the PS/2 mouse emulation when activated.
578 8fccda83 ths
579 334c0241 aurel32
@item disk:[format=@var{format}]:file
580 334c0241 aurel32
Mass storage device based on file. The optional @var{format} argument
581 334c0241 aurel32
will be used rather than detecting the format. Can be used to specifiy
582 334c0241 aurel32
format=raw to avoid interpreting an untrusted format header.
583 8fccda83 ths
584 8fccda83 ths
@item host:bus.addr
585 8fccda83 ths
Pass through the host device identified by bus.addr (Linux only).
586 8fccda83 ths
587 8fccda83 ths
@item host:vendor_id:product_id
588 8fccda83 ths
Pass through the host device identified by vendor_id:product_id (Linux only).
589 8fccda83 ths
590 db380c06 balrog
@item serial:[vendorid=@var{vendor_id}][,productid=@var{product_id}]:@var{dev}
591 db380c06 balrog
Serial converter to host character device @var{dev}, see @code{-serial} for the
592 db380c06 balrog
available devices.
593 db380c06 balrog
594 2e4d9fb1 aurel32
@item braille
595 2e4d9fb1 aurel32
Braille device.  This will use BrlAPI to display the braille output on a real
596 2e4d9fb1 aurel32
or fake device.
597 2e4d9fb1 aurel32
598 9ad97e65 balrog
@item net:options
599 6c9f886c balrog
Network adapter that supports CDC ethernet and RNDIS protocols.
600 6c9f886c balrog
601 8fccda83 ths
@end table
602 8fccda83 ths
603 b389dbfb bellard
@end table
604 b389dbfb bellard
605 1f673135 bellard
Network options:
606 1f673135 bellard
607 1f673135 bellard
@table @option
608 1f673135 bellard
609 89dfe898 ths
@item -net nic[,vlan=@var{n}][,macaddr=@var{addr}][,model=@var{type}]
610 41d03949 bellard
Create a new Network Interface Card and connect it to VLAN @var{n} (@var{n}
611 c4a7060c blueswir1
= 0 is the default). The NIC is an ne2k_pci by default on the PC
612 41d03949 bellard
target. Optionally, the MAC address can be changed. If no
613 41d03949 bellard
@option{-net} option is specified, a single NIC is created.
614 549444e1 balrog
Qemu can emulate several different models of network card.
615 549444e1 balrog
Valid values for @var{type} are
616 549444e1 balrog
@code{i82551}, @code{i82557b}, @code{i82559er},
617 549444e1 balrog
@code{ne2k_pci}, @code{ne2k_isa}, @code{pcnet}, @code{rtl8139},
618 9ad97e65 balrog
@code{e1000}, @code{smc91c111}, @code{lance} and @code{mcf_fec}.
619 c4a7060c blueswir1
Not all devices are supported on all targets.  Use -net nic,model=?
620 c4a7060c blueswir1
for a list of available devices for your target.
621 41d03949 bellard
622 89dfe898 ths
@item -net user[,vlan=@var{n}][,hostname=@var{name}]
623 7e89463d bellard
Use the user mode network stack which requires no administrator
624 4be456f1 ths
privilege to run.  @option{hostname=name} can be used to specify the client
625 115defd1 pbrook
hostname reported by the builtin DHCP server.
626 41d03949 bellard
627 f5fc9975 aurel32
@item -net tap[,vlan=@var{n}][,fd=@var{h}][,ifname=@var{name}][,script=@var{file}][,downscript=@var{dfile}]
628 030370a2 aurel32
Connect the host TAP network interface @var{name} to VLAN @var{n}, use
629 030370a2 aurel32
the network script @var{file} to configure it and the network script 
630 030370a2 aurel32
@var{dfile} to deconfigure it. If @var{name} is not provided, the OS 
631 030370a2 aurel32
automatically provides one. @option{fd}=@var{h} can be used to specify
632 030370a2 aurel32
the handle of an already opened host TAP interface. The default network 
633 030370a2 aurel32
configure script is @file{/etc/qemu-ifup} and the default network 
634 030370a2 aurel32
deconfigure script is @file{/etc/qemu-ifdown}. Use @option{script=no} 
635 030370a2 aurel32
or @option{downscript=no} to disable script execution. Example:
636 1f673135 bellard
637 41d03949 bellard
@example
638 41d03949 bellard
qemu linux.img -net nic -net tap
639 41d03949 bellard
@end example
640 41d03949 bellard
641 41d03949 bellard
More complicated example (two NICs, each one connected to a TAP device)
642 41d03949 bellard
@example
643 41d03949 bellard
qemu linux.img -net nic,vlan=0 -net tap,vlan=0,ifname=tap0 \
644 41d03949 bellard
               -net nic,vlan=1 -net tap,vlan=1,ifname=tap1
645 41d03949 bellard
@end example
646 3f1a88f4 bellard
647 3f1a88f4 bellard
648 89dfe898 ths
@item -net socket[,vlan=@var{n}][,fd=@var{h}][,listen=[@var{host}]:@var{port}][,connect=@var{host}:@var{port}]
649 1f673135 bellard
650 41d03949 bellard
Connect the VLAN @var{n} to a remote VLAN in another QEMU virtual
651 41d03949 bellard
machine using a TCP socket connection. If @option{listen} is
652 41d03949 bellard
specified, QEMU waits for incoming connections on @var{port}
653 41d03949 bellard
(@var{host} is optional). @option{connect} is used to connect to
654 89dfe898 ths
another QEMU instance using the @option{listen} option. @option{fd}=@var{h}
655 3d830459 bellard
specifies an already opened TCP socket.
656 1f673135 bellard
657 41d03949 bellard
Example:
658 41d03949 bellard
@example
659 41d03949 bellard
# launch a first QEMU instance
660 debc7065 bellard
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
661 debc7065 bellard
               -net socket,listen=:1234
662 debc7065 bellard
# connect the VLAN 0 of this instance to the VLAN 0
663 debc7065 bellard
# of the first instance
664 debc7065 bellard
qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
665 debc7065 bellard
               -net socket,connect=127.0.0.1:1234
666 41d03949 bellard
@end example
667 52c00a5f bellard
668 89dfe898 ths
@item -net socket[,vlan=@var{n}][,fd=@var{h}][,mcast=@var{maddr}:@var{port}]
669 3d830459 bellard
670 3d830459 bellard
Create a VLAN @var{n} shared with another QEMU virtual
671 5fafdf24 ths
machines using a UDP multicast socket, effectively making a bus for
672 3d830459 bellard
every QEMU with same multicast address @var{maddr} and @var{port}.
673 3d830459 bellard
NOTES:
674 3d830459 bellard
@enumerate
675 5fafdf24 ths
@item
676 5fafdf24 ths
Several QEMU can be running on different hosts and share same bus (assuming
677 3d830459 bellard
correct multicast setup for these hosts).
678 3d830459 bellard
@item
679 3d830459 bellard
mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
680 3d830459 bellard
@url{http://user-mode-linux.sf.net}.
681 4be456f1 ths
@item
682 4be456f1 ths
Use @option{fd=h} to specify an already opened UDP multicast socket.
683 3d830459 bellard
@end enumerate
684 3d830459 bellard
685 3d830459 bellard
Example:
686 3d830459 bellard
@example
687 3d830459 bellard
# launch one QEMU instance
688 debc7065 bellard
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
689 debc7065 bellard
               -net socket,mcast=230.0.0.1:1234
690 3d830459 bellard
# launch another QEMU instance on same "bus"
691 debc7065 bellard
qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
692 debc7065 bellard
               -net socket,mcast=230.0.0.1:1234
693 3d830459 bellard
# launch yet another QEMU instance on same "bus"
694 debc7065 bellard
qemu linux.img -net nic,macaddr=52:54:00:12:34:58 \
695 debc7065 bellard
               -net socket,mcast=230.0.0.1:1234
696 3d830459 bellard
@end example
697 3d830459 bellard
698 3d830459 bellard
Example (User Mode Linux compat.):
699 3d830459 bellard
@example
700 debc7065 bellard
# launch QEMU instance (note mcast address selected
701 debc7065 bellard
# is UML's default)
702 debc7065 bellard
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
703 debc7065 bellard
               -net socket,mcast=239.192.168.1:1102
704 3d830459 bellard
# launch UML
705 3d830459 bellard
/path/to/linux ubd0=/path/to/root_fs eth0=mcast
706 3d830459 bellard
@end example
707 8a16d273 ths
708 8a16d273 ths
@item -net vde[,vlan=@var{n}][,sock=@var{socketpath}][,port=@var{n}][,group=@var{groupname}][,mode=@var{octalmode}]
709 8a16d273 ths
Connect VLAN @var{n} to PORT @var{n} of a vde switch running on host and
710 8a16d273 ths
listening for incoming connections on @var{socketpath}. Use GROUP @var{groupname}
711 8a16d273 ths
and MODE @var{octalmode} to change default ownership and permissions for
712 8a16d273 ths
communication port. This option is available only if QEMU has been compiled
713 8a16d273 ths
with vde support enabled.
714 8a16d273 ths
715 8a16d273 ths
Example:
716 8a16d273 ths
@example
717 8a16d273 ths
# launch vde switch
718 8a16d273 ths
vde_switch -F -sock /tmp/myswitch
719 8a16d273 ths
# launch QEMU instance
720 8a16d273 ths
qemu linux.img -net nic -net vde,sock=/tmp/myswitch
721 8a16d273 ths
@end example
722 3d830459 bellard
723 41d03949 bellard
@item -net none
724 41d03949 bellard
Indicate that no network devices should be configured. It is used to
725 039af320 bellard
override the default configuration (@option{-net nic -net user}) which
726 039af320 bellard
is activated if no @option{-net} options are provided.
727 52c00a5f bellard
728 89dfe898 ths
@item -tftp @var{dir}
729 9bf05444 bellard
When using the user mode network stack, activate a built-in TFTP
730 0db1137d ths
server. The files in @var{dir} will be exposed as the root of a TFTP server.
731 0db1137d ths
The TFTP client on the guest must be configured in binary mode (use the command
732 0db1137d ths
@code{bin} of the Unix TFTP client). The host IP address on the guest is as
733 0db1137d ths
usual 10.0.2.2.
734 9bf05444 bellard
735 89dfe898 ths
@item -bootp @var{file}
736 47d5d01a ths
When using the user mode network stack, broadcast @var{file} as the BOOTP
737 47d5d01a ths
filename.  In conjunction with @option{-tftp}, this can be used to network boot
738 47d5d01a ths
a guest from a local directory.
739 47d5d01a ths
740 47d5d01a ths
Example (using pxelinux):
741 47d5d01a ths
@example
742 47d5d01a ths
qemu -hda linux.img -boot n -tftp /path/to/tftp/files -bootp /pxelinux.0
743 47d5d01a ths
@end example
744 47d5d01a ths
745 89dfe898 ths
@item -smb @var{dir}
746 2518bd0d bellard
When using the user mode network stack, activate a built-in SMB
747 89dfe898 ths
server so that Windows OSes can access to the host files in @file{@var{dir}}
748 2518bd0d bellard
transparently.
749 2518bd0d bellard
750 2518bd0d bellard
In the guest Windows OS, the line:
751 2518bd0d bellard
@example
752 2518bd0d bellard
10.0.2.4 smbserver
753 2518bd0d bellard
@end example
754 2518bd0d bellard
must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
755 2518bd0d bellard
or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
756 2518bd0d bellard
757 89dfe898 ths
Then @file{@var{dir}} can be accessed in @file{\\smbserver\qemu}.
758 2518bd0d bellard
759 2518bd0d bellard
Note that a SAMBA server must be installed on the host OS in
760 366dfc52 ths
@file{/usr/sbin/smbd}. QEMU was tested successfully with smbd version
761 6cc721cf bellard
2.2.7a from the Red Hat 9 and version 3.0.10-1.fc3 from Fedora Core 3.
762 2518bd0d bellard
763 89dfe898 ths
@item -redir [tcp|udp]:@var{host-port}:[@var{guest-host}]:@var{guest-port}
764 9bf05444 bellard
765 9bf05444 bellard
When using the user mode network stack, redirect incoming TCP or UDP
766 9bf05444 bellard
connections to the host port @var{host-port} to the guest
767 9bf05444 bellard
@var{guest-host} on guest port @var{guest-port}. If @var{guest-host}
768 9bf05444 bellard
is not specified, its value is 10.0.2.15 (default address given by the
769 9bf05444 bellard
built-in DHCP server).
770 9bf05444 bellard
771 9bf05444 bellard
For example, to redirect host X11 connection from screen 1 to guest
772 9bf05444 bellard
screen 0, use the following:
773 9bf05444 bellard
774 9bf05444 bellard
@example
775 9bf05444 bellard
# on the host
776 9bf05444 bellard
qemu -redir tcp:6001::6000 [...]
777 9bf05444 bellard
# this host xterm should open in the guest X11 server
778 9bf05444 bellard
xterm -display :1
779 9bf05444 bellard
@end example
780 9bf05444 bellard
781 9bf05444 bellard
To redirect telnet connections from host port 5555 to telnet port on
782 9bf05444 bellard
the guest, use the following:
783 9bf05444 bellard
784 9bf05444 bellard
@example
785 9bf05444 bellard
# on the host
786 9bf05444 bellard
qemu -redir tcp:5555::23 [...]
787 9bf05444 bellard
telnet localhost 5555
788 9bf05444 bellard
@end example
789 9bf05444 bellard
790 9bf05444 bellard
Then when you use on the host @code{telnet localhost 5555}, you
791 9bf05444 bellard
connect to the guest telnet server.
792 9bf05444 bellard
793 1f673135 bellard
@end table
794 1f673135 bellard
795 2d564691 balrog
Bluetooth(R) options:
796 2d564691 balrog
@table @option
797 2d564691 balrog
798 2d564691 balrog
@item -bt hci[...]
799 2d564691 balrog
Defines the function of the corresponding Bluetooth HCI.  -bt options
800 2d564691 balrog
are matched with the HCIs present in the chosen machine type.  For
801 2d564691 balrog
example when emulating a machine with only one HCI built into it, only
802 2d564691 balrog
the first @code{-bt hci[...]} option is valid and defines the HCI's
803 2d564691 balrog
logic.  The Transport Layer is decided by the machine type.  Currently
804 2d564691 balrog
the machines @code{n800} and @code{n810} have one HCI and all other
805 2d564691 balrog
machines have none.
806 2d564691 balrog
807 2d564691 balrog
@anchor{bt-hcis}
808 2d564691 balrog
The following three types are recognized:
809 2d564691 balrog
810 2d564691 balrog
@table @code
811 2d564691 balrog
@item -bt hci,null
812 2d564691 balrog
(default) The corresponding Bluetooth HCI assumes no internal logic
813 2d564691 balrog
and will not respond to any HCI commands or emit events.
814 2d564691 balrog
815 2d564691 balrog
@item -bt hci,host[:@var{id}]
816 2d564691 balrog
(@code{bluez} only) The corresponding HCI passes commands / events
817 2d564691 balrog
to / from the physical HCI identified by the name @var{id} (default:
818 2d564691 balrog
@code{hci0}) on the computer running QEMU.  Only available on @code{bluez}
819 2d564691 balrog
capable systems like Linux.
820 2d564691 balrog
821 2d564691 balrog
@item -bt hci[,vlan=@var{n}]
822 2d564691 balrog
Add a virtual, standard HCI that will participate in the Bluetooth
823 2d564691 balrog
scatternet @var{n} (default @code{0}).  Similarly to @option{-net}
824 2d564691 balrog
VLANs, devices inside a bluetooth network @var{n} can only communicate
825 2d564691 balrog
with other devices in the same network (scatternet).
826 2d564691 balrog
@end table
827 2d564691 balrog
828 2d564691 balrog
@item -bt vhci[,vlan=@var{n}]
829 2d564691 balrog
(Linux-host only) Create a HCI in scatternet @var{n} (default 0) attached
830 2d564691 balrog
to the host bluetooth stack instead of to the emulated target.  This
831 2d564691 balrog
allows the host and target machines to participate in a common scatternet
832 2d564691 balrog
and communicate.  Requires the Linux @code{vhci} driver installed.  Can
833 2d564691 balrog
be used as following:
834 2d564691 balrog
835 2d564691 balrog
@example
836 2d564691 balrog
qemu [...OPTIONS...] -bt hci,vlan=5 -bt vhci,vlan=5
837 2d564691 balrog
@end example
838 2d564691 balrog
839 2d564691 balrog
@item -bt device:@var{dev}[,vlan=@var{n}]
840 2d564691 balrog
Emulate a bluetooth device @var{dev} and place it in network @var{n}
841 2d564691 balrog
(default @code{0}).  QEMU can only emulate one type of bluetooth devices
842 2d564691 balrog
currently:
843 2d564691 balrog
844 2d564691 balrog
@table @code
845 2d564691 balrog
@item keyboard
846 2d564691 balrog
Virtual wireless keyboard implementing the HIDP bluetooth profile.
847 2d564691 balrog
@end table
848 2d564691 balrog
849 2d564691 balrog
@end table
850 2d564691 balrog
851 41d03949 bellard
Linux boot specific: When using these options, you can use a given
852 1f673135 bellard
Linux kernel without installing it in the disk image. It can be useful
853 1f673135 bellard
for easier testing of various kernels.
854 1f673135 bellard
855 0806e3f6 bellard
@table @option
856 0806e3f6 bellard
857 89dfe898 ths
@item -kernel @var{bzImage}
858 0806e3f6 bellard
Use @var{bzImage} as kernel image.
859 0806e3f6 bellard
860 89dfe898 ths
@item -append @var{cmdline}
861 0806e3f6 bellard
Use @var{cmdline} as kernel command line
862 0806e3f6 bellard
863 89dfe898 ths
@item -initrd @var{file}
864 0806e3f6 bellard
Use @var{file} as initial ram disk.
865 0806e3f6 bellard
866 ec410fc9 bellard
@end table
867 ec410fc9 bellard
868 15a34c63 bellard
Debug/Expert options:
869 ec410fc9 bellard
@table @option
870 a0a821a4 bellard
871 89dfe898 ths
@item -serial @var{dev}
872 0bab00f3 bellard
Redirect the virtual serial port to host character device
873 0bab00f3 bellard
@var{dev}. The default device is @code{vc} in graphical mode and
874 0bab00f3 bellard
@code{stdio} in non graphical mode.
875 0bab00f3 bellard
876 0bab00f3 bellard
This option can be used several times to simulate up to 4 serials
877 0bab00f3 bellard
ports.
878 0bab00f3 bellard
879 c03b0f0f bellard
Use @code{-serial none} to disable all serial ports.
880 c03b0f0f bellard
881 0bab00f3 bellard
Available character devices are:
882 a0a821a4 bellard
@table @code
883 af3a9031 ths
@item vc[:WxH]
884 af3a9031 ths
Virtual console. Optionally, a width and height can be given in pixel with
885 af3a9031 ths
@example
886 af3a9031 ths
vc:800x600
887 af3a9031 ths
@end example
888 af3a9031 ths
It is also possible to specify width or height in characters:
889 af3a9031 ths
@example
890 af3a9031 ths
vc:80Cx24C
891 af3a9031 ths
@end example
892 a0a821a4 bellard
@item pty
893 a0a821a4 bellard
[Linux only] Pseudo TTY (a new PTY is automatically allocated)
894 c03b0f0f bellard
@item none
895 c03b0f0f bellard
No device is allocated.
896 a0a821a4 bellard
@item null
897 a0a821a4 bellard
void device
898 f8d179e3 bellard
@item /dev/XXX
899 e57a8c0e bellard
[Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
900 f8d179e3 bellard
parameters are set according to the emulated ones.
901 89dfe898 ths
@item /dev/parport@var{N}
902 e57a8c0e bellard
[Linux only, parallel port only] Use host parallel port
903 5867c88a ths
@var{N}. Currently SPP and EPP parallel port features can be used.
904 89dfe898 ths
@item file:@var{filename}
905 89dfe898 ths
Write output to @var{filename}. No character can be read.
906 a0a821a4 bellard
@item stdio
907 a0a821a4 bellard
[Unix only] standard input/output
908 89dfe898 ths
@item pipe:@var{filename}
909 0bab00f3 bellard
name pipe @var{filename}
910 89dfe898 ths
@item COM@var{n}
911 0bab00f3 bellard
[Windows only] Use host serial port @var{n}
912 89dfe898 ths
@item udp:[@var{remote_host}]:@var{remote_port}[@@[@var{src_ip}]:@var{src_port}]
913 89dfe898 ths
This implements UDP Net Console.
914 89dfe898 ths
When @var{remote_host} or @var{src_ip} are not specified
915 89dfe898 ths
they default to @code{0.0.0.0}.
916 89dfe898 ths
When not using a specified @var{src_port} a random port is automatically chosen.
917 951f1351 bellard
918 951f1351 bellard
If you just want a simple readonly console you can use @code{netcat} or
919 951f1351 bellard
@code{nc}, by starting qemu with: @code{-serial udp::4555} and nc as:
920 951f1351 bellard
@code{nc -u -l -p 4555}. Any time qemu writes something to that port it
921 951f1351 bellard
will appear in the netconsole session.
922 0bab00f3 bellard
923 0bab00f3 bellard
If you plan to send characters back via netconsole or you want to stop
924 0bab00f3 bellard
and start qemu a lot of times, you should have qemu use the same
925 0bab00f3 bellard
source port each time by using something like @code{-serial
926 951f1351 bellard
udp::4555@@:4556} to qemu. Another approach is to use a patched
927 0bab00f3 bellard
version of netcat which can listen to a TCP port and send and receive
928 0bab00f3 bellard
characters via udp.  If you have a patched version of netcat which
929 0bab00f3 bellard
activates telnet remote echo and single char transfer, then you can
930 0bab00f3 bellard
use the following options to step up a netcat redirector to allow
931 0bab00f3 bellard
telnet on port 5555 to access the qemu port.
932 0bab00f3 bellard
@table @code
933 951f1351 bellard
@item Qemu Options:
934 951f1351 bellard
-serial udp::4555@@:4556
935 951f1351 bellard
@item netcat options:
936 951f1351 bellard
-u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
937 951f1351 bellard
@item telnet options:
938 951f1351 bellard
localhost 5555
939 951f1351 bellard
@end table
940 951f1351 bellard
941 951f1351 bellard
942 89dfe898 ths
@item tcp:[@var{host}]:@var{port}[,@var{server}][,nowait][,nodelay]
943 951f1351 bellard
The TCP Net Console has two modes of operation.  It can send the serial
944 951f1351 bellard
I/O to a location or wait for a connection from a location.  By default
945 951f1351 bellard
the TCP Net Console is sent to @var{host} at the @var{port}.  If you use
946 f542086d bellard
the @var{server} option QEMU will wait for a client socket application
947 f542086d bellard
to connect to the port before continuing, unless the @code{nowait}
948 f7499989 pbrook
option was specified.  The @code{nodelay} option disables the Nagle buffering
949 4be456f1 ths
algorithm.  If @var{host} is omitted, 0.0.0.0 is assumed. Only
950 951f1351 bellard
one TCP connection at a time is accepted. You can use @code{telnet} to
951 951f1351 bellard
connect to the corresponding character device.
952 951f1351 bellard
@table @code
953 951f1351 bellard
@item Example to send tcp console to 192.168.0.2 port 4444
954 951f1351 bellard
-serial tcp:192.168.0.2:4444
955 951f1351 bellard
@item Example to listen and wait on port 4444 for connection
956 951f1351 bellard
-serial tcp::4444,server
957 951f1351 bellard
@item Example to not wait and listen on ip 192.168.0.100 port 4444
958 951f1351 bellard
-serial tcp:192.168.0.100:4444,server,nowait
959 a0a821a4 bellard
@end table
960 a0a821a4 bellard
961 89dfe898 ths
@item telnet:@var{host}:@var{port}[,server][,nowait][,nodelay]
962 951f1351 bellard
The telnet protocol is used instead of raw tcp sockets.  The options
963 951f1351 bellard
work the same as if you had specified @code{-serial tcp}.  The
964 951f1351 bellard
difference is that the port acts like a telnet server or client using
965 951f1351 bellard
telnet option negotiation.  This will also allow you to send the
966 951f1351 bellard
MAGIC_SYSRQ sequence if you use a telnet that supports sending the break
967 951f1351 bellard
sequence.  Typically in unix telnet you do it with Control-] and then
968 951f1351 bellard
type "send break" followed by pressing the enter key.
969 0bab00f3 bellard
970 89dfe898 ths
@item unix:@var{path}[,server][,nowait]
971 ffd843bc ths
A unix domain socket is used instead of a tcp socket.  The option works the
972 ffd843bc ths
same as if you had specified @code{-serial tcp} except the unix domain socket
973 ffd843bc ths
@var{path} is used for connections.
974 ffd843bc ths
975 89dfe898 ths
@item mon:@var{dev_string}
976 20d8a3ed ths
This is a special option to allow the monitor to be multiplexed onto
977 20d8a3ed ths
another serial port.  The monitor is accessed with key sequence of
978 20d8a3ed ths
@key{Control-a} and then pressing @key{c}. See monitor access
979 20d8a3ed ths
@ref{pcsys_keys} in the -nographic section for more keys.
980 20d8a3ed ths
@var{dev_string} should be any one of the serial devices specified
981 20d8a3ed ths
above.  An example to multiplex the monitor onto a telnet server
982 20d8a3ed ths
listening on port 4444 would be:
983 20d8a3ed ths
@table @code
984 20d8a3ed ths
@item -serial mon:telnet::4444,server,nowait
985 20d8a3ed ths
@end table
986 20d8a3ed ths
987 2e4d9fb1 aurel32
@item braille
988 2e4d9fb1 aurel32
Braille device.  This will use BrlAPI to display the braille output on a real
989 2e4d9fb1 aurel32
or fake device.
990 2e4d9fb1 aurel32
991 0bab00f3 bellard
@end table
992 05d5818c bellard
993 89dfe898 ths
@item -parallel @var{dev}
994 e57a8c0e bellard
Redirect the virtual parallel port to host device @var{dev} (same
995 e57a8c0e bellard
devices as the serial port). On Linux hosts, @file{/dev/parportN} can
996 e57a8c0e bellard
be used to use hardware devices connected on the corresponding host
997 e57a8c0e bellard
parallel port.
998 e57a8c0e bellard
999 e57a8c0e bellard
This option can be used several times to simulate up to 3 parallel
1000 e57a8c0e bellard
ports.
1001 e57a8c0e bellard
1002 c03b0f0f bellard
Use @code{-parallel none} to disable all parallel ports.
1003 c03b0f0f bellard
1004 89dfe898 ths
@item -monitor @var{dev}
1005 a0a821a4 bellard
Redirect the monitor to host device @var{dev} (same devices as the
1006 a0a821a4 bellard
serial port).
1007 a0a821a4 bellard
The default device is @code{vc} in graphical mode and @code{stdio} in
1008 a0a821a4 bellard
non graphical mode.
1009 a0a821a4 bellard
1010 20d8a3ed ths
@item -echr numeric_ascii_value
1011 20d8a3ed ths
Change the escape character used for switching to the monitor when using
1012 20d8a3ed ths
monitor and serial sharing.  The default is @code{0x01} when using the
1013 20d8a3ed ths
@code{-nographic} option.  @code{0x01} is equal to pressing
1014 20d8a3ed ths
@code{Control-a}.  You can select a different character from the ascii
1015 20d8a3ed ths
control keys where 1 through 26 map to Control-a through Control-z.  For
1016 20d8a3ed ths
instance you could use the either of the following to change the escape
1017 20d8a3ed ths
character to Control-t.
1018 20d8a3ed ths
@table @code
1019 20d8a3ed ths
@item -echr 0x14
1020 20d8a3ed ths
@item -echr 20
1021 20d8a3ed ths
@end table
1022 20d8a3ed ths
1023 ec410fc9 bellard
@item -s
1024 5fafdf24 ths
Wait gdb connection to port 1234 (@pxref{gdb_usage}).
1025 89dfe898 ths
@item -p @var{port}
1026 4046d913 pbrook
Change gdb connection port.  @var{port} can be either a decimal number
1027 4046d913 pbrook
to specify a TCP port, or a host device (same devices as the serial port).
1028 52c00a5f bellard
@item -S
1029 52c00a5f bellard
Do not start CPU at startup (you must type 'c' in the monitor).
1030 3b46e624 ths
@item -d
1031 9d4520d0 bellard
Output log in /tmp/qemu.log
1032 89dfe898 ths
@item -hdachs @var{c},@var{h},@var{s},[,@var{t}]
1033 46d4767d bellard
Force hard disk 0 physical geometry (1 <= @var{c} <= 16383, 1 <=
1034 46d4767d bellard
@var{h} <= 16, 1 <= @var{s} <= 63) and optionally force the BIOS
1035 46d4767d bellard
translation mode (@var{t}=none, lba or auto). Usually QEMU can guess
1036 4be456f1 ths
all those parameters. This option is useful for old MS-DOS disk
1037 46d4767d bellard
images.
1038 7c3fc84d bellard
1039 87b47350 bellard
@item -L path
1040 87b47350 bellard
Set the directory for the BIOS, VGA BIOS and keymaps.
1041 87b47350 bellard
1042 3893c124 malc
@item -vga @var{type}
1043 3893c124 malc
Select type of VGA card to emulate. Valid values for @var{type} are
1044 3893c124 malc
@table @code
1045 3893c124 malc
@item cirrus
1046 3893c124 malc
Cirrus Logic GD5446 Video card. All Windows versions starting from
1047 3893c124 malc
Windows 95 should recognize and use this graphic card. For optimal
1048 3893c124 malc
performances, use 16 bit color depth in the guest and the host OS.
1049 3893c124 malc
(This one is the default)
1050 3893c124 malc
@item std
1051 3893c124 malc
Standard VGA card with Bochs VBE extensions.  If your guest OS
1052 3893c124 malc
supports the VESA 2.0 VBE extensions (e.g. Windows XP) and if you want
1053 3893c124 malc
to use high resolution modes (>= 1280x1024x16) then you should use
1054 3893c124 malc
this option.
1055 3893c124 malc
@item vmware
1056 3893c124 malc
VMWare SVGA-II compatible adapter. Use it if you have sufficiently
1057 3893c124 malc
recent XFree86/XOrg server or Windows guest with a driver for this
1058 3893c124 malc
card.
1059 3893c124 malc
@end table
1060 3cb0853a bellard
1061 3c656346 bellard
@item -no-acpi
1062 3c656346 bellard
Disable ACPI (Advanced Configuration and Power Interface) support. Use
1063 3c656346 bellard
it if your guest OS complains about ACPI problems (PC target machine
1064 3c656346 bellard
only).
1065 3c656346 bellard
1066 d1beab82 bellard
@item -no-reboot
1067 d1beab82 bellard
Exit instead of rebooting.
1068 d1beab82 bellard
1069 99aa9e4c aurel32
@item -no-shutdown
1070 99aa9e4c aurel32
Don't exit QEMU on guest shutdown, but instead only stop the emulation.
1071 99aa9e4c aurel32
This allows for instance switching to monitor to commit changes to the
1072 99aa9e4c aurel32
disk image.
1073 99aa9e4c aurel32
1074 d63d307f bellard
@item -loadvm file
1075 d63d307f bellard
Start right away with a saved state (@code{loadvm} in monitor)
1076 8e71621f pbrook
1077 8e71621f pbrook
@item -semihosting
1078 a87295e8 pbrook
Enable semihosting syscall emulation (ARM and M68K target machines only).
1079 a87295e8 pbrook
1080 a87295e8 pbrook
On ARM this implements the "Angel" interface.
1081 a87295e8 pbrook
On M68K this implements the "ColdFire GDB" interface used by libgloss.
1082 a87295e8 pbrook
1083 8e71621f pbrook
Note that this allows guest direct access to the host filesystem,
1084 8e71621f pbrook
so should only be used with trusted guest OS.
1085 2e70f6ef pbrook
1086 2e70f6ef pbrook
@item -icount [N|auto]
1087 2e70f6ef pbrook
Enable virtual instruction counter.  The virtual cpu will execute one
1088 2e70f6ef pbrook
instruction every 2^N ns of virtual time.  If @code{auto} is specified
1089 2e70f6ef pbrook
then the virtual cpu speed will be automatically adjusted to keep virtual
1090 2e70f6ef pbrook
time within a few seconds of real time.
1091 2e70f6ef pbrook
1092 2e70f6ef pbrook
Note that while this option can give deterministic behavior, it does not
1093 2e70f6ef pbrook
provide cycle accurate emulation.  Modern CPUs contain superscalar out of
1094 dd5d6fe9 pbrook
order cores with complex cache hierarchies.  The number of instructions
1095 2e70f6ef pbrook
executed often has little or no correlation with actual performance.
1096 ec410fc9 bellard
@end table
1097 ec410fc9 bellard
1098 3e11db9a bellard
@c man end
1099 3e11db9a bellard
1100 debc7065 bellard
@node pcsys_keys
1101 3e11db9a bellard
@section Keys
1102 3e11db9a bellard
1103 3e11db9a bellard
@c man begin OPTIONS
1104 3e11db9a bellard
1105 a1b74fe8 bellard
During the graphical emulation, you can use the following keys:
1106 a1b74fe8 bellard
@table @key
1107 f9859310 bellard
@item Ctrl-Alt-f
1108 a1b74fe8 bellard
Toggle full screen
1109 a0a821a4 bellard
1110 f9859310 bellard
@item Ctrl-Alt-n
1111 a0a821a4 bellard
Switch to virtual console 'n'. Standard console mappings are:
1112 a0a821a4 bellard
@table @emph
1113 a0a821a4 bellard
@item 1
1114 a0a821a4 bellard
Target system display
1115 a0a821a4 bellard
@item 2
1116 a0a821a4 bellard
Monitor
1117 a0a821a4 bellard
@item 3
1118 a0a821a4 bellard
Serial port
1119 a1b74fe8 bellard
@end table
1120 a1b74fe8 bellard
1121 f9859310 bellard
@item Ctrl-Alt
1122 a0a821a4 bellard
Toggle mouse and keyboard grab.
1123 a0a821a4 bellard
@end table
1124 a0a821a4 bellard
1125 3e11db9a bellard
In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
1126 3e11db9a bellard
@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
1127 3e11db9a bellard
1128 a0a821a4 bellard
During emulation, if you are using the @option{-nographic} option, use
1129 a0a821a4 bellard
@key{Ctrl-a h} to get terminal commands:
1130 ec410fc9 bellard
1131 ec410fc9 bellard
@table @key
1132 a1b74fe8 bellard
@item Ctrl-a h
1133 ec410fc9 bellard
Print this help
1134 3b46e624 ths
@item Ctrl-a x
1135 366dfc52 ths
Exit emulator
1136 3b46e624 ths
@item Ctrl-a s
1137 1f47a922 bellard
Save disk data back to file (if -snapshot)
1138 20d8a3ed ths
@item Ctrl-a t
1139 20d8a3ed ths
toggle console timestamps
1140 a1b74fe8 bellard
@item Ctrl-a b
1141 1f673135 bellard
Send break (magic sysrq in Linux)
1142 a1b74fe8 bellard
@item Ctrl-a c
1143 1f673135 bellard
Switch between console and monitor
1144 a1b74fe8 bellard
@item Ctrl-a Ctrl-a
1145 a1b74fe8 bellard
Send Ctrl-a
1146 ec410fc9 bellard
@end table
1147 0806e3f6 bellard
@c man end
1148 0806e3f6 bellard
1149 0806e3f6 bellard
@ignore
1150 0806e3f6 bellard
1151 1f673135 bellard
@c man begin SEEALSO
1152 1f673135 bellard
The HTML documentation of QEMU for more precise information and Linux
1153 1f673135 bellard
user mode emulator invocation.
1154 1f673135 bellard
@c man end
1155 1f673135 bellard
1156 1f673135 bellard
@c man begin AUTHOR
1157 1f673135 bellard
Fabrice Bellard
1158 1f673135 bellard
@c man end
1159 1f673135 bellard
1160 1f673135 bellard
@end ignore
1161 1f673135 bellard
1162 debc7065 bellard
@node pcsys_monitor
1163 1f673135 bellard
@section QEMU Monitor
1164 1f673135 bellard
1165 1f673135 bellard
The QEMU monitor is used to give complex commands to the QEMU
1166 1f673135 bellard
emulator. You can use it to:
1167 1f673135 bellard
1168 1f673135 bellard
@itemize @minus
1169 1f673135 bellard
1170 1f673135 bellard
@item
1171 e598752a ths
Remove or insert removable media images
1172 89dfe898 ths
(such as CD-ROM or floppies).
1173 1f673135 bellard
1174 5fafdf24 ths
@item
1175 1f673135 bellard
Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
1176 1f673135 bellard
from a disk file.
1177 1f673135 bellard
1178 1f673135 bellard
@item Inspect the VM state without an external debugger.
1179 1f673135 bellard
1180 1f673135 bellard
@end itemize
1181 1f673135 bellard
1182 1f673135 bellard
@subsection Commands
1183 1f673135 bellard
1184 1f673135 bellard
The following commands are available:
1185 1f673135 bellard
1186 1f673135 bellard
@table @option
1187 1f673135 bellard
1188 89dfe898 ths
@item help or ? [@var{cmd}]
1189 1f673135 bellard
Show the help for all commands or just for command @var{cmd}.
1190 1f673135 bellard
1191 3b46e624 ths
@item commit
1192 89dfe898 ths
Commit changes to the disk images (if -snapshot is used).
1193 1f673135 bellard
1194 89dfe898 ths
@item info @var{subcommand}
1195 89dfe898 ths
Show various information about the system state.
1196 1f673135 bellard
1197 1f673135 bellard
@table @option
1198 1f673135 bellard
@item info network
1199 41d03949 bellard
show the various VLANs and the associated devices
1200 1f673135 bellard
@item info block
1201 1f673135 bellard
show the block devices
1202 1f673135 bellard
@item info registers
1203 1f673135 bellard
show the cpu registers
1204 1f673135 bellard
@item info history
1205 1f673135 bellard
show the command line history
1206 b389dbfb bellard
@item info pci
1207 b389dbfb bellard
show emulated PCI device
1208 b389dbfb bellard
@item info usb
1209 b389dbfb bellard
show USB devices plugged on the virtual USB hub
1210 b389dbfb bellard
@item info usbhost
1211 b389dbfb bellard
show all USB host devices
1212 a3c25997 bellard
@item info capture
1213 a3c25997 bellard
show information about active capturing
1214 13a2e80f bellard
@item info snapshots
1215 13a2e80f bellard
show list of VM snapshots
1216 455204eb ths
@item info mice
1217 455204eb ths
show which guest mouse is receiving events
1218 1f673135 bellard
@end table
1219 1f673135 bellard
1220 1f673135 bellard
@item q or quit
1221 1f673135 bellard
Quit the emulator.
1222 1f673135 bellard
1223 89dfe898 ths
@item eject [-f] @var{device}
1224 e598752a ths
Eject a removable medium (use -f to force it).
1225 1f673135 bellard
1226 89dfe898 ths
@item change @var{device} @var{setting}
1227 f858dcae ths
1228 89dfe898 ths
Change the configuration of a device.
1229 f858dcae ths
1230 f858dcae ths
@table @option
1231 f858dcae ths
@item change @var{diskdevice} @var{filename}
1232 f858dcae ths
Change the medium for a removable disk device to point to @var{filename}. eg
1233 f858dcae ths
1234 f858dcae ths
@example
1235 4bf27c24 aurel32
(qemu) change ide1-cd0 /path/to/some.iso
1236 f858dcae ths
@end example
1237 f858dcae ths
1238 89dfe898 ths
@item change vnc @var{display},@var{options}
1239 f858dcae ths
Change the configuration of the VNC server. The valid syntax for @var{display}
1240 f858dcae ths
and @var{options} are described at @ref{sec_invocation}. eg
1241 f858dcae ths
1242 f858dcae ths
@example
1243 f858dcae ths
(qemu) change vnc localhost:1
1244 f858dcae ths
@end example
1245 f858dcae ths
1246 2569da0c aliguori
@item change vnc password [@var{password}]
1247 f858dcae ths
1248 2569da0c aliguori
Change the password associated with the VNC server. If the new password is not
1249 2569da0c aliguori
supplied, the monitor will prompt for it to be entered. VNC passwords are only
1250 2569da0c aliguori
significant up to 8 letters. eg
1251 f858dcae ths
1252 f858dcae ths
@example
1253 f858dcae ths
(qemu) change vnc password
1254 f858dcae ths
Password: ********
1255 f858dcae ths
@end example
1256 f858dcae ths
1257 f858dcae ths
@end table
1258 1f673135 bellard
1259 89dfe898 ths
@item screendump @var{filename}
1260 1f673135 bellard
Save screen into PPM image @var{filename}.
1261 1f673135 bellard
1262 89dfe898 ths
@item mouse_move @var{dx} @var{dy} [@var{dz}]
1263 455204eb ths
Move the active mouse to the specified coordinates @var{dx} @var{dy}
1264 455204eb ths
with optional scroll axis @var{dz}.
1265 455204eb ths
1266 89dfe898 ths
@item mouse_button @var{val}
1267 455204eb ths
Change the active mouse button state @var{val} (1=L, 2=M, 4=R).
1268 455204eb ths
1269 89dfe898 ths
@item mouse_set @var{index}
1270 455204eb ths
Set which mouse device receives events at given @var{index}, index
1271 455204eb ths
can be obtained with
1272 455204eb ths
@example
1273 455204eb ths
info mice
1274 455204eb ths
@end example
1275 455204eb ths
1276 89dfe898 ths
@item wavcapture @var{filename} [@var{frequency} [@var{bits} [@var{channels}]]]
1277 a3c25997 bellard
Capture audio into @var{filename}. Using sample rate @var{frequency}
1278 a3c25997 bellard
bits per sample @var{bits} and number of channels @var{channels}.
1279 a3c25997 bellard
1280 a3c25997 bellard
Defaults:
1281 a3c25997 bellard
@itemize @minus
1282 a3c25997 bellard
@item Sample rate = 44100 Hz - CD quality
1283 a3c25997 bellard
@item Bits = 16
1284 a3c25997 bellard
@item Number of channels = 2 - Stereo
1285 a3c25997 bellard
@end itemize
1286 a3c25997 bellard
1287 89dfe898 ths
@item stopcapture @var{index}
1288 a3c25997 bellard
Stop capture with a given @var{index}, index can be obtained with
1289 a3c25997 bellard
@example
1290 a3c25997 bellard
info capture
1291 a3c25997 bellard
@end example
1292 a3c25997 bellard
1293 89dfe898 ths
@item log @var{item1}[,...]
1294 1f673135 bellard
Activate logging of the specified items to @file{/tmp/qemu.log}.
1295 1f673135 bellard
1296 89dfe898 ths
@item savevm [@var{tag}|@var{id}]
1297 13a2e80f bellard
Create a snapshot of the whole virtual machine. If @var{tag} is
1298 13a2e80f bellard
provided, it is used as human readable identifier. If there is already
1299 13a2e80f bellard
a snapshot with the same tag or ID, it is replaced. More info at
1300 13a2e80f bellard
@ref{vm_snapshots}.
1301 1f673135 bellard
1302 89dfe898 ths
@item loadvm @var{tag}|@var{id}
1303 13a2e80f bellard
Set the whole virtual machine to the snapshot identified by the tag
1304 13a2e80f bellard
@var{tag} or the unique snapshot ID @var{id}.
1305 13a2e80f bellard
1306 89dfe898 ths
@item delvm @var{tag}|@var{id}
1307 13a2e80f bellard
Delete the snapshot identified by @var{tag} or @var{id}.
1308 1f673135 bellard
1309 1f673135 bellard
@item stop
1310 1f673135 bellard
Stop emulation.
1311 1f673135 bellard
1312 1f673135 bellard
@item c or cont
1313 1f673135 bellard
Resume emulation.
1314 1f673135 bellard
1315 89dfe898 ths
@item gdbserver [@var{port}]
1316 89dfe898 ths
Start gdbserver session (default @var{port}=1234)
1317 1f673135 bellard
1318 89dfe898 ths
@item x/fmt @var{addr}
1319 1f673135 bellard
Virtual memory dump starting at @var{addr}.
1320 1f673135 bellard
1321 89dfe898 ths
@item xp /@var{fmt} @var{addr}
1322 1f673135 bellard
Physical memory dump starting at @var{addr}.
1323 1f673135 bellard
1324 1f673135 bellard
@var{fmt} is a format which tells the command how to format the
1325 1f673135 bellard
data. Its syntax is: @option{/@{count@}@{format@}@{size@}}
1326 1f673135 bellard
1327 1f673135 bellard
@table @var
1328 5fafdf24 ths
@item count
1329 1f673135 bellard
is the number of items to be dumped.
1330 1f673135 bellard
1331 1f673135 bellard
@item format
1332 4be456f1 ths
can be x (hex), d (signed decimal), u (unsigned decimal), o (octal),
1333 1f673135 bellard
c (char) or i (asm instruction).
1334 1f673135 bellard
1335 1f673135 bellard
@item size
1336 52c00a5f bellard
can be b (8 bits), h (16 bits), w (32 bits) or g (64 bits). On x86,
1337 52c00a5f bellard
@code{h} or @code{w} can be specified with the @code{i} format to
1338 52c00a5f bellard
respectively select 16 or 32 bit code instruction size.
1339 1f673135 bellard
1340 1f673135 bellard
@end table
1341 1f673135 bellard
1342 5fafdf24 ths
Examples:
1343 1f673135 bellard
@itemize
1344 1f673135 bellard
@item
1345 1f673135 bellard
Dump 10 instructions at the current instruction pointer:
1346 5fafdf24 ths
@example
1347 1f673135 bellard
(qemu) x/10i $eip
1348 1f673135 bellard
0x90107063:  ret
1349 1f673135 bellard
0x90107064:  sti
1350 1f673135 bellard
0x90107065:  lea    0x0(%esi,1),%esi
1351 1f673135 bellard
0x90107069:  lea    0x0(%edi,1),%edi
1352 1f673135 bellard
0x90107070:  ret
1353 1f673135 bellard
0x90107071:  jmp    0x90107080
1354 1f673135 bellard
0x90107073:  nop
1355 1f673135 bellard
0x90107074:  nop
1356 1f673135 bellard
0x90107075:  nop
1357 1f673135 bellard
0x90107076:  nop
1358 1f673135 bellard
@end example
1359 1f673135 bellard
1360 1f673135 bellard
@item
1361 1f673135 bellard
Dump 80 16 bit values at the start of the video memory.
1362 5fafdf24 ths
@smallexample
1363 1f673135 bellard
(qemu) xp/80hx 0xb8000
1364 1f673135 bellard
0x000b8000: 0x0b50 0x0b6c 0x0b65 0x0b78 0x0b38 0x0b36 0x0b2f 0x0b42
1365 1f673135 bellard
0x000b8010: 0x0b6f 0x0b63 0x0b68 0x0b73 0x0b20 0x0b56 0x0b47 0x0b41
1366 1f673135 bellard
0x000b8020: 0x0b42 0x0b69 0x0b6f 0x0b73 0x0b20 0x0b63 0x0b75 0x0b72
1367 1f673135 bellard
0x000b8030: 0x0b72 0x0b65 0x0b6e 0x0b74 0x0b2d 0x0b63 0x0b76 0x0b73
1368 1f673135 bellard
0x000b8040: 0x0b20 0x0b30 0x0b35 0x0b20 0x0b4e 0x0b6f 0x0b76 0x0b20
1369 1f673135 bellard
0x000b8050: 0x0b32 0x0b30 0x0b30 0x0b33 0x0720 0x0720 0x0720 0x0720
1370 1f673135 bellard
0x000b8060: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1371 1f673135 bellard
0x000b8070: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1372 1f673135 bellard
0x000b8080: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1373 1f673135 bellard
0x000b8090: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1374 debc7065 bellard
@end smallexample
1375 1f673135 bellard
@end itemize
1376 1f673135 bellard
1377 89dfe898 ths
@item p or print/@var{fmt} @var{expr}
1378 1f673135 bellard
1379 1f673135 bellard
Print expression value. Only the @var{format} part of @var{fmt} is
1380 1f673135 bellard
used.
1381 0806e3f6 bellard
1382 89dfe898 ths
@item sendkey @var{keys}
1383 a3a91a35 bellard
1384 54ae1fbd aurel32
Send @var{keys} to the emulator. @var{keys} could be the name of the
1385 54ae1fbd aurel32
key or @code{#} followed by the raw value in either decimal or hexadecimal
1386 54ae1fbd aurel32
format. Use @code{-} to press several keys simultaneously. Example:
1387 a3a91a35 bellard
@example
1388 a3a91a35 bellard
sendkey ctrl-alt-f1
1389 a3a91a35 bellard
@end example
1390 a3a91a35 bellard
1391 a3a91a35 bellard
This command is useful to send keys that your graphical user interface
1392 a3a91a35 bellard
intercepts at low level, such as @code{ctrl-alt-f1} in X Window.
1393 a3a91a35 bellard
1394 15a34c63 bellard
@item system_reset
1395 15a34c63 bellard
1396 15a34c63 bellard
Reset the system.
1397 15a34c63 bellard
1398 0ecdffbb aurel32
@item boot_set @var{bootdevicelist}
1399 0ecdffbb aurel32
1400 0ecdffbb aurel32
Define new values for the boot device list. Those values will override
1401 0ecdffbb aurel32
the values specified on the command line through the @code{-boot} option.
1402 0ecdffbb aurel32
1403 0ecdffbb aurel32
The values that can be specified here depend on the machine type, but are
1404 0ecdffbb aurel32
the same that can be specified in the @code{-boot} command line option.
1405 0ecdffbb aurel32
1406 89dfe898 ths
@item usb_add @var{devname}
1407 b389dbfb bellard
1408 0aff66b5 pbrook
Add the USB device @var{devname}.  For details of available devices see
1409 0aff66b5 pbrook
@ref{usb_devices}
1410 b389dbfb bellard
1411 89dfe898 ths
@item usb_del @var{devname}
1412 b389dbfb bellard
1413 b389dbfb bellard
Remove the USB device @var{devname} from the QEMU virtual USB
1414 b389dbfb bellard
hub. @var{devname} has the syntax @code{bus.addr}. Use the monitor
1415 b389dbfb bellard
command @code{info usb} to see the devices you can remove.
1416 b389dbfb bellard
1417 1f673135 bellard
@end table
1418 0806e3f6 bellard
1419 1f673135 bellard
@subsection Integer expressions
1420 1f673135 bellard
1421 1f673135 bellard
The monitor understands integers expressions for every integer
1422 1f673135 bellard
argument. You can use register names to get the value of specifics
1423 1f673135 bellard
CPU registers by prefixing them with @emph{$}.
1424 ec410fc9 bellard
1425 1f47a922 bellard
@node disk_images
1426 1f47a922 bellard
@section Disk Images
1427 1f47a922 bellard
1428 acd935ef bellard
Since version 0.6.1, QEMU supports many disk image formats, including
1429 acd935ef bellard
growable disk images (their size increase as non empty sectors are
1430 13a2e80f bellard
written), compressed and encrypted disk images. Version 0.8.3 added
1431 13a2e80f bellard
the new qcow2 disk image format which is essential to support VM
1432 13a2e80f bellard
snapshots.
1433 1f47a922 bellard
1434 debc7065 bellard
@menu
1435 debc7065 bellard
* disk_images_quickstart::    Quick start for disk image creation
1436 debc7065 bellard
* disk_images_snapshot_mode:: Snapshot mode
1437 13a2e80f bellard
* vm_snapshots::              VM snapshots
1438 debc7065 bellard
* qemu_img_invocation::       qemu-img Invocation
1439 975b092b ths
* qemu_nbd_invocation::       qemu-nbd Invocation
1440 19cb3738 bellard
* host_drives::               Using host drives
1441 debc7065 bellard
* disk_images_fat_images::    Virtual FAT disk images
1442 75818250 ths
* disk_images_nbd::           NBD access
1443 debc7065 bellard
@end menu
1444 debc7065 bellard
1445 debc7065 bellard
@node disk_images_quickstart
1446 acd935ef bellard
@subsection Quick start for disk image creation
1447 acd935ef bellard
1448 acd935ef bellard
You can create a disk image with the command:
1449 1f47a922 bellard
@example
1450 acd935ef bellard
qemu-img create myimage.img mysize
1451 1f47a922 bellard
@end example
1452 acd935ef bellard
where @var{myimage.img} is the disk image filename and @var{mysize} is its
1453 acd935ef bellard
size in kilobytes. You can add an @code{M} suffix to give the size in
1454 acd935ef bellard
megabytes and a @code{G} suffix for gigabytes.
1455 acd935ef bellard
1456 debc7065 bellard
See @ref{qemu_img_invocation} for more information.
1457 1f47a922 bellard
1458 debc7065 bellard
@node disk_images_snapshot_mode
1459 1f47a922 bellard
@subsection Snapshot mode
1460 1f47a922 bellard
1461 1f47a922 bellard
If you use the option @option{-snapshot}, all disk images are
1462 1f47a922 bellard
considered as read only. When sectors in written, they are written in
1463 1f47a922 bellard
a temporary file created in @file{/tmp}. You can however force the
1464 acd935ef bellard
write back to the raw disk images by using the @code{commit} monitor
1465 acd935ef bellard
command (or @key{C-a s} in the serial console).
1466 1f47a922 bellard
1467 13a2e80f bellard
@node vm_snapshots
1468 13a2e80f bellard
@subsection VM snapshots
1469 13a2e80f bellard
1470 13a2e80f bellard
VM snapshots are snapshots of the complete virtual machine including
1471 13a2e80f bellard
CPU state, RAM, device state and the content of all the writable
1472 13a2e80f bellard
disks. In order to use VM snapshots, you must have at least one non
1473 13a2e80f bellard
removable and writable block device using the @code{qcow2} disk image
1474 13a2e80f bellard
format. Normally this device is the first virtual hard drive.
1475 13a2e80f bellard
1476 13a2e80f bellard
Use the monitor command @code{savevm} to create a new VM snapshot or
1477 13a2e80f bellard
replace an existing one. A human readable name can be assigned to each
1478 19d36792 bellard
snapshot in addition to its numerical ID.
1479 13a2e80f bellard
1480 13a2e80f bellard
Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
1481 13a2e80f bellard
a VM snapshot. @code{info snapshots} lists the available snapshots
1482 13a2e80f bellard
with their associated information:
1483 13a2e80f bellard
1484 13a2e80f bellard
@example
1485 13a2e80f bellard
(qemu) info snapshots
1486 13a2e80f bellard
Snapshot devices: hda
1487 13a2e80f bellard
Snapshot list (from hda):
1488 13a2e80f bellard
ID        TAG                 VM SIZE                DATE       VM CLOCK
1489 13a2e80f bellard
1         start                   41M 2006-08-06 12:38:02   00:00:14.954
1490 13a2e80f bellard
2                                 40M 2006-08-06 12:43:29   00:00:18.633
1491 13a2e80f bellard
3         msys                    40M 2006-08-06 12:44:04   00:00:23.514
1492 13a2e80f bellard
@end example
1493 13a2e80f bellard
1494 13a2e80f bellard
A VM snapshot is made of a VM state info (its size is shown in
1495 13a2e80f bellard
@code{info snapshots}) and a snapshot of every writable disk image.
1496 13a2e80f bellard
The VM state info is stored in the first @code{qcow2} non removable
1497 13a2e80f bellard
and writable block device. The disk image snapshots are stored in
1498 13a2e80f bellard
every disk image. The size of a snapshot in a disk image is difficult
1499 13a2e80f bellard
to evaluate and is not shown by @code{info snapshots} because the
1500 13a2e80f bellard
associated disk sectors are shared among all the snapshots to save
1501 19d36792 bellard
disk space (otherwise each snapshot would need a full copy of all the
1502 19d36792 bellard
disk images).
1503 13a2e80f bellard
1504 13a2e80f bellard
When using the (unrelated) @code{-snapshot} option
1505 13a2e80f bellard
(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
1506 13a2e80f bellard
but they are deleted as soon as you exit QEMU.
1507 13a2e80f bellard
1508 13a2e80f bellard
VM snapshots currently have the following known limitations:
1509 13a2e80f bellard
@itemize
1510 5fafdf24 ths
@item
1511 13a2e80f bellard
They cannot cope with removable devices if they are removed or
1512 13a2e80f bellard
inserted after a snapshot is done.
1513 5fafdf24 ths
@item
1514 13a2e80f bellard
A few device drivers still have incomplete snapshot support so their
1515 13a2e80f bellard
state is not saved or restored properly (in particular USB).
1516 13a2e80f bellard
@end itemize
1517 13a2e80f bellard
1518 acd935ef bellard
@node qemu_img_invocation
1519 acd935ef bellard
@subsection @code{qemu-img} Invocation
1520 1f47a922 bellard
1521 acd935ef bellard
@include qemu-img.texi
1522 05efe46e bellard
1523 975b092b ths
@node qemu_nbd_invocation
1524 975b092b ths
@subsection @code{qemu-nbd} Invocation
1525 975b092b ths
1526 975b092b ths
@include qemu-nbd.texi
1527 975b092b ths
1528 19cb3738 bellard
@node host_drives
1529 19cb3738 bellard
@subsection Using host drives
1530 19cb3738 bellard
1531 19cb3738 bellard
In addition to disk image files, QEMU can directly access host
1532 19cb3738 bellard
devices. We describe here the usage for QEMU version >= 0.8.3.
1533 19cb3738 bellard
1534 19cb3738 bellard
@subsubsection Linux
1535 19cb3738 bellard
1536 19cb3738 bellard
On Linux, you can directly use the host device filename instead of a
1537 4be456f1 ths
disk image filename provided you have enough privileges to access
1538 19cb3738 bellard
it. For example, use @file{/dev/cdrom} to access to the CDROM or
1539 19cb3738 bellard
@file{/dev/fd0} for the floppy.
1540 19cb3738 bellard
1541 f542086d bellard
@table @code
1542 19cb3738 bellard
@item CD
1543 19cb3738 bellard
You can specify a CDROM device even if no CDROM is loaded. QEMU has
1544 19cb3738 bellard
specific code to detect CDROM insertion or removal. CDROM ejection by
1545 19cb3738 bellard
the guest OS is supported. Currently only data CDs are supported.
1546 19cb3738 bellard
@item Floppy
1547 19cb3738 bellard
You can specify a floppy device even if no floppy is loaded. Floppy
1548 19cb3738 bellard
removal is currently not detected accurately (if you change floppy
1549 19cb3738 bellard
without doing floppy access while the floppy is not loaded, the guest
1550 19cb3738 bellard
OS will think that the same floppy is loaded).
1551 19cb3738 bellard
@item Hard disks
1552 19cb3738 bellard
Hard disks can be used. Normally you must specify the whole disk
1553 19cb3738 bellard
(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
1554 19cb3738 bellard
see it as a partitioned disk. WARNING: unless you know what you do, it
1555 19cb3738 bellard
is better to only make READ-ONLY accesses to the hard disk otherwise
1556 19cb3738 bellard
you may corrupt your host data (use the @option{-snapshot} command
1557 19cb3738 bellard
line option or modify the device permissions accordingly).
1558 19cb3738 bellard
@end table
1559 19cb3738 bellard
1560 19cb3738 bellard
@subsubsection Windows
1561 19cb3738 bellard
1562 01781963 bellard
@table @code
1563 01781963 bellard
@item CD
1564 4be456f1 ths
The preferred syntax is the drive letter (e.g. @file{d:}). The
1565 01781963 bellard
alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
1566 01781963 bellard
supported as an alias to the first CDROM drive.
1567 19cb3738 bellard
1568 e598752a ths
Currently there is no specific code to handle removable media, so it
1569 19cb3738 bellard
is better to use the @code{change} or @code{eject} monitor commands to
1570 19cb3738 bellard
change or eject media.
1571 01781963 bellard
@item Hard disks
1572 89dfe898 ths
Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
1573 01781963 bellard
where @var{N} is the drive number (0 is the first hard disk).
1574 01781963 bellard
1575 01781963 bellard
WARNING: unless you know what you do, it is better to only make
1576 01781963 bellard
READ-ONLY accesses to the hard disk otherwise you may corrupt your
1577 01781963 bellard
host data (use the @option{-snapshot} command line so that the
1578 01781963 bellard
modifications are written in a temporary file).
1579 01781963 bellard
@end table
1580 01781963 bellard
1581 19cb3738 bellard
1582 19cb3738 bellard
@subsubsection Mac OS X
1583 19cb3738 bellard
1584 5fafdf24 ths
@file{/dev/cdrom} is an alias to the first CDROM.
1585 19cb3738 bellard
1586 e598752a ths
Currently there is no specific code to handle removable media, so it
1587 19cb3738 bellard
is better to use the @code{change} or @code{eject} monitor commands to
1588 19cb3738 bellard
change or eject media.
1589 19cb3738 bellard
1590 debc7065 bellard
@node disk_images_fat_images
1591 2c6cadd4 bellard
@subsection Virtual FAT disk images
1592 2c6cadd4 bellard
1593 2c6cadd4 bellard
QEMU can automatically create a virtual FAT disk image from a
1594 2c6cadd4 bellard
directory tree. In order to use it, just type:
1595 2c6cadd4 bellard
1596 5fafdf24 ths
@example
1597 2c6cadd4 bellard
qemu linux.img -hdb fat:/my_directory
1598 2c6cadd4 bellard
@end example
1599 2c6cadd4 bellard
1600 2c6cadd4 bellard
Then you access access to all the files in the @file{/my_directory}
1601 2c6cadd4 bellard
directory without having to copy them in a disk image or to export
1602 2c6cadd4 bellard
them via SAMBA or NFS. The default access is @emph{read-only}.
1603 2c6cadd4 bellard
1604 2c6cadd4 bellard
Floppies can be emulated with the @code{:floppy:} option:
1605 2c6cadd4 bellard
1606 5fafdf24 ths
@example
1607 2c6cadd4 bellard
qemu linux.img -fda fat:floppy:/my_directory
1608 2c6cadd4 bellard
@end example
1609 2c6cadd4 bellard
1610 2c6cadd4 bellard
A read/write support is available for testing (beta stage) with the
1611 2c6cadd4 bellard
@code{:rw:} option:
1612 2c6cadd4 bellard
1613 5fafdf24 ths
@example
1614 2c6cadd4 bellard
qemu linux.img -fda fat:floppy:rw:/my_directory
1615 2c6cadd4 bellard
@end example
1616 2c6cadd4 bellard
1617 2c6cadd4 bellard
What you should @emph{never} do:
1618 2c6cadd4 bellard
@itemize
1619 2c6cadd4 bellard
@item use non-ASCII filenames ;
1620 2c6cadd4 bellard
@item use "-snapshot" together with ":rw:" ;
1621 85b2c688 bellard
@item expect it to work when loadvm'ing ;
1622 85b2c688 bellard
@item write to the FAT directory on the host system while accessing it with the guest system.
1623 2c6cadd4 bellard
@end itemize
1624 2c6cadd4 bellard
1625 75818250 ths
@node disk_images_nbd
1626 75818250 ths
@subsection NBD access
1627 75818250 ths
1628 75818250 ths
QEMU can access directly to block device exported using the Network Block Device
1629 75818250 ths
protocol.
1630 75818250 ths
1631 75818250 ths
@example
1632 75818250 ths
qemu linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
1633 75818250 ths
@end example
1634 75818250 ths
1635 75818250 ths
If the NBD server is located on the same host, you can use an unix socket instead
1636 75818250 ths
of an inet socket:
1637 75818250 ths
1638 75818250 ths
@example
1639 75818250 ths
qemu linux.img -hdb nbd:unix:/tmp/my_socket
1640 75818250 ths
@end example
1641 75818250 ths
1642 75818250 ths
In this case, the block device must be exported using qemu-nbd:
1643 75818250 ths
1644 75818250 ths
@example
1645 75818250 ths
qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
1646 75818250 ths
@end example
1647 75818250 ths
1648 75818250 ths
The use of qemu-nbd allows to share a disk between several guests:
1649 75818250 ths
@example
1650 75818250 ths
qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
1651 75818250 ths
@end example
1652 75818250 ths
1653 75818250 ths
and then you can use it with two guests:
1654 75818250 ths
@example
1655 75818250 ths
qemu linux1.img -hdb nbd:unix:/tmp/my_socket
1656 75818250 ths
qemu linux2.img -hdb nbd:unix:/tmp/my_socket
1657 75818250 ths
@end example
1658 75818250 ths
1659 debc7065 bellard
@node pcsys_network
1660 9d4fb82e bellard
@section Network emulation
1661 9d4fb82e bellard
1662 4be456f1 ths
QEMU can simulate several network cards (PCI or ISA cards on the PC
1663 41d03949 bellard
target) and can connect them to an arbitrary number of Virtual Local
1664 41d03949 bellard
Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1665 41d03949 bellard
VLAN. VLAN can be connected between separate instances of QEMU to
1666 4be456f1 ths
simulate large networks. For simpler usage, a non privileged user mode
1667 41d03949 bellard
network stack can replace the TAP device to have a basic network
1668 41d03949 bellard
connection.
1669 41d03949 bellard
1670 41d03949 bellard
@subsection VLANs
1671 9d4fb82e bellard
1672 41d03949 bellard
QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1673 41d03949 bellard
connection between several network devices. These devices can be for
1674 41d03949 bellard
example QEMU virtual Ethernet cards or virtual Host ethernet devices
1675 41d03949 bellard
(TAP devices).
1676 9d4fb82e bellard
1677 41d03949 bellard
@subsection Using TAP network interfaces
1678 41d03949 bellard
1679 41d03949 bellard
This is the standard way to connect QEMU to a real network. QEMU adds
1680 41d03949 bellard
a virtual network device on your host (called @code{tapN}), and you
1681 41d03949 bellard
can then configure it as if it was a real ethernet card.
1682 9d4fb82e bellard
1683 8f40c388 bellard
@subsubsection Linux host
1684 8f40c388 bellard
1685 9d4fb82e bellard
As an example, you can download the @file{linux-test-xxx.tar.gz}
1686 9d4fb82e bellard
archive and copy the script @file{qemu-ifup} in @file{/etc} and
1687 9d4fb82e bellard
configure properly @code{sudo} so that the command @code{ifconfig}
1688 9d4fb82e bellard
contained in @file{qemu-ifup} can be executed as root. You must verify
1689 41d03949 bellard
that your host kernel supports the TAP network interfaces: the
1690 9d4fb82e bellard
device @file{/dev/net/tun} must be present.
1691 9d4fb82e bellard
1692 ee0f4751 bellard
See @ref{sec_invocation} to have examples of command lines using the
1693 ee0f4751 bellard
TAP network interfaces.
1694 9d4fb82e bellard
1695 8f40c388 bellard
@subsubsection Windows host
1696 8f40c388 bellard
1697 8f40c388 bellard
There is a virtual ethernet driver for Windows 2000/XP systems, called
1698 8f40c388 bellard
TAP-Win32. But it is not included in standard QEMU for Windows,
1699 8f40c388 bellard
so you will need to get it separately. It is part of OpenVPN package,
1700 8f40c388 bellard
so download OpenVPN from : @url{http://openvpn.net/}.
1701 8f40c388 bellard
1702 9d4fb82e bellard
@subsection Using the user mode network stack
1703 9d4fb82e bellard
1704 41d03949 bellard
By using the option @option{-net user} (default configuration if no
1705 41d03949 bellard
@option{-net} option is specified), QEMU uses a completely user mode
1706 4be456f1 ths
network stack (you don't need root privilege to use the virtual
1707 41d03949 bellard
network). The virtual network configuration is the following:
1708 9d4fb82e bellard
1709 9d4fb82e bellard
@example
1710 9d4fb82e bellard
1711 41d03949 bellard
         QEMU VLAN      <------>  Firewall/DHCP server <-----> Internet
1712 41d03949 bellard
                           |          (10.0.2.2)
1713 9d4fb82e bellard
                           |
1714 2518bd0d bellard
                           ---->  DNS server (10.0.2.3)
1715 3b46e624 ths
                           |
1716 2518bd0d bellard
                           ---->  SMB server (10.0.2.4)
1717 9d4fb82e bellard
@end example
1718 9d4fb82e bellard
1719 9d4fb82e bellard
The QEMU VM behaves as if it was behind a firewall which blocks all
1720 9d4fb82e bellard
incoming connections. You can use a DHCP client to automatically
1721 41d03949 bellard
configure the network in the QEMU VM. The DHCP server assign addresses
1722 41d03949 bellard
to the hosts starting from 10.0.2.15.
1723 9d4fb82e bellard
1724 9d4fb82e bellard
In order to check that the user mode network is working, you can ping
1725 9d4fb82e bellard
the address 10.0.2.2 and verify that you got an address in the range
1726 9d4fb82e bellard
10.0.2.x from the QEMU virtual DHCP server.
1727 9d4fb82e bellard
1728 b415a407 bellard
Note that @code{ping} is not supported reliably to the internet as it
1729 4be456f1 ths
would require root privileges. It means you can only ping the local
1730 b415a407 bellard
router (10.0.2.2).
1731 b415a407 bellard
1732 9bf05444 bellard
When using the built-in TFTP server, the router is also the TFTP
1733 9bf05444 bellard
server.
1734 9bf05444 bellard
1735 9bf05444 bellard
When using the @option{-redir} option, TCP or UDP connections can be
1736 9bf05444 bellard
redirected from the host to the guest. It allows for example to
1737 9bf05444 bellard
redirect X11, telnet or SSH connections.
1738 443f1376 bellard
1739 41d03949 bellard
@subsection Connecting VLANs between QEMU instances
1740 41d03949 bellard
1741 41d03949 bellard
Using the @option{-net socket} option, it is possible to make VLANs
1742 41d03949 bellard
that span several QEMU instances. See @ref{sec_invocation} to have a
1743 41d03949 bellard
basic example.
1744 41d03949 bellard
1745 9d4fb82e bellard
@node direct_linux_boot
1746 9d4fb82e bellard
@section Direct Linux Boot
1747 1f673135 bellard
1748 1f673135 bellard
This section explains how to launch a Linux kernel inside QEMU without
1749 1f673135 bellard
having to make a full bootable image. It is very useful for fast Linux
1750 ee0f4751 bellard
kernel testing.
1751 1f673135 bellard
1752 ee0f4751 bellard
The syntax is:
1753 1f673135 bellard
@example
1754 ee0f4751 bellard
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1755 1f673135 bellard
@end example
1756 1f673135 bellard
1757 ee0f4751 bellard
Use @option{-kernel} to provide the Linux kernel image and
1758 ee0f4751 bellard
@option{-append} to give the kernel command line arguments. The
1759 ee0f4751 bellard
@option{-initrd} option can be used to provide an INITRD image.
1760 1f673135 bellard
1761 ee0f4751 bellard
When using the direct Linux boot, a disk image for the first hard disk
1762 ee0f4751 bellard
@file{hda} is required because its boot sector is used to launch the
1763 ee0f4751 bellard
Linux kernel.
1764 1f673135 bellard
1765 ee0f4751 bellard
If you do not need graphical output, you can disable it and redirect
1766 ee0f4751 bellard
the virtual serial port and the QEMU monitor to the console with the
1767 ee0f4751 bellard
@option{-nographic} option. The typical command line is:
1768 1f673135 bellard
@example
1769 ee0f4751 bellard
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1770 ee0f4751 bellard
     -append "root=/dev/hda console=ttyS0" -nographic
1771 1f673135 bellard
@end example
1772 1f673135 bellard
1773 ee0f4751 bellard
Use @key{Ctrl-a c} to switch between the serial console and the
1774 ee0f4751 bellard
monitor (@pxref{pcsys_keys}).
1775 1f673135 bellard
1776 debc7065 bellard
@node pcsys_usb
1777 b389dbfb bellard
@section USB emulation
1778 b389dbfb bellard
1779 0aff66b5 pbrook
QEMU emulates a PCI UHCI USB controller. You can virtually plug
1780 0aff66b5 pbrook
virtual USB devices or real host USB devices (experimental, works only
1781 0aff66b5 pbrook
on Linux hosts).  Qemu will automatically create and connect virtual USB hubs
1782 f542086d bellard
as necessary to connect multiple USB devices.
1783 b389dbfb bellard
1784 0aff66b5 pbrook
@menu
1785 0aff66b5 pbrook
* usb_devices::
1786 0aff66b5 pbrook
* host_usb_devices::
1787 0aff66b5 pbrook
@end menu
1788 0aff66b5 pbrook
@node usb_devices
1789 0aff66b5 pbrook
@subsection Connecting USB devices
1790 b389dbfb bellard
1791 0aff66b5 pbrook
USB devices can be connected with the @option{-usbdevice} commandline option
1792 0aff66b5 pbrook
or the @code{usb_add} monitor command.  Available devices are:
1793 b389dbfb bellard
1794 db380c06 balrog
@table @code
1795 db380c06 balrog
@item mouse
1796 0aff66b5 pbrook
Virtual Mouse.  This will override the PS/2 mouse emulation when activated.
1797 db380c06 balrog
@item tablet
1798 c6d46c20 bellard
Pointer device that uses absolute coordinates (like a touchscreen).
1799 0aff66b5 pbrook
This means qemu is able to report the mouse position without having
1800 0aff66b5 pbrook
to grab the mouse.  Also overrides the PS/2 mouse emulation when activated.
1801 db380c06 balrog
@item disk:@var{file}
1802 0aff66b5 pbrook
Mass storage device based on @var{file} (@pxref{disk_images})
1803 db380c06 balrog
@item host:@var{bus.addr}
1804 0aff66b5 pbrook
Pass through the host device identified by @var{bus.addr}
1805 0aff66b5 pbrook
(Linux only)
1806 db380c06 balrog
@item host:@var{vendor_id:product_id}
1807 0aff66b5 pbrook
Pass through the host device identified by @var{vendor_id:product_id}
1808 0aff66b5 pbrook
(Linux only)
1809 db380c06 balrog
@item wacom-tablet
1810 f6d2a316 balrog
Virtual Wacom PenPartner tablet.  This device is similar to the @code{tablet}
1811 f6d2a316 balrog
above but it can be used with the tslib library because in addition to touch
1812 f6d2a316 balrog
coordinates it reports touch pressure.
1813 db380c06 balrog
@item keyboard
1814 47b2d338 balrog
Standard USB keyboard.  Will override the PS/2 keyboard (if present).
1815 db380c06 balrog
@item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
1816 db380c06 balrog
Serial converter. This emulates an FTDI FT232BM chip connected to host character
1817 db380c06 balrog
device @var{dev}. The available character devices are the same as for the
1818 db380c06 balrog
@code{-serial} option. The @code{vendorid} and @code{productid} options can be
1819 a11d070e balrog
used to override the default 0403:6001. For instance, 
1820 db380c06 balrog
@example
1821 db380c06 balrog
usb_add serial:productid=FA00:tcp:192.168.0.2:4444
1822 db380c06 balrog
@end example
1823 db380c06 balrog
will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
1824 db380c06 balrog
serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
1825 2e4d9fb1 aurel32
@item braille
1826 2e4d9fb1 aurel32
Braille device.  This will use BrlAPI to display the braille output on a real
1827 2e4d9fb1 aurel32
or fake device.
1828 9ad97e65 balrog
@item net:@var{options}
1829 9ad97e65 balrog
Network adapter that supports CDC ethernet and RNDIS protocols.  @var{options}
1830 9ad97e65 balrog
specifies NIC options as with @code{-net nic,}@var{options} (see description).
1831 9ad97e65 balrog
For instance, user-mode networking can be used with
1832 6c9f886c balrog
@example
1833 9ad97e65 balrog
qemu [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0
1834 6c9f886c balrog
@end example
1835 6c9f886c balrog
Currently this cannot be used in machines that support PCI NICs.
1836 2d564691 balrog
@item bt[:@var{hci-type}]
1837 2d564691 balrog
Bluetooth dongle whose type is specified in the same format as with
1838 2d564691 balrog
the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}.  If
1839 2d564691 balrog
no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
1840 2d564691 balrog
This USB device implements the USB Transport Layer of HCI.  Example
1841 2d564691 balrog
usage:
1842 2d564691 balrog
@example
1843 2d564691 balrog
qemu [...OPTIONS...] -usbdevice bt:hci,vlan=3 -bt device:keyboard,vlan=3
1844 2d564691 balrog
@end example
1845 0aff66b5 pbrook
@end table
1846 b389dbfb bellard
1847 0aff66b5 pbrook
@node host_usb_devices
1848 b389dbfb bellard
@subsection Using host USB devices on a Linux host
1849 b389dbfb bellard
1850 b389dbfb bellard
WARNING: this is an experimental feature. QEMU will slow down when
1851 b389dbfb bellard
using it. USB devices requiring real time streaming (i.e. USB Video
1852 b389dbfb bellard
Cameras) are not supported yet.
1853 b389dbfb bellard
1854 b389dbfb bellard
@enumerate
1855 5fafdf24 ths
@item If you use an early Linux 2.4 kernel, verify that no Linux driver
1856 b389dbfb bellard
is actually using the USB device. A simple way to do that is simply to
1857 b389dbfb bellard
disable the corresponding kernel module by renaming it from @file{mydriver.o}
1858 b389dbfb bellard
to @file{mydriver.o.disabled}.
1859 b389dbfb bellard
1860 b389dbfb bellard
@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1861 b389dbfb bellard
@example
1862 b389dbfb bellard
ls /proc/bus/usb
1863 b389dbfb bellard
001  devices  drivers
1864 b389dbfb bellard
@end example
1865 b389dbfb bellard
1866 b389dbfb bellard
@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1867 b389dbfb bellard
@example
1868 b389dbfb bellard
chown -R myuid /proc/bus/usb
1869 b389dbfb bellard
@end example
1870 b389dbfb bellard
1871 b389dbfb bellard
@item Launch QEMU and do in the monitor:
1872 5fafdf24 ths
@example
1873 b389dbfb bellard
info usbhost
1874 b389dbfb bellard
  Device 1.2, speed 480 Mb/s
1875 b389dbfb bellard
    Class 00: USB device 1234:5678, USB DISK
1876 b389dbfb bellard
@end example
1877 b389dbfb bellard
You should see the list of the devices you can use (Never try to use
1878 b389dbfb bellard
hubs, it won't work).
1879 b389dbfb bellard
1880 b389dbfb bellard
@item Add the device in QEMU by using:
1881 5fafdf24 ths
@example
1882 b389dbfb bellard
usb_add host:1234:5678
1883 b389dbfb bellard
@end example
1884 b389dbfb bellard
1885 b389dbfb bellard
Normally the guest OS should report that a new USB device is
1886 b389dbfb bellard
plugged. You can use the option @option{-usbdevice} to do the same.
1887 b389dbfb bellard
1888 b389dbfb bellard
@item Now you can try to use the host USB device in QEMU.
1889 b389dbfb bellard
1890 b389dbfb bellard
@end enumerate
1891 b389dbfb bellard
1892 b389dbfb bellard
When relaunching QEMU, you may have to unplug and plug again the USB
1893 b389dbfb bellard
device to make it work again (this is a bug).
1894 b389dbfb bellard
1895 f858dcae ths
@node vnc_security
1896 f858dcae ths
@section VNC security
1897 f858dcae ths
1898 f858dcae ths
The VNC server capability provides access to the graphical console
1899 f858dcae ths
of the guest VM across the network. This has a number of security
1900 f858dcae ths
considerations depending on the deployment scenarios.
1901 f858dcae ths
1902 f858dcae ths
@menu
1903 f858dcae ths
* vnc_sec_none::
1904 f858dcae ths
* vnc_sec_password::
1905 f858dcae ths
* vnc_sec_certificate::
1906 f858dcae ths
* vnc_sec_certificate_verify::
1907 f858dcae ths
* vnc_sec_certificate_pw::
1908 f858dcae ths
* vnc_generate_cert::
1909 f858dcae ths
@end menu
1910 f858dcae ths
@node vnc_sec_none
1911 f858dcae ths
@subsection Without passwords
1912 f858dcae ths
1913 f858dcae ths
The simplest VNC server setup does not include any form of authentication.
1914 f858dcae ths
For this setup it is recommended to restrict it to listen on a UNIX domain
1915 f858dcae ths
socket only. For example
1916 f858dcae ths
1917 f858dcae ths
@example
1918 f858dcae ths
qemu [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
1919 f858dcae ths
@end example
1920 f858dcae ths
1921 f858dcae ths
This ensures that only users on local box with read/write access to that
1922 f858dcae ths
path can access the VNC server. To securely access the VNC server from a
1923 f858dcae ths
remote machine, a combination of netcat+ssh can be used to provide a secure
1924 f858dcae ths
tunnel.
1925 f858dcae ths
1926 f858dcae ths
@node vnc_sec_password
1927 f858dcae ths
@subsection With passwords
1928 f858dcae ths
1929 f858dcae ths
The VNC protocol has limited support for password based authentication. Since
1930 f858dcae ths
the protocol limits passwords to 8 characters it should not be considered
1931 f858dcae ths
to provide high security. The password can be fairly easily brute-forced by
1932 f858dcae ths
a client making repeat connections. For this reason, a VNC server using password
1933 f858dcae ths
authentication should be restricted to only listen on the loopback interface
1934 34a3d239 blueswir1
or UNIX domain sockets. Password authentication is requested with the @code{password}
1935 f858dcae ths
option, and then once QEMU is running the password is set with the monitor. Until
1936 f858dcae ths
the monitor is used to set the password all clients will be rejected.
1937 f858dcae ths
1938 f858dcae ths
@example
1939 f858dcae ths
qemu [...OPTIONS...] -vnc :1,password -monitor stdio
1940 f858dcae ths
(qemu) change vnc password
1941 f858dcae ths
Password: ********
1942 f858dcae ths
(qemu)
1943 f858dcae ths
@end example
1944 f858dcae ths
1945 f858dcae ths
@node vnc_sec_certificate
1946 f858dcae ths
@subsection With x509 certificates
1947 f858dcae ths
1948 f858dcae ths
The QEMU VNC server also implements the VeNCrypt extension allowing use of
1949 f858dcae ths
TLS for encryption of the session, and x509 certificates for authentication.
1950 f858dcae ths
The use of x509 certificates is strongly recommended, because TLS on its
1951 f858dcae ths
own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1952 f858dcae ths
support provides a secure session, but no authentication. This allows any
1953 f858dcae ths
client to connect, and provides an encrypted session.
1954 f858dcae ths
1955 f858dcae ths
@example
1956 f858dcae ths
qemu [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
1957 f858dcae ths
@end example
1958 f858dcae ths
1959 f858dcae ths
In the above example @code{/etc/pki/qemu} should contain at least three files,
1960 f858dcae ths
@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1961 f858dcae ths
users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1962 f858dcae ths
NB the @code{server-key.pem} file should be protected with file mode 0600 to
1963 f858dcae ths
only be readable by the user owning it.
1964 f858dcae ths
1965 f858dcae ths
@node vnc_sec_certificate_verify
1966 f858dcae ths
@subsection With x509 certificates and client verification
1967 f858dcae ths
1968 f858dcae ths
Certificates can also provide a means to authenticate the client connecting.
1969 f858dcae ths
The server will request that the client provide a certificate, which it will
1970 f858dcae ths
then validate against the CA certificate. This is a good choice if deploying
1971 f858dcae ths
in an environment with a private internal certificate authority.
1972 f858dcae ths
1973 f858dcae ths
@example
1974 f858dcae ths
qemu [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
1975 f858dcae ths
@end example
1976 f858dcae ths
1977 f858dcae ths
1978 f858dcae ths
@node vnc_sec_certificate_pw
1979 f858dcae ths
@subsection With x509 certificates, client verification and passwords
1980 f858dcae ths
1981 f858dcae ths
Finally, the previous method can be combined with VNC password authentication
1982 f858dcae ths
to provide two layers of authentication for clients.
1983 f858dcae ths
1984 f858dcae ths
@example
1985 f858dcae ths
qemu [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
1986 f858dcae ths
(qemu) change vnc password
1987 f858dcae ths
Password: ********
1988 f858dcae ths
(qemu)
1989 f858dcae ths
@end example
1990 f858dcae ths
1991 f858dcae ths
@node vnc_generate_cert
1992 f858dcae ths
@subsection Generating certificates for VNC
1993 f858dcae ths
1994 f858dcae ths
The GNU TLS packages provides a command called @code{certtool} which can
1995 f858dcae ths
be used to generate certificates and keys in PEM format. At a minimum it
1996 f858dcae ths
is neccessary to setup a certificate authority, and issue certificates to
1997 f858dcae ths
each server. If using certificates for authentication, then each client
1998 f858dcae ths
will also need to be issued a certificate. The recommendation is for the
1999 f858dcae ths
server to keep its certificates in either @code{/etc/pki/qemu} or for
2000 f858dcae ths
unprivileged users in @code{$HOME/.pki/qemu}.
2001 f858dcae ths
2002 f858dcae ths
@menu
2003 f858dcae ths
* vnc_generate_ca::
2004 f858dcae ths
* vnc_generate_server::
2005 f858dcae ths
* vnc_generate_client::
2006 f858dcae ths
@end menu
2007 f858dcae ths
@node vnc_generate_ca
2008 f858dcae ths
@subsubsection Setup the Certificate Authority
2009 f858dcae ths
2010 f858dcae ths
This step only needs to be performed once per organization / organizational
2011 f858dcae ths
unit. First the CA needs a private key. This key must be kept VERY secret
2012 f858dcae ths
and secure. If this key is compromised the entire trust chain of the certificates
2013 f858dcae ths
issued with it is lost.
2014 f858dcae ths
2015 f858dcae ths
@example
2016 f858dcae ths
# certtool --generate-privkey > ca-key.pem
2017 f858dcae ths
@end example
2018 f858dcae ths
2019 f858dcae ths
A CA needs to have a public certificate. For simplicity it can be a self-signed
2020 f858dcae ths
certificate, or one issue by a commercial certificate issuing authority. To
2021 f858dcae ths
generate a self-signed certificate requires one core piece of information, the
2022 f858dcae ths
name of the organization.
2023 f858dcae ths
2024 f858dcae ths
@example
2025 f858dcae ths
# cat > ca.info <<EOF
2026 f858dcae ths
cn = Name of your organization
2027 f858dcae ths
ca
2028 f858dcae ths
cert_signing_key
2029 f858dcae ths
EOF
2030 f858dcae ths
# certtool --generate-self-signed \
2031 f858dcae ths
           --load-privkey ca-key.pem
2032 f858dcae ths
           --template ca.info \
2033 f858dcae ths
           --outfile ca-cert.pem
2034 f858dcae ths
@end example
2035 f858dcae ths
2036 f858dcae ths
The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
2037 f858dcae ths
TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
2038 f858dcae ths
2039 f858dcae ths
@node vnc_generate_server
2040 f858dcae ths
@subsubsection Issuing server certificates
2041 f858dcae ths
2042 f858dcae ths
Each server (or host) needs to be issued with a key and certificate. When connecting
2043 f858dcae ths
the certificate is sent to the client which validates it against the CA certificate.
2044 f858dcae ths
The core piece of information for a server certificate is the hostname. This should
2045 f858dcae ths
be the fully qualified hostname that the client will connect with, since the client
2046 f858dcae ths
will typically also verify the hostname in the certificate. On the host holding the
2047 f858dcae ths
secure CA private key:
2048 f858dcae ths
2049 f858dcae ths
@example
2050 f858dcae ths
# cat > server.info <<EOF
2051 f858dcae ths
organization = Name  of your organization
2052 f858dcae ths
cn = server.foo.example.com
2053 f858dcae ths
tls_www_server
2054 f858dcae ths
encryption_key
2055 f858dcae ths
signing_key
2056 f858dcae ths
EOF
2057 f858dcae ths
# certtool --generate-privkey > server-key.pem
2058 f858dcae ths
# certtool --generate-certificate \
2059 f858dcae ths
           --load-ca-certificate ca-cert.pem \
2060 f858dcae ths
           --load-ca-privkey ca-key.pem \
2061 f858dcae ths
           --load-privkey server server-key.pem \
2062 f858dcae ths
           --template server.info \
2063 f858dcae ths
           --outfile server-cert.pem
2064 f858dcae ths
@end example
2065 f858dcae ths
2066 f858dcae ths
The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
2067 f858dcae ths
to the server for which they were generated. The @code{server-key.pem} is security
2068 f858dcae ths
sensitive and should be kept protected with file mode 0600 to prevent disclosure.
2069 f858dcae ths
2070 f858dcae ths
@node vnc_generate_client
2071 f858dcae ths
@subsubsection Issuing client certificates
2072 f858dcae ths
2073 f858dcae ths
If the QEMU VNC server is to use the @code{x509verify} option to validate client
2074 f858dcae ths
certificates as its authentication mechanism, each client also needs to be issued
2075 f858dcae ths
a certificate. The client certificate contains enough metadata to uniquely identify
2076 f858dcae ths
the client, typically organization, state, city, building, etc. On the host holding
2077 f858dcae ths
the secure CA private key:
2078 f858dcae ths
2079 f858dcae ths
@example
2080 f858dcae ths
# cat > client.info <<EOF
2081 f858dcae ths
country = GB
2082 f858dcae ths
state = London
2083 f858dcae ths
locality = London
2084 f858dcae ths
organiazation = Name of your organization
2085 f858dcae ths
cn = client.foo.example.com
2086 f858dcae ths
tls_www_client
2087 f858dcae ths
encryption_key
2088 f858dcae ths
signing_key
2089 f858dcae ths
EOF
2090 f858dcae ths
# certtool --generate-privkey > client-key.pem
2091 f858dcae ths
# certtool --generate-certificate \
2092 f858dcae ths
           --load-ca-certificate ca-cert.pem \
2093 f858dcae ths
           --load-ca-privkey ca-key.pem \
2094 f858dcae ths
           --load-privkey client-key.pem \
2095 f858dcae ths
           --template client.info \
2096 f858dcae ths
           --outfile client-cert.pem
2097 f858dcae ths
@end example
2098 f858dcae ths
2099 f858dcae ths
The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
2100 f858dcae ths
copied to the client for which they were generated.
2101 f858dcae ths
2102 0806e3f6 bellard
@node gdb_usage
2103 da415d54 bellard
@section GDB usage
2104 da415d54 bellard
2105 da415d54 bellard
QEMU has a primitive support to work with gdb, so that you can do
2106 0806e3f6 bellard
'Ctrl-C' while the virtual machine is running and inspect its state.
2107 da415d54 bellard
2108 9d4520d0 bellard
In order to use gdb, launch qemu with the '-s' option. It will wait for a
2109 da415d54 bellard
gdb connection:
2110 da415d54 bellard
@example
2111 debc7065 bellard
> qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
2112 debc7065 bellard
       -append "root=/dev/hda"
2113 da415d54 bellard
Connected to host network interface: tun0
2114 da415d54 bellard
Waiting gdb connection on port 1234
2115 da415d54 bellard
@end example
2116 da415d54 bellard
2117 da415d54 bellard
Then launch gdb on the 'vmlinux' executable:
2118 da415d54 bellard
@example
2119 da415d54 bellard
> gdb vmlinux
2120 da415d54 bellard
@end example
2121 da415d54 bellard
2122 da415d54 bellard
In gdb, connect to QEMU:
2123 da415d54 bellard
@example
2124 6c9bf893 bellard
(gdb) target remote localhost:1234
2125 da415d54 bellard
@end example
2126 da415d54 bellard
2127 da415d54 bellard
Then you can use gdb normally. For example, type 'c' to launch the kernel:
2128 da415d54 bellard
@example
2129 da415d54 bellard
(gdb) c
2130 da415d54 bellard
@end example
2131 da415d54 bellard
2132 0806e3f6 bellard
Here are some useful tips in order to use gdb on system code:
2133 0806e3f6 bellard
2134 0806e3f6 bellard
@enumerate
2135 0806e3f6 bellard
@item
2136 0806e3f6 bellard
Use @code{info reg} to display all the CPU registers.
2137 0806e3f6 bellard
@item
2138 0806e3f6 bellard
Use @code{x/10i $eip} to display the code at the PC position.
2139 0806e3f6 bellard
@item
2140 0806e3f6 bellard
Use @code{set architecture i8086} to dump 16 bit code. Then use
2141 294e8637 bellard
@code{x/10i $cs*16+$eip} to dump the code at the PC position.
2142 0806e3f6 bellard
@end enumerate
2143 0806e3f6 bellard
2144 60897d36 edgar_igl
Advanced debugging options:
2145 60897d36 edgar_igl
2146 60897d36 edgar_igl
The default single stepping behavior is step with the IRQs and timer service routines off.  It is set this way because when gdb executes a single step it expects to advance beyond the current instruction.  With the IRQs and and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed.  Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB.  There are three commands you can query and set the single step behavior:
2147 94d45e44 edgar_igl
@table @code
2148 60897d36 edgar_igl
@item maintenance packet qqemu.sstepbits
2149 60897d36 edgar_igl
2150 60897d36 edgar_igl
This will display the MASK bits used to control the single stepping IE:
2151 60897d36 edgar_igl
@example
2152 60897d36 edgar_igl
(gdb) maintenance packet qqemu.sstepbits
2153 60897d36 edgar_igl
sending: "qqemu.sstepbits"
2154 60897d36 edgar_igl
received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
2155 60897d36 edgar_igl
@end example
2156 60897d36 edgar_igl
@item maintenance packet qqemu.sstep
2157 60897d36 edgar_igl
2158 60897d36 edgar_igl
This will display the current value of the mask used when single stepping IE:
2159 60897d36 edgar_igl
@example
2160 60897d36 edgar_igl
(gdb) maintenance packet qqemu.sstep
2161 60897d36 edgar_igl
sending: "qqemu.sstep"
2162 60897d36 edgar_igl
received: "0x7"
2163 60897d36 edgar_igl
@end example
2164 60897d36 edgar_igl
@item maintenance packet Qqemu.sstep=HEX_VALUE
2165 60897d36 edgar_igl
2166 60897d36 edgar_igl
This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
2167 60897d36 edgar_igl
@example
2168 60897d36 edgar_igl
(gdb) maintenance packet Qqemu.sstep=0x5
2169 60897d36 edgar_igl
sending: "qemu.sstep=0x5"
2170 60897d36 edgar_igl
received: "OK"
2171 60897d36 edgar_igl
@end example
2172 94d45e44 edgar_igl
@end table
2173 60897d36 edgar_igl
2174 debc7065 bellard
@node pcsys_os_specific
2175 1a084f3d bellard
@section Target OS specific information
2176 1a084f3d bellard
2177 1a084f3d bellard
@subsection Linux
2178 1a084f3d bellard
2179 15a34c63 bellard
To have access to SVGA graphic modes under X11, use the @code{vesa} or
2180 15a34c63 bellard
the @code{cirrus} X11 driver. For optimal performances, use 16 bit
2181 15a34c63 bellard
color depth in the guest and the host OS.
2182 1a084f3d bellard
2183 e3371e62 bellard
When using a 2.6 guest Linux kernel, you should add the option
2184 e3371e62 bellard
@code{clock=pit} on the kernel command line because the 2.6 Linux
2185 e3371e62 bellard
kernels make very strict real time clock checks by default that QEMU
2186 e3371e62 bellard
cannot simulate exactly.
2187 e3371e62 bellard
2188 7c3fc84d bellard
When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
2189 7c3fc84d bellard
not activated because QEMU is slower with this patch. The QEMU
2190 7c3fc84d bellard
Accelerator Module is also much slower in this case. Earlier Fedora
2191 4be456f1 ths
Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
2192 7c3fc84d bellard
patch by default. Newer kernels don't have it.
2193 7c3fc84d bellard
2194 1a084f3d bellard
@subsection Windows
2195 1a084f3d bellard
2196 1a084f3d bellard
If you have a slow host, using Windows 95 is better as it gives the
2197 1a084f3d bellard
best speed. Windows 2000 is also a good choice.
2198 1a084f3d bellard
2199 e3371e62 bellard
@subsubsection SVGA graphic modes support
2200 e3371e62 bellard
2201 e3371e62 bellard
QEMU emulates a Cirrus Logic GD5446 Video
2202 15a34c63 bellard
card. All Windows versions starting from Windows 95 should recognize
2203 15a34c63 bellard
and use this graphic card. For optimal performances, use 16 bit color
2204 15a34c63 bellard
depth in the guest and the host OS.
2205 1a084f3d bellard
2206 3cb0853a bellard
If you are using Windows XP as guest OS and if you want to use high
2207 3cb0853a bellard
resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
2208 3cb0853a bellard
1280x1024x16), then you should use the VESA VBE virtual graphic card
2209 3cb0853a bellard
(option @option{-std-vga}).
2210 3cb0853a bellard
2211 e3371e62 bellard
@subsubsection CPU usage reduction
2212 e3371e62 bellard
2213 e3371e62 bellard
Windows 9x does not correctly use the CPU HLT
2214 15a34c63 bellard
instruction. The result is that it takes host CPU cycles even when
2215 15a34c63 bellard
idle. You can install the utility from
2216 15a34c63 bellard
@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
2217 15a34c63 bellard
problem. Note that no such tool is needed for NT, 2000 or XP.
2218 1a084f3d bellard
2219 9d0a8e6f bellard
@subsubsection Windows 2000 disk full problem
2220 e3371e62 bellard
2221 9d0a8e6f bellard
Windows 2000 has a bug which gives a disk full problem during its
2222 9d0a8e6f bellard
installation. When installing it, use the @option{-win2k-hack} QEMU
2223 9d0a8e6f bellard
option to enable a specific workaround. After Windows 2000 is
2224 9d0a8e6f bellard
installed, you no longer need this option (this option slows down the
2225 9d0a8e6f bellard
IDE transfers).
2226 e3371e62 bellard
2227 6cc721cf bellard
@subsubsection Windows 2000 shutdown
2228 6cc721cf bellard
2229 6cc721cf bellard
Windows 2000 cannot automatically shutdown in QEMU although Windows 98
2230 6cc721cf bellard
can. It comes from the fact that Windows 2000 does not automatically
2231 6cc721cf bellard
use the APM driver provided by the BIOS.
2232 6cc721cf bellard
2233 6cc721cf bellard
In order to correct that, do the following (thanks to Struan
2234 6cc721cf bellard
Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
2235 6cc721cf bellard
Add/Troubleshoot a device => Add a new device & Next => No, select the
2236 6cc721cf bellard
hardware from a list & Next => NT Apm/Legacy Support & Next => Next
2237 6cc721cf bellard
(again) a few times. Now the driver is installed and Windows 2000 now
2238 5fafdf24 ths
correctly instructs QEMU to shutdown at the appropriate moment.
2239 6cc721cf bellard
2240 6cc721cf bellard
@subsubsection Share a directory between Unix and Windows
2241 6cc721cf bellard
2242 6cc721cf bellard
See @ref{sec_invocation} about the help of the option @option{-smb}.
2243 6cc721cf bellard
2244 2192c332 bellard
@subsubsection Windows XP security problem
2245 e3371e62 bellard
2246 e3371e62 bellard
Some releases of Windows XP install correctly but give a security
2247 e3371e62 bellard
error when booting:
2248 e3371e62 bellard
@example
2249 e3371e62 bellard
A problem is preventing Windows from accurately checking the
2250 e3371e62 bellard
license for this computer. Error code: 0x800703e6.
2251 e3371e62 bellard
@end example
2252 e3371e62 bellard
2253 2192c332 bellard
The workaround is to install a service pack for XP after a boot in safe
2254 2192c332 bellard
mode. Then reboot, and the problem should go away. Since there is no
2255 2192c332 bellard
network while in safe mode, its recommended to download the full
2256 2192c332 bellard
installation of SP1 or SP2 and transfer that via an ISO or using the
2257 2192c332 bellard
vvfat block device ("-hdb fat:directory_which_holds_the_SP").
2258 e3371e62 bellard
2259 a0a821a4 bellard
@subsection MS-DOS and FreeDOS
2260 a0a821a4 bellard
2261 a0a821a4 bellard
@subsubsection CPU usage reduction
2262 a0a821a4 bellard
2263 a0a821a4 bellard
DOS does not correctly use the CPU HLT instruction. The result is that
2264 a0a821a4 bellard
it takes host CPU cycles even when idle. You can install the utility
2265 a0a821a4 bellard
from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
2266 a0a821a4 bellard
problem.
2267 a0a821a4 bellard
2268 debc7065 bellard
@node QEMU System emulator for non PC targets
2269 3f9f3aa1 bellard
@chapter QEMU System emulator for non PC targets
2270 3f9f3aa1 bellard
2271 3f9f3aa1 bellard
QEMU is a generic emulator and it emulates many non PC
2272 3f9f3aa1 bellard
machines. Most of the options are similar to the PC emulator. The
2273 4be456f1 ths
differences are mentioned in the following sections.
2274 3f9f3aa1 bellard
2275 debc7065 bellard
@menu
2276 debc7065 bellard
* QEMU PowerPC System emulator::
2277 24d4de45 ths
* Sparc32 System emulator::
2278 24d4de45 ths
* Sparc64 System emulator::
2279 24d4de45 ths
* MIPS System emulator::
2280 24d4de45 ths
* ARM System emulator::
2281 24d4de45 ths
* ColdFire System emulator::
2282 debc7065 bellard
@end menu
2283 debc7065 bellard
2284 debc7065 bellard
@node QEMU PowerPC System emulator
2285 3f9f3aa1 bellard
@section QEMU PowerPC System emulator
2286 1a084f3d bellard
2287 15a34c63 bellard
Use the executable @file{qemu-system-ppc} to simulate a complete PREP
2288 15a34c63 bellard
or PowerMac PowerPC system.
2289 1a084f3d bellard
2290 b671f9ed bellard
QEMU emulates the following PowerMac peripherals:
2291 1a084f3d bellard
2292 15a34c63 bellard
@itemize @minus
2293 5fafdf24 ths
@item
2294 5fafdf24 ths
UniNorth PCI Bridge
2295 15a34c63 bellard
@item
2296 15a34c63 bellard
PCI VGA compatible card with VESA Bochs Extensions
2297 5fafdf24 ths
@item
2298 15a34c63 bellard
2 PMAC IDE interfaces with hard disk and CD-ROM support
2299 5fafdf24 ths
@item
2300 15a34c63 bellard
NE2000 PCI adapters
2301 15a34c63 bellard
@item
2302 15a34c63 bellard
Non Volatile RAM
2303 15a34c63 bellard
@item
2304 15a34c63 bellard
VIA-CUDA with ADB keyboard and mouse.
2305 1a084f3d bellard
@end itemize
2306 1a084f3d bellard
2307 b671f9ed bellard
QEMU emulates the following PREP peripherals:
2308 52c00a5f bellard
2309 52c00a5f bellard
@itemize @minus
2310 5fafdf24 ths
@item
2311 15a34c63 bellard
PCI Bridge
2312 15a34c63 bellard
@item
2313 15a34c63 bellard
PCI VGA compatible card with VESA Bochs Extensions
2314 5fafdf24 ths
@item
2315 52c00a5f bellard
2 IDE interfaces with hard disk and CD-ROM support
2316 52c00a5f bellard
@item
2317 52c00a5f bellard
Floppy disk
2318 5fafdf24 ths
@item
2319 15a34c63 bellard
NE2000 network adapters
2320 52c00a5f bellard
@item
2321 52c00a5f bellard
Serial port
2322 52c00a5f bellard
@item
2323 52c00a5f bellard
PREP Non Volatile RAM
2324 15a34c63 bellard
@item
2325 15a34c63 bellard
PC compatible keyboard and mouse.
2326 52c00a5f bellard
@end itemize
2327 52c00a5f bellard
2328 15a34c63 bellard
QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
2329 3f9f3aa1 bellard
@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
2330 52c00a5f bellard
2331 992e5acd blueswir1
Since version 0.9.1, QEMU uses OpenBIOS @url{http://www.openbios.org/}
2332 992e5acd blueswir1
for the g3bw PowerMac machine. OpenBIOS is a free (GPL v2) portable
2333 992e5acd blueswir1
firmware implementation. The goal is to implement a 100% IEEE
2334 992e5acd blueswir1
1275-1994 (referred to as Open Firmware) compliant firmware.
2335 992e5acd blueswir1
2336 15a34c63 bellard
@c man begin OPTIONS
2337 15a34c63 bellard
2338 15a34c63 bellard
The following options are specific to the PowerPC emulation:
2339 15a34c63 bellard
2340 15a34c63 bellard
@table @option
2341 15a34c63 bellard
2342 3b46e624 ths
@item -g WxH[xDEPTH]
2343 15a34c63 bellard
2344 15a34c63 bellard
Set the initial VGA graphic mode. The default is 800x600x15.
2345 15a34c63 bellard
2346 95efd11c blueswir1
@item -prom-env string
2347 95efd11c blueswir1
2348 95efd11c blueswir1
Set OpenBIOS variables in NVRAM, for example:
2349 95efd11c blueswir1
2350 95efd11c blueswir1
@example
2351 95efd11c blueswir1
qemu-system-ppc -prom-env 'auto-boot?=false' \
2352 95efd11c blueswir1
 -prom-env 'boot-device=hd:2,\yaboot' \
2353 95efd11c blueswir1
 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
2354 95efd11c blueswir1
@end example
2355 95efd11c blueswir1
2356 95efd11c blueswir1
These variables are not used by Open Hack'Ware.
2357 95efd11c blueswir1
2358 15a34c63 bellard
@end table
2359 15a34c63 bellard
2360 5fafdf24 ths
@c man end
2361 15a34c63 bellard
2362 15a34c63 bellard
2363 52c00a5f bellard
More information is available at
2364 3f9f3aa1 bellard
@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
2365 52c00a5f bellard
2366 24d4de45 ths
@node Sparc32 System emulator
2367 24d4de45 ths
@section Sparc32 System emulator
2368 e80cfcfc bellard
2369 34a3d239 blueswir1
Use the executable @file{qemu-system-sparc} to simulate the following
2370 34a3d239 blueswir1
Sun4m architecture machines:
2371 34a3d239 blueswir1
@itemize @minus
2372 34a3d239 blueswir1
@item
2373 34a3d239 blueswir1
SPARCstation 4
2374 34a3d239 blueswir1
@item
2375 34a3d239 blueswir1
SPARCstation 5
2376 34a3d239 blueswir1
@item
2377 34a3d239 blueswir1
SPARCstation 10
2378 34a3d239 blueswir1
@item
2379 34a3d239 blueswir1
SPARCstation 20
2380 34a3d239 blueswir1
@item
2381 34a3d239 blueswir1
SPARCserver 600MP
2382 34a3d239 blueswir1
@item
2383 34a3d239 blueswir1
SPARCstation LX
2384 34a3d239 blueswir1
@item
2385 34a3d239 blueswir1
SPARCstation Voyager
2386 34a3d239 blueswir1
@item
2387 34a3d239 blueswir1
SPARCclassic
2388 34a3d239 blueswir1
@item
2389 34a3d239 blueswir1
SPARCbook
2390 34a3d239 blueswir1
@end itemize
2391 34a3d239 blueswir1
2392 34a3d239 blueswir1
The emulation is somewhat complete. SMP up to 16 CPUs is supported,
2393 34a3d239 blueswir1
but Linux limits the number of usable CPUs to 4.
2394 e80cfcfc bellard
2395 34a3d239 blueswir1
It's also possible to simulate a SPARCstation 2 (sun4c architecture),
2396 34a3d239 blueswir1
SPARCserver 1000, or SPARCcenter 2000 (sun4d architecture), but these
2397 34a3d239 blueswir1
emulators are not usable yet.
2398 34a3d239 blueswir1
2399 34a3d239 blueswir1
QEMU emulates the following sun4m/sun4c/sun4d peripherals:
2400 e80cfcfc bellard
2401 e80cfcfc bellard
@itemize @minus
2402 3475187d bellard
@item
2403 7d85892b blueswir1
IOMMU or IO-UNITs
2404 e80cfcfc bellard
@item
2405 e80cfcfc bellard
TCX Frame buffer
2406 5fafdf24 ths
@item
2407 e80cfcfc bellard
Lance (Am7990) Ethernet
2408 e80cfcfc bellard
@item
2409 34a3d239 blueswir1
Non Volatile RAM M48T02/M48T08
2410 e80cfcfc bellard
@item
2411 3475187d bellard
Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
2412 3475187d bellard
and power/reset logic
2413 3475187d bellard
@item
2414 3475187d bellard
ESP SCSI controller with hard disk and CD-ROM support
2415 3475187d bellard
@item
2416 6a3b9cc9 blueswir1
Floppy drive (not on SS-600MP)
2417 a2502b58 blueswir1
@item
2418 a2502b58 blueswir1
CS4231 sound device (only on SS-5, not working yet)
2419 e80cfcfc bellard
@end itemize
2420 e80cfcfc bellard
2421 6a3b9cc9 blueswir1
The number of peripherals is fixed in the architecture.  Maximum
2422 6a3b9cc9 blueswir1
memory size depends on the machine type, for SS-5 it is 256MB and for
2423 7d85892b blueswir1
others 2047MB.
2424 3475187d bellard
2425 30a604f3 bellard
Since version 0.8.2, QEMU uses OpenBIOS
2426 0986ac3b bellard
@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
2427 0986ac3b bellard
firmware implementation. The goal is to implement a 100% IEEE
2428 0986ac3b bellard
1275-1994 (referred to as Open Firmware) compliant firmware.
2429 3475187d bellard
2430 3475187d bellard
A sample Linux 2.6 series kernel and ram disk image are available on
2431 34a3d239 blueswir1
the QEMU web site. There are still issues with NetBSD and OpenBSD, but
2432 34a3d239 blueswir1
some kernel versions work. Please note that currently Solaris kernels
2433 34a3d239 blueswir1
don't work probably due to interface issues between OpenBIOS and
2434 34a3d239 blueswir1
Solaris.
2435 3475187d bellard
2436 3475187d bellard
@c man begin OPTIONS
2437 3475187d bellard
2438 a2502b58 blueswir1
The following options are specific to the Sparc32 emulation:
2439 3475187d bellard
2440 3475187d bellard
@table @option
2441 3475187d bellard
2442 a2502b58 blueswir1
@item -g WxHx[xDEPTH]
2443 3475187d bellard
2444 a2502b58 blueswir1
Set the initial TCX graphic mode. The default is 1024x768x8, currently
2445 a2502b58 blueswir1
the only other possible mode is 1024x768x24.
2446 3475187d bellard
2447 66508601 blueswir1
@item -prom-env string
2448 66508601 blueswir1
2449 66508601 blueswir1
Set OpenBIOS variables in NVRAM, for example:
2450 66508601 blueswir1
2451 66508601 blueswir1
@example
2452 66508601 blueswir1
qemu-system-sparc -prom-env 'auto-boot?=false' \
2453 66508601 blueswir1
 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
2454 66508601 blueswir1
@end example
2455 66508601 blueswir1
2456 34a3d239 blueswir1
@item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic|SPARCbook|SS-2|SS-1000|SS-2000]
2457 a2502b58 blueswir1
2458 a2502b58 blueswir1
Set the emulated machine type. Default is SS-5.
2459 a2502b58 blueswir1
2460 3475187d bellard
@end table
2461 3475187d bellard
2462 5fafdf24 ths
@c man end
2463 3475187d bellard
2464 24d4de45 ths
@node Sparc64 System emulator
2465 24d4de45 ths
@section Sparc64 System emulator
2466 e80cfcfc bellard
2467 34a3d239 blueswir1
Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
2468 34a3d239 blueswir1
(UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
2469 34a3d239 blueswir1
Niagara (T1) machine. The emulator is not usable for anything yet, but
2470 34a3d239 blueswir1
it can launch some kernels.
2471 b756921a bellard
2472 c7ba218d blueswir1
QEMU emulates the following peripherals:
2473 83469015 bellard
2474 83469015 bellard
@itemize @minus
2475 83469015 bellard
@item
2476 5fafdf24 ths
UltraSparc IIi APB PCI Bridge
2477 83469015 bellard
@item
2478 83469015 bellard
PCI VGA compatible card with VESA Bochs Extensions
2479 83469015 bellard
@item
2480 34a3d239 blueswir1
PS/2 mouse and keyboard
2481 34a3d239 blueswir1
@item
2482 83469015 bellard
Non Volatile RAM M48T59
2483 83469015 bellard
@item
2484 83469015 bellard
PC-compatible serial ports
2485 c7ba218d blueswir1
@item
2486 c7ba218d blueswir1
2 PCI IDE interfaces with hard disk and CD-ROM support
2487 34a3d239 blueswir1
@item
2488 34a3d239 blueswir1
Floppy disk
2489 83469015 bellard
@end itemize
2490 83469015 bellard
2491 c7ba218d blueswir1
@c man begin OPTIONS
2492 c7ba218d blueswir1
2493 c7ba218d blueswir1
The following options are specific to the Sparc64 emulation:
2494 c7ba218d blueswir1
2495 c7ba218d blueswir1
@table @option
2496 c7ba218d blueswir1
2497 34a3d239 blueswir1
@item -prom-env string
2498 34a3d239 blueswir1
2499 34a3d239 blueswir1
Set OpenBIOS variables in NVRAM, for example:
2500 34a3d239 blueswir1
2501 34a3d239 blueswir1
@example
2502 34a3d239 blueswir1
qemu-system-sparc64 -prom-env 'auto-boot?=false'
2503 34a3d239 blueswir1
@end example
2504 34a3d239 blueswir1
2505 34a3d239 blueswir1
@item -M [sun4u|sun4v|Niagara]
2506 c7ba218d blueswir1
2507 c7ba218d blueswir1
Set the emulated machine type. The default is sun4u.
2508 c7ba218d blueswir1
2509 c7ba218d blueswir1
@end table
2510 c7ba218d blueswir1
2511 c7ba218d blueswir1
@c man end
2512 c7ba218d blueswir1
2513 24d4de45 ths
@node MIPS System emulator
2514 24d4de45 ths
@section MIPS System emulator
2515 9d0a8e6f bellard
2516 d9aedc32 ths
Four executables cover simulation of 32 and 64-bit MIPS systems in
2517 d9aedc32 ths
both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
2518 d9aedc32 ths
@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
2519 88cb0a02 aurel32
Five different machine types are emulated:
2520 24d4de45 ths
2521 24d4de45 ths
@itemize @minus
2522 24d4de45 ths
@item
2523 24d4de45 ths
A generic ISA PC-like machine "mips"
2524 24d4de45 ths
@item
2525 24d4de45 ths
The MIPS Malta prototype board "malta"
2526 24d4de45 ths
@item
2527 d9aedc32 ths
An ACER Pica "pica61". This machine needs the 64-bit emulator.
2528 6bf5b4e8 ths
@item
2529 f0fc6f8f ths
MIPS emulator pseudo board "mipssim"
2530 88cb0a02 aurel32
@item
2531 88cb0a02 aurel32
A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
2532 24d4de45 ths
@end itemize
2533 24d4de45 ths
2534 24d4de45 ths
The generic emulation is supported by Debian 'Etch' and is able to
2535 24d4de45 ths
install Debian into a virtual disk image. The following devices are
2536 24d4de45 ths
emulated:
2537 3f9f3aa1 bellard
2538 3f9f3aa1 bellard
@itemize @minus
2539 5fafdf24 ths
@item
2540 6bf5b4e8 ths
A range of MIPS CPUs, default is the 24Kf
2541 3f9f3aa1 bellard
@item
2542 3f9f3aa1 bellard
PC style serial port
2543 3f9f3aa1 bellard
@item
2544 24d4de45 ths
PC style IDE disk
2545 24d4de45 ths
@item
2546 3f9f3aa1 bellard
NE2000 network card
2547 3f9f3aa1 bellard
@end itemize
2548 3f9f3aa1 bellard
2549 24d4de45 ths
The Malta emulation supports the following devices:
2550 24d4de45 ths
2551 24d4de45 ths
@itemize @minus
2552 24d4de45 ths
@item
2553 0b64d008 ths
Core board with MIPS 24Kf CPU and Galileo system controller
2554 24d4de45 ths
@item
2555 24d4de45 ths
PIIX4 PCI/USB/SMbus controller
2556 24d4de45 ths
@item
2557 24d4de45 ths
The Multi-I/O chip's serial device
2558 24d4de45 ths
@item
2559 24d4de45 ths
PCnet32 PCI network card
2560 24d4de45 ths
@item
2561 24d4de45 ths
Malta FPGA serial device
2562 24d4de45 ths
@item
2563 24d4de45 ths
Cirrus VGA graphics card
2564 24d4de45 ths
@end itemize
2565 24d4de45 ths
2566 24d4de45 ths
The ACER Pica emulation supports:
2567 24d4de45 ths
2568 24d4de45 ths
@itemize @minus
2569 24d4de45 ths
@item
2570 24d4de45 ths
MIPS R4000 CPU
2571 24d4de45 ths
@item
2572 24d4de45 ths
PC-style IRQ and DMA controllers
2573 24d4de45 ths
@item
2574 24d4de45 ths
PC Keyboard
2575 24d4de45 ths
@item
2576 24d4de45 ths
IDE controller
2577 24d4de45 ths
@end itemize
2578 3f9f3aa1 bellard
2579 f0fc6f8f ths
The mipssim pseudo board emulation provides an environment similiar
2580 f0fc6f8f ths
to what the proprietary MIPS emulator uses for running Linux.
2581 f0fc6f8f ths
It supports:
2582 6bf5b4e8 ths
2583 6bf5b4e8 ths
@itemize @minus
2584 6bf5b4e8 ths
@item
2585 6bf5b4e8 ths
A range of MIPS CPUs, default is the 24Kf
2586 6bf5b4e8 ths
@item
2587 6bf5b4e8 ths
PC style serial port
2588 6bf5b4e8 ths
@item
2589 6bf5b4e8 ths
MIPSnet network emulation
2590 6bf5b4e8 ths
@end itemize
2591 6bf5b4e8 ths
2592 88cb0a02 aurel32
The MIPS Magnum R4000 emulation supports:
2593 88cb0a02 aurel32
2594 88cb0a02 aurel32
@itemize @minus
2595 88cb0a02 aurel32
@item
2596 88cb0a02 aurel32
MIPS R4000 CPU
2597 88cb0a02 aurel32
@item
2598 88cb0a02 aurel32
PC-style IRQ controller
2599 88cb0a02 aurel32
@item
2600 88cb0a02 aurel32
PC Keyboard
2601 88cb0a02 aurel32
@item
2602 88cb0a02 aurel32
SCSI controller
2603 88cb0a02 aurel32
@item
2604 88cb0a02 aurel32
G364 framebuffer
2605 88cb0a02 aurel32
@end itemize
2606 88cb0a02 aurel32
2607 88cb0a02 aurel32
2608 24d4de45 ths
@node ARM System emulator
2609 24d4de45 ths
@section ARM System emulator
2610 3f9f3aa1 bellard
2611 3f9f3aa1 bellard
Use the executable @file{qemu-system-arm} to simulate a ARM
2612 3f9f3aa1 bellard
machine. The ARM Integrator/CP board is emulated with the following
2613 3f9f3aa1 bellard
devices:
2614 3f9f3aa1 bellard
2615 3f9f3aa1 bellard
@itemize @minus
2616 3f9f3aa1 bellard
@item
2617 9ee6e8bb pbrook
ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
2618 3f9f3aa1 bellard
@item
2619 3f9f3aa1 bellard
Two PL011 UARTs
2620 5fafdf24 ths
@item
2621 3f9f3aa1 bellard
SMC 91c111 Ethernet adapter
2622 00a9bf19 pbrook
@item
2623 00a9bf19 pbrook
PL110 LCD controller
2624 00a9bf19 pbrook
@item
2625 00a9bf19 pbrook
PL050 KMI with PS/2 keyboard and mouse.
2626 a1bb27b1 pbrook
@item
2627 a1bb27b1 pbrook
PL181 MultiMedia Card Interface with SD card.
2628 00a9bf19 pbrook
@end itemize
2629 00a9bf19 pbrook
2630 00a9bf19 pbrook
The ARM Versatile baseboard is emulated with the following devices:
2631 00a9bf19 pbrook
2632 00a9bf19 pbrook
@itemize @minus
2633 00a9bf19 pbrook
@item
2634 9ee6e8bb pbrook
ARM926E, ARM1136 or Cortex-A8 CPU
2635 00a9bf19 pbrook
@item
2636 00a9bf19 pbrook
PL190 Vectored Interrupt Controller
2637 00a9bf19 pbrook
@item
2638 00a9bf19 pbrook
Four PL011 UARTs
2639 5fafdf24 ths
@item
2640 00a9bf19 pbrook
SMC 91c111 Ethernet adapter
2641 00a9bf19 pbrook
@item
2642 00a9bf19 pbrook
PL110 LCD controller
2643 00a9bf19 pbrook
@item
2644 00a9bf19 pbrook
PL050 KMI with PS/2 keyboard and mouse.
2645 00a9bf19 pbrook
@item
2646 00a9bf19 pbrook
PCI host bridge.  Note the emulated PCI bridge only provides access to
2647 00a9bf19 pbrook
PCI memory space.  It does not provide access to PCI IO space.
2648 4be456f1 ths
This means some devices (eg. ne2k_pci NIC) are not usable, and others
2649 4be456f1 ths
(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
2650 00a9bf19 pbrook
mapped control registers.
2651 e6de1bad pbrook
@item
2652 e6de1bad pbrook
PCI OHCI USB controller.
2653 e6de1bad pbrook
@item
2654 e6de1bad pbrook
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
2655 a1bb27b1 pbrook
@item
2656 a1bb27b1 pbrook
PL181 MultiMedia Card Interface with SD card.
2657 3f9f3aa1 bellard
@end itemize
2658 3f9f3aa1 bellard
2659 d7739d75 pbrook
The ARM RealView Emulation baseboard is emulated with the following devices:
2660 d7739d75 pbrook
2661 d7739d75 pbrook
@itemize @minus
2662 d7739d75 pbrook
@item
2663 9ee6e8bb pbrook
ARM926E, ARM1136, ARM11MPCORE(x4) or Cortex-A8 CPU
2664 d7739d75 pbrook
@item
2665 d7739d75 pbrook
ARM AMBA Generic/Distributed Interrupt Controller
2666 d7739d75 pbrook
@item
2667 d7739d75 pbrook
Four PL011 UARTs
2668 5fafdf24 ths
@item
2669 d7739d75 pbrook
SMC 91c111 Ethernet adapter
2670 d7739d75 pbrook
@item
2671 d7739d75 pbrook
PL110 LCD controller
2672 d7739d75 pbrook
@item
2673 d7739d75 pbrook
PL050 KMI with PS/2 keyboard and mouse
2674 d7739d75 pbrook
@item
2675 d7739d75 pbrook
PCI host bridge
2676 d7739d75 pbrook
@item
2677 d7739d75 pbrook
PCI OHCI USB controller
2678 d7739d75 pbrook
@item
2679 d7739d75 pbrook
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
2680 a1bb27b1 pbrook
@item
2681 a1bb27b1 pbrook
PL181 MultiMedia Card Interface with SD card.
2682 d7739d75 pbrook
@end itemize
2683 d7739d75 pbrook
2684 b00052e4 balrog
The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2685 b00052e4 balrog
and "Terrier") emulation includes the following peripherals:
2686 b00052e4 balrog
2687 b00052e4 balrog
@itemize @minus
2688 b00052e4 balrog
@item
2689 b00052e4 balrog
Intel PXA270 System-on-chip (ARM V5TE core)
2690 b00052e4 balrog
@item
2691 b00052e4 balrog
NAND Flash memory
2692 b00052e4 balrog
@item
2693 b00052e4 balrog
IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2694 b00052e4 balrog
@item
2695 b00052e4 balrog
On-chip OHCI USB controller
2696 b00052e4 balrog
@item
2697 b00052e4 balrog
On-chip LCD controller
2698 b00052e4 balrog
@item
2699 b00052e4 balrog
On-chip Real Time Clock
2700 b00052e4 balrog
@item
2701 b00052e4 balrog
TI ADS7846 touchscreen controller on SSP bus
2702 b00052e4 balrog
@item
2703 b00052e4 balrog
Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2704 b00052e4 balrog
@item
2705 b00052e4 balrog
GPIO-connected keyboard controller and LEDs
2706 b00052e4 balrog
@item
2707 549444e1 balrog
Secure Digital card connected to PXA MMC/SD host
2708 b00052e4 balrog
@item
2709 b00052e4 balrog
Three on-chip UARTs
2710 b00052e4 balrog
@item
2711 b00052e4 balrog
WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2712 b00052e4 balrog
@end itemize
2713 b00052e4 balrog
2714 02645926 balrog
The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2715 02645926 balrog
following elements:
2716 02645926 balrog
2717 02645926 balrog
@itemize @minus
2718 02645926 balrog
@item
2719 02645926 balrog
Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2720 02645926 balrog
@item
2721 02645926 balrog
ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2722 02645926 balrog
@item
2723 02645926 balrog
On-chip LCD controller
2724 02645926 balrog
@item
2725 02645926 balrog
On-chip Real Time Clock
2726 02645926 balrog
@item
2727 02645926 balrog
TI TSC2102i touchscreen controller / analog-digital converter / Audio
2728 02645926 balrog
CODEC, connected through MicroWire and I@math{^2}S busses
2729 02645926 balrog
@item
2730 02645926 balrog
GPIO-connected matrix keypad
2731 02645926 balrog
@item
2732 02645926 balrog
Secure Digital card connected to OMAP MMC/SD host
2733 02645926 balrog
@item
2734 02645926 balrog
Three on-chip UARTs
2735 02645926 balrog
@end itemize
2736 02645926 balrog
2737 c30bb264 balrog
Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
2738 c30bb264 balrog
emulation supports the following elements:
2739 c30bb264 balrog
2740 c30bb264 balrog
@itemize @minus
2741 c30bb264 balrog
@item
2742 c30bb264 balrog
Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
2743 c30bb264 balrog
@item
2744 c30bb264 balrog
RAM and non-volatile OneNAND Flash memories
2745 c30bb264 balrog
@item
2746 c30bb264 balrog
Display connected to EPSON remote framebuffer chip and OMAP on-chip
2747 c30bb264 balrog
display controller and a LS041y3 MIPI DBI-C controller
2748 c30bb264 balrog
@item
2749 c30bb264 balrog
TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
2750 c30bb264 balrog
driven through SPI bus
2751 c30bb264 balrog
@item
2752 c30bb264 balrog
National Semiconductor LM8323-controlled qwerty keyboard driven
2753 c30bb264 balrog
through I@math{^2}C bus
2754 c30bb264 balrog
@item
2755 c30bb264 balrog
Secure Digital card connected to OMAP MMC/SD host
2756 c30bb264 balrog
@item
2757 c30bb264 balrog
Three OMAP on-chip UARTs and on-chip STI debugging console
2758 c30bb264 balrog
@item
2759 2d564691 balrog
A Bluetooth(R) transciever and HCI connected to an UART
2760 2d564691 balrog
@item
2761 c30bb264 balrog
Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
2762 c30bb264 balrog
TUSB6010 chip - only USB host mode is supported
2763 c30bb264 balrog
@item
2764 c30bb264 balrog
TI TMP105 temperature sensor driven through I@math{^2}C bus
2765 c30bb264 balrog
@item
2766 c30bb264 balrog
TI TWL92230C power management companion with an RTC on I@math{^2}C bus
2767 c30bb264 balrog
@item
2768 c30bb264 balrog
Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
2769 c30bb264 balrog
through CBUS
2770 c30bb264 balrog
@end itemize
2771 c30bb264 balrog
2772 9ee6e8bb pbrook
The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2773 9ee6e8bb pbrook
devices:
2774 9ee6e8bb pbrook
2775 9ee6e8bb pbrook
@itemize @minus
2776 9ee6e8bb pbrook
@item
2777 9ee6e8bb pbrook
Cortex-M3 CPU core.
2778 9ee6e8bb pbrook
@item
2779 9ee6e8bb pbrook
64k Flash and 8k SRAM.
2780 9ee6e8bb pbrook
@item
2781 9ee6e8bb pbrook
Timers, UARTs, ADC and I@math{^2}C interface.
2782 9ee6e8bb pbrook
@item
2783 9ee6e8bb pbrook
OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2784 9ee6e8bb pbrook
@end itemize
2785 9ee6e8bb pbrook
2786 9ee6e8bb pbrook
The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2787 9ee6e8bb pbrook
devices:
2788 9ee6e8bb pbrook
2789 9ee6e8bb pbrook
@itemize @minus
2790 9ee6e8bb pbrook
@item
2791 9ee6e8bb pbrook
Cortex-M3 CPU core.
2792 9ee6e8bb pbrook
@item
2793 9ee6e8bb pbrook
256k Flash and 64k SRAM.
2794 9ee6e8bb pbrook
@item
2795 9ee6e8bb pbrook
Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2796 9ee6e8bb pbrook
@item
2797 9ee6e8bb pbrook
OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2798 9ee6e8bb pbrook
@end itemize
2799 9ee6e8bb pbrook
2800 57cd6e97 balrog
The Freecom MusicPal internet radio emulation includes the following
2801 57cd6e97 balrog
elements:
2802 57cd6e97 balrog
2803 57cd6e97 balrog
@itemize @minus
2804 57cd6e97 balrog
@item
2805 57cd6e97 balrog
Marvell MV88W8618 ARM core.
2806 57cd6e97 balrog
@item
2807 57cd6e97 balrog
32 MB RAM, 256 KB SRAM, 8 MB flash.
2808 57cd6e97 balrog
@item
2809 57cd6e97 balrog
Up to 2 16550 UARTs
2810 57cd6e97 balrog
@item
2811 57cd6e97 balrog
MV88W8xx8 Ethernet controller
2812 57cd6e97 balrog
@item
2813 57cd6e97 balrog
MV88W8618 audio controller, WM8750 CODEC and mixer
2814 57cd6e97 balrog
@item
2815 57cd6e97 balrog
128?64 display with brightness control
2816 57cd6e97 balrog
@item
2817 57cd6e97 balrog
2 buttons, 2 navigation wheels with button function
2818 57cd6e97 balrog
@end itemize
2819 57cd6e97 balrog
2820 997641a8 balrog
The Siemens SX1 models v1 and v2 (default) basic emulation.
2821 997641a8 balrog
The emulaton includes the following elements:
2822 997641a8 balrog
2823 997641a8 balrog
@itemize @minus
2824 997641a8 balrog
@item
2825 997641a8 balrog
Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2826 997641a8 balrog
@item
2827 997641a8 balrog
ROM and RAM memories (ROM firmware image can be loaded with -pflash)
2828 997641a8 balrog
V1
2829 997641a8 balrog
1 Flash of 16MB and 1 Flash of 8MB
2830 997641a8 balrog
V2
2831 997641a8 balrog
1 Flash of 32MB
2832 997641a8 balrog
@item
2833 997641a8 balrog
On-chip LCD controller
2834 997641a8 balrog
@item
2835 997641a8 balrog
On-chip Real Time Clock
2836 997641a8 balrog
@item
2837 997641a8 balrog
Secure Digital card connected to OMAP MMC/SD host
2838 997641a8 balrog
@item
2839 997641a8 balrog
Three on-chip UARTs
2840 997641a8 balrog
@end itemize
2841 997641a8 balrog
2842 3f9f3aa1 bellard
A Linux 2.6 test image is available on the QEMU web site. More
2843 3f9f3aa1 bellard
information is available in the QEMU mailing-list archive.
2844 9d0a8e6f bellard
2845 24d4de45 ths
@node ColdFire System emulator
2846 24d4de45 ths
@section ColdFire System emulator
2847 209a4e69 pbrook
2848 209a4e69 pbrook
Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2849 209a4e69 pbrook
The emulator is able to boot a uClinux kernel.
2850 707e011b pbrook
2851 707e011b pbrook
The M5208EVB emulation includes the following devices:
2852 707e011b pbrook
2853 707e011b pbrook
@itemize @minus
2854 5fafdf24 ths
@item
2855 707e011b pbrook
MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2856 707e011b pbrook
@item
2857 707e011b pbrook
Three Two on-chip UARTs.
2858 707e011b pbrook
@item
2859 707e011b pbrook
Fast Ethernet Controller (FEC)
2860 707e011b pbrook
@end itemize
2861 707e011b pbrook
2862 707e011b pbrook
The AN5206 emulation includes the following devices:
2863 209a4e69 pbrook
2864 209a4e69 pbrook
@itemize @minus
2865 5fafdf24 ths
@item
2866 209a4e69 pbrook
MCF5206 ColdFire V2 Microprocessor.
2867 209a4e69 pbrook
@item
2868 209a4e69 pbrook
Two on-chip UARTs.
2869 209a4e69 pbrook
@end itemize
2870 209a4e69 pbrook
2871 5fafdf24 ths
@node QEMU User space emulator
2872 5fafdf24 ths
@chapter QEMU User space emulator
2873 83195237 bellard
2874 83195237 bellard
@menu
2875 83195237 bellard
* Supported Operating Systems ::
2876 83195237 bellard
* Linux User space emulator::
2877 83195237 bellard
* Mac OS X/Darwin User space emulator ::
2878 84778508 blueswir1
* BSD User space emulator ::
2879 83195237 bellard
@end menu
2880 83195237 bellard
2881 83195237 bellard
@node Supported Operating Systems
2882 83195237 bellard
@section Supported Operating Systems
2883 83195237 bellard
2884 83195237 bellard
The following OS are supported in user space emulation:
2885 83195237 bellard
2886 83195237 bellard
@itemize @minus
2887 83195237 bellard
@item
2888 4be456f1 ths
Linux (referred as qemu-linux-user)
2889 83195237 bellard
@item
2890 4be456f1 ths
Mac OS X/Darwin (referred as qemu-darwin-user)
2891 84778508 blueswir1
@item
2892 84778508 blueswir1
BSD (referred as qemu-bsd-user)
2893 83195237 bellard
@end itemize
2894 83195237 bellard
2895 83195237 bellard
@node Linux User space emulator
2896 83195237 bellard
@section Linux User space emulator
2897 386405f7 bellard
2898 debc7065 bellard
@menu
2899 debc7065 bellard
* Quick Start::
2900 debc7065 bellard
* Wine launch::
2901 debc7065 bellard
* Command line options::
2902 79737e4a pbrook
* Other binaries::
2903 debc7065 bellard
@end menu
2904 debc7065 bellard
2905 debc7065 bellard
@node Quick Start
2906 83195237 bellard
@subsection Quick Start
2907 df0f11a0 bellard
2908 1f673135 bellard
In order to launch a Linux process, QEMU needs the process executable
2909 5fafdf24 ths
itself and all the target (x86) dynamic libraries used by it.
2910 386405f7 bellard
2911 1f673135 bellard
@itemize
2912 386405f7 bellard
2913 1f673135 bellard
@item On x86, you can just try to launch any process by using the native
2914 1f673135 bellard
libraries:
2915 386405f7 bellard
2916 5fafdf24 ths
@example
2917 1f673135 bellard
qemu-i386 -L / /bin/ls
2918 1f673135 bellard
@end example
2919 386405f7 bellard
2920 1f673135 bellard
@code{-L /} tells that the x86 dynamic linker must be searched with a
2921 1f673135 bellard
@file{/} prefix.
2922 386405f7 bellard
2923 dbcf5e82 ths
@item Since QEMU is also a linux process, you can launch qemu with
2924 dbcf5e82 ths
qemu (NOTE: you can only do that if you compiled QEMU from the sources):
2925 386405f7 bellard
2926 5fafdf24 ths
@example
2927 1f673135 bellard
qemu-i386 -L / qemu-i386 -L / /bin/ls
2928 1f673135 bellard
@end example
2929 386405f7 bellard
2930 1f673135 bellard
@item On non x86 CPUs, you need first to download at least an x86 glibc
2931 1f673135 bellard
(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2932 1f673135 bellard
@code{LD_LIBRARY_PATH} is not set:
2933 df0f11a0 bellard
2934 1f673135 bellard
@example
2935 5fafdf24 ths
unset LD_LIBRARY_PATH
2936 1f673135 bellard
@end example
2937 1eb87257 bellard
2938 1f673135 bellard
Then you can launch the precompiled @file{ls} x86 executable:
2939 1eb87257 bellard
2940 1f673135 bellard
@example
2941 1f673135 bellard
qemu-i386 tests/i386/ls
2942 1f673135 bellard
@end example
2943 1f673135 bellard
You can look at @file{qemu-binfmt-conf.sh} so that
2944 1f673135 bellard
QEMU is automatically launched by the Linux kernel when you try to
2945 1f673135 bellard
launch x86 executables. It requires the @code{binfmt_misc} module in the
2946 1f673135 bellard
Linux kernel.
2947 1eb87257 bellard
2948 1f673135 bellard
@item The x86 version of QEMU is also included. You can try weird things such as:
2949 1f673135 bellard
@example
2950 debc7065 bellard
qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2951 debc7065 bellard
          /usr/local/qemu-i386/bin/ls-i386
2952 1f673135 bellard
@end example
2953 1eb20527 bellard
2954 1f673135 bellard
@end itemize
2955 1eb20527 bellard
2956 debc7065 bellard
@node Wine launch
2957 83195237 bellard
@subsection Wine launch
2958 1eb20527 bellard
2959 1f673135 bellard
@itemize
2960 386405f7 bellard
2961 1f673135 bellard
@item Ensure that you have a working QEMU with the x86 glibc
2962 1f673135 bellard
distribution (see previous section). In order to verify it, you must be
2963 1f673135 bellard
able to do:
2964 386405f7 bellard
2965 1f673135 bellard
@example
2966 1f673135 bellard
qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2967 1f673135 bellard
@end example
2968 386405f7 bellard
2969 1f673135 bellard
@item Download the binary x86 Wine install
2970 5fafdf24 ths
(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
2971 386405f7 bellard
2972 1f673135 bellard
@item Configure Wine on your account. Look at the provided script
2973 debc7065 bellard
@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
2974 1f673135 bellard
@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
2975 386405f7 bellard
2976 1f673135 bellard
@item Then you can try the example @file{putty.exe}:
2977 386405f7 bellard
2978 1f673135 bellard
@example
2979 debc7065 bellard
qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2980 debc7065 bellard
          /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
2981 1f673135 bellard
@end example
2982 386405f7 bellard
2983 1f673135 bellard
@end itemize
2984 fd429f2f bellard
2985 debc7065 bellard
@node Command line options
2986 83195237 bellard
@subsection Command line options
2987 1eb20527 bellard
2988 1f673135 bellard
@example
2989 34a3d239 blueswir1
usage: qemu-i386 [-h] [-d] [-L path] [-s size] [-cpu model] [-g port] program [arguments...]
2990 1f673135 bellard
@end example
2991 1eb20527 bellard
2992 1f673135 bellard
@table @option
2993 1f673135 bellard
@item -h
2994 1f673135 bellard
Print the help
2995 3b46e624 ths
@item -L path
2996 1f673135 bellard
Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2997 1f673135 bellard
@item -s size
2998 1f673135 bellard
Set the x86 stack size in bytes (default=524288)
2999 34a3d239 blueswir1
@item -cpu model
3000 34a3d239 blueswir1
Select CPU model (-cpu ? for list and additional feature selection)
3001 386405f7 bellard
@end table
3002 386405f7 bellard
3003 1f673135 bellard
Debug options:
3004 386405f7 bellard
3005 1f673135 bellard
@table @option
3006 1f673135 bellard
@item -d
3007 1f673135 bellard
Activate log (logfile=/tmp/qemu.log)
3008 1f673135 bellard
@item -p pagesize
3009 1f673135 bellard
Act as if the host page size was 'pagesize' bytes
3010 34a3d239 blueswir1
@item -g port
3011 34a3d239 blueswir1
Wait gdb connection to port
3012 1f673135 bellard
@end table
3013 386405f7 bellard
3014 b01bcae6 balrog
Environment variables:
3015 b01bcae6 balrog
3016 b01bcae6 balrog
@table @env
3017 b01bcae6 balrog
@item QEMU_STRACE
3018 b01bcae6 balrog
Print system calls and arguments similar to the 'strace' program
3019 b01bcae6 balrog
(NOTE: the actual 'strace' program will not work because the user
3020 b01bcae6 balrog
space emulator hasn't implemented ptrace).  At the moment this is
3021 b01bcae6 balrog
incomplete.  All system calls that don't have a specific argument
3022 b01bcae6 balrog
format are printed with information for six arguments.  Many
3023 b01bcae6 balrog
flag-style arguments don't have decoders and will show up as numbers.
3024 5cfdf930 ths
@end table
3025 b01bcae6 balrog
3026 79737e4a pbrook
@node Other binaries
3027 83195237 bellard
@subsection Other binaries
3028 79737e4a pbrook
3029 79737e4a pbrook
@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
3030 79737e4a pbrook
binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
3031 79737e4a pbrook
configurations), and arm-uclinux bFLT format binaries.
3032 79737e4a pbrook
3033 e6e5906b pbrook
@command{qemu-m68k} is capable of running semihosted binaries using the BDM
3034 e6e5906b pbrook
(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
3035 e6e5906b pbrook
coldfire uClinux bFLT format binaries.
3036 e6e5906b pbrook
3037 79737e4a pbrook
The binary format is detected automatically.
3038 79737e4a pbrook
3039 34a3d239 blueswir1
@command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
3040 34a3d239 blueswir1
3041 a785e42e blueswir1
@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
3042 a785e42e blueswir1
(Sparc64 CPU, 32 bit ABI).
3043 a785e42e blueswir1
3044 a785e42e blueswir1
@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
3045 a785e42e blueswir1
SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
3046 a785e42e blueswir1
3047 83195237 bellard
@node Mac OS X/Darwin User space emulator
3048 83195237 bellard
@section Mac OS X/Darwin User space emulator
3049 83195237 bellard
3050 83195237 bellard
@menu
3051 83195237 bellard
* Mac OS X/Darwin Status::
3052 83195237 bellard
* Mac OS X/Darwin Quick Start::
3053 83195237 bellard
* Mac OS X/Darwin Command line options::
3054 83195237 bellard
@end menu
3055 83195237 bellard
3056 83195237 bellard
@node Mac OS X/Darwin Status
3057 83195237 bellard
@subsection Mac OS X/Darwin Status
3058 83195237 bellard
3059 83195237 bellard
@itemize @minus
3060 83195237 bellard
@item
3061 83195237 bellard
target x86 on x86: Most apps (Cocoa and Carbon too) works. [1]
3062 83195237 bellard
@item
3063 83195237 bellard
target PowerPC on x86: Not working as the ppc commpage can't be mapped (yet!)
3064 83195237 bellard
@item
3065 dbcf5e82 ths
target PowerPC on PowerPC: Most apps (Cocoa and Carbon too) works. [1]
3066 83195237 bellard
@item
3067 83195237 bellard
target x86 on PowerPC: most utilities work. Cocoa and Carbon apps are not yet supported.
3068 83195237 bellard
@end itemize
3069 83195237 bellard
3070 83195237 bellard
[1] If you're host commpage can be executed by qemu.
3071 83195237 bellard
3072 83195237 bellard
@node Mac OS X/Darwin Quick Start
3073 83195237 bellard
@subsection Quick Start
3074 83195237 bellard
3075 83195237 bellard
In order to launch a Mac OS X/Darwin process, QEMU needs the process executable
3076 83195237 bellard
itself and all the target dynamic libraries used by it. If you don't have the FAT
3077 83195237 bellard
libraries (you're running Mac OS X/ppc) you'll need to obtain it from a Mac OS X
3078 83195237 bellard
CD or compile them by hand.
3079 83195237 bellard
3080 83195237 bellard
@itemize
3081 83195237 bellard
3082 83195237 bellard
@item On x86, you can just try to launch any process by using the native
3083 83195237 bellard
libraries:
3084 83195237 bellard
3085 5fafdf24 ths
@example
3086 dbcf5e82 ths
qemu-i386 /bin/ls
3087 83195237 bellard
@end example
3088 83195237 bellard
3089 83195237 bellard
or to run the ppc version of the executable:
3090 83195237 bellard
3091 5fafdf24 ths
@example
3092 dbcf5e82 ths
qemu-ppc /bin/ls
3093 83195237 bellard
@end example
3094 83195237 bellard
3095 83195237 bellard
@item On ppc, you'll have to tell qemu where your x86 libraries (and dynamic linker)
3096 83195237 bellard
are installed:
3097 83195237 bellard
3098 5fafdf24 ths
@example
3099 dbcf5e82 ths
qemu-i386 -L /opt/x86_root/ /bin/ls
3100 83195237 bellard
@end example
3101 83195237 bellard
3102 83195237 bellard
@code{-L /opt/x86_root/} tells that the dynamic linker (dyld) path is in
3103 83195237 bellard
@file{/opt/x86_root/usr/bin/dyld}.
3104 83195237 bellard
3105 83195237 bellard
@end itemize
3106 83195237 bellard
3107 83195237 bellard
@node Mac OS X/Darwin Command line options
3108 83195237 bellard
@subsection Command line options
3109 83195237 bellard
3110 83195237 bellard
@example
3111 dbcf5e82 ths
usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
3112 83195237 bellard
@end example
3113 83195237 bellard
3114 83195237 bellard
@table @option
3115 83195237 bellard
@item -h
3116 83195237 bellard
Print the help
3117 3b46e624 ths
@item -L path
3118 83195237 bellard
Set the library root path (default=/)
3119 83195237 bellard
@item -s size
3120 83195237 bellard
Set the stack size in bytes (default=524288)
3121 83195237 bellard
@end table
3122 83195237 bellard
3123 83195237 bellard
Debug options:
3124 83195237 bellard
3125 83195237 bellard
@table @option
3126 83195237 bellard
@item -d
3127 83195237 bellard
Activate log (logfile=/tmp/qemu.log)
3128 83195237 bellard
@item -p pagesize
3129 83195237 bellard
Act as if the host page size was 'pagesize' bytes
3130 83195237 bellard
@end table
3131 83195237 bellard
3132 84778508 blueswir1
@node BSD User space emulator
3133 84778508 blueswir1
@section BSD User space emulator
3134 84778508 blueswir1
3135 84778508 blueswir1
@menu
3136 84778508 blueswir1
* BSD Status::
3137 84778508 blueswir1
* BSD Quick Start::
3138 84778508 blueswir1
* BSD Command line options::
3139 84778508 blueswir1
@end menu
3140 84778508 blueswir1
3141 84778508 blueswir1
@node BSD Status
3142 84778508 blueswir1
@subsection BSD Status
3143 84778508 blueswir1
3144 84778508 blueswir1
@itemize @minus
3145 84778508 blueswir1
@item
3146 84778508 blueswir1
target Sparc64 on Sparc64: Some trivial programs work.
3147 84778508 blueswir1
@end itemize
3148 84778508 blueswir1
3149 84778508 blueswir1
@node BSD Quick Start
3150 84778508 blueswir1
@subsection Quick Start
3151 84778508 blueswir1
3152 84778508 blueswir1
In order to launch a BSD process, QEMU needs the process executable
3153 84778508 blueswir1
itself and all the target dynamic libraries used by it.
3154 84778508 blueswir1
3155 84778508 blueswir1
@itemize
3156 84778508 blueswir1
3157 84778508 blueswir1
@item On Sparc64, you can just try to launch any process by using the native
3158 84778508 blueswir1
libraries:
3159 84778508 blueswir1
3160 84778508 blueswir1
@example
3161 84778508 blueswir1
qemu-sparc64 /bin/ls
3162 84778508 blueswir1
@end example
3163 84778508 blueswir1
3164 84778508 blueswir1
@end itemize
3165 84778508 blueswir1
3166 84778508 blueswir1
@node BSD Command line options
3167 84778508 blueswir1
@subsection Command line options
3168 84778508 blueswir1
3169 84778508 blueswir1
@example
3170 84778508 blueswir1
usage: qemu-sparc64 [-h] [-d] [-L path] [-s size] [-bsd type] program [arguments...]
3171 84778508 blueswir1
@end example
3172 84778508 blueswir1
3173 84778508 blueswir1
@table @option
3174 84778508 blueswir1
@item -h
3175 84778508 blueswir1
Print the help
3176 84778508 blueswir1
@item -L path
3177 84778508 blueswir1
Set the library root path (default=/)
3178 84778508 blueswir1
@item -s size
3179 84778508 blueswir1
Set the stack size in bytes (default=524288)
3180 84778508 blueswir1
@item -bsd type
3181 84778508 blueswir1
Set the type of the emulated BSD Operating system. Valid values are
3182 84778508 blueswir1
FreeBSD, NetBSD and OpenBSD (default).
3183 84778508 blueswir1
@end table
3184 84778508 blueswir1
3185 84778508 blueswir1
Debug options:
3186 84778508 blueswir1
3187 84778508 blueswir1
@table @option
3188 84778508 blueswir1
@item -d
3189 84778508 blueswir1
Activate log (logfile=/tmp/qemu.log)
3190 84778508 blueswir1
@item -p pagesize
3191 84778508 blueswir1
Act as if the host page size was 'pagesize' bytes
3192 84778508 blueswir1
@end table
3193 84778508 blueswir1
3194 15a34c63 bellard
@node compilation
3195 15a34c63 bellard
@chapter Compilation from the sources
3196 15a34c63 bellard
3197 debc7065 bellard
@menu
3198 debc7065 bellard
* Linux/Unix::
3199 debc7065 bellard
* Windows::
3200 debc7065 bellard
* Cross compilation for Windows with Linux::
3201 debc7065 bellard
* Mac OS X::
3202 debc7065 bellard
@end menu
3203 debc7065 bellard
3204 debc7065 bellard
@node Linux/Unix
3205 7c3fc84d bellard
@section Linux/Unix
3206 7c3fc84d bellard
3207 7c3fc84d bellard
@subsection Compilation
3208 7c3fc84d bellard
3209 7c3fc84d bellard
First you must decompress the sources:
3210 7c3fc84d bellard
@example
3211 7c3fc84d bellard
cd /tmp
3212 7c3fc84d bellard
tar zxvf qemu-x.y.z.tar.gz
3213 7c3fc84d bellard
cd qemu-x.y.z
3214 7c3fc84d bellard
@end example
3215 7c3fc84d bellard
3216 7c3fc84d bellard
Then you configure QEMU and build it (usually no options are needed):
3217 7c3fc84d bellard
@example
3218 7c3fc84d bellard
./configure
3219 7c3fc84d bellard
make
3220 7c3fc84d bellard
@end example
3221 7c3fc84d bellard
3222 7c3fc84d bellard
Then type as root user:
3223 7c3fc84d bellard
@example
3224 7c3fc84d bellard
make install
3225 7c3fc84d bellard
@end example
3226 7c3fc84d bellard
to install QEMU in @file{/usr/local}.
3227 7c3fc84d bellard
3228 4fe8b87a bellard
@subsection GCC version
3229 7c3fc84d bellard
3230 366dfc52 ths
In order to compile QEMU successfully, it is very important that you
3231 4fe8b87a bellard
have the right tools. The most important one is gcc. On most hosts and
3232 4fe8b87a bellard
in particular on x86 ones, @emph{gcc 4.x is not supported}. If your
3233 4fe8b87a bellard
Linux distribution includes a gcc 4.x compiler, you can usually
3234 4fe8b87a bellard
install an older version (it is invoked by @code{gcc32} or
3235 4fe8b87a bellard
@code{gcc34}). The QEMU configure script automatically probes for
3236 4be456f1 ths
these older versions so that usually you don't have to do anything.
3237 15a34c63 bellard
3238 debc7065 bellard
@node Windows
3239 15a34c63 bellard
@section Windows
3240 15a34c63 bellard
3241 15a34c63 bellard
@itemize
3242 15a34c63 bellard
@item Install the current versions of MSYS and MinGW from
3243 15a34c63 bellard
@url{http://www.mingw.org/}. You can find detailed installation
3244 15a34c63 bellard
instructions in the download section and the FAQ.
3245 15a34c63 bellard
3246 5fafdf24 ths
@item Download
3247 15a34c63 bellard
the MinGW development library of SDL 1.2.x
3248 debc7065 bellard
(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
3249 15a34c63 bellard
@url{http://www.libsdl.org}. Unpack it in a temporary place, and
3250 15a34c63 bellard
unpack the archive @file{i386-mingw32msvc.tar.gz} in the MinGW tool
3251 15a34c63 bellard
directory. Edit the @file{sdl-config} script so that it gives the
3252 15a34c63 bellard
correct SDL directory when invoked.
3253 15a34c63 bellard
3254 15a34c63 bellard
@item Extract the current version of QEMU.
3255 5fafdf24 ths
3256 15a34c63 bellard
@item Start the MSYS shell (file @file{msys.bat}).
3257 15a34c63 bellard
3258 5fafdf24 ths
@item Change to the QEMU directory. Launch @file{./configure} and
3259 15a34c63 bellard
@file{make}.  If you have problems using SDL, verify that
3260 15a34c63 bellard
@file{sdl-config} can be launched from the MSYS command line.
3261 15a34c63 bellard
3262 5fafdf24 ths
@item You can install QEMU in @file{Program Files/Qemu} by typing
3263 15a34c63 bellard
@file{make install}. Don't forget to copy @file{SDL.dll} in
3264 15a34c63 bellard
@file{Program Files/Qemu}.
3265 15a34c63 bellard
3266 15a34c63 bellard
@end itemize
3267 15a34c63 bellard
3268 debc7065 bellard
@node Cross compilation for Windows with Linux
3269 15a34c63 bellard
@section Cross compilation for Windows with Linux
3270 15a34c63 bellard
3271 15a34c63 bellard
@itemize
3272 15a34c63 bellard
@item
3273 15a34c63 bellard
Install the MinGW cross compilation tools available at
3274 15a34c63 bellard
@url{http://www.mingw.org/}.
3275 15a34c63 bellard
3276 5fafdf24 ths
@item
3277 15a34c63 bellard
Install the Win32 version of SDL (@url{http://www.libsdl.org}) by
3278 15a34c63 bellard
unpacking @file{i386-mingw32msvc.tar.gz}. Set up the PATH environment
3279 15a34c63 bellard
variable so that @file{i386-mingw32msvc-sdl-config} can be launched by
3280 15a34c63 bellard
the QEMU configuration script.
3281 15a34c63 bellard
3282 5fafdf24 ths
@item
3283 15a34c63 bellard
Configure QEMU for Windows cross compilation:
3284 15a34c63 bellard
@example
3285 15a34c63 bellard
./configure --enable-mingw32
3286 15a34c63 bellard
@end example
3287 15a34c63 bellard
If necessary, you can change the cross-prefix according to the prefix
3288 4be456f1 ths
chosen for the MinGW tools with --cross-prefix. You can also use
3289 15a34c63 bellard
--prefix to set the Win32 install path.
3290 15a34c63 bellard
3291 5fafdf24 ths
@item You can install QEMU in the installation directory by typing
3292 15a34c63 bellard
@file{make install}. Don't forget to copy @file{SDL.dll} in the
3293 5fafdf24 ths
installation directory.
3294 15a34c63 bellard
3295 15a34c63 bellard
@end itemize
3296 15a34c63 bellard
3297 15a34c63 bellard
Note: Currently, Wine does not seem able to launch
3298 15a34c63 bellard
QEMU for Win32.
3299 15a34c63 bellard
3300 debc7065 bellard
@node Mac OS X
3301 15a34c63 bellard
@section Mac OS X
3302 15a34c63 bellard
3303 15a34c63 bellard
The Mac OS X patches are not fully merged in QEMU, so you should look
3304 15a34c63 bellard
at the QEMU mailing list archive to have all the necessary
3305 15a34c63 bellard
information.
3306 15a34c63 bellard
3307 debc7065 bellard
@node Index
3308 debc7065 bellard
@chapter Index
3309 debc7065 bellard
@printindex cp
3310 debc7065 bellard
3311 debc7065 bellard
@bye