Statistics
| Branch: | Revision:

root / target-sparc / helper.c @ 7a5e4488

History | View | Annotate | Download (30 kB)

1
/*
2
 *  sparc helpers
3
 *
4
 *  Copyright (c) 2003-2005 Fabrice Bellard
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18
 */
19

    
20
#include "cpu.h"
21
#include "host-utils.h"
22
#include "helper.h"
23
#include "sysemu.h"
24

    
25
//#define DEBUG_MMU
26

    
27
#ifdef DEBUG_MMU
28
#define DPRINTF_MMU(fmt, ...) \
29
    do { printf("MMU: " fmt , ## __VA_ARGS__); } while (0)
30
#else
31
#define DPRINTF_MMU(fmt, ...) do {} while (0)
32
#endif
33

    
34
/* Sparc MMU emulation */
35

    
36
#if defined(CONFIG_USER_ONLY)
37

    
38
int cpu_sparc_handle_mmu_fault(CPUState *env1, target_ulong address, int rw,
39
                               int mmu_idx)
40
{
41
    if (rw & 2)
42
        env1->exception_index = TT_TFAULT;
43
    else
44
        env1->exception_index = TT_DFAULT;
45
    return 1;
46
}
47

    
48
#else
49

    
50
#ifndef TARGET_SPARC64
51
/*
52
 * Sparc V8 Reference MMU (SRMMU)
53
 */
54
static const int access_table[8][8] = {
55
    { 0, 0, 0, 0, 8, 0, 12, 12 },
56
    { 0, 0, 0, 0, 8, 0, 0, 0 },
57
    { 8, 8, 0, 0, 0, 8, 12, 12 },
58
    { 8, 8, 0, 0, 0, 8, 0, 0 },
59
    { 8, 0, 8, 0, 8, 8, 12, 12 },
60
    { 8, 0, 8, 0, 8, 0, 8, 0 },
61
    { 8, 8, 8, 0, 8, 8, 12, 12 },
62
    { 8, 8, 8, 0, 8, 8, 8, 0 }
63
};
64

    
65
static const int perm_table[2][8] = {
66
    {
67
        PAGE_READ,
68
        PAGE_READ | PAGE_WRITE,
69
        PAGE_READ | PAGE_EXEC,
70
        PAGE_READ | PAGE_WRITE | PAGE_EXEC,
71
        PAGE_EXEC,
72
        PAGE_READ | PAGE_WRITE,
73
        PAGE_READ | PAGE_EXEC,
74
        PAGE_READ | PAGE_WRITE | PAGE_EXEC
75
    },
76
    {
77
        PAGE_READ,
78
        PAGE_READ | PAGE_WRITE,
79
        PAGE_READ | PAGE_EXEC,
80
        PAGE_READ | PAGE_WRITE | PAGE_EXEC,
81
        PAGE_EXEC,
82
        PAGE_READ,
83
        0,
84
        0,
85
    }
86
};
87

    
88
static int get_physical_address(CPUState *env, target_phys_addr_t *physical,
89
                                int *prot, int *access_index,
90
                                target_ulong address, int rw, int mmu_idx,
91
                                target_ulong *page_size)
92
{
93
    int access_perms = 0;
94
    target_phys_addr_t pde_ptr;
95
    uint32_t pde;
96
    int error_code = 0, is_dirty, is_user;
97
    unsigned long page_offset;
98

    
99
    is_user = mmu_idx == MMU_USER_IDX;
100

    
101
    if ((env->mmuregs[0] & MMU_E) == 0) { /* MMU disabled */
102
        *page_size = TARGET_PAGE_SIZE;
103
        // Boot mode: instruction fetches are taken from PROM
104
        if (rw == 2 && (env->mmuregs[0] & env->def->mmu_bm)) {
105
            *physical = env->prom_addr | (address & 0x7ffffULL);
106
            *prot = PAGE_READ | PAGE_EXEC;
107
            return 0;
108
        }
109
        *physical = address;
110
        *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
111
        return 0;
112
    }
113

    
114
    *access_index = ((rw & 1) << 2) | (rw & 2) | (is_user? 0 : 1);
115
    *physical = 0xffffffffffff0000ULL;
116

    
117
    /* SPARC reference MMU table walk: Context table->L1->L2->PTE */
118
    /* Context base + context number */
119
    pde_ptr = (env->mmuregs[1] << 4) + (env->mmuregs[2] << 2);
120
    pde = ldl_phys(pde_ptr);
121

    
122
    /* Ctx pde */
123
    switch (pde & PTE_ENTRYTYPE_MASK) {
124
    default:
125
    case 0: /* Invalid */
126
        return 1 << 2;
127
    case 2: /* L0 PTE, maybe should not happen? */
128
    case 3: /* Reserved */
129
        return 4 << 2;
130
    case 1: /* L0 PDE */
131
        pde_ptr = ((address >> 22) & ~3) + ((pde & ~3) << 4);
132
        pde = ldl_phys(pde_ptr);
133

    
134
        switch (pde & PTE_ENTRYTYPE_MASK) {
135
        default:
136
        case 0: /* Invalid */
137
            return (1 << 8) | (1 << 2);
138
        case 3: /* Reserved */
139
            return (1 << 8) | (4 << 2);
140
        case 1: /* L1 PDE */
141
            pde_ptr = ((address & 0xfc0000) >> 16) + ((pde & ~3) << 4);
142
            pde = ldl_phys(pde_ptr);
143

    
144
            switch (pde & PTE_ENTRYTYPE_MASK) {
145
            default:
146
            case 0: /* Invalid */
147
                return (2 << 8) | (1 << 2);
148
            case 3: /* Reserved */
149
                return (2 << 8) | (4 << 2);
150
            case 1: /* L2 PDE */
151
                pde_ptr = ((address & 0x3f000) >> 10) + ((pde & ~3) << 4);
152
                pde = ldl_phys(pde_ptr);
153

    
154
                switch (pde & PTE_ENTRYTYPE_MASK) {
155
                default:
156
                case 0: /* Invalid */
157
                    return (3 << 8) | (1 << 2);
158
                case 1: /* PDE, should not happen */
159
                case 3: /* Reserved */
160
                    return (3 << 8) | (4 << 2);
161
                case 2: /* L3 PTE */
162
                    page_offset = (address & TARGET_PAGE_MASK) &
163
                        (TARGET_PAGE_SIZE - 1);
164
                }
165
                *page_size = TARGET_PAGE_SIZE;
166
                break;
167
            case 2: /* L2 PTE */
168
                page_offset = address & 0x3ffff;
169
                *page_size = 0x40000;
170
            }
171
            break;
172
        case 2: /* L1 PTE */
173
            page_offset = address & 0xffffff;
174
            *page_size = 0x1000000;
175
        }
176
    }
177

    
178
    /* check access */
179
    access_perms = (pde & PTE_ACCESS_MASK) >> PTE_ACCESS_SHIFT;
180
    error_code = access_table[*access_index][access_perms];
181
    if (error_code && !((env->mmuregs[0] & MMU_NF) && is_user))
182
        return error_code;
183

    
184
    /* update page modified and dirty bits */
185
    is_dirty = (rw & 1) && !(pde & PG_MODIFIED_MASK);
186
    if (!(pde & PG_ACCESSED_MASK) || is_dirty) {
187
        pde |= PG_ACCESSED_MASK;
188
        if (is_dirty)
189
            pde |= PG_MODIFIED_MASK;
190
        stl_phys_notdirty(pde_ptr, pde);
191
    }
192

    
193
    /* the page can be put in the TLB */
194
    *prot = perm_table[is_user][access_perms];
195
    if (!(pde & PG_MODIFIED_MASK)) {
196
        /* only set write access if already dirty... otherwise wait
197
           for dirty access */
198
        *prot &= ~PAGE_WRITE;
199
    }
200

    
201
    /* Even if large ptes, we map only one 4KB page in the cache to
202
       avoid filling it too fast */
203
    *physical = ((target_phys_addr_t)(pde & PTE_ADDR_MASK) << 4) + page_offset;
204
    return error_code;
205
}
206

    
207
/* Perform address translation */
208
int cpu_sparc_handle_mmu_fault (CPUState *env, target_ulong address, int rw,
209
                              int mmu_idx)
210
{
211
    target_phys_addr_t paddr;
212
    target_ulong vaddr;
213
    target_ulong page_size;
214
    int error_code = 0, prot, access_index;
215

    
216
    error_code = get_physical_address(env, &paddr, &prot, &access_index,
217
                                      address, rw, mmu_idx, &page_size);
218
    if (error_code == 0) {
219
        vaddr = address & TARGET_PAGE_MASK;
220
        paddr &= TARGET_PAGE_MASK;
221
#ifdef DEBUG_MMU
222
        printf("Translate at " TARGET_FMT_lx " -> " TARGET_FMT_plx ", vaddr "
223
               TARGET_FMT_lx "\n", address, paddr, vaddr);
224
#endif
225
        tlb_set_page(env, vaddr, paddr, prot, mmu_idx, page_size);
226
        return 0;
227
    }
228

    
229
    if (env->mmuregs[3]) /* Fault status register */
230
        env->mmuregs[3] = 1; /* overflow (not read before another fault) */
231
    env->mmuregs[3] |= (access_index << 5) | error_code | 2;
232
    env->mmuregs[4] = address; /* Fault address register */
233

    
234
    if ((env->mmuregs[0] & MMU_NF) || env->psret == 0)  {
235
        // No fault mode: if a mapping is available, just override
236
        // permissions. If no mapping is available, redirect accesses to
237
        // neverland. Fake/overridden mappings will be flushed when
238
        // switching to normal mode.
239
        vaddr = address & TARGET_PAGE_MASK;
240
        prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
241
        tlb_set_page(env, vaddr, paddr, prot, mmu_idx, TARGET_PAGE_SIZE);
242
        return 0;
243
    } else {
244
        if (rw & 2)
245
            env->exception_index = TT_TFAULT;
246
        else
247
            env->exception_index = TT_DFAULT;
248
        return 1;
249
    }
250
}
251

    
252
target_ulong mmu_probe(CPUState *env, target_ulong address, int mmulev)
253
{
254
    target_phys_addr_t pde_ptr;
255
    uint32_t pde;
256

    
257
    /* Context base + context number */
258
    pde_ptr = (target_phys_addr_t)(env->mmuregs[1] << 4) +
259
        (env->mmuregs[2] << 2);
260
    pde = ldl_phys(pde_ptr);
261

    
262
    switch (pde & PTE_ENTRYTYPE_MASK) {
263
    default:
264
    case 0: /* Invalid */
265
    case 2: /* PTE, maybe should not happen? */
266
    case 3: /* Reserved */
267
        return 0;
268
    case 1: /* L1 PDE */
269
        if (mmulev == 3)
270
            return pde;
271
        pde_ptr = ((address >> 22) & ~3) + ((pde & ~3) << 4);
272
        pde = ldl_phys(pde_ptr);
273

    
274
        switch (pde & PTE_ENTRYTYPE_MASK) {
275
        default:
276
        case 0: /* Invalid */
277
        case 3: /* Reserved */
278
            return 0;
279
        case 2: /* L1 PTE */
280
            return pde;
281
        case 1: /* L2 PDE */
282
            if (mmulev == 2)
283
                return pde;
284
            pde_ptr = ((address & 0xfc0000) >> 16) + ((pde & ~3) << 4);
285
            pde = ldl_phys(pde_ptr);
286

    
287
            switch (pde & PTE_ENTRYTYPE_MASK) {
288
            default:
289
            case 0: /* Invalid */
290
            case 3: /* Reserved */
291
                return 0;
292
            case 2: /* L2 PTE */
293
                return pde;
294
            case 1: /* L3 PDE */
295
                if (mmulev == 1)
296
                    return pde;
297
                pde_ptr = ((address & 0x3f000) >> 10) + ((pde & ~3) << 4);
298
                pde = ldl_phys(pde_ptr);
299

    
300
                switch (pde & PTE_ENTRYTYPE_MASK) {
301
                default:
302
                case 0: /* Invalid */
303
                case 1: /* PDE, should not happen */
304
                case 3: /* Reserved */
305
                    return 0;
306
                case 2: /* L3 PTE */
307
                    return pde;
308
                }
309
            }
310
        }
311
    }
312
    return 0;
313
}
314

    
315
void dump_mmu(FILE *f, fprintf_function cpu_fprintf, CPUState *env)
316
{
317
    target_ulong va, va1, va2;
318
    unsigned int n, m, o;
319
    target_phys_addr_t pde_ptr, pa;
320
    uint32_t pde;
321

    
322
    pde_ptr = (env->mmuregs[1] << 4) + (env->mmuregs[2] << 2);
323
    pde = ldl_phys(pde_ptr);
324
    (*cpu_fprintf)(f, "Root ptr: " TARGET_FMT_plx ", ctx: %d\n",
325
                   (target_phys_addr_t)env->mmuregs[1] << 4, env->mmuregs[2]);
326
    for (n = 0, va = 0; n < 256; n++, va += 16 * 1024 * 1024) {
327
        pde = mmu_probe(env, va, 2);
328
        if (pde) {
329
            pa = cpu_get_phys_page_debug(env, va);
330
            (*cpu_fprintf)(f, "VA: " TARGET_FMT_lx ", PA: " TARGET_FMT_plx
331
                           " PDE: " TARGET_FMT_lx "\n", va, pa, pde);
332
            for (m = 0, va1 = va; m < 64; m++, va1 += 256 * 1024) {
333
                pde = mmu_probe(env, va1, 1);
334
                if (pde) {
335
                    pa = cpu_get_phys_page_debug(env, va1);
336
                    (*cpu_fprintf)(f, " VA: " TARGET_FMT_lx ", PA: "
337
                                   TARGET_FMT_plx " PDE: " TARGET_FMT_lx "\n",
338
                                   va1, pa, pde);
339
                    for (o = 0, va2 = va1; o < 64; o++, va2 += 4 * 1024) {
340
                        pde = mmu_probe(env, va2, 0);
341
                        if (pde) {
342
                            pa = cpu_get_phys_page_debug(env, va2);
343
                            (*cpu_fprintf)(f, "  VA: " TARGET_FMT_lx ", PA: "
344
                                           TARGET_FMT_plx " PTE: "
345
                                           TARGET_FMT_lx "\n",
346
                                           va2, pa, pde);
347
                        }
348
                    }
349
                }
350
            }
351
        }
352
    }
353
}
354

    
355
/* Gdb expects all registers windows to be flushed in ram. This function handles
356
 * reads (and only reads) in stack frames as if windows were flushed. We assume
357
 * that the sparc ABI is followed.
358
 */
359
int target_memory_rw_debug(CPUState *env, target_ulong addr,
360
                           uint8_t *buf, int len, int is_write)
361
{
362
    int i;
363
    int len1;
364
    int cwp = env->cwp;
365

    
366
    if (!is_write) {
367
        for (i = 0; i < env->nwindows; i++) {
368
            int off;
369
            target_ulong fp = env->regbase[cwp * 16 + 22];
370

    
371
            /* Assume fp == 0 means end of frame.  */
372
            if (fp == 0) {
373
                break;
374
            }
375

    
376
            cwp = cpu_cwp_inc(env, cwp + 1);
377

    
378
            /* Invalid window ? */
379
            if (env->wim & (1 << cwp)) {
380
                break;
381
            }
382

    
383
            /* According to the ABI, the stack is growing downward.  */
384
            if (addr + len < fp) {
385
                break;
386
            }
387

    
388
            /* Not in this frame.  */
389
            if (addr > fp + 64) {
390
                continue;
391
            }
392

    
393
            /* Handle access before this window.  */
394
            if (addr < fp) {
395
                len1 = fp - addr;
396
                if (cpu_memory_rw_debug(env, addr, buf, len1, is_write) != 0) {
397
                    return -1;
398
                }
399
                addr += len1;
400
                len -= len1;
401
                buf += len1;
402
            }
403

    
404
            /* Access byte per byte to registers. Not very efficient but speed
405
             * is not critical.
406
             */
407
            off = addr - fp;
408
            len1 = 64 - off;
409

    
410
            if (len1 > len) {
411
                len1 = len;
412
            }
413

    
414
            for (; len1; len1--) {
415
                int reg = cwp * 16 + 8 + (off >> 2);
416
                union {
417
                    uint32_t v;
418
                    uint8_t c[4];
419
                } u;
420
                u.v = cpu_to_be32(env->regbase[reg]);
421
                *buf++ = u.c[off & 3];
422
                addr++;
423
                len--;
424
                off++;
425
            }
426

    
427
            if (len == 0) {
428
                return 0;
429
            }
430
        }
431
    }
432
    return cpu_memory_rw_debug(env, addr, buf, len, is_write);
433
}
434

    
435
#else /* !TARGET_SPARC64 */
436

    
437
// 41 bit physical address space
438
static inline target_phys_addr_t ultrasparc_truncate_physical(uint64_t x)
439
{
440
    return x & 0x1ffffffffffULL;
441
}
442

    
443
/*
444
 * UltraSparc IIi I/DMMUs
445
 */
446

    
447
// Returns true if TTE tag is valid and matches virtual address value in context
448
// requires virtual address mask value calculated from TTE entry size
449
static inline int ultrasparc_tag_match(SparcTLBEntry *tlb,
450
                                       uint64_t address, uint64_t context,
451
                                       target_phys_addr_t *physical)
452
{
453
    uint64_t mask;
454

    
455
    switch (TTE_PGSIZE(tlb->tte)) {
456
    default:
457
    case 0x0: // 8k
458
        mask = 0xffffffffffffe000ULL;
459
        break;
460
    case 0x1: // 64k
461
        mask = 0xffffffffffff0000ULL;
462
        break;
463
    case 0x2: // 512k
464
        mask = 0xfffffffffff80000ULL;
465
        break;
466
    case 0x3: // 4M
467
        mask = 0xffffffffffc00000ULL;
468
        break;
469
    }
470

    
471
    // valid, context match, virtual address match?
472
    if (TTE_IS_VALID(tlb->tte) &&
473
        (TTE_IS_GLOBAL(tlb->tte) || tlb_compare_context(tlb, context))
474
        && compare_masked(address, tlb->tag, mask))
475
    {
476
        // decode physical address
477
        *physical = ((tlb->tte & mask) | (address & ~mask)) & 0x1ffffffe000ULL;
478
        return 1;
479
    }
480

    
481
    return 0;
482
}
483

    
484
static int get_physical_address_data(CPUState *env,
485
                                     target_phys_addr_t *physical, int *prot,
486
                                     target_ulong address, int rw, int mmu_idx)
487
{
488
    unsigned int i;
489
    uint64_t context;
490
    uint64_t sfsr = 0;
491

    
492
    int is_user = (mmu_idx == MMU_USER_IDX ||
493
                   mmu_idx == MMU_USER_SECONDARY_IDX);
494

    
495
    if ((env->lsu & DMMU_E) == 0) { /* DMMU disabled */
496
        *physical = ultrasparc_truncate_physical(address);
497
        *prot = PAGE_READ | PAGE_WRITE;
498
        return 0;
499
    }
500

    
501
    switch(mmu_idx) {
502
    case MMU_USER_IDX:
503
    case MMU_KERNEL_IDX:
504
        context = env->dmmu.mmu_primary_context & 0x1fff;
505
        sfsr |= SFSR_CT_PRIMARY;
506
        break;
507
    case MMU_USER_SECONDARY_IDX:
508
    case MMU_KERNEL_SECONDARY_IDX:
509
        context = env->dmmu.mmu_secondary_context & 0x1fff;
510
        sfsr |= SFSR_CT_SECONDARY;
511
        break;
512
    case MMU_NUCLEUS_IDX:
513
        sfsr |= SFSR_CT_NUCLEUS;
514
        /* FALLTHRU */
515
    default:
516
        context = 0;
517
        break;
518
    }
519

    
520
    if (rw == 1) {
521
        sfsr |= SFSR_WRITE_BIT;
522
    } else if (rw == 4) {
523
        sfsr |= SFSR_NF_BIT;
524
    }
525

    
526
    for (i = 0; i < 64; i++) {
527
        // ctx match, vaddr match, valid?
528
        if (ultrasparc_tag_match(&env->dtlb[i], address, context, physical)) {
529
            int do_fault = 0;
530

    
531
            // access ok?
532
            /* multiple bits in SFSR.FT may be set on TT_DFAULT */
533
            if (TTE_IS_PRIV(env->dtlb[i].tte) && is_user) {
534
                do_fault = 1;
535
                sfsr |= SFSR_FT_PRIV_BIT; /* privilege violation */
536

    
537
                DPRINTF_MMU("DFAULT at %" PRIx64 " context %" PRIx64
538
                            " mmu_idx=%d tl=%d\n",
539
                            address, context, mmu_idx, env->tl);
540
            }
541
            if (rw == 4) {
542
                if (TTE_IS_SIDEEFFECT(env->dtlb[i].tte)) {
543
                    do_fault = 1;
544
                    sfsr |= SFSR_FT_NF_E_BIT;
545
                }
546
            } else {
547
                if (TTE_IS_NFO(env->dtlb[i].tte)) {
548
                    do_fault = 1;
549
                    sfsr |= SFSR_FT_NFO_BIT;
550
                }
551
            }
552

    
553
            if (do_fault) {
554
                /* faults above are reported with TT_DFAULT. */
555
                env->exception_index = TT_DFAULT;
556
            } else if (!TTE_IS_W_OK(env->dtlb[i].tte) && (rw == 1)) {
557
                do_fault = 1;
558
                env->exception_index = TT_DPROT;
559

    
560
                DPRINTF_MMU("DPROT at %" PRIx64 " context %" PRIx64
561
                            " mmu_idx=%d tl=%d\n",
562
                            address, context, mmu_idx, env->tl);
563
            }
564

    
565
            if (!do_fault) {
566
                *prot = PAGE_READ;
567
                if (TTE_IS_W_OK(env->dtlb[i].tte)) {
568
                    *prot |= PAGE_WRITE;
569
                }
570

    
571
                TTE_SET_USED(env->dtlb[i].tte);
572

    
573
                return 0;
574
            }
575

    
576
            if (env->dmmu.sfsr & SFSR_VALID_BIT) { /* Fault status register */
577
                sfsr |= SFSR_OW_BIT; /* overflow (not read before
578
                                        another fault) */
579
            }
580

    
581
            if (env->pstate & PS_PRIV) {
582
                sfsr |= SFSR_PR_BIT;
583
            }
584

    
585
            /* FIXME: ASI field in SFSR must be set */
586
            env->dmmu.sfsr = sfsr | SFSR_VALID_BIT;
587

    
588
            env->dmmu.sfar = address; /* Fault address register */
589

    
590
            env->dmmu.tag_access = (address & ~0x1fffULL) | context;
591

    
592
            return 1;
593
        }
594
    }
595

    
596
    DPRINTF_MMU("DMISS at %" PRIx64 " context %" PRIx64 "\n",
597
                address, context);
598

    
599
    /*
600
     * On MMU misses:
601
     * - UltraSPARC IIi: SFSR and SFAR unmodified
602
     * - JPS1: SFAR updated and some fields of SFSR updated
603
     */
604
    env->dmmu.tag_access = (address & ~0x1fffULL) | context;
605
    env->exception_index = TT_DMISS;
606
    return 1;
607
}
608

    
609
static int get_physical_address_code(CPUState *env,
610
                                     target_phys_addr_t *physical, int *prot,
611
                                     target_ulong address, int mmu_idx)
612
{
613
    unsigned int i;
614
    uint64_t context;
615

    
616
    int is_user = (mmu_idx == MMU_USER_IDX ||
617
                   mmu_idx == MMU_USER_SECONDARY_IDX);
618

    
619
    if ((env->lsu & IMMU_E) == 0 || (env->pstate & PS_RED) != 0) {
620
        /* IMMU disabled */
621
        *physical = ultrasparc_truncate_physical(address);
622
        *prot = PAGE_EXEC;
623
        return 0;
624
    }
625

    
626
    if (env->tl == 0) {
627
        /* PRIMARY context */
628
        context = env->dmmu.mmu_primary_context & 0x1fff;
629
    } else {
630
        /* NUCLEUS context */
631
        context = 0;
632
    }
633

    
634
    for (i = 0; i < 64; i++) {
635
        // ctx match, vaddr match, valid?
636
        if (ultrasparc_tag_match(&env->itlb[i],
637
                                 address, context, physical)) {
638
            // access ok?
639
            if (TTE_IS_PRIV(env->itlb[i].tte) && is_user) {
640
                /* Fault status register */
641
                if (env->immu.sfsr & SFSR_VALID_BIT) {
642
                    env->immu.sfsr = SFSR_OW_BIT; /* overflow (not read before
643
                                                     another fault) */
644
                } else {
645
                    env->immu.sfsr = 0;
646
                }
647
                if (env->pstate & PS_PRIV) {
648
                    env->immu.sfsr |= SFSR_PR_BIT;
649
                }
650
                if (env->tl > 0) {
651
                    env->immu.sfsr |= SFSR_CT_NUCLEUS;
652
                }
653

    
654
                /* FIXME: ASI field in SFSR must be set */
655
                env->immu.sfsr |= SFSR_FT_PRIV_BIT | SFSR_VALID_BIT;
656
                env->exception_index = TT_TFAULT;
657

    
658
                env->immu.tag_access = (address & ~0x1fffULL) | context;
659

    
660
                DPRINTF_MMU("TFAULT at %" PRIx64 " context %" PRIx64 "\n",
661
                            address, context);
662

    
663
                return 1;
664
            }
665
            *prot = PAGE_EXEC;
666
            TTE_SET_USED(env->itlb[i].tte);
667
            return 0;
668
        }
669
    }
670

    
671
    DPRINTF_MMU("TMISS at %" PRIx64 " context %" PRIx64 "\n",
672
                address, context);
673

    
674
    /* Context is stored in DMMU (dmmuregs[1]) also for IMMU */
675
    env->immu.tag_access = (address & ~0x1fffULL) | context;
676
    env->exception_index = TT_TMISS;
677
    return 1;
678
}
679

    
680
static int get_physical_address(CPUState *env, target_phys_addr_t *physical,
681
                                int *prot, int *access_index,
682
                                target_ulong address, int rw, int mmu_idx,
683
                                target_ulong *page_size)
684
{
685
    /* ??? We treat everything as a small page, then explicitly flush
686
       everything when an entry is evicted.  */
687
    *page_size = TARGET_PAGE_SIZE;
688

    
689
#if defined (DEBUG_MMU)
690
    /* safety net to catch wrong softmmu index use from dynamic code */
691
    if (env->tl > 0 && mmu_idx != MMU_NUCLEUS_IDX) {
692
        DPRINTF_MMU("get_physical_address %s tl=%d mmu_idx=%d"
693
                    " primary context=%" PRIx64
694
                    " secondary context=%" PRIx64
695
                " address=%" PRIx64
696
                "\n",
697
                (rw == 2 ? "CODE" : "DATA"),
698
                env->tl, mmu_idx,
699
                env->dmmu.mmu_primary_context,
700
                env->dmmu.mmu_secondary_context,
701
                address);
702
    }
703
#endif
704

    
705
    if (rw == 2)
706
        return get_physical_address_code(env, physical, prot, address,
707
                                         mmu_idx);
708
    else
709
        return get_physical_address_data(env, physical, prot, address, rw,
710
                                         mmu_idx);
711
}
712

    
713
/* Perform address translation */
714
int cpu_sparc_handle_mmu_fault (CPUState *env, target_ulong address, int rw,
715
                              int mmu_idx)
716
{
717
    target_ulong virt_addr, vaddr;
718
    target_phys_addr_t paddr;
719
    target_ulong page_size;
720
    int error_code = 0, prot, access_index;
721

    
722
    error_code = get_physical_address(env, &paddr, &prot, &access_index,
723
                                      address, rw, mmu_idx, &page_size);
724
    if (error_code == 0) {
725
        virt_addr = address & TARGET_PAGE_MASK;
726
        vaddr = virt_addr + ((address & TARGET_PAGE_MASK) &
727
                             (TARGET_PAGE_SIZE - 1));
728

    
729
        DPRINTF_MMU("Translate at %" PRIx64 " -> %" PRIx64 ","
730
                    " vaddr %" PRIx64
731
                    " mmu_idx=%d"
732
                    " tl=%d"
733
                    " primary context=%" PRIx64
734
                    " secondary context=%" PRIx64
735
                    "\n",
736
                    address, paddr, vaddr, mmu_idx, env->tl,
737
                    env->dmmu.mmu_primary_context,
738
                    env->dmmu.mmu_secondary_context);
739

    
740
        tlb_set_page(env, vaddr, paddr, prot, mmu_idx, page_size);
741
        return 0;
742
    }
743
    // XXX
744
    return 1;
745
}
746

    
747
void dump_mmu(FILE *f, fprintf_function cpu_fprintf, CPUState *env)
748
{
749
    unsigned int i;
750
    const char *mask;
751

    
752
    (*cpu_fprintf)(f, "MMU contexts: Primary: %" PRId64 ", Secondary: %"
753
                   PRId64 "\n",
754
                   env->dmmu.mmu_primary_context,
755
                   env->dmmu.mmu_secondary_context);
756
    if ((env->lsu & DMMU_E) == 0) {
757
        (*cpu_fprintf)(f, "DMMU disabled\n");
758
    } else {
759
        (*cpu_fprintf)(f, "DMMU dump\n");
760
        for (i = 0; i < 64; i++) {
761
            switch (TTE_PGSIZE(env->dtlb[i].tte)) {
762
            default:
763
            case 0x0:
764
                mask = "  8k";
765
                break;
766
            case 0x1:
767
                mask = " 64k";
768
                break;
769
            case 0x2:
770
                mask = "512k";
771
                break;
772
            case 0x3:
773
                mask = "  4M";
774
                break;
775
            }
776
            if (TTE_IS_VALID(env->dtlb[i].tte)) {
777
                (*cpu_fprintf)(f, "[%02u] VA: %" PRIx64 ", PA: %llx"
778
                               ", %s, %s, %s, %s, ctx %" PRId64 " %s\n",
779
                               i,
780
                               env->dtlb[i].tag & (uint64_t)~0x1fffULL,
781
                               TTE_PA(env->dtlb[i].tte),
782
                               mask,
783
                               TTE_IS_PRIV(env->dtlb[i].tte) ? "priv" : "user",
784
                               TTE_IS_W_OK(env->dtlb[i].tte) ? "RW" : "RO",
785
                               TTE_IS_LOCKED(env->dtlb[i].tte) ?
786
                               "locked" : "unlocked",
787
                               env->dtlb[i].tag & (uint64_t)0x1fffULL,
788
                               TTE_IS_GLOBAL(env->dtlb[i].tte)?
789
                               "global" : "local");
790
            }
791
        }
792
    }
793
    if ((env->lsu & IMMU_E) == 0) {
794
        (*cpu_fprintf)(f, "IMMU disabled\n");
795
    } else {
796
        (*cpu_fprintf)(f, "IMMU dump\n");
797
        for (i = 0; i < 64; i++) {
798
            switch (TTE_PGSIZE(env->itlb[i].tte)) {
799
            default:
800
            case 0x0:
801
                mask = "  8k";
802
                break;
803
            case 0x1:
804
                mask = " 64k";
805
                break;
806
            case 0x2:
807
                mask = "512k";
808
                break;
809
            case 0x3:
810
                mask = "  4M";
811
                break;
812
            }
813
            if (TTE_IS_VALID(env->itlb[i].tte)) {
814
                (*cpu_fprintf)(f, "[%02u] VA: %" PRIx64 ", PA: %llx"
815
                               ", %s, %s, %s, ctx %" PRId64 " %s\n",
816
                               i,
817
                               env->itlb[i].tag & (uint64_t)~0x1fffULL,
818
                               TTE_PA(env->itlb[i].tte),
819
                               mask,
820
                               TTE_IS_PRIV(env->itlb[i].tte) ? "priv" : "user",
821
                               TTE_IS_LOCKED(env->itlb[i].tte) ?
822
                               "locked" : "unlocked",
823
                               env->itlb[i].tag & (uint64_t)0x1fffULL,
824
                               TTE_IS_GLOBAL(env->itlb[i].tte)?
825
                               "global" : "local");
826
            }
827
        }
828
    }
829
}
830

    
831
#endif /* TARGET_SPARC64 */
832

    
833
static int cpu_sparc_get_phys_page(CPUState *env, target_phys_addr_t *phys,
834
                                   target_ulong addr, int rw, int mmu_idx)
835
{
836
    target_ulong page_size;
837
    int prot, access_index;
838

    
839
    return get_physical_address(env, phys, &prot, &access_index, addr, rw,
840
                                mmu_idx, &page_size);
841
}
842

    
843
#if defined(TARGET_SPARC64)
844
target_phys_addr_t cpu_get_phys_page_nofault(CPUState *env, target_ulong addr,
845
                                           int mmu_idx)
846
{
847
    target_phys_addr_t phys_addr;
848

    
849
    if (cpu_sparc_get_phys_page(env, &phys_addr, addr, 4, mmu_idx) != 0) {
850
        return -1;
851
    }
852
    return phys_addr;
853
}
854
#endif
855

    
856
target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr)
857
{
858
    target_phys_addr_t phys_addr;
859
    int mmu_idx = cpu_mmu_index(env);
860

    
861
    if (cpu_sparc_get_phys_page(env, &phys_addr, addr, 2, mmu_idx) != 0) {
862
        if (cpu_sparc_get_phys_page(env, &phys_addr, addr, 0, mmu_idx) != 0) {
863
            return -1;
864
        }
865
    }
866
    if (cpu_get_physical_page_desc(phys_addr) == IO_MEM_UNASSIGNED) {
867
        return -1;
868
    }
869
    return phys_addr;
870
}
871
#endif
872

    
873
/* misc op helpers */
874
void helper_raise_exception(CPUState *env, int tt)
875
{
876
    env->exception_index = tt;
877
    cpu_loop_exit(env);
878
}
879

    
880
void helper_debug(CPUState *env)
881
{
882
    env->exception_index = EXCP_DEBUG;
883
    cpu_loop_exit(env);
884
}
885

    
886
void helper_shutdown(void)
887
{
888
#if !defined(CONFIG_USER_ONLY)
889
    qemu_system_shutdown_request();
890
#endif
891
}
892

    
893
#ifdef TARGET_SPARC64
894
target_ulong helper_popc(target_ulong val)
895
{
896
    return ctpop64(val);
897
}
898

    
899
void helper_tick_set_count(void *opaque, uint64_t count)
900
{
901
#if !defined(CONFIG_USER_ONLY)
902
    cpu_tick_set_count(opaque, count);
903
#endif
904
}
905

    
906
uint64_t helper_tick_get_count(void *opaque)
907
{
908
#if !defined(CONFIG_USER_ONLY)
909
    return cpu_tick_get_count(opaque);
910
#else
911
    return 0;
912
#endif
913
}
914

    
915
void helper_tick_set_limit(void *opaque, uint64_t limit)
916
{
917
#if !defined(CONFIG_USER_ONLY)
918
    cpu_tick_set_limit(opaque, limit);
919
#endif
920
}
921
#endif
922

    
923
static target_ulong helper_udiv_common(CPUState *env, target_ulong a,
924
                                       target_ulong b, int cc)
925
{
926
    int overflow = 0;
927
    uint64_t x0;
928
    uint32_t x1;
929

    
930
    x0 = (a & 0xffffffff) | ((int64_t) (env->y) << 32);
931
    x1 = (b & 0xffffffff);
932

    
933
    if (x1 == 0) {
934
        helper_raise_exception(env, TT_DIV_ZERO);
935
    }
936

    
937
    x0 = x0 / x1;
938
    if (x0 > 0xffffffff) {
939
        x0 = 0xffffffff;
940
        overflow = 1;
941
    }
942

    
943
    if (cc) {
944
        env->cc_dst = x0;
945
        env->cc_src2 = overflow;
946
        env->cc_op = CC_OP_DIV;
947
    }
948
    return x0;
949
}
950

    
951
target_ulong helper_udiv(CPUState *env, target_ulong a, target_ulong b)
952
{
953
    return helper_udiv_common(env, a, b, 0);
954
}
955

    
956
target_ulong helper_udiv_cc(CPUState *env, target_ulong a, target_ulong b)
957
{
958
    return helper_udiv_common(env, a, b, 1);
959
}
960

    
961
static target_ulong helper_sdiv_common(CPUState *env, target_ulong a,
962
                                       target_ulong b, int cc)
963
{
964
    int overflow = 0;
965
    int64_t x0;
966
    int32_t x1;
967

    
968
    x0 = (a & 0xffffffff) | ((int64_t) (env->y) << 32);
969
    x1 = (b & 0xffffffff);
970

    
971
    if (x1 == 0) {
972
        helper_raise_exception(env, TT_DIV_ZERO);
973
    }
974

    
975
    x0 = x0 / x1;
976
    if ((int32_t) x0 != x0) {
977
        x0 = x0 < 0 ? 0x80000000 : 0x7fffffff;
978
        overflow = 1;
979
    }
980

    
981
    if (cc) {
982
        env->cc_dst = x0;
983
        env->cc_src2 = overflow;
984
        env->cc_op = CC_OP_DIV;
985
    }
986
    return x0;
987
}
988

    
989
target_ulong helper_sdiv(CPUState *env, target_ulong a, target_ulong b)
990
{
991
    return helper_sdiv_common(env, a, b, 0);
992
}
993

    
994
target_ulong helper_sdiv_cc(CPUState *env, target_ulong a, target_ulong b)
995
{
996
    return helper_sdiv_common(env, a, b, 1);
997
}