Statistics
| Branch: | Revision:

root / vl.c @ 7a9f6e4a

History | View | Annotate | Download (147.5 kB)

1
/*
2
 * QEMU System Emulator
3
 *
4
 * Copyright (c) 2003-2008 Fabrice Bellard
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "hw/hw.h"
25
#include "hw/boards.h"
26
#include "hw/usb.h"
27
#include "hw/pcmcia.h"
28
#include "hw/pc.h"
29
#include "hw/audiodev.h"
30
#include "hw/isa.h"
31
#include "hw/baum.h"
32
#include "hw/bt.h"
33
#include "net.h"
34
#include "console.h"
35
#include "sysemu.h"
36
#include "gdbstub.h"
37
#include "qemu-timer.h"
38
#include "qemu-char.h"
39
#include "cache-utils.h"
40
#include "block.h"
41
#include "audio/audio.h"
42
#include "migration.h"
43
#include "kvm.h"
44
#include "balloon.h"
45

    
46
#include <unistd.h>
47
#include <fcntl.h>
48
#include <signal.h>
49
#include <time.h>
50
#include <errno.h>
51
#include <sys/time.h>
52
#include <zlib.h>
53

    
54
#ifndef _WIN32
55
#include <sys/times.h>
56
#include <sys/wait.h>
57
#include <termios.h>
58
#include <sys/mman.h>
59
#include <sys/ioctl.h>
60
#include <sys/resource.h>
61
#include <sys/socket.h>
62
#include <netinet/in.h>
63
#include <net/if.h>
64
#if defined(__NetBSD__)
65
#include <net/if_tap.h>
66
#endif
67
#ifdef __linux__
68
#include <linux/if_tun.h>
69
#endif
70
#include <arpa/inet.h>
71
#include <dirent.h>
72
#include <netdb.h>
73
#include <sys/select.h>
74
#ifdef _BSD
75
#include <sys/stat.h>
76
#ifdef __FreeBSD__
77
#include <libutil.h>
78
#else
79
#include <util.h>
80
#endif
81
#elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
82
#include <freebsd/stdlib.h>
83
#else
84
#ifdef __linux__
85
#include <pty.h>
86
#include <malloc.h>
87
#include <linux/rtc.h>
88

    
89
/* For the benefit of older linux systems which don't supply it,
90
   we use a local copy of hpet.h. */
91
/* #include <linux/hpet.h> */
92
#include "hpet.h"
93

    
94
#include <linux/ppdev.h>
95
#include <linux/parport.h>
96
#endif
97
#ifdef __sun__
98
#include <sys/stat.h>
99
#include <sys/ethernet.h>
100
#include <sys/sockio.h>
101
#include <netinet/arp.h>
102
#include <netinet/in.h>
103
#include <netinet/in_systm.h>
104
#include <netinet/ip.h>
105
#include <netinet/ip_icmp.h> // must come after ip.h
106
#include <netinet/udp.h>
107
#include <netinet/tcp.h>
108
#include <net/if.h>
109
#include <syslog.h>
110
#include <stropts.h>
111
#endif
112
#endif
113
#endif
114

    
115
#include "qemu_socket.h"
116

    
117
#if defined(CONFIG_SLIRP)
118
#include "libslirp.h"
119
#endif
120

    
121
#if defined(__OpenBSD__)
122
#include <util.h>
123
#endif
124

    
125
#if defined(CONFIG_VDE)
126
#include <libvdeplug.h>
127
#endif
128

    
129
#ifdef _WIN32
130
#include <malloc.h>
131
#include <sys/timeb.h>
132
#include <mmsystem.h>
133
#define getopt_long_only getopt_long
134
#define memalign(align, size) malloc(size)
135
#endif
136

    
137
#ifdef CONFIG_SDL
138
#ifdef __APPLE__
139
#include <SDL/SDL.h>
140
#endif
141
#endif /* CONFIG_SDL */
142

    
143
#ifdef CONFIG_COCOA
144
#undef main
145
#define main qemu_main
146
#endif /* CONFIG_COCOA */
147

    
148
#include "disas.h"
149

    
150
#include "exec-all.h"
151

    
152
//#define DEBUG_UNUSED_IOPORT
153
//#define DEBUG_IOPORT
154
//#define DEBUG_NET
155
//#define DEBUG_SLIRP
156

    
157
#ifdef TARGET_PPC
158
#define DEFAULT_RAM_SIZE 144
159
#else
160
#define DEFAULT_RAM_SIZE 128
161
#endif
162

    
163
/* Max number of USB devices that can be specified on the commandline.  */
164
#define MAX_USB_CMDLINE 8
165

    
166
/* Max number of bluetooth switches on the commandline.  */
167
#define MAX_BT_CMDLINE 10
168

    
169
/* XXX: use a two level table to limit memory usage */
170
#define MAX_IOPORTS 65536
171

    
172
const char *bios_dir = CONFIG_QEMU_SHAREDIR;
173
const char *bios_name = NULL;
174
static void *ioport_opaque[MAX_IOPORTS];
175
static IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
176
static IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
177
/* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
178
   to store the VM snapshots */
179
DriveInfo drives_table[MAX_DRIVES+1];
180
int nb_drives;
181
static int vga_ram_size;
182
enum vga_retrace_method vga_retrace_method = VGA_RETRACE_DUMB;
183
DisplayState display_state;
184
int nographic;
185
static int curses;
186
const char* keyboard_layout = NULL;
187
int64_t ticks_per_sec;
188
ram_addr_t ram_size;
189
int nb_nics;
190
NICInfo nd_table[MAX_NICS];
191
int vm_running;
192
static int rtc_utc = 1;
193
static int rtc_date_offset = -1; /* -1 means no change */
194
int cirrus_vga_enabled = 1;
195
int vmsvga_enabled = 0;
196
#ifdef TARGET_SPARC
197
int graphic_width = 1024;
198
int graphic_height = 768;
199
int graphic_depth = 8;
200
#else
201
int graphic_width = 800;
202
int graphic_height = 600;
203
int graphic_depth = 15;
204
#endif
205
static int full_screen = 0;
206
#ifdef CONFIG_SDL
207
static int no_frame = 0;
208
#endif
209
int no_quit = 0;
210
CharDriverState *serial_hds[MAX_SERIAL_PORTS];
211
CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
212
#ifdef TARGET_I386
213
int win2k_install_hack = 0;
214
#endif
215
int usb_enabled = 0;
216
int smp_cpus = 1;
217
const char *vnc_display;
218
int acpi_enabled = 1;
219
int no_hpet = 0;
220
int fd_bootchk = 1;
221
int no_reboot = 0;
222
int no_shutdown = 0;
223
int cursor_hide = 1;
224
int graphic_rotate = 0;
225
int daemonize = 0;
226
const char *option_rom[MAX_OPTION_ROMS];
227
int nb_option_roms;
228
int semihosting_enabled = 0;
229
#ifdef TARGET_ARM
230
int old_param = 0;
231
#endif
232
const char *qemu_name;
233
int alt_grab = 0;
234
#if defined(TARGET_SPARC) || defined(TARGET_PPC)
235
unsigned int nb_prom_envs = 0;
236
const char *prom_envs[MAX_PROM_ENVS];
237
#endif
238
static int nb_drives_opt;
239
static struct drive_opt {
240
    const char *file;
241
    char opt[1024];
242
} drives_opt[MAX_DRIVES];
243

    
244
static CPUState *cur_cpu;
245
static CPUState *next_cpu;
246
static int event_pending = 1;
247
/* Conversion factor from emulated instructions to virtual clock ticks.  */
248
static int icount_time_shift;
249
/* Arbitrarily pick 1MIPS as the minimum allowable speed.  */
250
#define MAX_ICOUNT_SHIFT 10
251
/* Compensate for varying guest execution speed.  */
252
static int64_t qemu_icount_bias;
253
static QEMUTimer *icount_rt_timer;
254
static QEMUTimer *icount_vm_timer;
255

    
256
uint8_t qemu_uuid[16];
257

    
258
/***********************************************************/
259
/* x86 ISA bus support */
260

    
261
target_phys_addr_t isa_mem_base = 0;
262
PicState2 *isa_pic;
263

    
264
static IOPortReadFunc default_ioport_readb, default_ioport_readw, default_ioport_readl;
265
static IOPortWriteFunc default_ioport_writeb, default_ioport_writew, default_ioport_writel;
266

    
267
static uint32_t ioport_read(int index, uint32_t address)
268
{
269
    static IOPortReadFunc *default_func[3] = {
270
        default_ioport_readb,
271
        default_ioport_readw,
272
        default_ioport_readl
273
    };
274
    IOPortReadFunc *func = ioport_read_table[index][address];
275
    if (!func)
276
        func = default_func[index];
277
    return func(ioport_opaque[address], address);
278
}
279

    
280
static void ioport_write(int index, uint32_t address, uint32_t data)
281
{
282
    static IOPortWriteFunc *default_func[3] = {
283
        default_ioport_writeb,
284
        default_ioport_writew,
285
        default_ioport_writel
286
    };
287
    IOPortWriteFunc *func = ioport_write_table[index][address];
288
    if (!func)
289
        func = default_func[index];
290
    func(ioport_opaque[address], address, data);
291
}
292

    
293
static uint32_t default_ioport_readb(void *opaque, uint32_t address)
294
{
295
#ifdef DEBUG_UNUSED_IOPORT
296
    fprintf(stderr, "unused inb: port=0x%04x\n", address);
297
#endif
298
    return 0xff;
299
}
300

    
301
static void default_ioport_writeb(void *opaque, uint32_t address, uint32_t data)
302
{
303
#ifdef DEBUG_UNUSED_IOPORT
304
    fprintf(stderr, "unused outb: port=0x%04x data=0x%02x\n", address, data);
305
#endif
306
}
307

    
308
/* default is to make two byte accesses */
309
static uint32_t default_ioport_readw(void *opaque, uint32_t address)
310
{
311
    uint32_t data;
312
    data = ioport_read(0, address);
313
    address = (address + 1) & (MAX_IOPORTS - 1);
314
    data |= ioport_read(0, address) << 8;
315
    return data;
316
}
317

    
318
static void default_ioport_writew(void *opaque, uint32_t address, uint32_t data)
319
{
320
    ioport_write(0, address, data & 0xff);
321
    address = (address + 1) & (MAX_IOPORTS - 1);
322
    ioport_write(0, address, (data >> 8) & 0xff);
323
}
324

    
325
static uint32_t default_ioport_readl(void *opaque, uint32_t address)
326
{
327
#ifdef DEBUG_UNUSED_IOPORT
328
    fprintf(stderr, "unused inl: port=0x%04x\n", address);
329
#endif
330
    return 0xffffffff;
331
}
332

    
333
static void default_ioport_writel(void *opaque, uint32_t address, uint32_t data)
334
{
335
#ifdef DEBUG_UNUSED_IOPORT
336
    fprintf(stderr, "unused outl: port=0x%04x data=0x%02x\n", address, data);
337
#endif
338
}
339

    
340
/* size is the word size in byte */
341
int register_ioport_read(int start, int length, int size,
342
                         IOPortReadFunc *func, void *opaque)
343
{
344
    int i, bsize;
345

    
346
    if (size == 1) {
347
        bsize = 0;
348
    } else if (size == 2) {
349
        bsize = 1;
350
    } else if (size == 4) {
351
        bsize = 2;
352
    } else {
353
        hw_error("register_ioport_read: invalid size");
354
        return -1;
355
    }
356
    for(i = start; i < start + length; i += size) {
357
        ioport_read_table[bsize][i] = func;
358
        if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
359
            hw_error("register_ioport_read: invalid opaque");
360
        ioport_opaque[i] = opaque;
361
    }
362
    return 0;
363
}
364

    
365
/* size is the word size in byte */
366
int register_ioport_write(int start, int length, int size,
367
                          IOPortWriteFunc *func, void *opaque)
368
{
369
    int i, bsize;
370

    
371
    if (size == 1) {
372
        bsize = 0;
373
    } else if (size == 2) {
374
        bsize = 1;
375
    } else if (size == 4) {
376
        bsize = 2;
377
    } else {
378
        hw_error("register_ioport_write: invalid size");
379
        return -1;
380
    }
381
    for(i = start; i < start + length; i += size) {
382
        ioport_write_table[bsize][i] = func;
383
        if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
384
            hw_error("register_ioport_write: invalid opaque");
385
        ioport_opaque[i] = opaque;
386
    }
387
    return 0;
388
}
389

    
390
void isa_unassign_ioport(int start, int length)
391
{
392
    int i;
393

    
394
    for(i = start; i < start + length; i++) {
395
        ioport_read_table[0][i] = default_ioport_readb;
396
        ioport_read_table[1][i] = default_ioport_readw;
397
        ioport_read_table[2][i] = default_ioport_readl;
398

    
399
        ioport_write_table[0][i] = default_ioport_writeb;
400
        ioport_write_table[1][i] = default_ioport_writew;
401
        ioport_write_table[2][i] = default_ioport_writel;
402
    }
403
}
404

    
405
/***********************************************************/
406

    
407
void cpu_outb(CPUState *env, int addr, int val)
408
{
409
#ifdef DEBUG_IOPORT
410
    if (loglevel & CPU_LOG_IOPORT)
411
        fprintf(logfile, "outb: %04x %02x\n", addr, val);
412
#endif
413
    ioport_write(0, addr, val);
414
#ifdef USE_KQEMU
415
    if (env)
416
        env->last_io_time = cpu_get_time_fast();
417
#endif
418
}
419

    
420
void cpu_outw(CPUState *env, int addr, int val)
421
{
422
#ifdef DEBUG_IOPORT
423
    if (loglevel & CPU_LOG_IOPORT)
424
        fprintf(logfile, "outw: %04x %04x\n", addr, val);
425
#endif
426
    ioport_write(1, addr, val);
427
#ifdef USE_KQEMU
428
    if (env)
429
        env->last_io_time = cpu_get_time_fast();
430
#endif
431
}
432

    
433
void cpu_outl(CPUState *env, int addr, int val)
434
{
435
#ifdef DEBUG_IOPORT
436
    if (loglevel & CPU_LOG_IOPORT)
437
        fprintf(logfile, "outl: %04x %08x\n", addr, val);
438
#endif
439
    ioport_write(2, addr, val);
440
#ifdef USE_KQEMU
441
    if (env)
442
        env->last_io_time = cpu_get_time_fast();
443
#endif
444
}
445

    
446
int cpu_inb(CPUState *env, int addr)
447
{
448
    int val;
449
    val = ioport_read(0, addr);
450
#ifdef DEBUG_IOPORT
451
    if (loglevel & CPU_LOG_IOPORT)
452
        fprintf(logfile, "inb : %04x %02x\n", addr, val);
453
#endif
454
#ifdef USE_KQEMU
455
    if (env)
456
        env->last_io_time = cpu_get_time_fast();
457
#endif
458
    return val;
459
}
460

    
461
int cpu_inw(CPUState *env, int addr)
462
{
463
    int val;
464
    val = ioport_read(1, addr);
465
#ifdef DEBUG_IOPORT
466
    if (loglevel & CPU_LOG_IOPORT)
467
        fprintf(logfile, "inw : %04x %04x\n", addr, val);
468
#endif
469
#ifdef USE_KQEMU
470
    if (env)
471
        env->last_io_time = cpu_get_time_fast();
472
#endif
473
    return val;
474
}
475

    
476
int cpu_inl(CPUState *env, int addr)
477
{
478
    int val;
479
    val = ioport_read(2, addr);
480
#ifdef DEBUG_IOPORT
481
    if (loglevel & CPU_LOG_IOPORT)
482
        fprintf(logfile, "inl : %04x %08x\n", addr, val);
483
#endif
484
#ifdef USE_KQEMU
485
    if (env)
486
        env->last_io_time = cpu_get_time_fast();
487
#endif
488
    return val;
489
}
490

    
491
/***********************************************************/
492
void hw_error(const char *fmt, ...)
493
{
494
    va_list ap;
495
    CPUState *env;
496

    
497
    va_start(ap, fmt);
498
    fprintf(stderr, "qemu: hardware error: ");
499
    vfprintf(stderr, fmt, ap);
500
    fprintf(stderr, "\n");
501
    for(env = first_cpu; env != NULL; env = env->next_cpu) {
502
        fprintf(stderr, "CPU #%d:\n", env->cpu_index);
503
#ifdef TARGET_I386
504
        cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
505
#else
506
        cpu_dump_state(env, stderr, fprintf, 0);
507
#endif
508
    }
509
    va_end(ap);
510
    abort();
511
}
512
 
513
/***************/
514
/* ballooning */
515

    
516
static QEMUBalloonEvent *qemu_balloon_event;
517
void *qemu_balloon_event_opaque;
518

    
519
void qemu_add_balloon_handler(QEMUBalloonEvent *func, void *opaque)
520
{
521
    qemu_balloon_event = func;
522
    qemu_balloon_event_opaque = opaque;
523
}
524

    
525
void qemu_balloon(ram_addr_t target)
526
{
527
    if (qemu_balloon_event)
528
        qemu_balloon_event(qemu_balloon_event_opaque, target);
529
}
530

    
531
ram_addr_t qemu_balloon_status(void)
532
{
533
    if (qemu_balloon_event)
534
        return qemu_balloon_event(qemu_balloon_event_opaque, 0);
535
    return 0;
536
}
537

    
538
/***********************************************************/
539
/* keyboard/mouse */
540

    
541
static QEMUPutKBDEvent *qemu_put_kbd_event;
542
static void *qemu_put_kbd_event_opaque;
543
static QEMUPutMouseEntry *qemu_put_mouse_event_head;
544
static QEMUPutMouseEntry *qemu_put_mouse_event_current;
545

    
546
void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
547
{
548
    qemu_put_kbd_event_opaque = opaque;
549
    qemu_put_kbd_event = func;
550
}
551

    
552
QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
553
                                                void *opaque, int absolute,
554
                                                const char *name)
555
{
556
    QEMUPutMouseEntry *s, *cursor;
557

    
558
    s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
559
    if (!s)
560
        return NULL;
561

    
562
    s->qemu_put_mouse_event = func;
563
    s->qemu_put_mouse_event_opaque = opaque;
564
    s->qemu_put_mouse_event_absolute = absolute;
565
    s->qemu_put_mouse_event_name = qemu_strdup(name);
566
    s->next = NULL;
567

    
568
    if (!qemu_put_mouse_event_head) {
569
        qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
570
        return s;
571
    }
572

    
573
    cursor = qemu_put_mouse_event_head;
574
    while (cursor->next != NULL)
575
        cursor = cursor->next;
576

    
577
    cursor->next = s;
578
    qemu_put_mouse_event_current = s;
579

    
580
    return s;
581
}
582

    
583
void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
584
{
585
    QEMUPutMouseEntry *prev = NULL, *cursor;
586

    
587
    if (!qemu_put_mouse_event_head || entry == NULL)
588
        return;
589

    
590
    cursor = qemu_put_mouse_event_head;
591
    while (cursor != NULL && cursor != entry) {
592
        prev = cursor;
593
        cursor = cursor->next;
594
    }
595

    
596
    if (cursor == NULL) // does not exist or list empty
597
        return;
598
    else if (prev == NULL) { // entry is head
599
        qemu_put_mouse_event_head = cursor->next;
600
        if (qemu_put_mouse_event_current == entry)
601
            qemu_put_mouse_event_current = cursor->next;
602
        qemu_free(entry->qemu_put_mouse_event_name);
603
        qemu_free(entry);
604
        return;
605
    }
606

    
607
    prev->next = entry->next;
608

    
609
    if (qemu_put_mouse_event_current == entry)
610
        qemu_put_mouse_event_current = prev;
611

    
612
    qemu_free(entry->qemu_put_mouse_event_name);
613
    qemu_free(entry);
614
}
615

    
616
void kbd_put_keycode(int keycode)
617
{
618
    if (qemu_put_kbd_event) {
619
        qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
620
    }
621
}
622

    
623
void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
624
{
625
    QEMUPutMouseEvent *mouse_event;
626
    void *mouse_event_opaque;
627
    int width;
628

    
629
    if (!qemu_put_mouse_event_current) {
630
        return;
631
    }
632

    
633
    mouse_event =
634
        qemu_put_mouse_event_current->qemu_put_mouse_event;
635
    mouse_event_opaque =
636
        qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
637

    
638
    if (mouse_event) {
639
        if (graphic_rotate) {
640
            if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
641
                width = 0x7fff;
642
            else
643
                width = graphic_width - 1;
644
            mouse_event(mouse_event_opaque,
645
                                 width - dy, dx, dz, buttons_state);
646
        } else
647
            mouse_event(mouse_event_opaque,
648
                                 dx, dy, dz, buttons_state);
649
    }
650
}
651

    
652
int kbd_mouse_is_absolute(void)
653
{
654
    if (!qemu_put_mouse_event_current)
655
        return 0;
656

    
657
    return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
658
}
659

    
660
void do_info_mice(void)
661
{
662
    QEMUPutMouseEntry *cursor;
663
    int index = 0;
664

    
665
    if (!qemu_put_mouse_event_head) {
666
        term_printf("No mouse devices connected\n");
667
        return;
668
    }
669

    
670
    term_printf("Mouse devices available:\n");
671
    cursor = qemu_put_mouse_event_head;
672
    while (cursor != NULL) {
673
        term_printf("%c Mouse #%d: %s\n",
674
                    (cursor == qemu_put_mouse_event_current ? '*' : ' '),
675
                    index, cursor->qemu_put_mouse_event_name);
676
        index++;
677
        cursor = cursor->next;
678
    }
679
}
680

    
681
void do_mouse_set(int index)
682
{
683
    QEMUPutMouseEntry *cursor;
684
    int i = 0;
685

    
686
    if (!qemu_put_mouse_event_head) {
687
        term_printf("No mouse devices connected\n");
688
        return;
689
    }
690

    
691
    cursor = qemu_put_mouse_event_head;
692
    while (cursor != NULL && index != i) {
693
        i++;
694
        cursor = cursor->next;
695
    }
696

    
697
    if (cursor != NULL)
698
        qemu_put_mouse_event_current = cursor;
699
    else
700
        term_printf("Mouse at given index not found\n");
701
}
702

    
703
/* compute with 96 bit intermediate result: (a*b)/c */
704
uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
705
{
706
    union {
707
        uint64_t ll;
708
        struct {
709
#ifdef WORDS_BIGENDIAN
710
            uint32_t high, low;
711
#else
712
            uint32_t low, high;
713
#endif
714
        } l;
715
    } u, res;
716
    uint64_t rl, rh;
717

    
718
    u.ll = a;
719
    rl = (uint64_t)u.l.low * (uint64_t)b;
720
    rh = (uint64_t)u.l.high * (uint64_t)b;
721
    rh += (rl >> 32);
722
    res.l.high = rh / c;
723
    res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
724
    return res.ll;
725
}
726

    
727
/***********************************************************/
728
/* real time host monotonic timer */
729

    
730
#define QEMU_TIMER_BASE 1000000000LL
731

    
732
#ifdef WIN32
733

    
734
static int64_t clock_freq;
735

    
736
static void init_get_clock(void)
737
{
738
    LARGE_INTEGER freq;
739
    int ret;
740
    ret = QueryPerformanceFrequency(&freq);
741
    if (ret == 0) {
742
        fprintf(stderr, "Could not calibrate ticks\n");
743
        exit(1);
744
    }
745
    clock_freq = freq.QuadPart;
746
}
747

    
748
static int64_t get_clock(void)
749
{
750
    LARGE_INTEGER ti;
751
    QueryPerformanceCounter(&ti);
752
    return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
753
}
754

    
755
#else
756

    
757
static int use_rt_clock;
758

    
759
static void init_get_clock(void)
760
{
761
    use_rt_clock = 0;
762
#if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000)
763
    {
764
        struct timespec ts;
765
        if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
766
            use_rt_clock = 1;
767
        }
768
    }
769
#endif
770
}
771

    
772
static int64_t get_clock(void)
773
{
774
#if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000)
775
    if (use_rt_clock) {
776
        struct timespec ts;
777
        clock_gettime(CLOCK_MONOTONIC, &ts);
778
        return ts.tv_sec * 1000000000LL + ts.tv_nsec;
779
    } else
780
#endif
781
    {
782
        /* XXX: using gettimeofday leads to problems if the date
783
           changes, so it should be avoided. */
784
        struct timeval tv;
785
        gettimeofday(&tv, NULL);
786
        return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
787
    }
788
}
789
#endif
790

    
791
/* Return the virtual CPU time, based on the instruction counter.  */
792
static int64_t cpu_get_icount(void)
793
{
794
    int64_t icount;
795
    CPUState *env = cpu_single_env;;
796
    icount = qemu_icount;
797
    if (env) {
798
        if (!can_do_io(env))
799
            fprintf(stderr, "Bad clock read\n");
800
        icount -= (env->icount_decr.u16.low + env->icount_extra);
801
    }
802
    return qemu_icount_bias + (icount << icount_time_shift);
803
}
804

    
805
/***********************************************************/
806
/* guest cycle counter */
807

    
808
static int64_t cpu_ticks_prev;
809
static int64_t cpu_ticks_offset;
810
static int64_t cpu_clock_offset;
811
static int cpu_ticks_enabled;
812

    
813
/* return the host CPU cycle counter and handle stop/restart */
814
int64_t cpu_get_ticks(void)
815
{
816
    if (use_icount) {
817
        return cpu_get_icount();
818
    }
819
    if (!cpu_ticks_enabled) {
820
        return cpu_ticks_offset;
821
    } else {
822
        int64_t ticks;
823
        ticks = cpu_get_real_ticks();
824
        if (cpu_ticks_prev > ticks) {
825
            /* Note: non increasing ticks may happen if the host uses
826
               software suspend */
827
            cpu_ticks_offset += cpu_ticks_prev - ticks;
828
        }
829
        cpu_ticks_prev = ticks;
830
        return ticks + cpu_ticks_offset;
831
    }
832
}
833

    
834
/* return the host CPU monotonic timer and handle stop/restart */
835
static int64_t cpu_get_clock(void)
836
{
837
    int64_t ti;
838
    if (!cpu_ticks_enabled) {
839
        return cpu_clock_offset;
840
    } else {
841
        ti = get_clock();
842
        return ti + cpu_clock_offset;
843
    }
844
}
845

    
846
/* enable cpu_get_ticks() */
847
void cpu_enable_ticks(void)
848
{
849
    if (!cpu_ticks_enabled) {
850
        cpu_ticks_offset -= cpu_get_real_ticks();
851
        cpu_clock_offset -= get_clock();
852
        cpu_ticks_enabled = 1;
853
    }
854
}
855

    
856
/* disable cpu_get_ticks() : the clock is stopped. You must not call
857
   cpu_get_ticks() after that.  */
858
void cpu_disable_ticks(void)
859
{
860
    if (cpu_ticks_enabled) {
861
        cpu_ticks_offset = cpu_get_ticks();
862
        cpu_clock_offset = cpu_get_clock();
863
        cpu_ticks_enabled = 0;
864
    }
865
}
866

    
867
/***********************************************************/
868
/* timers */
869

    
870
#define QEMU_TIMER_REALTIME 0
871
#define QEMU_TIMER_VIRTUAL  1
872

    
873
struct QEMUClock {
874
    int type;
875
    /* XXX: add frequency */
876
};
877

    
878
struct QEMUTimer {
879
    QEMUClock *clock;
880
    int64_t expire_time;
881
    QEMUTimerCB *cb;
882
    void *opaque;
883
    struct QEMUTimer *next;
884
};
885

    
886
struct qemu_alarm_timer {
887
    char const *name;
888
    unsigned int flags;
889

    
890
    int (*start)(struct qemu_alarm_timer *t);
891
    void (*stop)(struct qemu_alarm_timer *t);
892
    void (*rearm)(struct qemu_alarm_timer *t);
893
    void *priv;
894
};
895

    
896
#define ALARM_FLAG_DYNTICKS  0x1
897
#define ALARM_FLAG_EXPIRED   0x2
898

    
899
static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
900
{
901
    return t->flags & ALARM_FLAG_DYNTICKS;
902
}
903

    
904
static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
905
{
906
    if (!alarm_has_dynticks(t))
907
        return;
908

    
909
    t->rearm(t);
910
}
911

    
912
/* TODO: MIN_TIMER_REARM_US should be optimized */
913
#define MIN_TIMER_REARM_US 250
914

    
915
static struct qemu_alarm_timer *alarm_timer;
916
#ifndef _WIN32
917
static int alarm_timer_rfd, alarm_timer_wfd;
918
#endif
919

    
920
#ifdef _WIN32
921

    
922
struct qemu_alarm_win32 {
923
    MMRESULT timerId;
924
    HANDLE host_alarm;
925
    unsigned int period;
926
} alarm_win32_data = {0, NULL, -1};
927

    
928
static int win32_start_timer(struct qemu_alarm_timer *t);
929
static void win32_stop_timer(struct qemu_alarm_timer *t);
930
static void win32_rearm_timer(struct qemu_alarm_timer *t);
931

    
932
#else
933

    
934
static int unix_start_timer(struct qemu_alarm_timer *t);
935
static void unix_stop_timer(struct qemu_alarm_timer *t);
936

    
937
#ifdef __linux__
938

    
939
static int dynticks_start_timer(struct qemu_alarm_timer *t);
940
static void dynticks_stop_timer(struct qemu_alarm_timer *t);
941
static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
942

    
943
static int hpet_start_timer(struct qemu_alarm_timer *t);
944
static void hpet_stop_timer(struct qemu_alarm_timer *t);
945

    
946
static int rtc_start_timer(struct qemu_alarm_timer *t);
947
static void rtc_stop_timer(struct qemu_alarm_timer *t);
948

    
949
#endif /* __linux__ */
950

    
951
#endif /* _WIN32 */
952

    
953
/* Correlation between real and virtual time is always going to be
954
   fairly approximate, so ignore small variation.
955
   When the guest is idle real and virtual time will be aligned in
956
   the IO wait loop.  */
957
#define ICOUNT_WOBBLE (QEMU_TIMER_BASE / 10)
958

    
959
static void icount_adjust(void)
960
{
961
    int64_t cur_time;
962
    int64_t cur_icount;
963
    int64_t delta;
964
    static int64_t last_delta;
965
    /* If the VM is not running, then do nothing.  */
966
    if (!vm_running)
967
        return;
968

    
969
    cur_time = cpu_get_clock();
970
    cur_icount = qemu_get_clock(vm_clock);
971
    delta = cur_icount - cur_time;
972
    /* FIXME: This is a very crude algorithm, somewhat prone to oscillation.  */
973
    if (delta > 0
974
        && last_delta + ICOUNT_WOBBLE < delta * 2
975
        && icount_time_shift > 0) {
976
        /* The guest is getting too far ahead.  Slow time down.  */
977
        icount_time_shift--;
978
    }
979
    if (delta < 0
980
        && last_delta - ICOUNT_WOBBLE > delta * 2
981
        && icount_time_shift < MAX_ICOUNT_SHIFT) {
982
        /* The guest is getting too far behind.  Speed time up.  */
983
        icount_time_shift++;
984
    }
985
    last_delta = delta;
986
    qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
987
}
988

    
989
static void icount_adjust_rt(void * opaque)
990
{
991
    qemu_mod_timer(icount_rt_timer,
992
                   qemu_get_clock(rt_clock) + 1000);
993
    icount_adjust();
994
}
995

    
996
static void icount_adjust_vm(void * opaque)
997
{
998
    qemu_mod_timer(icount_vm_timer,
999
                   qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
1000
    icount_adjust();
1001
}
1002

    
1003
static void init_icount_adjust(void)
1004
{
1005
    /* Have both realtime and virtual time triggers for speed adjustment.
1006
       The realtime trigger catches emulated time passing too slowly,
1007
       the virtual time trigger catches emulated time passing too fast.
1008
       Realtime triggers occur even when idle, so use them less frequently
1009
       than VM triggers.  */
1010
    icount_rt_timer = qemu_new_timer(rt_clock, icount_adjust_rt, NULL);
1011
    qemu_mod_timer(icount_rt_timer,
1012
                   qemu_get_clock(rt_clock) + 1000);
1013
    icount_vm_timer = qemu_new_timer(vm_clock, icount_adjust_vm, NULL);
1014
    qemu_mod_timer(icount_vm_timer,
1015
                   qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
1016
}
1017

    
1018
static struct qemu_alarm_timer alarm_timers[] = {
1019
#ifndef _WIN32
1020
#ifdef __linux__
1021
    {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
1022
     dynticks_stop_timer, dynticks_rearm_timer, NULL},
1023
    /* HPET - if available - is preferred */
1024
    {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
1025
    /* ...otherwise try RTC */
1026
    {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
1027
#endif
1028
    {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
1029
#else
1030
    {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
1031
     win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
1032
    {"win32", 0, win32_start_timer,
1033
     win32_stop_timer, NULL, &alarm_win32_data},
1034
#endif
1035
    {NULL, }
1036
};
1037

    
1038
static void show_available_alarms(void)
1039
{
1040
    int i;
1041

    
1042
    printf("Available alarm timers, in order of precedence:\n");
1043
    for (i = 0; alarm_timers[i].name; i++)
1044
        printf("%s\n", alarm_timers[i].name);
1045
}
1046

    
1047
static void configure_alarms(char const *opt)
1048
{
1049
    int i;
1050
    int cur = 0;
1051
    int count = ARRAY_SIZE(alarm_timers) - 1;
1052
    char *arg;
1053
    char *name;
1054
    struct qemu_alarm_timer tmp;
1055

    
1056
    if (!strcmp(opt, "?")) {
1057
        show_available_alarms();
1058
        exit(0);
1059
    }
1060

    
1061
    arg = strdup(opt);
1062

    
1063
    /* Reorder the array */
1064
    name = strtok(arg, ",");
1065
    while (name) {
1066
        for (i = 0; i < count && alarm_timers[i].name; i++) {
1067
            if (!strcmp(alarm_timers[i].name, name))
1068
                break;
1069
        }
1070

    
1071
        if (i == count) {
1072
            fprintf(stderr, "Unknown clock %s\n", name);
1073
            goto next;
1074
        }
1075

    
1076
        if (i < cur)
1077
            /* Ignore */
1078
            goto next;
1079

    
1080
        /* Swap */
1081
        tmp = alarm_timers[i];
1082
        alarm_timers[i] = alarm_timers[cur];
1083
        alarm_timers[cur] = tmp;
1084

    
1085
        cur++;
1086
next:
1087
        name = strtok(NULL, ",");
1088
    }
1089

    
1090
    free(arg);
1091

    
1092
    if (cur) {
1093
        /* Disable remaining timers */
1094
        for (i = cur; i < count; i++)
1095
            alarm_timers[i].name = NULL;
1096
    } else {
1097
        show_available_alarms();
1098
        exit(1);
1099
    }
1100
}
1101

    
1102
QEMUClock *rt_clock;
1103
QEMUClock *vm_clock;
1104

    
1105
static QEMUTimer *active_timers[2];
1106

    
1107
static QEMUClock *qemu_new_clock(int type)
1108
{
1109
    QEMUClock *clock;
1110
    clock = qemu_mallocz(sizeof(QEMUClock));
1111
    if (!clock)
1112
        return NULL;
1113
    clock->type = type;
1114
    return clock;
1115
}
1116

    
1117
QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
1118
{
1119
    QEMUTimer *ts;
1120

    
1121
    ts = qemu_mallocz(sizeof(QEMUTimer));
1122
    ts->clock = clock;
1123
    ts->cb = cb;
1124
    ts->opaque = opaque;
1125
    return ts;
1126
}
1127

    
1128
void qemu_free_timer(QEMUTimer *ts)
1129
{
1130
    qemu_free(ts);
1131
}
1132

    
1133
/* stop a timer, but do not dealloc it */
1134
void qemu_del_timer(QEMUTimer *ts)
1135
{
1136
    QEMUTimer **pt, *t;
1137

    
1138
    /* NOTE: this code must be signal safe because
1139
       qemu_timer_expired() can be called from a signal. */
1140
    pt = &active_timers[ts->clock->type];
1141
    for(;;) {
1142
        t = *pt;
1143
        if (!t)
1144
            break;
1145
        if (t == ts) {
1146
            *pt = t->next;
1147
            break;
1148
        }
1149
        pt = &t->next;
1150
    }
1151
}
1152

    
1153
/* modify the current timer so that it will be fired when current_time
1154
   >= expire_time. The corresponding callback will be called. */
1155
void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
1156
{
1157
    QEMUTimer **pt, *t;
1158

    
1159
    qemu_del_timer(ts);
1160

    
1161
    /* add the timer in the sorted list */
1162
    /* NOTE: this code must be signal safe because
1163
       qemu_timer_expired() can be called from a signal. */
1164
    pt = &active_timers[ts->clock->type];
1165
    for(;;) {
1166
        t = *pt;
1167
        if (!t)
1168
            break;
1169
        if (t->expire_time > expire_time)
1170
            break;
1171
        pt = &t->next;
1172
    }
1173
    ts->expire_time = expire_time;
1174
    ts->next = *pt;
1175
    *pt = ts;
1176

    
1177
    /* Rearm if necessary  */
1178
    if (pt == &active_timers[ts->clock->type]) {
1179
        if ((alarm_timer->flags & ALARM_FLAG_EXPIRED) == 0) {
1180
            qemu_rearm_alarm_timer(alarm_timer);
1181
        }
1182
        /* Interrupt execution to force deadline recalculation.  */
1183
        if (use_icount && cpu_single_env) {
1184
            cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
1185
        }
1186
    }
1187
}
1188

    
1189
int qemu_timer_pending(QEMUTimer *ts)
1190
{
1191
    QEMUTimer *t;
1192
    for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
1193
        if (t == ts)
1194
            return 1;
1195
    }
1196
    return 0;
1197
}
1198

    
1199
static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
1200
{
1201
    if (!timer_head)
1202
        return 0;
1203
    return (timer_head->expire_time <= current_time);
1204
}
1205

    
1206
static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
1207
{
1208
    QEMUTimer *ts;
1209

    
1210
    for(;;) {
1211
        ts = *ptimer_head;
1212
        if (!ts || ts->expire_time > current_time)
1213
            break;
1214
        /* remove timer from the list before calling the callback */
1215
        *ptimer_head = ts->next;
1216
        ts->next = NULL;
1217

    
1218
        /* run the callback (the timer list can be modified) */
1219
        ts->cb(ts->opaque);
1220
    }
1221
}
1222

    
1223
int64_t qemu_get_clock(QEMUClock *clock)
1224
{
1225
    switch(clock->type) {
1226
    case QEMU_TIMER_REALTIME:
1227
        return get_clock() / 1000000;
1228
    default:
1229
    case QEMU_TIMER_VIRTUAL:
1230
        if (use_icount) {
1231
            return cpu_get_icount();
1232
        } else {
1233
            return cpu_get_clock();
1234
        }
1235
    }
1236
}
1237

    
1238
static void init_timers(void)
1239
{
1240
    init_get_clock();
1241
    ticks_per_sec = QEMU_TIMER_BASE;
1242
    rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
1243
    vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
1244
}
1245

    
1246
/* save a timer */
1247
void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
1248
{
1249
    uint64_t expire_time;
1250

    
1251
    if (qemu_timer_pending(ts)) {
1252
        expire_time = ts->expire_time;
1253
    } else {
1254
        expire_time = -1;
1255
    }
1256
    qemu_put_be64(f, expire_time);
1257
}
1258

    
1259
void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
1260
{
1261
    uint64_t expire_time;
1262

    
1263
    expire_time = qemu_get_be64(f);
1264
    if (expire_time != -1) {
1265
        qemu_mod_timer(ts, expire_time);
1266
    } else {
1267
        qemu_del_timer(ts);
1268
    }
1269
}
1270

    
1271
static void timer_save(QEMUFile *f, void *opaque)
1272
{
1273
    if (cpu_ticks_enabled) {
1274
        hw_error("cannot save state if virtual timers are running");
1275
    }
1276
    qemu_put_be64(f, cpu_ticks_offset);
1277
    qemu_put_be64(f, ticks_per_sec);
1278
    qemu_put_be64(f, cpu_clock_offset);
1279
}
1280

    
1281
static int timer_load(QEMUFile *f, void *opaque, int version_id)
1282
{
1283
    if (version_id != 1 && version_id != 2)
1284
        return -EINVAL;
1285
    if (cpu_ticks_enabled) {
1286
        return -EINVAL;
1287
    }
1288
    cpu_ticks_offset=qemu_get_be64(f);
1289
    ticks_per_sec=qemu_get_be64(f);
1290
    if (version_id == 2) {
1291
        cpu_clock_offset=qemu_get_be64(f);
1292
    }
1293
    return 0;
1294
}
1295

    
1296
#ifdef _WIN32
1297
void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
1298
                                 DWORD_PTR dwUser, DWORD_PTR dw1, DWORD_PTR dw2)
1299
#else
1300
static void host_alarm_handler(int host_signum)
1301
#endif
1302
{
1303
#if 0
1304
#define DISP_FREQ 1000
1305
    {
1306
        static int64_t delta_min = INT64_MAX;
1307
        static int64_t delta_max, delta_cum, last_clock, delta, ti;
1308
        static int count;
1309
        ti = qemu_get_clock(vm_clock);
1310
        if (last_clock != 0) {
1311
            delta = ti - last_clock;
1312
            if (delta < delta_min)
1313
                delta_min = delta;
1314
            if (delta > delta_max)
1315
                delta_max = delta;
1316
            delta_cum += delta;
1317
            if (++count == DISP_FREQ) {
1318
                printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1319
                       muldiv64(delta_min, 1000000, ticks_per_sec),
1320
                       muldiv64(delta_max, 1000000, ticks_per_sec),
1321
                       muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
1322
                       (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
1323
                count = 0;
1324
                delta_min = INT64_MAX;
1325
                delta_max = 0;
1326
                delta_cum = 0;
1327
            }
1328
        }
1329
        last_clock = ti;
1330
    }
1331
#endif
1332
    if (alarm_has_dynticks(alarm_timer) ||
1333
        (!use_icount &&
1334
            qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
1335
                               qemu_get_clock(vm_clock))) ||
1336
        qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
1337
                           qemu_get_clock(rt_clock))) {
1338
        CPUState *env = next_cpu;
1339

    
1340
#ifdef _WIN32
1341
        struct qemu_alarm_win32 *data = ((struct qemu_alarm_timer*)dwUser)->priv;
1342
        SetEvent(data->host_alarm);
1343
#else
1344
        static const char byte = 0;
1345
        write(alarm_timer_wfd, &byte, sizeof(byte));
1346
#endif
1347
        alarm_timer->flags |= ALARM_FLAG_EXPIRED;
1348

    
1349
        if (env) {
1350
            /* stop the currently executing cpu because a timer occured */
1351
            cpu_interrupt(env, CPU_INTERRUPT_EXIT);
1352
#ifdef USE_KQEMU
1353
            if (env->kqemu_enabled) {
1354
                kqemu_cpu_interrupt(env);
1355
            }
1356
#endif
1357
        }
1358
        event_pending = 1;
1359
    }
1360
}
1361

    
1362
static int64_t qemu_next_deadline(void)
1363
{
1364
    int64_t delta;
1365

    
1366
    if (active_timers[QEMU_TIMER_VIRTUAL]) {
1367
        delta = active_timers[QEMU_TIMER_VIRTUAL]->expire_time -
1368
                     qemu_get_clock(vm_clock);
1369
    } else {
1370
        /* To avoid problems with overflow limit this to 2^32.  */
1371
        delta = INT32_MAX;
1372
    }
1373

    
1374
    if (delta < 0)
1375
        delta = 0;
1376

    
1377
    return delta;
1378
}
1379

    
1380
#if defined(__linux__) || defined(_WIN32)
1381
static uint64_t qemu_next_deadline_dyntick(void)
1382
{
1383
    int64_t delta;
1384
    int64_t rtdelta;
1385

    
1386
    if (use_icount)
1387
        delta = INT32_MAX;
1388
    else
1389
        delta = (qemu_next_deadline() + 999) / 1000;
1390

    
1391
    if (active_timers[QEMU_TIMER_REALTIME]) {
1392
        rtdelta = (active_timers[QEMU_TIMER_REALTIME]->expire_time -
1393
                 qemu_get_clock(rt_clock))*1000;
1394
        if (rtdelta < delta)
1395
            delta = rtdelta;
1396
    }
1397

    
1398
    if (delta < MIN_TIMER_REARM_US)
1399
        delta = MIN_TIMER_REARM_US;
1400

    
1401
    return delta;
1402
}
1403
#endif
1404

    
1405
#ifndef _WIN32
1406

    
1407
/* Sets a specific flag */
1408
static int fcntl_setfl(int fd, int flag)
1409
{
1410
    int flags;
1411

    
1412
    flags = fcntl(fd, F_GETFL);
1413
    if (flags == -1)
1414
        return -errno;
1415

    
1416
    if (fcntl(fd, F_SETFL, flags | flag) == -1)
1417
        return -errno;
1418

    
1419
    return 0;
1420
}
1421

    
1422
#if defined(__linux__)
1423

    
1424
#define RTC_FREQ 1024
1425

    
1426
static void enable_sigio_timer(int fd)
1427
{
1428
    struct sigaction act;
1429

    
1430
    /* timer signal */
1431
    sigfillset(&act.sa_mask);
1432
    act.sa_flags = 0;
1433
    act.sa_handler = host_alarm_handler;
1434

    
1435
    sigaction(SIGIO, &act, NULL);
1436
    fcntl_setfl(fd, O_ASYNC);
1437
    fcntl(fd, F_SETOWN, getpid());
1438
}
1439

    
1440
static int hpet_start_timer(struct qemu_alarm_timer *t)
1441
{
1442
    struct hpet_info info;
1443
    int r, fd;
1444

    
1445
    fd = open("/dev/hpet", O_RDONLY);
1446
    if (fd < 0)
1447
        return -1;
1448

    
1449
    /* Set frequency */
1450
    r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
1451
    if (r < 0) {
1452
        fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1453
                "error, but for better emulation accuracy type:\n"
1454
                "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1455
        goto fail;
1456
    }
1457

    
1458
    /* Check capabilities */
1459
    r = ioctl(fd, HPET_INFO, &info);
1460
    if (r < 0)
1461
        goto fail;
1462

    
1463
    /* Enable periodic mode */
1464
    r = ioctl(fd, HPET_EPI, 0);
1465
    if (info.hi_flags && (r < 0))
1466
        goto fail;
1467

    
1468
    /* Enable interrupt */
1469
    r = ioctl(fd, HPET_IE_ON, 0);
1470
    if (r < 0)
1471
        goto fail;
1472

    
1473
    enable_sigio_timer(fd);
1474
    t->priv = (void *)(long)fd;
1475

    
1476
    return 0;
1477
fail:
1478
    close(fd);
1479
    return -1;
1480
}
1481

    
1482
static void hpet_stop_timer(struct qemu_alarm_timer *t)
1483
{
1484
    int fd = (long)t->priv;
1485

    
1486
    close(fd);
1487
}
1488

    
1489
static int rtc_start_timer(struct qemu_alarm_timer *t)
1490
{
1491
    int rtc_fd;
1492
    unsigned long current_rtc_freq = 0;
1493

    
1494
    TFR(rtc_fd = open("/dev/rtc", O_RDONLY));
1495
    if (rtc_fd < 0)
1496
        return -1;
1497
    ioctl(rtc_fd, RTC_IRQP_READ, &current_rtc_freq);
1498
    if (current_rtc_freq != RTC_FREQ &&
1499
        ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1500
        fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1501
                "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1502
                "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1503
        goto fail;
1504
    }
1505
    if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1506
    fail:
1507
        close(rtc_fd);
1508
        return -1;
1509
    }
1510

    
1511
    enable_sigio_timer(rtc_fd);
1512

    
1513
    t->priv = (void *)(long)rtc_fd;
1514

    
1515
    return 0;
1516
}
1517

    
1518
static void rtc_stop_timer(struct qemu_alarm_timer *t)
1519
{
1520
    int rtc_fd = (long)t->priv;
1521

    
1522
    close(rtc_fd);
1523
}
1524

    
1525
static int dynticks_start_timer(struct qemu_alarm_timer *t)
1526
{
1527
    struct sigevent ev;
1528
    timer_t host_timer;
1529
    struct sigaction act;
1530

    
1531
    sigfillset(&act.sa_mask);
1532
    act.sa_flags = 0;
1533
    act.sa_handler = host_alarm_handler;
1534

    
1535
    sigaction(SIGALRM, &act, NULL);
1536

    
1537
    ev.sigev_value.sival_int = 0;
1538
    ev.sigev_notify = SIGEV_SIGNAL;
1539
    ev.sigev_signo = SIGALRM;
1540

    
1541
    if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
1542
        perror("timer_create");
1543

    
1544
        /* disable dynticks */
1545
        fprintf(stderr, "Dynamic Ticks disabled\n");
1546

    
1547
        return -1;
1548
    }
1549

    
1550
    t->priv = (void *)(long)host_timer;
1551

    
1552
    return 0;
1553
}
1554

    
1555
static void dynticks_stop_timer(struct qemu_alarm_timer *t)
1556
{
1557
    timer_t host_timer = (timer_t)(long)t->priv;
1558

    
1559
    timer_delete(host_timer);
1560
}
1561

    
1562
static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
1563
{
1564
    timer_t host_timer = (timer_t)(long)t->priv;
1565
    struct itimerspec timeout;
1566
    int64_t nearest_delta_us = INT64_MAX;
1567
    int64_t current_us;
1568

    
1569
    if (!active_timers[QEMU_TIMER_REALTIME] &&
1570
                !active_timers[QEMU_TIMER_VIRTUAL])
1571
        return;
1572

    
1573
    nearest_delta_us = qemu_next_deadline_dyntick();
1574

    
1575
    /* check whether a timer is already running */
1576
    if (timer_gettime(host_timer, &timeout)) {
1577
        perror("gettime");
1578
        fprintf(stderr, "Internal timer error: aborting\n");
1579
        exit(1);
1580
    }
1581
    current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
1582
    if (current_us && current_us <= nearest_delta_us)
1583
        return;
1584

    
1585
    timeout.it_interval.tv_sec = 0;
1586
    timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
1587
    timeout.it_value.tv_sec =  nearest_delta_us / 1000000;
1588
    timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
1589
    if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
1590
        perror("settime");
1591
        fprintf(stderr, "Internal timer error: aborting\n");
1592
        exit(1);
1593
    }
1594
}
1595

    
1596
#endif /* defined(__linux__) */
1597

    
1598
static int unix_start_timer(struct qemu_alarm_timer *t)
1599
{
1600
    struct sigaction act;
1601
    struct itimerval itv;
1602
    int err;
1603

    
1604
    /* timer signal */
1605
    sigfillset(&act.sa_mask);
1606
    act.sa_flags = 0;
1607
    act.sa_handler = host_alarm_handler;
1608

    
1609
    sigaction(SIGALRM, &act, NULL);
1610

    
1611
    itv.it_interval.tv_sec = 0;
1612
    /* for i386 kernel 2.6 to get 1 ms */
1613
    itv.it_interval.tv_usec = 999;
1614
    itv.it_value.tv_sec = 0;
1615
    itv.it_value.tv_usec = 10 * 1000;
1616

    
1617
    err = setitimer(ITIMER_REAL, &itv, NULL);
1618
    if (err)
1619
        return -1;
1620

    
1621
    return 0;
1622
}
1623

    
1624
static void unix_stop_timer(struct qemu_alarm_timer *t)
1625
{
1626
    struct itimerval itv;
1627

    
1628
    memset(&itv, 0, sizeof(itv));
1629
    setitimer(ITIMER_REAL, &itv, NULL);
1630
}
1631

    
1632
#endif /* !defined(_WIN32) */
1633

    
1634
static void try_to_rearm_timer(void *opaque)
1635
{
1636
    struct qemu_alarm_timer *t = opaque;
1637
#ifndef _WIN32
1638
    ssize_t len;
1639

    
1640
    /* Drain the notify pipe */
1641
    do {
1642
        char buffer[512];
1643
        len = read(alarm_timer_rfd, buffer, sizeof(buffer));
1644
    } while ((len == -1 && errno == EINTR) || len > 0);
1645
#endif
1646

    
1647
    if (t->flags & ALARM_FLAG_EXPIRED) {
1648
        alarm_timer->flags &= ~ALARM_FLAG_EXPIRED;
1649
        qemu_rearm_alarm_timer(alarm_timer);
1650
    }
1651
}
1652

    
1653
#ifdef _WIN32
1654

    
1655
static int win32_start_timer(struct qemu_alarm_timer *t)
1656
{
1657
    TIMECAPS tc;
1658
    struct qemu_alarm_win32 *data = t->priv;
1659
    UINT flags;
1660

    
1661
    data->host_alarm = CreateEvent(NULL, FALSE, FALSE, NULL);
1662
    if (!data->host_alarm) {
1663
        perror("Failed CreateEvent");
1664
        return -1;
1665
    }
1666

    
1667
    memset(&tc, 0, sizeof(tc));
1668
    timeGetDevCaps(&tc, sizeof(tc));
1669

    
1670
    if (data->period < tc.wPeriodMin)
1671
        data->period = tc.wPeriodMin;
1672

    
1673
    timeBeginPeriod(data->period);
1674

    
1675
    flags = TIME_CALLBACK_FUNCTION;
1676
    if (alarm_has_dynticks(t))
1677
        flags |= TIME_ONESHOT;
1678
    else
1679
        flags |= TIME_PERIODIC;
1680

    
1681
    data->timerId = timeSetEvent(1,         // interval (ms)
1682
                        data->period,       // resolution
1683
                        host_alarm_handler, // function
1684
                        (DWORD)t,           // parameter
1685
                        flags);
1686

    
1687
    if (!data->timerId) {
1688
        perror("Failed to initialize win32 alarm timer");
1689

    
1690
        timeEndPeriod(data->period);
1691
        CloseHandle(data->host_alarm);
1692
        return -1;
1693
    }
1694

    
1695
    qemu_add_wait_object(data->host_alarm, try_to_rearm_timer, t);
1696

    
1697
    return 0;
1698
}
1699

    
1700
static void win32_stop_timer(struct qemu_alarm_timer *t)
1701
{
1702
    struct qemu_alarm_win32 *data = t->priv;
1703

    
1704
    timeKillEvent(data->timerId);
1705
    timeEndPeriod(data->period);
1706

    
1707
    CloseHandle(data->host_alarm);
1708
}
1709

    
1710
static void win32_rearm_timer(struct qemu_alarm_timer *t)
1711
{
1712
    struct qemu_alarm_win32 *data = t->priv;
1713
    uint64_t nearest_delta_us;
1714

    
1715
    if (!active_timers[QEMU_TIMER_REALTIME] &&
1716
                !active_timers[QEMU_TIMER_VIRTUAL])
1717
        return;
1718

    
1719
    nearest_delta_us = qemu_next_deadline_dyntick();
1720
    nearest_delta_us /= 1000;
1721

    
1722
    timeKillEvent(data->timerId);
1723

    
1724
    data->timerId = timeSetEvent(1,
1725
                        data->period,
1726
                        host_alarm_handler,
1727
                        (DWORD)t,
1728
                        TIME_ONESHOT | TIME_PERIODIC);
1729

    
1730
    if (!data->timerId) {
1731
        perror("Failed to re-arm win32 alarm timer");
1732

    
1733
        timeEndPeriod(data->period);
1734
        CloseHandle(data->host_alarm);
1735
        exit(1);
1736
    }
1737
}
1738

    
1739
#endif /* _WIN32 */
1740

    
1741
static int init_timer_alarm(void)
1742
{
1743
    struct qemu_alarm_timer *t = NULL;
1744
    int i, err = -1;
1745

    
1746
#ifndef _WIN32
1747
    int fds[2];
1748

    
1749
    err = pipe(fds);
1750
    if (err == -1)
1751
        return -errno;
1752

    
1753
    err = fcntl_setfl(fds[0], O_NONBLOCK);
1754
    if (err < 0)
1755
        goto fail;
1756

    
1757
    err = fcntl_setfl(fds[1], O_NONBLOCK);
1758
    if (err < 0)
1759
        goto fail;
1760

    
1761
    alarm_timer_rfd = fds[0];
1762
    alarm_timer_wfd = fds[1];
1763
#endif
1764

    
1765
    for (i = 0; alarm_timers[i].name; i++) {
1766
        t = &alarm_timers[i];
1767

    
1768
        err = t->start(t);
1769
        if (!err)
1770
            break;
1771
    }
1772

    
1773
    if (err) {
1774
        err = -ENOENT;
1775
        goto fail;
1776
    }
1777

    
1778
#ifndef _WIN32
1779
    qemu_set_fd_handler2(alarm_timer_rfd, NULL,
1780
                         try_to_rearm_timer, NULL, t);
1781
#endif
1782

    
1783
    alarm_timer = t;
1784

    
1785
    return 0;
1786

    
1787
fail:
1788
#ifndef _WIN32
1789
    close(fds[0]);
1790
    close(fds[1]);
1791
#endif
1792
    return err;
1793
}
1794

    
1795
static void quit_timers(void)
1796
{
1797
    alarm_timer->stop(alarm_timer);
1798
    alarm_timer = NULL;
1799
}
1800

    
1801
/***********************************************************/
1802
/* host time/date access */
1803
void qemu_get_timedate(struct tm *tm, int offset)
1804
{
1805
    time_t ti;
1806
    struct tm *ret;
1807

    
1808
    time(&ti);
1809
    ti += offset;
1810
    if (rtc_date_offset == -1) {
1811
        if (rtc_utc)
1812
            ret = gmtime(&ti);
1813
        else
1814
            ret = localtime(&ti);
1815
    } else {
1816
        ti -= rtc_date_offset;
1817
        ret = gmtime(&ti);
1818
    }
1819

    
1820
    memcpy(tm, ret, sizeof(struct tm));
1821
}
1822

    
1823
int qemu_timedate_diff(struct tm *tm)
1824
{
1825
    time_t seconds;
1826

    
1827
    if (rtc_date_offset == -1)
1828
        if (rtc_utc)
1829
            seconds = mktimegm(tm);
1830
        else
1831
            seconds = mktime(tm);
1832
    else
1833
        seconds = mktimegm(tm) + rtc_date_offset;
1834

    
1835
    return seconds - time(NULL);
1836
}
1837

    
1838
#ifdef _WIN32
1839
static void socket_cleanup(void)
1840
{
1841
    WSACleanup();
1842
}
1843

    
1844
static int socket_init(void)
1845
{
1846
    WSADATA Data;
1847
    int ret, err;
1848

    
1849
    ret = WSAStartup(MAKEWORD(2,2), &Data);
1850
    if (ret != 0) {
1851
        err = WSAGetLastError();
1852
        fprintf(stderr, "WSAStartup: %d\n", err);
1853
        return -1;
1854
    }
1855
    atexit(socket_cleanup);
1856
    return 0;
1857
}
1858
#endif
1859

    
1860
const char *get_opt_name(char *buf, int buf_size, const char *p)
1861
{
1862
    char *q;
1863

    
1864
    q = buf;
1865
    while (*p != '\0' && *p != '=') {
1866
        if (q && (q - buf) < buf_size - 1)
1867
            *q++ = *p;
1868
        p++;
1869
    }
1870
    if (q)
1871
        *q = '\0';
1872

    
1873
    return p;
1874
}
1875

    
1876
const char *get_opt_value(char *buf, int buf_size, const char *p)
1877
{
1878
    char *q;
1879

    
1880
    q = buf;
1881
    while (*p != '\0') {
1882
        if (*p == ',') {
1883
            if (*(p + 1) != ',')
1884
                break;
1885
            p++;
1886
        }
1887
        if (q && (q - buf) < buf_size - 1)
1888
            *q++ = *p;
1889
        p++;
1890
    }
1891
    if (q)
1892
        *q = '\0';
1893

    
1894
    return p;
1895
}
1896

    
1897
int get_param_value(char *buf, int buf_size,
1898
                    const char *tag, const char *str)
1899
{
1900
    const char *p;
1901
    char option[128];
1902

    
1903
    p = str;
1904
    for(;;) {
1905
        p = get_opt_name(option, sizeof(option), p);
1906
        if (*p != '=')
1907
            break;
1908
        p++;
1909
        if (!strcmp(tag, option)) {
1910
            (void)get_opt_value(buf, buf_size, p);
1911
            return strlen(buf);
1912
        } else {
1913
            p = get_opt_value(NULL, 0, p);
1914
        }
1915
        if (*p != ',')
1916
            break;
1917
        p++;
1918
    }
1919
    return 0;
1920
}
1921

    
1922
int check_params(char *buf, int buf_size,
1923
                 const char * const *params, const char *str)
1924
{
1925
    const char *p;
1926
    int i;
1927

    
1928
    p = str;
1929
    for(;;) {
1930
        p = get_opt_name(buf, buf_size, p);
1931
        if (*p != '=')
1932
            return -1;
1933
        p++;
1934
        for(i = 0; params[i] != NULL; i++)
1935
            if (!strcmp(params[i], buf))
1936
                break;
1937
        if (params[i] == NULL)
1938
            return -1;
1939
        p = get_opt_value(NULL, 0, p);
1940
        if (*p != ',')
1941
            break;
1942
        p++;
1943
    }
1944
    return 0;
1945
}
1946

    
1947
/***********************************************************/
1948
/* Bluetooth support */
1949
static int nb_hcis;
1950
static int cur_hci;
1951
static struct HCIInfo *hci_table[MAX_NICS];
1952

    
1953
static struct bt_vlan_s {
1954
    struct bt_scatternet_s net;
1955
    int id;
1956
    struct bt_vlan_s *next;
1957
} *first_bt_vlan;
1958

    
1959
/* find or alloc a new bluetooth "VLAN" */
1960
static struct bt_scatternet_s *qemu_find_bt_vlan(int id)
1961
{
1962
    struct bt_vlan_s **pvlan, *vlan;
1963
    for (vlan = first_bt_vlan; vlan != NULL; vlan = vlan->next) {
1964
        if (vlan->id == id)
1965
            return &vlan->net;
1966
    }
1967
    vlan = qemu_mallocz(sizeof(struct bt_vlan_s));
1968
    vlan->id = id;
1969
    pvlan = &first_bt_vlan;
1970
    while (*pvlan != NULL)
1971
        pvlan = &(*pvlan)->next;
1972
    *pvlan = vlan;
1973
    return &vlan->net;
1974
}
1975

    
1976
static void null_hci_send(struct HCIInfo *hci, const uint8_t *data, int len)
1977
{
1978
}
1979

    
1980
static int null_hci_addr_set(struct HCIInfo *hci, const uint8_t *bd_addr)
1981
{
1982
    return -ENOTSUP;
1983
}
1984

    
1985
static struct HCIInfo null_hci = {
1986
    .cmd_send = null_hci_send,
1987
    .sco_send = null_hci_send,
1988
    .acl_send = null_hci_send,
1989
    .bdaddr_set = null_hci_addr_set,
1990
};
1991

    
1992
struct HCIInfo *qemu_next_hci(void)
1993
{
1994
    if (cur_hci == nb_hcis)
1995
        return &null_hci;
1996

    
1997
    return hci_table[cur_hci++];
1998
}
1999

    
2000
static struct HCIInfo *hci_init(const char *str)
2001
{
2002
    char *endp;
2003
    struct bt_scatternet_s *vlan = 0;
2004

    
2005
    if (!strcmp(str, "null"))
2006
        /* null */
2007
        return &null_hci;
2008
    else if (!strncmp(str, "host", 4) && (str[4] == '\0' || str[4] == ':'))
2009
        /* host[:hciN] */
2010
        return bt_host_hci(str[4] ? str + 5 : "hci0");
2011
    else if (!strncmp(str, "hci", 3)) {
2012
        /* hci[,vlan=n] */
2013
        if (str[3]) {
2014
            if (!strncmp(str + 3, ",vlan=", 6)) {
2015
                vlan = qemu_find_bt_vlan(strtol(str + 9, &endp, 0));
2016
                if (*endp)
2017
                    vlan = 0;
2018
            }
2019
        } else
2020
            vlan = qemu_find_bt_vlan(0);
2021
        if (vlan)
2022
           return bt_new_hci(vlan);
2023
    }
2024

    
2025
    fprintf(stderr, "qemu: Unknown bluetooth HCI `%s'.\n", str);
2026

    
2027
    return 0;
2028
}
2029

    
2030
static int bt_hci_parse(const char *str)
2031
{
2032
    struct HCIInfo *hci;
2033
    bdaddr_t bdaddr;
2034

    
2035
    if (nb_hcis >= MAX_NICS) {
2036
        fprintf(stderr, "qemu: Too many bluetooth HCIs (max %i).\n", MAX_NICS);
2037
        return -1;
2038
    }
2039

    
2040
    hci = hci_init(str);
2041
    if (!hci)
2042
        return -1;
2043

    
2044
    bdaddr.b[0] = 0x52;
2045
    bdaddr.b[1] = 0x54;
2046
    bdaddr.b[2] = 0x00;
2047
    bdaddr.b[3] = 0x12;
2048
    bdaddr.b[4] = 0x34;
2049
    bdaddr.b[5] = 0x56 + nb_hcis;
2050
    hci->bdaddr_set(hci, bdaddr.b);
2051

    
2052
    hci_table[nb_hcis++] = hci;
2053

    
2054
    return 0;
2055
}
2056

    
2057
static void bt_vhci_add(int vlan_id)
2058
{
2059
    struct bt_scatternet_s *vlan = qemu_find_bt_vlan(vlan_id);
2060

    
2061
    if (!vlan->slave)
2062
        fprintf(stderr, "qemu: warning: adding a VHCI to "
2063
                        "an empty scatternet %i\n", vlan_id);
2064

    
2065
    bt_vhci_init(bt_new_hci(vlan));
2066
}
2067

    
2068
static struct bt_device_s *bt_device_add(const char *opt)
2069
{
2070
    struct bt_scatternet_s *vlan;
2071
    int vlan_id = 0;
2072
    char *endp = strstr(opt, ",vlan=");
2073
    int len = (endp ? endp - opt : strlen(opt)) + 1;
2074
    char devname[10];
2075

    
2076
    pstrcpy(devname, MIN(sizeof(devname), len), opt);
2077

    
2078
    if (endp) {
2079
        vlan_id = strtol(endp + 6, &endp, 0);
2080
        if (*endp) {
2081
            fprintf(stderr, "qemu: unrecognised bluetooth vlan Id\n");
2082
            return 0;
2083
        }
2084
    }
2085

    
2086
    vlan = qemu_find_bt_vlan(vlan_id);
2087

    
2088
    if (!vlan->slave)
2089
        fprintf(stderr, "qemu: warning: adding a slave device to "
2090
                        "an empty scatternet %i\n", vlan_id);
2091

    
2092
    if (!strcmp(devname, "keyboard"))
2093
        return bt_keyboard_init(vlan);
2094

    
2095
    fprintf(stderr, "qemu: unsupported bluetooth device `%s'\n", devname);
2096
    return 0;
2097
}
2098

    
2099
static int bt_parse(const char *opt)
2100
{
2101
    const char *endp, *p;
2102
    int vlan;
2103

    
2104
    if (strstart(opt, "hci", &endp)) {
2105
        if (!*endp || *endp == ',') {
2106
            if (*endp)
2107
                if (!strstart(endp, ",vlan=", 0))
2108
                    opt = endp + 1;
2109

    
2110
            return bt_hci_parse(opt);
2111
       }
2112
    } else if (strstart(opt, "vhci", &endp)) {
2113
        if (!*endp || *endp == ',') {
2114
            if (*endp) {
2115
                if (strstart(endp, ",vlan=", &p)) {
2116
                    vlan = strtol(p, (char **) &endp, 0);
2117
                    if (*endp) {
2118
                        fprintf(stderr, "qemu: bad scatternet '%s'\n", p);
2119
                        return 1;
2120
                    }
2121
                } else {
2122
                    fprintf(stderr, "qemu: bad parameter '%s'\n", endp + 1);
2123
                    return 1;
2124
                }
2125
            } else
2126
                vlan = 0;
2127

    
2128
            bt_vhci_add(vlan);
2129
            return 0;
2130
        }
2131
    } else if (strstart(opt, "device:", &endp))
2132
        return !bt_device_add(endp);
2133

    
2134
    fprintf(stderr, "qemu: bad bluetooth parameter '%s'\n", opt);
2135
    return 1;
2136
}
2137

    
2138
/***********************************************************/
2139
/* QEMU Block devices */
2140

    
2141
#define HD_ALIAS "index=%d,media=disk"
2142
#ifdef TARGET_PPC
2143
#define CDROM_ALIAS "index=1,media=cdrom"
2144
#else
2145
#define CDROM_ALIAS "index=2,media=cdrom"
2146
#endif
2147
#define FD_ALIAS "index=%d,if=floppy"
2148
#define PFLASH_ALIAS "if=pflash"
2149
#define MTD_ALIAS "if=mtd"
2150
#define SD_ALIAS "index=0,if=sd"
2151

    
2152
static int drive_add(const char *file, const char *fmt, ...)
2153
{
2154
    va_list ap;
2155

    
2156
    if (nb_drives_opt >= MAX_DRIVES) {
2157
        fprintf(stderr, "qemu: too many drives\n");
2158
        exit(1);
2159
    }
2160

    
2161
    drives_opt[nb_drives_opt].file = file;
2162
    va_start(ap, fmt);
2163
    vsnprintf(drives_opt[nb_drives_opt].opt,
2164
              sizeof(drives_opt[0].opt), fmt, ap);
2165
    va_end(ap);
2166

    
2167
    return nb_drives_opt++;
2168
}
2169

    
2170
int drive_get_index(BlockInterfaceType type, int bus, int unit)
2171
{
2172
    int index;
2173

    
2174
    /* seek interface, bus and unit */
2175

    
2176
    for (index = 0; index < nb_drives; index++)
2177
        if (drives_table[index].type == type &&
2178
            drives_table[index].bus == bus &&
2179
            drives_table[index].unit == unit)
2180
        return index;
2181

    
2182
    return -1;
2183
}
2184

    
2185
int drive_get_max_bus(BlockInterfaceType type)
2186
{
2187
    int max_bus;
2188
    int index;
2189

    
2190
    max_bus = -1;
2191
    for (index = 0; index < nb_drives; index++) {
2192
        if(drives_table[index].type == type &&
2193
           drives_table[index].bus > max_bus)
2194
            max_bus = drives_table[index].bus;
2195
    }
2196
    return max_bus;
2197
}
2198

    
2199
const char *drive_get_serial(BlockDriverState *bdrv)
2200
{
2201
    int index;
2202

    
2203
    for (index = 0; index < nb_drives; index++)
2204
        if (drives_table[index].bdrv == bdrv)
2205
            return drives_table[index].serial;
2206

    
2207
    return "\0";
2208
}
2209

    
2210
static void bdrv_format_print(void *opaque, const char *name)
2211
{
2212
    fprintf(stderr, " %s", name);
2213
}
2214

    
2215
static int drive_init(struct drive_opt *arg, int snapshot,
2216
                      QEMUMachine *machine)
2217
{
2218
    char buf[128];
2219
    char file[1024];
2220
    char devname[128];
2221
    char serial[21];
2222
    const char *mediastr = "";
2223
    BlockInterfaceType type;
2224
    enum { MEDIA_DISK, MEDIA_CDROM } media;
2225
    int bus_id, unit_id;
2226
    int cyls, heads, secs, translation;
2227
    BlockDriverState *bdrv;
2228
    BlockDriver *drv = NULL;
2229
    int max_devs;
2230
    int index;
2231
    int cache;
2232
    int bdrv_flags;
2233
    char *str = arg->opt;
2234
    static const char * const params[] = { "bus", "unit", "if", "index",
2235
                                           "cyls", "heads", "secs", "trans",
2236
                                           "media", "snapshot", "file",
2237
                                           "cache", "format", "serial", NULL };
2238

    
2239
    if (check_params(buf, sizeof(buf), params, str) < 0) {
2240
         fprintf(stderr, "qemu: unknown parameter '%s' in '%s'\n",
2241
                         buf, str);
2242
         return -1;
2243
    }
2244

    
2245
    file[0] = 0;
2246
    cyls = heads = secs = 0;
2247
    bus_id = 0;
2248
    unit_id = -1;
2249
    translation = BIOS_ATA_TRANSLATION_AUTO;
2250
    index = -1;
2251
    cache = 3;
2252

    
2253
    if (machine->use_scsi) {
2254
        type = IF_SCSI;
2255
        max_devs = MAX_SCSI_DEVS;
2256
        pstrcpy(devname, sizeof(devname), "scsi");
2257
    } else {
2258
        type = IF_IDE;
2259
        max_devs = MAX_IDE_DEVS;
2260
        pstrcpy(devname, sizeof(devname), "ide");
2261
    }
2262
    media = MEDIA_DISK;
2263

    
2264
    /* extract parameters */
2265

    
2266
    if (get_param_value(buf, sizeof(buf), "bus", str)) {
2267
        bus_id = strtol(buf, NULL, 0);
2268
        if (bus_id < 0) {
2269
            fprintf(stderr, "qemu: '%s' invalid bus id\n", str);
2270
            return -1;
2271
        }
2272
    }
2273

    
2274
    if (get_param_value(buf, sizeof(buf), "unit", str)) {
2275
        unit_id = strtol(buf, NULL, 0);
2276
        if (unit_id < 0) {
2277
            fprintf(stderr, "qemu: '%s' invalid unit id\n", str);
2278
            return -1;
2279
        }
2280
    }
2281

    
2282
    if (get_param_value(buf, sizeof(buf), "if", str)) {
2283
        pstrcpy(devname, sizeof(devname), buf);
2284
        if (!strcmp(buf, "ide")) {
2285
            type = IF_IDE;
2286
            max_devs = MAX_IDE_DEVS;
2287
        } else if (!strcmp(buf, "scsi")) {
2288
            type = IF_SCSI;
2289
            max_devs = MAX_SCSI_DEVS;
2290
        } else if (!strcmp(buf, "floppy")) {
2291
            type = IF_FLOPPY;
2292
            max_devs = 0;
2293
        } else if (!strcmp(buf, "pflash")) {
2294
            type = IF_PFLASH;
2295
            max_devs = 0;
2296
        } else if (!strcmp(buf, "mtd")) {
2297
            type = IF_MTD;
2298
            max_devs = 0;
2299
        } else if (!strcmp(buf, "sd")) {
2300
            type = IF_SD;
2301
            max_devs = 0;
2302
        } else if (!strcmp(buf, "virtio")) {
2303
            type = IF_VIRTIO;
2304
            max_devs = 0;
2305
        } else {
2306
            fprintf(stderr, "qemu: '%s' unsupported bus type '%s'\n", str, buf);
2307
            return -1;
2308
        }
2309
    }
2310

    
2311
    if (get_param_value(buf, sizeof(buf), "index", str)) {
2312
        index = strtol(buf, NULL, 0);
2313
        if (index < 0) {
2314
            fprintf(stderr, "qemu: '%s' invalid index\n", str);
2315
            return -1;
2316
        }
2317
    }
2318

    
2319
    if (get_param_value(buf, sizeof(buf), "cyls", str)) {
2320
        cyls = strtol(buf, NULL, 0);
2321
    }
2322

    
2323
    if (get_param_value(buf, sizeof(buf), "heads", str)) {
2324
        heads = strtol(buf, NULL, 0);
2325
    }
2326

    
2327
    if (get_param_value(buf, sizeof(buf), "secs", str)) {
2328
        secs = strtol(buf, NULL, 0);
2329
    }
2330

    
2331
    if (cyls || heads || secs) {
2332
        if (cyls < 1 || cyls > 16383) {
2333
            fprintf(stderr, "qemu: '%s' invalid physical cyls number\n", str);
2334
            return -1;
2335
        }
2336
        if (heads < 1 || heads > 16) {
2337
            fprintf(stderr, "qemu: '%s' invalid physical heads number\n", str);
2338
            return -1;
2339
        }
2340
        if (secs < 1 || secs > 63) {
2341
            fprintf(stderr, "qemu: '%s' invalid physical secs number\n", str);
2342
            return -1;
2343
        }
2344
    }
2345

    
2346
    if (get_param_value(buf, sizeof(buf), "trans", str)) {
2347
        if (!cyls) {
2348
            fprintf(stderr,
2349
                    "qemu: '%s' trans must be used with cyls,heads and secs\n",
2350
                    str);
2351
            return -1;
2352
        }
2353
        if (!strcmp(buf, "none"))
2354
            translation = BIOS_ATA_TRANSLATION_NONE;
2355
        else if (!strcmp(buf, "lba"))
2356
            translation = BIOS_ATA_TRANSLATION_LBA;
2357
        else if (!strcmp(buf, "auto"))
2358
            translation = BIOS_ATA_TRANSLATION_AUTO;
2359
        else {
2360
            fprintf(stderr, "qemu: '%s' invalid translation type\n", str);
2361
            return -1;
2362
        }
2363
    }
2364

    
2365
    if (get_param_value(buf, sizeof(buf), "media", str)) {
2366
        if (!strcmp(buf, "disk")) {
2367
            media = MEDIA_DISK;
2368
        } else if (!strcmp(buf, "cdrom")) {
2369
            if (cyls || secs || heads) {
2370
                fprintf(stderr,
2371
                        "qemu: '%s' invalid physical CHS format\n", str);
2372
                return -1;
2373
            }
2374
            media = MEDIA_CDROM;
2375
        } else {
2376
            fprintf(stderr, "qemu: '%s' invalid media\n", str);
2377
            return -1;
2378
        }
2379
    }
2380

    
2381
    if (get_param_value(buf, sizeof(buf), "snapshot", str)) {
2382
        if (!strcmp(buf, "on"))
2383
            snapshot = 1;
2384
        else if (!strcmp(buf, "off"))
2385
            snapshot = 0;
2386
        else {
2387
            fprintf(stderr, "qemu: '%s' invalid snapshot option\n", str);
2388
            return -1;
2389
        }
2390
    }
2391

    
2392
    if (get_param_value(buf, sizeof(buf), "cache", str)) {
2393
        if (!strcmp(buf, "off") || !strcmp(buf, "none"))
2394
            cache = 0;
2395
        else if (!strcmp(buf, "writethrough"))
2396
            cache = 1;
2397
        else if (!strcmp(buf, "writeback"))
2398
            cache = 2;
2399
        else {
2400
           fprintf(stderr, "qemu: invalid cache option\n");
2401
           return -1;
2402
        }
2403
    }
2404

    
2405
    if (get_param_value(buf, sizeof(buf), "format", str)) {
2406
       if (strcmp(buf, "?") == 0) {
2407
            fprintf(stderr, "qemu: Supported formats:");
2408
            bdrv_iterate_format(bdrv_format_print, NULL);
2409
            fprintf(stderr, "\n");
2410
            return -1;
2411
        }
2412
        drv = bdrv_find_format(buf);
2413
        if (!drv) {
2414
            fprintf(stderr, "qemu: '%s' invalid format\n", buf);
2415
            return -1;
2416
        }
2417
    }
2418

    
2419
    if (arg->file == NULL)
2420
        get_param_value(file, sizeof(file), "file", str);
2421
    else
2422
        pstrcpy(file, sizeof(file), arg->file);
2423

    
2424
    if (!get_param_value(serial, sizeof(serial), "serial", str))
2425
            memset(serial, 0,  sizeof(serial));
2426

    
2427
    /* compute bus and unit according index */
2428

    
2429
    if (index != -1) {
2430
        if (bus_id != 0 || unit_id != -1) {
2431
            fprintf(stderr,
2432
                    "qemu: '%s' index cannot be used with bus and unit\n", str);
2433
            return -1;
2434
        }
2435
        if (max_devs == 0)
2436
        {
2437
            unit_id = index;
2438
            bus_id = 0;
2439
        } else {
2440
            unit_id = index % max_devs;
2441
            bus_id = index / max_devs;
2442
        }
2443
    }
2444

    
2445
    /* if user doesn't specify a unit_id,
2446
     * try to find the first free
2447
     */
2448

    
2449
    if (unit_id == -1) {
2450
       unit_id = 0;
2451
       while (drive_get_index(type, bus_id, unit_id) != -1) {
2452
           unit_id++;
2453
           if (max_devs && unit_id >= max_devs) {
2454
               unit_id -= max_devs;
2455
               bus_id++;
2456
           }
2457
       }
2458
    }
2459

    
2460
    /* check unit id */
2461

    
2462
    if (max_devs && unit_id >= max_devs) {
2463
        fprintf(stderr, "qemu: '%s' unit %d too big (max is %d)\n",
2464
                        str, unit_id, max_devs - 1);
2465
        return -1;
2466
    }
2467

    
2468
    /*
2469
     * ignore multiple definitions
2470
     */
2471

    
2472
    if (drive_get_index(type, bus_id, unit_id) != -1)
2473
        return 0;
2474

    
2475
    /* init */
2476

    
2477
    if (type == IF_IDE || type == IF_SCSI)
2478
        mediastr = (media == MEDIA_CDROM) ? "-cd" : "-hd";
2479
    if (max_devs)
2480
        snprintf(buf, sizeof(buf), "%s%i%s%i",
2481
                 devname, bus_id, mediastr, unit_id);
2482
    else
2483
        snprintf(buf, sizeof(buf), "%s%s%i",
2484
                 devname, mediastr, unit_id);
2485
    bdrv = bdrv_new(buf);
2486
    drives_table[nb_drives].bdrv = bdrv;
2487
    drives_table[nb_drives].type = type;
2488
    drives_table[nb_drives].bus = bus_id;
2489
    drives_table[nb_drives].unit = unit_id;
2490
    strncpy(drives_table[nb_drives].serial, serial, sizeof(serial));
2491
    nb_drives++;
2492

    
2493
    switch(type) {
2494
    case IF_IDE:
2495
    case IF_SCSI:
2496
        switch(media) {
2497
        case MEDIA_DISK:
2498
            if (cyls != 0) {
2499
                bdrv_set_geometry_hint(bdrv, cyls, heads, secs);
2500
                bdrv_set_translation_hint(bdrv, translation);
2501
            }
2502
            break;
2503
        case MEDIA_CDROM:
2504
            bdrv_set_type_hint(bdrv, BDRV_TYPE_CDROM);
2505
            break;
2506
        }
2507
        break;
2508
    case IF_SD:
2509
        /* FIXME: This isn't really a floppy, but it's a reasonable
2510
           approximation.  */
2511
    case IF_FLOPPY:
2512
        bdrv_set_type_hint(bdrv, BDRV_TYPE_FLOPPY);
2513
        break;
2514
    case IF_PFLASH:
2515
    case IF_MTD:
2516
    case IF_VIRTIO:
2517
        break;
2518
    }
2519
    if (!file[0])
2520
        return 0;
2521
    bdrv_flags = 0;
2522
    if (snapshot) {
2523
        bdrv_flags |= BDRV_O_SNAPSHOT;
2524
        cache = 2; /* always use write-back with snapshot */
2525
    }
2526
    if (cache == 0) /* no caching */
2527
        bdrv_flags |= BDRV_O_NOCACHE;
2528
    else if (cache == 2) /* write-back */
2529
        bdrv_flags |= BDRV_O_CACHE_WB;
2530
    else if (cache == 3) /* not specified */
2531
        bdrv_flags |= BDRV_O_CACHE_DEF;
2532
    if (bdrv_open2(bdrv, file, bdrv_flags, drv) < 0 || qemu_key_check(bdrv, file)) {
2533
        fprintf(stderr, "qemu: could not open disk image %s\n",
2534
                        file);
2535
        return -1;
2536
    }
2537
    return 0;
2538
}
2539

    
2540
/***********************************************************/
2541
/* USB devices */
2542

    
2543
static USBPort *used_usb_ports;
2544
static USBPort *free_usb_ports;
2545

    
2546
/* ??? Maybe change this to register a hub to keep track of the topology.  */
2547
void qemu_register_usb_port(USBPort *port, void *opaque, int index,
2548
                            usb_attachfn attach)
2549
{
2550
    port->opaque = opaque;
2551
    port->index = index;
2552
    port->attach = attach;
2553
    port->next = free_usb_ports;
2554
    free_usb_ports = port;
2555
}
2556

    
2557
int usb_device_add_dev(USBDevice *dev)
2558
{
2559
    USBPort *port;
2560

    
2561
    /* Find a USB port to add the device to.  */
2562
    port = free_usb_ports;
2563
    if (!port->next) {
2564
        USBDevice *hub;
2565

    
2566
        /* Create a new hub and chain it on.  */
2567
        free_usb_ports = NULL;
2568
        port->next = used_usb_ports;
2569
        used_usb_ports = port;
2570

    
2571
        hub = usb_hub_init(VM_USB_HUB_SIZE);
2572
        usb_attach(port, hub);
2573
        port = free_usb_ports;
2574
    }
2575

    
2576
    free_usb_ports = port->next;
2577
    port->next = used_usb_ports;
2578
    used_usb_ports = port;
2579
    usb_attach(port, dev);
2580
    return 0;
2581
}
2582

    
2583
static int usb_device_add(const char *devname)
2584
{
2585
    const char *p;
2586
    USBDevice *dev;
2587

    
2588
    if (!free_usb_ports)
2589
        return -1;
2590

    
2591
    if (strstart(devname, "host:", &p)) {
2592
        dev = usb_host_device_open(p);
2593
    } else if (!strcmp(devname, "mouse")) {
2594
        dev = usb_mouse_init();
2595
    } else if (!strcmp(devname, "tablet")) {
2596
        dev = usb_tablet_init();
2597
    } else if (!strcmp(devname, "keyboard")) {
2598
        dev = usb_keyboard_init();
2599
    } else if (strstart(devname, "disk:", &p)) {
2600
        dev = usb_msd_init(p);
2601
    } else if (!strcmp(devname, "wacom-tablet")) {
2602
        dev = usb_wacom_init();
2603
    } else if (strstart(devname, "serial:", &p)) {
2604
        dev = usb_serial_init(p);
2605
#ifdef CONFIG_BRLAPI
2606
    } else if (!strcmp(devname, "braille")) {
2607
        dev = usb_baum_init();
2608
#endif
2609
    } else if (strstart(devname, "net:", &p)) {
2610
        int nic = nb_nics;
2611

    
2612
        if (net_client_init("nic", p) < 0)
2613
            return -1;
2614
        nd_table[nic].model = "usb";
2615
        dev = usb_net_init(&nd_table[nic]);
2616
    } else if (!strcmp(devname, "bt") || strstart(devname, "bt:", &p)) {
2617
        dev = usb_bt_init(devname[2] ? hci_init(p) :
2618
                        bt_new_hci(qemu_find_bt_vlan(0)));
2619
    } else {
2620
        return -1;
2621
    }
2622
    if (!dev)
2623
        return -1;
2624

    
2625
    return usb_device_add_dev(dev);
2626
}
2627

    
2628
int usb_device_del_addr(int bus_num, int addr)
2629
{
2630
    USBPort *port;
2631
    USBPort **lastp;
2632
    USBDevice *dev;
2633

    
2634
    if (!used_usb_ports)
2635
        return -1;
2636

    
2637
    if (bus_num != 0)
2638
        return -1;
2639

    
2640
    lastp = &used_usb_ports;
2641
    port = used_usb_ports;
2642
    while (port && port->dev->addr != addr) {
2643
        lastp = &port->next;
2644
        port = port->next;
2645
    }
2646

    
2647
    if (!port)
2648
        return -1;
2649

    
2650
    dev = port->dev;
2651
    *lastp = port->next;
2652
    usb_attach(port, NULL);
2653
    dev->handle_destroy(dev);
2654
    port->next = free_usb_ports;
2655
    free_usb_ports = port;
2656
    return 0;
2657
}
2658

    
2659
static int usb_device_del(const char *devname)
2660
{
2661
    int bus_num, addr;
2662
    const char *p;
2663

    
2664
    if (strstart(devname, "host:", &p))
2665
        return usb_host_device_close(p);
2666

    
2667
    if (!used_usb_ports)
2668
        return -1;
2669

    
2670
    p = strchr(devname, '.');
2671
    if (!p)
2672
        return -1;
2673
    bus_num = strtoul(devname, NULL, 0);
2674
    addr = strtoul(p + 1, NULL, 0);
2675

    
2676
    return usb_device_del_addr(bus_num, addr);
2677
}
2678

    
2679
void do_usb_add(const char *devname)
2680
{
2681
    usb_device_add(devname);
2682
}
2683

    
2684
void do_usb_del(const char *devname)
2685
{
2686
    usb_device_del(devname);
2687
}
2688

    
2689
void usb_info(void)
2690
{
2691
    USBDevice *dev;
2692
    USBPort *port;
2693
    const char *speed_str;
2694

    
2695
    if (!usb_enabled) {
2696
        term_printf("USB support not enabled\n");
2697
        return;
2698
    }
2699

    
2700
    for (port = used_usb_ports; port; port = port->next) {
2701
        dev = port->dev;
2702
        if (!dev)
2703
            continue;
2704
        switch(dev->speed) {
2705
        case USB_SPEED_LOW:
2706
            speed_str = "1.5";
2707
            break;
2708
        case USB_SPEED_FULL:
2709
            speed_str = "12";
2710
            break;
2711
        case USB_SPEED_HIGH:
2712
            speed_str = "480";
2713
            break;
2714
        default:
2715
            speed_str = "?";
2716
            break;
2717
        }
2718
        term_printf("  Device %d.%d, Speed %s Mb/s, Product %s\n",
2719
                    0, dev->addr, speed_str, dev->devname);
2720
    }
2721
}
2722

    
2723
/***********************************************************/
2724
/* PCMCIA/Cardbus */
2725

    
2726
static struct pcmcia_socket_entry_s {
2727
    struct pcmcia_socket_s *socket;
2728
    struct pcmcia_socket_entry_s *next;
2729
} *pcmcia_sockets = 0;
2730

    
2731
void pcmcia_socket_register(struct pcmcia_socket_s *socket)
2732
{
2733
    struct pcmcia_socket_entry_s *entry;
2734

    
2735
    entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
2736
    entry->socket = socket;
2737
    entry->next = pcmcia_sockets;
2738
    pcmcia_sockets = entry;
2739
}
2740

    
2741
void pcmcia_socket_unregister(struct pcmcia_socket_s *socket)
2742
{
2743
    struct pcmcia_socket_entry_s *entry, **ptr;
2744

    
2745
    ptr = &pcmcia_sockets;
2746
    for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
2747
        if (entry->socket == socket) {
2748
            *ptr = entry->next;
2749
            qemu_free(entry);
2750
        }
2751
}
2752

    
2753
void pcmcia_info(void)
2754
{
2755
    struct pcmcia_socket_entry_s *iter;
2756
    if (!pcmcia_sockets)
2757
        term_printf("No PCMCIA sockets\n");
2758

    
2759
    for (iter = pcmcia_sockets; iter; iter = iter->next)
2760
        term_printf("%s: %s\n", iter->socket->slot_string,
2761
                    iter->socket->attached ? iter->socket->card_string :
2762
                    "Empty");
2763
}
2764

    
2765
/***********************************************************/
2766
/* dumb display */
2767

    
2768
static void dumb_update(DisplayState *ds, int x, int y, int w, int h)
2769
{
2770
}
2771

    
2772
static void dumb_resize(DisplayState *ds, int w, int h)
2773
{
2774
}
2775

    
2776
static void dumb_display_init(DisplayState *ds)
2777
{
2778
    ds->data = NULL;
2779
    ds->linesize = 0;
2780
    ds->depth = 0;
2781
    ds->dpy_update = dumb_update;
2782
    ds->dpy_resize = dumb_resize;
2783
    ds->dpy_refresh = NULL;
2784
    ds->gui_timer_interval = 0;
2785
    ds->idle = 1;
2786
}
2787

    
2788
/***********************************************************/
2789
/* I/O handling */
2790

    
2791
#define MAX_IO_HANDLERS 64
2792

    
2793
typedef struct IOHandlerRecord {
2794
    int fd;
2795
    IOCanRWHandler *fd_read_poll;
2796
    IOHandler *fd_read;
2797
    IOHandler *fd_write;
2798
    int deleted;
2799
    void *opaque;
2800
    /* temporary data */
2801
    struct pollfd *ufd;
2802
    struct IOHandlerRecord *next;
2803
} IOHandlerRecord;
2804

    
2805
static IOHandlerRecord *first_io_handler;
2806

    
2807
/* XXX: fd_read_poll should be suppressed, but an API change is
2808
   necessary in the character devices to suppress fd_can_read(). */
2809
int qemu_set_fd_handler2(int fd,
2810
                         IOCanRWHandler *fd_read_poll,
2811
                         IOHandler *fd_read,
2812
                         IOHandler *fd_write,
2813
                         void *opaque)
2814
{
2815
    IOHandlerRecord **pioh, *ioh;
2816

    
2817
    if (!fd_read && !fd_write) {
2818
        pioh = &first_io_handler;
2819
        for(;;) {
2820
            ioh = *pioh;
2821
            if (ioh == NULL)
2822
                break;
2823
            if (ioh->fd == fd) {
2824
                ioh->deleted = 1;
2825
                break;
2826
            }
2827
            pioh = &ioh->next;
2828
        }
2829
    } else {
2830
        for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
2831
            if (ioh->fd == fd)
2832
                goto found;
2833
        }
2834
        ioh = qemu_mallocz(sizeof(IOHandlerRecord));
2835
        if (!ioh)
2836
            return -1;
2837
        ioh->next = first_io_handler;
2838
        first_io_handler = ioh;
2839
    found:
2840
        ioh->fd = fd;
2841
        ioh->fd_read_poll = fd_read_poll;
2842
        ioh->fd_read = fd_read;
2843
        ioh->fd_write = fd_write;
2844
        ioh->opaque = opaque;
2845
        ioh->deleted = 0;
2846
    }
2847
    return 0;
2848
}
2849

    
2850
int qemu_set_fd_handler(int fd,
2851
                        IOHandler *fd_read,
2852
                        IOHandler *fd_write,
2853
                        void *opaque)
2854
{
2855
    return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
2856
}
2857

    
2858
#ifdef _WIN32
2859
/***********************************************************/
2860
/* Polling handling */
2861

    
2862
typedef struct PollingEntry {
2863
    PollingFunc *func;
2864
    void *opaque;
2865
    struct PollingEntry *next;
2866
} PollingEntry;
2867

    
2868
static PollingEntry *first_polling_entry;
2869

    
2870
int qemu_add_polling_cb(PollingFunc *func, void *opaque)
2871
{
2872
    PollingEntry **ppe, *pe;
2873
    pe = qemu_mallocz(sizeof(PollingEntry));
2874
    if (!pe)
2875
        return -1;
2876
    pe->func = func;
2877
    pe->opaque = opaque;
2878
    for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
2879
    *ppe = pe;
2880
    return 0;
2881
}
2882

    
2883
void qemu_del_polling_cb(PollingFunc *func, void *opaque)
2884
{
2885
    PollingEntry **ppe, *pe;
2886
    for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
2887
        pe = *ppe;
2888
        if (pe->func == func && pe->opaque == opaque) {
2889
            *ppe = pe->next;
2890
            qemu_free(pe);
2891
            break;
2892
        }
2893
    }
2894
}
2895

    
2896
/***********************************************************/
2897
/* Wait objects support */
2898
typedef struct WaitObjects {
2899
    int num;
2900
    HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
2901
    WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
2902
    void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
2903
} WaitObjects;
2904

    
2905
static WaitObjects wait_objects = {0};
2906

    
2907
int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
2908
{
2909
    WaitObjects *w = &wait_objects;
2910

    
2911
    if (w->num >= MAXIMUM_WAIT_OBJECTS)
2912
        return -1;
2913
    w->events[w->num] = handle;
2914
    w->func[w->num] = func;
2915
    w->opaque[w->num] = opaque;
2916
    w->num++;
2917
    return 0;
2918
}
2919

    
2920
void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
2921
{
2922
    int i, found;
2923
    WaitObjects *w = &wait_objects;
2924

    
2925
    found = 0;
2926
    for (i = 0; i < w->num; i++) {
2927
        if (w->events[i] == handle)
2928
            found = 1;
2929
        if (found) {
2930
            w->events[i] = w->events[i + 1];
2931
            w->func[i] = w->func[i + 1];
2932
            w->opaque[i] = w->opaque[i + 1];
2933
        }
2934
    }
2935
    if (found)
2936
        w->num--;
2937
}
2938
#endif
2939

    
2940
/***********************************************************/
2941
/* ram save/restore */
2942

    
2943
static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
2944
{
2945
    int v;
2946

    
2947
    v = qemu_get_byte(f);
2948
    switch(v) {
2949
    case 0:
2950
        if (qemu_get_buffer(f, buf, len) != len)
2951
            return -EIO;
2952
        break;
2953
    case 1:
2954
        v = qemu_get_byte(f);
2955
        memset(buf, v, len);
2956
        break;
2957
    default:
2958
        return -EINVAL;
2959
    }
2960

    
2961
    if (qemu_file_has_error(f))
2962
        return -EIO;
2963

    
2964
    return 0;
2965
}
2966

    
2967
static int ram_load_v1(QEMUFile *f, void *opaque)
2968
{
2969
    int ret;
2970
    ram_addr_t i;
2971

    
2972
    if (qemu_get_be32(f) != phys_ram_size)
2973
        return -EINVAL;
2974
    for(i = 0; i < phys_ram_size; i+= TARGET_PAGE_SIZE) {
2975
        ret = ram_get_page(f, phys_ram_base + i, TARGET_PAGE_SIZE);
2976
        if (ret)
2977
            return ret;
2978
    }
2979
    return 0;
2980
}
2981

    
2982
#define BDRV_HASH_BLOCK_SIZE 1024
2983
#define IOBUF_SIZE 4096
2984
#define RAM_CBLOCK_MAGIC 0xfabe
2985

    
2986
typedef struct RamDecompressState {
2987
    z_stream zstream;
2988
    QEMUFile *f;
2989
    uint8_t buf[IOBUF_SIZE];
2990
} RamDecompressState;
2991

    
2992
static int ram_decompress_open(RamDecompressState *s, QEMUFile *f)
2993
{
2994
    int ret;
2995
    memset(s, 0, sizeof(*s));
2996
    s->f = f;
2997
    ret = inflateInit(&s->zstream);
2998
    if (ret != Z_OK)
2999
        return -1;
3000
    return 0;
3001
}
3002

    
3003
static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len)
3004
{
3005
    int ret, clen;
3006

    
3007
    s->zstream.avail_out = len;
3008
    s->zstream.next_out = buf;
3009
    while (s->zstream.avail_out > 0) {
3010
        if (s->zstream.avail_in == 0) {
3011
            if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC)
3012
                return -1;
3013
            clen = qemu_get_be16(s->f);
3014
            if (clen > IOBUF_SIZE)
3015
                return -1;
3016
            qemu_get_buffer(s->f, s->buf, clen);
3017
            s->zstream.avail_in = clen;
3018
            s->zstream.next_in = s->buf;
3019
        }
3020
        ret = inflate(&s->zstream, Z_PARTIAL_FLUSH);
3021
        if (ret != Z_OK && ret != Z_STREAM_END) {
3022
            return -1;
3023
        }
3024
    }
3025
    return 0;
3026
}
3027

    
3028
static void ram_decompress_close(RamDecompressState *s)
3029
{
3030
    inflateEnd(&s->zstream);
3031
}
3032

    
3033
#define RAM_SAVE_FLAG_FULL        0x01
3034
#define RAM_SAVE_FLAG_COMPRESS        0x02
3035
#define RAM_SAVE_FLAG_MEM_SIZE        0x04
3036
#define RAM_SAVE_FLAG_PAGE        0x08
3037
#define RAM_SAVE_FLAG_EOS        0x10
3038

    
3039
static int is_dup_page(uint8_t *page, uint8_t ch)
3040
{
3041
    uint32_t val = ch << 24 | ch << 16 | ch << 8 | ch;
3042
    uint32_t *array = (uint32_t *)page;
3043
    int i;
3044

    
3045
    for (i = 0; i < (TARGET_PAGE_SIZE / 4); i++) {
3046
        if (array[i] != val)
3047
            return 0;
3048
    }
3049

    
3050
    return 1;
3051
}
3052

    
3053
static int ram_save_block(QEMUFile *f)
3054
{
3055
    static ram_addr_t current_addr = 0;
3056
    ram_addr_t saved_addr = current_addr;
3057
    ram_addr_t addr = 0;
3058
    int found = 0;
3059

    
3060
    while (addr < phys_ram_size) {
3061
        if (cpu_physical_memory_get_dirty(current_addr, MIGRATION_DIRTY_FLAG)) {
3062
            uint8_t ch;
3063

    
3064
            cpu_physical_memory_reset_dirty(current_addr,
3065
                                            current_addr + TARGET_PAGE_SIZE,
3066
                                            MIGRATION_DIRTY_FLAG);
3067

    
3068
            ch = *(phys_ram_base + current_addr);
3069

    
3070
            if (is_dup_page(phys_ram_base + current_addr, ch)) {
3071
                qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_COMPRESS);
3072
                qemu_put_byte(f, ch);
3073
            } else {
3074
                qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_PAGE);
3075
                qemu_put_buffer(f, phys_ram_base + current_addr, TARGET_PAGE_SIZE);
3076
            }
3077

    
3078
            found = 1;
3079
            break;
3080
        }
3081
        addr += TARGET_PAGE_SIZE;
3082
        current_addr = (saved_addr + addr) % phys_ram_size;
3083
    }
3084

    
3085
    return found;
3086
}
3087

    
3088
static ram_addr_t ram_save_threshold = 10;
3089

    
3090
static ram_addr_t ram_save_remaining(void)
3091
{
3092
    ram_addr_t addr;
3093
    ram_addr_t count = 0;
3094

    
3095
    for (addr = 0; addr < phys_ram_size; addr += TARGET_PAGE_SIZE) {
3096
        if (cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3097
            count++;
3098
    }
3099

    
3100
    return count;
3101
}
3102

    
3103
static int ram_save_live(QEMUFile *f, int stage, void *opaque)
3104
{
3105
    ram_addr_t addr;
3106

    
3107
    if (stage == 1) {
3108
        /* Make sure all dirty bits are set */
3109
        for (addr = 0; addr < phys_ram_size; addr += TARGET_PAGE_SIZE) {
3110
            if (!cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3111
                cpu_physical_memory_set_dirty(addr);
3112
        }
3113
        
3114
        /* Enable dirty memory tracking */
3115
        cpu_physical_memory_set_dirty_tracking(1);
3116

    
3117
        qemu_put_be64(f, phys_ram_size | RAM_SAVE_FLAG_MEM_SIZE);
3118
    }
3119

    
3120
    while (!qemu_file_rate_limit(f)) {
3121
        int ret;
3122

    
3123
        ret = ram_save_block(f);
3124
        if (ret == 0) /* no more blocks */
3125
            break;
3126
    }
3127

    
3128
    /* try transferring iterative blocks of memory */
3129

    
3130
    if (stage == 3) {
3131
        cpu_physical_memory_set_dirty_tracking(0);
3132

    
3133
        /* flush all remaining blocks regardless of rate limiting */
3134
        while (ram_save_block(f) != 0);
3135
    }
3136

    
3137
    qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3138

    
3139
    return (stage == 2) && (ram_save_remaining() < ram_save_threshold);
3140
}
3141

    
3142
static int ram_load_dead(QEMUFile *f, void *opaque)
3143
{
3144
    RamDecompressState s1, *s = &s1;
3145
    uint8_t buf[10];
3146
    ram_addr_t i;
3147

    
3148
    if (ram_decompress_open(s, f) < 0)
3149
        return -EINVAL;
3150
    for(i = 0; i < phys_ram_size; i+= BDRV_HASH_BLOCK_SIZE) {
3151
        if (ram_decompress_buf(s, buf, 1) < 0) {
3152
            fprintf(stderr, "Error while reading ram block header\n");
3153
            goto error;
3154
        }
3155
        if (buf[0] == 0) {
3156
            if (ram_decompress_buf(s, phys_ram_base + i, BDRV_HASH_BLOCK_SIZE) < 0) {
3157
                fprintf(stderr, "Error while reading ram block address=0x%08" PRIx64, (uint64_t)i);
3158
                goto error;
3159
            }
3160
        } else {
3161
        error:
3162
            printf("Error block header\n");
3163
            return -EINVAL;
3164
        }
3165
    }
3166
    ram_decompress_close(s);
3167

    
3168
    return 0;
3169
}
3170

    
3171
static int ram_load(QEMUFile *f, void *opaque, int version_id)
3172
{
3173
    ram_addr_t addr;
3174
    int flags;
3175

    
3176
    if (version_id == 1)
3177
        return ram_load_v1(f, opaque);
3178

    
3179
    if (version_id == 2) {
3180
        if (qemu_get_be32(f) != phys_ram_size)
3181
            return -EINVAL;
3182
        return ram_load_dead(f, opaque);
3183
    }
3184

    
3185
    if (version_id != 3)
3186
        return -EINVAL;
3187

    
3188
    do {
3189
        addr = qemu_get_be64(f);
3190

    
3191
        flags = addr & ~TARGET_PAGE_MASK;
3192
        addr &= TARGET_PAGE_MASK;
3193

    
3194
        if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
3195
            if (addr != phys_ram_size)
3196
                return -EINVAL;
3197
        }
3198

    
3199
        if (flags & RAM_SAVE_FLAG_FULL) {
3200
            if (ram_load_dead(f, opaque) < 0)
3201
                return -EINVAL;
3202
        }
3203
        
3204
        if (flags & RAM_SAVE_FLAG_COMPRESS) {
3205
            uint8_t ch = qemu_get_byte(f);
3206
            memset(phys_ram_base + addr, ch, TARGET_PAGE_SIZE);
3207
        } else if (flags & RAM_SAVE_FLAG_PAGE)
3208
            qemu_get_buffer(f, phys_ram_base + addr, TARGET_PAGE_SIZE);
3209
    } while (!(flags & RAM_SAVE_FLAG_EOS));
3210

    
3211
    return 0;
3212
}
3213

    
3214
void qemu_service_io(void)
3215
{
3216
    CPUState *env = cpu_single_env;
3217
    if (env) {
3218
        cpu_interrupt(env, CPU_INTERRUPT_EXIT);
3219
#ifdef USE_KQEMU
3220
        if (env->kqemu_enabled) {
3221
            kqemu_cpu_interrupt(env);
3222
        }
3223
#endif
3224
    }
3225
}
3226

    
3227
/***********************************************************/
3228
/* bottom halves (can be seen as timers which expire ASAP) */
3229

    
3230
struct QEMUBH {
3231
    QEMUBHFunc *cb;
3232
    void *opaque;
3233
    int scheduled;
3234
    int idle;
3235
    int deleted;
3236
    QEMUBH *next;
3237
};
3238

    
3239
static QEMUBH *first_bh = NULL;
3240

    
3241
QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
3242
{
3243
    QEMUBH *bh;
3244
    bh = qemu_mallocz(sizeof(QEMUBH));
3245
    if (!bh)
3246
        return NULL;
3247
    bh->cb = cb;
3248
    bh->opaque = opaque;
3249
    bh->next = first_bh;
3250
    first_bh = bh;
3251
    return bh;
3252
}
3253

    
3254
int qemu_bh_poll(void)
3255
{
3256
    QEMUBH *bh, **bhp;
3257
    int ret;
3258

    
3259
    ret = 0;
3260
    for (bh = first_bh; bh; bh = bh->next) {
3261
        if (!bh->deleted && bh->scheduled) {
3262
            bh->scheduled = 0;
3263
            if (!bh->idle)
3264
                ret = 1;
3265
            bh->idle = 0;
3266
            bh->cb(bh->opaque);
3267
        }
3268
    }
3269

    
3270
    /* remove deleted bhs */
3271
    bhp = &first_bh;
3272
    while (*bhp) {
3273
        bh = *bhp;
3274
        if (bh->deleted) {
3275
            *bhp = bh->next;
3276
            qemu_free(bh);
3277
        } else
3278
            bhp = &bh->next;
3279
    }
3280

    
3281
    return ret;
3282
}
3283

    
3284
void qemu_bh_schedule_idle(QEMUBH *bh)
3285
{
3286
    if (bh->scheduled)
3287
        return;
3288
    bh->scheduled = 1;
3289
    bh->idle = 1;
3290
}
3291

    
3292
void qemu_bh_schedule(QEMUBH *bh)
3293
{
3294
    CPUState *env = cpu_single_env;
3295
    if (bh->scheduled)
3296
        return;
3297
    bh->scheduled = 1;
3298
    bh->idle = 0;
3299
    /* stop the currently executing CPU to execute the BH ASAP */
3300
    if (env) {
3301
        cpu_interrupt(env, CPU_INTERRUPT_EXIT);
3302
    }
3303
}
3304

    
3305
void qemu_bh_cancel(QEMUBH *bh)
3306
{
3307
    bh->scheduled = 0;
3308
}
3309

    
3310
void qemu_bh_delete(QEMUBH *bh)
3311
{
3312
    bh->scheduled = 0;
3313
    bh->deleted = 1;
3314
}
3315

    
3316
static void qemu_bh_update_timeout(int *timeout)
3317
{
3318
    QEMUBH *bh;
3319

    
3320
    for (bh = first_bh; bh; bh = bh->next) {
3321
        if (!bh->deleted && bh->scheduled) {
3322
            if (bh->idle) {
3323
                /* idle bottom halves will be polled at least
3324
                 * every 10ms */
3325
                *timeout = MIN(10, *timeout);
3326
            } else {
3327
                /* non-idle bottom halves will be executed
3328
                 * immediately */
3329
                *timeout = 0;
3330
                break;
3331
            }
3332
        }
3333
    }
3334
}
3335

    
3336
/***********************************************************/
3337
/* machine registration */
3338

    
3339
static QEMUMachine *first_machine = NULL;
3340

    
3341
int qemu_register_machine(QEMUMachine *m)
3342
{
3343
    QEMUMachine **pm;
3344
    pm = &first_machine;
3345
    while (*pm != NULL)
3346
        pm = &(*pm)->next;
3347
    m->next = NULL;
3348
    *pm = m;
3349
    return 0;
3350
}
3351

    
3352
static QEMUMachine *find_machine(const char *name)
3353
{
3354
    QEMUMachine *m;
3355

    
3356
    for(m = first_machine; m != NULL; m = m->next) {
3357
        if (!strcmp(m->name, name))
3358
            return m;
3359
    }
3360
    return NULL;
3361
}
3362

    
3363
/***********************************************************/
3364
/* main execution loop */
3365

    
3366
static void gui_update(void *opaque)
3367
{
3368
    DisplayState *ds = opaque;
3369
    ds->dpy_refresh(ds);
3370
    qemu_mod_timer(ds->gui_timer,
3371
        (ds->gui_timer_interval ?
3372
            ds->gui_timer_interval :
3373
            GUI_REFRESH_INTERVAL)
3374
        + qemu_get_clock(rt_clock));
3375
}
3376

    
3377
struct vm_change_state_entry {
3378
    VMChangeStateHandler *cb;
3379
    void *opaque;
3380
    LIST_ENTRY (vm_change_state_entry) entries;
3381
};
3382

    
3383
static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
3384

    
3385
VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
3386
                                                     void *opaque)
3387
{
3388
    VMChangeStateEntry *e;
3389

    
3390
    e = qemu_mallocz(sizeof (*e));
3391
    if (!e)
3392
        return NULL;
3393

    
3394
    e->cb = cb;
3395
    e->opaque = opaque;
3396
    LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
3397
    return e;
3398
}
3399

    
3400
void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
3401
{
3402
    LIST_REMOVE (e, entries);
3403
    qemu_free (e);
3404
}
3405

    
3406
static void vm_state_notify(int running)
3407
{
3408
    VMChangeStateEntry *e;
3409

    
3410
    for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
3411
        e->cb(e->opaque, running);
3412
    }
3413
}
3414

    
3415
/* XXX: support several handlers */
3416
static VMStopHandler *vm_stop_cb;
3417
static void *vm_stop_opaque;
3418

    
3419
int qemu_add_vm_stop_handler(VMStopHandler *cb, void *opaque)
3420
{
3421
    vm_stop_cb = cb;
3422
    vm_stop_opaque = opaque;
3423
    return 0;
3424
}
3425

    
3426
void qemu_del_vm_stop_handler(VMStopHandler *cb, void *opaque)
3427
{
3428
    vm_stop_cb = NULL;
3429
}
3430

    
3431
void vm_start(void)
3432
{
3433
    if (!vm_running) {
3434
        cpu_enable_ticks();
3435
        vm_running = 1;
3436
        vm_state_notify(1);
3437
        qemu_rearm_alarm_timer(alarm_timer);
3438
    }
3439
}
3440

    
3441
void vm_stop(int reason)
3442
{
3443
    if (vm_running) {
3444
        cpu_disable_ticks();
3445
        vm_running = 0;
3446
        if (reason != 0) {
3447
            if (vm_stop_cb) {
3448
                vm_stop_cb(vm_stop_opaque, reason);
3449
            }
3450
        }
3451
        vm_state_notify(0);
3452
    }
3453
}
3454

    
3455
/* reset/shutdown handler */
3456

    
3457
typedef struct QEMUResetEntry {
3458
    QEMUResetHandler *func;
3459
    void *opaque;
3460
    struct QEMUResetEntry *next;
3461
} QEMUResetEntry;
3462

    
3463
static QEMUResetEntry *first_reset_entry;
3464
static int reset_requested;
3465
static int shutdown_requested;
3466
static int powerdown_requested;
3467

    
3468
int qemu_shutdown_requested(void)
3469
{
3470
    int r = shutdown_requested;
3471
    shutdown_requested = 0;
3472
    return r;
3473
}
3474

    
3475
int qemu_reset_requested(void)
3476
{
3477
    int r = reset_requested;
3478
    reset_requested = 0;
3479
    return r;
3480
}
3481

    
3482
int qemu_powerdown_requested(void)
3483
{
3484
    int r = powerdown_requested;
3485
    powerdown_requested = 0;
3486
    return r;
3487
}
3488

    
3489
void qemu_register_reset(QEMUResetHandler *func, void *opaque)
3490
{
3491
    QEMUResetEntry **pre, *re;
3492

    
3493
    pre = &first_reset_entry;
3494
    while (*pre != NULL)
3495
        pre = &(*pre)->next;
3496
    re = qemu_mallocz(sizeof(QEMUResetEntry));
3497
    re->func = func;
3498
    re->opaque = opaque;
3499
    re->next = NULL;
3500
    *pre = re;
3501
}
3502

    
3503
void qemu_system_reset(void)
3504
{
3505
    QEMUResetEntry *re;
3506

    
3507
    /* reset all devices */
3508
    for(re = first_reset_entry; re != NULL; re = re->next) {
3509
        re->func(re->opaque);
3510
    }
3511
}
3512

    
3513
void qemu_system_reset_request(void)
3514
{
3515
    if (no_reboot) {
3516
        shutdown_requested = 1;
3517
    } else {
3518
        reset_requested = 1;
3519
    }
3520
    if (cpu_single_env)
3521
        cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3522
}
3523

    
3524
void qemu_system_shutdown_request(void)
3525
{
3526
    shutdown_requested = 1;
3527
    if (cpu_single_env)
3528
        cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3529
}
3530

    
3531
void qemu_system_powerdown_request(void)
3532
{
3533
    powerdown_requested = 1;
3534
    if (cpu_single_env)
3535
        cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3536
}
3537

    
3538
#ifdef _WIN32
3539
static void host_main_loop_wait(int *timeout)
3540
{
3541
    int ret, ret2, i;
3542
    PollingEntry *pe;
3543

    
3544

    
3545
    /* XXX: need to suppress polling by better using win32 events */
3546
    ret = 0;
3547
    for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
3548
        ret |= pe->func(pe->opaque);
3549
    }
3550
    if (ret == 0) {
3551
        int err;
3552
        WaitObjects *w = &wait_objects;
3553

    
3554
        ret = WaitForMultipleObjects(w->num, w->events, FALSE, *timeout);
3555
        if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
3556
            if (w->func[ret - WAIT_OBJECT_0])
3557
                w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
3558

    
3559
            /* Check for additional signaled events */
3560
            for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
3561

    
3562
                /* Check if event is signaled */
3563
                ret2 = WaitForSingleObject(w->events[i], 0);
3564
                if(ret2 == WAIT_OBJECT_0) {
3565
                    if (w->func[i])
3566
                        w->func[i](w->opaque[i]);
3567
                } else if (ret2 == WAIT_TIMEOUT) {
3568
                } else {
3569
                    err = GetLastError();
3570
                    fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
3571
                }
3572
            }
3573
        } else if (ret == WAIT_TIMEOUT) {
3574
        } else {
3575
            err = GetLastError();
3576
            fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
3577
        }
3578
    }
3579

    
3580
    *timeout = 0;
3581
}
3582
#else
3583
static void host_main_loop_wait(int *timeout)
3584
{
3585
}
3586
#endif
3587

    
3588
void main_loop_wait(int timeout)
3589
{
3590
    IOHandlerRecord *ioh;
3591
    fd_set rfds, wfds, xfds;
3592
    int ret, nfds;
3593
    struct timeval tv;
3594

    
3595
    qemu_bh_update_timeout(&timeout);
3596

    
3597
    host_main_loop_wait(&timeout);
3598

    
3599
    /* poll any events */
3600
    /* XXX: separate device handlers from system ones */
3601
    nfds = -1;
3602
    FD_ZERO(&rfds);
3603
    FD_ZERO(&wfds);
3604
    FD_ZERO(&xfds);
3605
    for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
3606
        if (ioh->deleted)
3607
            continue;
3608
        if (ioh->fd_read &&
3609
            (!ioh->fd_read_poll ||
3610
             ioh->fd_read_poll(ioh->opaque) != 0)) {
3611
            FD_SET(ioh->fd, &rfds);
3612
            if (ioh->fd > nfds)
3613
                nfds = ioh->fd;
3614
        }
3615
        if (ioh->fd_write) {
3616
            FD_SET(ioh->fd, &wfds);
3617
            if (ioh->fd > nfds)
3618
                nfds = ioh->fd;
3619
        }
3620
    }
3621

    
3622
    tv.tv_sec = timeout / 1000;
3623
    tv.tv_usec = (timeout % 1000) * 1000;
3624

    
3625
#if defined(CONFIG_SLIRP)
3626
    if (slirp_is_inited()) {
3627
        slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
3628
    }
3629
#endif
3630
    ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
3631
    if (ret > 0) {
3632
        IOHandlerRecord **pioh;
3633

    
3634
        for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
3635
            if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
3636
                ioh->fd_read(ioh->opaque);
3637
            }
3638
            if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
3639
                ioh->fd_write(ioh->opaque);
3640
            }
3641
        }
3642

    
3643
        /* remove deleted IO handlers */
3644
        pioh = &first_io_handler;
3645
        while (*pioh) {
3646
            ioh = *pioh;
3647
            if (ioh->deleted) {
3648
                *pioh = ioh->next;
3649
                qemu_free(ioh);
3650
            } else
3651
                pioh = &ioh->next;
3652
        }
3653
    }
3654
#if defined(CONFIG_SLIRP)
3655
    if (slirp_is_inited()) {
3656
        if (ret < 0) {
3657
            FD_ZERO(&rfds);
3658
            FD_ZERO(&wfds);
3659
            FD_ZERO(&xfds);
3660
        }
3661
        slirp_select_poll(&rfds, &wfds, &xfds);
3662
    }
3663
#endif
3664

    
3665
    /* vm time timers */
3666
    if (vm_running && likely(!(cur_cpu->singlestep_enabled & SSTEP_NOTIMER)))
3667
        qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL],
3668
                        qemu_get_clock(vm_clock));
3669

    
3670
    /* real time timers */
3671
    qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME],
3672
                    qemu_get_clock(rt_clock));
3673

    
3674
    /* Check bottom-halves last in case any of the earlier events triggered
3675
       them.  */
3676
    qemu_bh_poll();
3677

    
3678
}
3679

    
3680
static int main_loop(void)
3681
{
3682
    int ret, timeout;
3683
#ifdef CONFIG_PROFILER
3684
    int64_t ti;
3685
#endif
3686
    CPUState *env;
3687

    
3688
    cur_cpu = first_cpu;
3689
    next_cpu = cur_cpu->next_cpu ?: first_cpu;
3690
    for(;;) {
3691
        if (vm_running) {
3692

    
3693
            for(;;) {
3694
                /* get next cpu */
3695
                env = next_cpu;
3696
#ifdef CONFIG_PROFILER
3697
                ti = profile_getclock();
3698
#endif
3699
                if (use_icount) {
3700
                    int64_t count;
3701
                    int decr;
3702
                    qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
3703
                    env->icount_decr.u16.low = 0;
3704
                    env->icount_extra = 0;
3705
                    count = qemu_next_deadline();
3706
                    count = (count + (1 << icount_time_shift) - 1)
3707
                            >> icount_time_shift;
3708
                    qemu_icount += count;
3709
                    decr = (count > 0xffff) ? 0xffff : count;
3710
                    count -= decr;
3711
                    env->icount_decr.u16.low = decr;
3712
                    env->icount_extra = count;
3713
                }
3714
                ret = cpu_exec(env);
3715
#ifdef CONFIG_PROFILER
3716
                qemu_time += profile_getclock() - ti;
3717
#endif
3718
                if (use_icount) {
3719
                    /* Fold pending instructions back into the
3720
                       instruction counter, and clear the interrupt flag.  */
3721
                    qemu_icount -= (env->icount_decr.u16.low
3722
                                    + env->icount_extra);
3723
                    env->icount_decr.u32 = 0;
3724
                    env->icount_extra = 0;
3725
                }
3726
                next_cpu = env->next_cpu ?: first_cpu;
3727
                if (event_pending && likely(ret != EXCP_DEBUG)) {
3728
                    ret = EXCP_INTERRUPT;
3729
                    event_pending = 0;
3730
                    break;
3731
                }
3732
                if (ret == EXCP_HLT) {
3733
                    /* Give the next CPU a chance to run.  */
3734
                    cur_cpu = env;
3735
                    continue;
3736
                }
3737
                if (ret != EXCP_HALTED)
3738
                    break;
3739
                /* all CPUs are halted ? */
3740
                if (env == cur_cpu)
3741
                    break;
3742
            }
3743
            cur_cpu = env;
3744

    
3745
            if (shutdown_requested) {
3746
                ret = EXCP_INTERRUPT;
3747
                if (no_shutdown) {
3748
                    vm_stop(0);
3749
                    no_shutdown = 0;
3750
                }
3751
                else
3752
                    break;
3753
            }
3754
            if (reset_requested) {
3755
                reset_requested = 0;
3756
                qemu_system_reset();
3757
                ret = EXCP_INTERRUPT;
3758
            }
3759
            if (powerdown_requested) {
3760
                powerdown_requested = 0;
3761
                qemu_system_powerdown();
3762
                ret = EXCP_INTERRUPT;
3763
            }
3764
            if (unlikely(ret == EXCP_DEBUG)) {
3765
                gdb_set_stop_cpu(cur_cpu);
3766
                vm_stop(EXCP_DEBUG);
3767
            }
3768
            /* If all cpus are halted then wait until the next IRQ */
3769
            /* XXX: use timeout computed from timers */
3770
            if (ret == EXCP_HALTED) {
3771
                if (use_icount) {
3772
                    int64_t add;
3773
                    int64_t delta;
3774
                    /* Advance virtual time to the next event.  */
3775
                    if (use_icount == 1) {
3776
                        /* When not using an adaptive execution frequency
3777
                           we tend to get badly out of sync with real time,
3778
                           so just delay for a reasonable amount of time.  */
3779
                        delta = 0;
3780
                    } else {
3781
                        delta = cpu_get_icount() - cpu_get_clock();
3782
                    }
3783
                    if (delta > 0) {
3784
                        /* If virtual time is ahead of real time then just
3785
                           wait for IO.  */
3786
                        timeout = (delta / 1000000) + 1;
3787
                    } else {
3788
                        /* Wait for either IO to occur or the next
3789
                           timer event.  */
3790
                        add = qemu_next_deadline();
3791
                        /* We advance the timer before checking for IO.
3792
                           Limit the amount we advance so that early IO
3793
                           activity won't get the guest too far ahead.  */
3794
                        if (add > 10000000)
3795
                            add = 10000000;
3796
                        delta += add;
3797
                        add = (add + (1 << icount_time_shift) - 1)
3798
                              >> icount_time_shift;
3799
                        qemu_icount += add;
3800
                        timeout = delta / 1000000;
3801
                        if (timeout < 0)
3802
                            timeout = 0;
3803
                    }
3804
                } else {
3805
                    timeout = 5000;
3806
                }
3807
            } else {
3808
                timeout = 0;
3809
            }
3810
        } else {
3811
            if (shutdown_requested) {
3812
                ret = EXCP_INTERRUPT;
3813
                break;
3814
            }
3815
            timeout = 5000;
3816
        }
3817
#ifdef CONFIG_PROFILER
3818
        ti = profile_getclock();
3819
#endif
3820
        main_loop_wait(timeout);
3821
#ifdef CONFIG_PROFILER
3822
        dev_time += profile_getclock() - ti;
3823
#endif
3824
    }
3825
    cpu_disable_ticks();
3826
    return ret;
3827
}
3828

    
3829
static void help(int exitcode)
3830
{
3831
    printf("QEMU PC emulator version " QEMU_VERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n"
3832
           "usage: %s [options] [disk_image]\n"
3833
           "\n"
3834
           "'disk_image' is a raw hard image image for IDE hard disk 0\n"
3835
           "\n"
3836
           "Standard options:\n"
3837
           "-M machine      select emulated machine (-M ? for list)\n"
3838
           "-cpu cpu        select CPU (-cpu ? for list)\n"
3839
           "-fda/-fdb file  use 'file' as floppy disk 0/1 image\n"
3840
           "-hda/-hdb file  use 'file' as IDE hard disk 0/1 image\n"
3841
           "-hdc/-hdd file  use 'file' as IDE hard disk 2/3 image\n"
3842
           "-cdrom file     use 'file' as IDE cdrom image (cdrom is ide1 master)\n"
3843
           "-drive [file=file][,if=type][,bus=n][,unit=m][,media=d][,index=i]\n"
3844
           "       [,cyls=c,heads=h,secs=s[,trans=t]][,snapshot=on|off]\n"
3845
           "       [,cache=writethrough|writeback|none][,format=f][,serial=s]\n"
3846
           "                use 'file' as a drive image\n"
3847
           "-mtdblock file  use 'file' as on-board Flash memory image\n"
3848
           "-sd file        use 'file' as SecureDigital card image\n"
3849
           "-pflash file    use 'file' as a parallel flash image\n"
3850
           "-boot [a|c|d|n] boot on floppy (a), hard disk (c), CD-ROM (d), or network (n)\n"
3851
           "-snapshot       write to temporary files instead of disk image files\n"
3852
#ifdef CONFIG_SDL
3853
           "-no-frame       open SDL window without a frame and window decorations\n"
3854
           "-alt-grab       use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt)\n"
3855
           "-no-quit        disable SDL window close capability\n"
3856
#endif
3857
#ifdef TARGET_I386
3858
           "-no-fd-bootchk  disable boot signature checking for floppy disks\n"
3859
#endif
3860
           "-m megs         set virtual RAM size to megs MB [default=%d]\n"
3861
           "-smp n          set the number of CPUs to 'n' [default=1]\n"
3862
           "-nographic      disable graphical output and redirect serial I/Os to console\n"
3863
           "-portrait       rotate graphical output 90 deg left (only PXA LCD)\n"
3864
#ifndef _WIN32
3865
           "-k language     use keyboard layout (for example \"fr\" for French)\n"
3866
#endif
3867
#ifdef HAS_AUDIO
3868
           "-audio-help     print list of audio drivers and their options\n"
3869
           "-soundhw c1,... enable audio support\n"
3870
           "                and only specified sound cards (comma separated list)\n"
3871
           "                use -soundhw ? to get the list of supported cards\n"
3872
           "                use -soundhw all to enable all of them\n"
3873
#endif
3874
           "-vga [std|cirrus|vmware]\n"
3875
           "                select video card type\n"
3876
           "-localtime      set the real time clock to local time [default=utc]\n"
3877
           "-full-screen    start in full screen\n"
3878
#ifdef TARGET_I386
3879
           "-win2k-hack     use it when installing Windows 2000 to avoid a disk full bug\n"
3880
#endif
3881
           "-usb            enable the USB driver (will be the default soon)\n"
3882
           "-usbdevice name add the host or guest USB device 'name'\n"
3883
#if defined(TARGET_PPC) || defined(TARGET_SPARC)
3884
           "-g WxH[xDEPTH]  Set the initial graphical resolution and depth\n"
3885
#endif
3886
           "-name string    set the name of the guest\n"
3887
           "-uuid %%08x-%%04x-%%04x-%%04x-%%012x specify machine UUID\n"
3888
           "\n"
3889
           "Network options:\n"
3890
           "-net nic[,vlan=n][,macaddr=addr][,model=type][,name=str]\n"
3891
           "                create a new Network Interface Card and connect it to VLAN 'n'\n"
3892
#ifdef CONFIG_SLIRP
3893
           "-net user[,vlan=n][,name=str][,hostname=host]\n"
3894
           "                connect the user mode network stack to VLAN 'n' and send\n"
3895
           "                hostname 'host' to DHCP clients\n"
3896
#endif
3897
#ifdef _WIN32
3898
           "-net tap[,vlan=n][,name=str],ifname=name\n"
3899
           "                connect the host TAP network interface to VLAN 'n'\n"
3900
#else
3901
           "-net tap[,vlan=n][,name=str][,fd=h][,ifname=name][,script=file][,downscript=dfile]\n"
3902
           "                connect the host TAP network interface to VLAN 'n' and use the\n"
3903
           "                network scripts 'file' (default=%s)\n"
3904
           "                and 'dfile' (default=%s);\n"
3905
           "                use '[down]script=no' to disable script execution;\n"
3906
           "                use 'fd=h' to connect to an already opened TAP interface\n"
3907
#endif
3908
           "-net socket[,vlan=n][,name=str][,fd=h][,listen=[host]:port][,connect=host:port]\n"
3909
           "                connect the vlan 'n' to another VLAN using a socket connection\n"
3910
           "-net socket[,vlan=n][,name=str][,fd=h][,mcast=maddr:port]\n"
3911
           "                connect the vlan 'n' to multicast maddr and port\n"
3912
#ifdef CONFIG_VDE
3913
           "-net vde[,vlan=n][,name=str][,sock=socketpath][,port=n][,group=groupname][,mode=octalmode]\n"
3914
           "                connect the vlan 'n' to port 'n' of a vde switch running\n"
3915
           "                on host and listening for incoming connections on 'socketpath'.\n"
3916
           "                Use group 'groupname' and mode 'octalmode' to change default\n"
3917
           "                ownership and permissions for communication port.\n"
3918
#endif
3919
           "-net none       use it alone to have zero network devices; if no -net option\n"
3920
           "                is provided, the default is '-net nic -net user'\n"
3921
           "\n"
3922
           "-bt hci,null    Dumb bluetooth HCI - doesn't respond to commands\n"
3923
           "-bt hci,host[:id]\n"
3924
           "                Use host's HCI with the given name\n"
3925
           "-bt hci[,vlan=n]\n"
3926
           "                Emulate a standard HCI in virtual scatternet 'n'\n"
3927
           "-bt vhci[,vlan=n]\n"
3928
           "                Add host computer to virtual scatternet 'n' using VHCI\n"
3929
           "-bt device:dev[,vlan=n]\n"
3930
           "                Emulate a bluetooth device 'dev' in scatternet 'n'\n"
3931
           "\n"
3932
#ifdef CONFIG_SLIRP
3933
           "-tftp dir       allow tftp access to files in dir [-net user]\n"
3934
           "-bootp file     advertise file in BOOTP replies\n"
3935
#ifndef _WIN32
3936
           "-smb dir        allow SMB access to files in 'dir' [-net user]\n"
3937
#endif
3938
           "-redir [tcp|udp]:host-port:[guest-host]:guest-port\n"
3939
           "                redirect TCP or UDP connections from host to guest [-net user]\n"
3940
#endif
3941
           "\n"
3942
           "Linux boot specific:\n"
3943
           "-kernel bzImage use 'bzImage' as kernel image\n"
3944
           "-append cmdline use 'cmdline' as kernel command line\n"
3945
           "-initrd file    use 'file' as initial ram disk\n"
3946
           "\n"
3947
           "Debug/Expert options:\n"
3948
           "-monitor dev    redirect the monitor to char device 'dev'\n"
3949
           "-serial dev     redirect the serial port to char device 'dev'\n"
3950
           "-parallel dev   redirect the parallel port to char device 'dev'\n"
3951
           "-pidfile file   Write PID to 'file'\n"
3952
           "-S              freeze CPU at startup (use 'c' to start execution)\n"
3953
           "-s              wait gdb connection to port\n"
3954
           "-p port         set gdb connection port [default=%s]\n"
3955
           "-d item1,...    output log to %s (use -d ? for a list of log items)\n"
3956
           "-hdachs c,h,s[,t]  force hard disk 0 physical geometry and the optional BIOS\n"
3957
           "                translation (t=none or lba) (usually qemu can guess them)\n"
3958
           "-L path         set the directory for the BIOS, VGA BIOS and keymaps\n"
3959
#ifdef USE_KQEMU
3960
           "-kernel-kqemu   enable KQEMU full virtualization (default is user mode only)\n"
3961
           "-no-kqemu       disable KQEMU kernel module usage\n"
3962
#endif
3963
#ifdef CONFIG_KVM
3964
           "-enable-kvm     enable KVM full virtualization support\n"
3965
#endif
3966
#ifdef TARGET_I386
3967
           "-no-acpi        disable ACPI\n"
3968
           "-no-hpet        disable HPET\n"
3969
#endif
3970
#ifdef CONFIG_CURSES
3971
           "-curses         use a curses/ncurses interface instead of SDL\n"
3972
#endif
3973
           "-no-reboot      exit instead of rebooting\n"
3974
           "-no-shutdown    stop before shutdown\n"
3975
           "-loadvm [tag|id]  start right away with a saved state (loadvm in monitor)\n"
3976
           "-vnc display    start a VNC server on display\n"
3977
#ifndef _WIN32
3978
           "-daemonize      daemonize QEMU after initializing\n"
3979
#endif
3980
           "-option-rom rom load a file, rom, into the option ROM space\n"
3981
#ifdef TARGET_SPARC
3982
           "-prom-env variable=value  set OpenBIOS nvram variables\n"
3983
#endif
3984
           "-clock          force the use of the given methods for timer alarm.\n"
3985
           "                To see what timers are available use -clock ?\n"
3986
           "-startdate      select initial date of the clock\n"
3987
           "-icount [N|auto]\n"
3988
           "                Enable virtual instruction counter with 2^N clock ticks per instruction\n"
3989
           "\n"
3990
           "During emulation, the following keys are useful:\n"
3991
           "ctrl-alt-f      toggle full screen\n"
3992
           "ctrl-alt-n      switch to virtual console 'n'\n"
3993
           "ctrl-alt        toggle mouse and keyboard grab\n"
3994
           "\n"
3995
           "When using -nographic, press 'ctrl-a h' to get some help.\n"
3996
           ,
3997
           "qemu",
3998
           DEFAULT_RAM_SIZE,
3999
#ifndef _WIN32
4000
           DEFAULT_NETWORK_SCRIPT,
4001
           DEFAULT_NETWORK_DOWN_SCRIPT,
4002
#endif
4003
           DEFAULT_GDBSTUB_PORT,
4004
           "/tmp/qemu.log");
4005
    exit(exitcode);
4006
}
4007

    
4008
#define HAS_ARG 0x0001
4009

    
4010
enum {
4011
    QEMU_OPTION_h,
4012

    
4013
    QEMU_OPTION_M,
4014
    QEMU_OPTION_cpu,
4015
    QEMU_OPTION_fda,
4016
    QEMU_OPTION_fdb,
4017
    QEMU_OPTION_hda,
4018
    QEMU_OPTION_hdb,
4019
    QEMU_OPTION_hdc,
4020
    QEMU_OPTION_hdd,
4021
    QEMU_OPTION_drive,
4022
    QEMU_OPTION_cdrom,
4023
    QEMU_OPTION_mtdblock,
4024
    QEMU_OPTION_sd,
4025
    QEMU_OPTION_pflash,
4026
    QEMU_OPTION_boot,
4027
    QEMU_OPTION_snapshot,
4028
#ifdef TARGET_I386
4029
    QEMU_OPTION_no_fd_bootchk,
4030
#endif
4031
    QEMU_OPTION_m,
4032
    QEMU_OPTION_nographic,
4033
    QEMU_OPTION_portrait,
4034
#ifdef HAS_AUDIO
4035
    QEMU_OPTION_audio_help,
4036
    QEMU_OPTION_soundhw,
4037
#endif
4038

    
4039
    QEMU_OPTION_net,
4040
    QEMU_OPTION_tftp,
4041
    QEMU_OPTION_bootp,
4042
    QEMU_OPTION_smb,
4043
    QEMU_OPTION_redir,
4044
    QEMU_OPTION_bt,
4045

    
4046
    QEMU_OPTION_kernel,
4047
    QEMU_OPTION_append,
4048
    QEMU_OPTION_initrd,
4049

    
4050
    QEMU_OPTION_S,
4051
    QEMU_OPTION_s,
4052
    QEMU_OPTION_p,
4053
    QEMU_OPTION_d,
4054
    QEMU_OPTION_hdachs,
4055
    QEMU_OPTION_L,
4056
    QEMU_OPTION_bios,
4057
    QEMU_OPTION_k,
4058
    QEMU_OPTION_localtime,
4059
    QEMU_OPTION_g,
4060
    QEMU_OPTION_vga,
4061
    QEMU_OPTION_echr,
4062
    QEMU_OPTION_monitor,
4063
    QEMU_OPTION_serial,
4064
    QEMU_OPTION_parallel,
4065
    QEMU_OPTION_loadvm,
4066
    QEMU_OPTION_full_screen,
4067
    QEMU_OPTION_no_frame,
4068
    QEMU_OPTION_alt_grab,
4069
    QEMU_OPTION_no_quit,
4070
    QEMU_OPTION_pidfile,
4071
    QEMU_OPTION_no_kqemu,
4072
    QEMU_OPTION_kernel_kqemu,
4073
    QEMU_OPTION_enable_kvm,
4074
    QEMU_OPTION_win2k_hack,
4075
    QEMU_OPTION_usb,
4076
    QEMU_OPTION_usbdevice,
4077
    QEMU_OPTION_smp,
4078
    QEMU_OPTION_vnc,
4079
    QEMU_OPTION_no_acpi,
4080
    QEMU_OPTION_no_hpet,
4081
    QEMU_OPTION_curses,
4082
    QEMU_OPTION_no_reboot,
4083
    QEMU_OPTION_no_shutdown,
4084
    QEMU_OPTION_show_cursor,
4085
    QEMU_OPTION_daemonize,
4086
    QEMU_OPTION_option_rom,
4087
    QEMU_OPTION_semihosting,
4088
    QEMU_OPTION_name,
4089
    QEMU_OPTION_prom_env,
4090
    QEMU_OPTION_old_param,
4091
    QEMU_OPTION_clock,
4092
    QEMU_OPTION_startdate,
4093
    QEMU_OPTION_tb_size,
4094
    QEMU_OPTION_icount,
4095
    QEMU_OPTION_uuid,
4096
    QEMU_OPTION_incoming,
4097
};
4098

    
4099
typedef struct QEMUOption {
4100
    const char *name;
4101
    int flags;
4102
    int index;
4103
} QEMUOption;
4104

    
4105
static const QEMUOption qemu_options[] = {
4106
    { "h", 0, QEMU_OPTION_h },
4107
    { "help", 0, QEMU_OPTION_h },
4108

    
4109
    { "M", HAS_ARG, QEMU_OPTION_M },
4110
    { "cpu", HAS_ARG, QEMU_OPTION_cpu },
4111
    { "fda", HAS_ARG, QEMU_OPTION_fda },
4112
    { "fdb", HAS_ARG, QEMU_OPTION_fdb },
4113
    { "hda", HAS_ARG, QEMU_OPTION_hda },
4114
    { "hdb", HAS_ARG, QEMU_OPTION_hdb },
4115
    { "hdc", HAS_ARG, QEMU_OPTION_hdc },
4116
    { "hdd", HAS_ARG, QEMU_OPTION_hdd },
4117
    { "drive", HAS_ARG, QEMU_OPTION_drive },
4118
    { "cdrom", HAS_ARG, QEMU_OPTION_cdrom },
4119
    { "mtdblock", HAS_ARG, QEMU_OPTION_mtdblock },
4120
    { "sd", HAS_ARG, QEMU_OPTION_sd },
4121
    { "pflash", HAS_ARG, QEMU_OPTION_pflash },
4122
    { "boot", HAS_ARG, QEMU_OPTION_boot },
4123
    { "snapshot", 0, QEMU_OPTION_snapshot },
4124
#ifdef TARGET_I386
4125
    { "no-fd-bootchk", 0, QEMU_OPTION_no_fd_bootchk },
4126
#endif
4127
    { "m", HAS_ARG, QEMU_OPTION_m },
4128
    { "nographic", 0, QEMU_OPTION_nographic },
4129
    { "portrait", 0, QEMU_OPTION_portrait },
4130
    { "k", HAS_ARG, QEMU_OPTION_k },
4131
#ifdef HAS_AUDIO
4132
    { "audio-help", 0, QEMU_OPTION_audio_help },
4133
    { "soundhw", HAS_ARG, QEMU_OPTION_soundhw },
4134
#endif
4135

    
4136
    { "net", HAS_ARG, QEMU_OPTION_net},
4137
#ifdef CONFIG_SLIRP
4138
    { "tftp", HAS_ARG, QEMU_OPTION_tftp },
4139
    { "bootp", HAS_ARG, QEMU_OPTION_bootp },
4140
#ifndef _WIN32
4141
    { "smb", HAS_ARG, QEMU_OPTION_smb },
4142
#endif
4143
    { "redir", HAS_ARG, QEMU_OPTION_redir },
4144
#endif
4145
    { "bt", HAS_ARG, QEMU_OPTION_bt },
4146

    
4147
    { "kernel", HAS_ARG, QEMU_OPTION_kernel },
4148
    { "append", HAS_ARG, QEMU_OPTION_append },
4149
    { "initrd", HAS_ARG, QEMU_OPTION_initrd },
4150

    
4151
    { "S", 0, QEMU_OPTION_S },
4152
    { "s", 0, QEMU_OPTION_s },
4153
    { "p", HAS_ARG, QEMU_OPTION_p },
4154
    { "d", HAS_ARG, QEMU_OPTION_d },
4155
    { "hdachs", HAS_ARG, QEMU_OPTION_hdachs },
4156
    { "L", HAS_ARG, QEMU_OPTION_L },
4157
    { "bios", HAS_ARG, QEMU_OPTION_bios },
4158
#ifdef USE_KQEMU
4159
    { "no-kqemu", 0, QEMU_OPTION_no_kqemu },
4160
    { "kernel-kqemu", 0, QEMU_OPTION_kernel_kqemu },
4161
#endif
4162
#ifdef CONFIG_KVM
4163
    { "enable-kvm", 0, QEMU_OPTION_enable_kvm },
4164
#endif
4165
#if defined(TARGET_PPC) || defined(TARGET_SPARC)
4166
    { "g", 1, QEMU_OPTION_g },
4167
#endif
4168
    { "localtime", 0, QEMU_OPTION_localtime },
4169
    { "vga", HAS_ARG, QEMU_OPTION_vga },
4170
    { "echr", HAS_ARG, QEMU_OPTION_echr },
4171
    { "monitor", HAS_ARG, QEMU_OPTION_monitor },
4172
    { "serial", HAS_ARG, QEMU_OPTION_serial },
4173
    { "parallel", HAS_ARG, QEMU_OPTION_parallel },
4174
    { "loadvm", HAS_ARG, QEMU_OPTION_loadvm },
4175
    { "full-screen", 0, QEMU_OPTION_full_screen },
4176
#ifdef CONFIG_SDL
4177
    { "no-frame", 0, QEMU_OPTION_no_frame },
4178
    { "alt-grab", 0, QEMU_OPTION_alt_grab },
4179
    { "no-quit", 0, QEMU_OPTION_no_quit },
4180
#endif
4181
    { "pidfile", HAS_ARG, QEMU_OPTION_pidfile },
4182
    { "win2k-hack", 0, QEMU_OPTION_win2k_hack },
4183
    { "usbdevice", HAS_ARG, QEMU_OPTION_usbdevice },
4184
    { "smp", HAS_ARG, QEMU_OPTION_smp },
4185
    { "vnc", HAS_ARG, QEMU_OPTION_vnc },
4186
#ifdef CONFIG_CURSES
4187
    { "curses", 0, QEMU_OPTION_curses },
4188
#endif
4189
    { "uuid", HAS_ARG, QEMU_OPTION_uuid },
4190

    
4191
    /* temporary options */
4192
    { "usb", 0, QEMU_OPTION_usb },
4193
    { "no-acpi", 0, QEMU_OPTION_no_acpi },
4194
    { "no-hpet", 0, QEMU_OPTION_no_hpet },
4195
    { "no-reboot", 0, QEMU_OPTION_no_reboot },
4196
    { "no-shutdown", 0, QEMU_OPTION_no_shutdown },
4197
    { "show-cursor", 0, QEMU_OPTION_show_cursor },
4198
    { "daemonize", 0, QEMU_OPTION_daemonize },
4199
    { "option-rom", HAS_ARG, QEMU_OPTION_option_rom },
4200
#if defined(TARGET_ARM) || defined(TARGET_M68K)
4201
    { "semihosting", 0, QEMU_OPTION_semihosting },
4202
#endif
4203
    { "name", HAS_ARG, QEMU_OPTION_name },
4204
#if defined(TARGET_SPARC) || defined(TARGET_PPC)
4205
    { "prom-env", HAS_ARG, QEMU_OPTION_prom_env },
4206
#endif
4207
#if defined(TARGET_ARM)
4208
    { "old-param", 0, QEMU_OPTION_old_param },
4209
#endif
4210
    { "clock", HAS_ARG, QEMU_OPTION_clock },
4211
    { "startdate", HAS_ARG, QEMU_OPTION_startdate },
4212
    { "tb-size", HAS_ARG, QEMU_OPTION_tb_size },
4213
    { "icount", HAS_ARG, QEMU_OPTION_icount },
4214
    { "incoming", HAS_ARG, QEMU_OPTION_incoming },
4215
    { NULL },
4216
};
4217

    
4218
/* password input */
4219

    
4220
int qemu_key_check(BlockDriverState *bs, const char *name)
4221
{
4222
    char password[256];
4223
    int i;
4224

    
4225
    if (!bdrv_is_encrypted(bs))
4226
        return 0;
4227

    
4228
    term_printf("%s is encrypted.\n", name);
4229
    for(i = 0; i < 3; i++) {
4230
        monitor_readline("Password: ", 1, password, sizeof(password));
4231
        if (bdrv_set_key(bs, password) == 0)
4232
            return 0;
4233
        term_printf("invalid password\n");
4234
    }
4235
    return -EPERM;
4236
}
4237

    
4238
static BlockDriverState *get_bdrv(int index)
4239
{
4240
    if (index > nb_drives)
4241
        return NULL;
4242
    return drives_table[index].bdrv;
4243
}
4244

    
4245
static void read_passwords(void)
4246
{
4247
    BlockDriverState *bs;
4248
    int i;
4249

    
4250
    for(i = 0; i < 6; i++) {
4251
        bs = get_bdrv(i);
4252
        if (bs)
4253
            qemu_key_check(bs, bdrv_get_device_name(bs));
4254
    }
4255
}
4256

    
4257
#ifdef HAS_AUDIO
4258
struct soundhw soundhw[] = {
4259
#ifdef HAS_AUDIO_CHOICE
4260
#if defined(TARGET_I386) || defined(TARGET_MIPS)
4261
    {
4262
        "pcspk",
4263
        "PC speaker",
4264
        0,
4265
        1,
4266
        { .init_isa = pcspk_audio_init }
4267
    },
4268
#endif
4269
    {
4270
        "sb16",
4271
        "Creative Sound Blaster 16",
4272
        0,
4273
        1,
4274
        { .init_isa = SB16_init }
4275
    },
4276

    
4277
#ifdef CONFIG_CS4231A
4278
    {
4279
        "cs4231a",
4280
        "CS4231A",
4281
        0,
4282
        1,
4283
        { .init_isa = cs4231a_init }
4284
    },
4285
#endif
4286

    
4287
#ifdef CONFIG_ADLIB
4288
    {
4289
        "adlib",
4290
#ifdef HAS_YMF262
4291
        "Yamaha YMF262 (OPL3)",
4292
#else
4293
        "Yamaha YM3812 (OPL2)",
4294
#endif
4295
        0,
4296
        1,
4297
        { .init_isa = Adlib_init }
4298
    },
4299
#endif
4300

    
4301
#ifdef CONFIG_GUS
4302
    {
4303
        "gus",
4304
        "Gravis Ultrasound GF1",
4305
        0,
4306
        1,
4307
        { .init_isa = GUS_init }
4308
    },
4309
#endif
4310

    
4311
#ifdef CONFIG_AC97
4312
    {
4313
        "ac97",
4314
        "Intel 82801AA AC97 Audio",
4315
        0,
4316
        0,
4317
        { .init_pci = ac97_init }
4318
    },
4319
#endif
4320

    
4321
    {
4322
        "es1370",
4323
        "ENSONIQ AudioPCI ES1370",
4324
        0,
4325
        0,
4326
        { .init_pci = es1370_init }
4327
    },
4328
#endif
4329

    
4330
    { NULL, NULL, 0, 0, { NULL } }
4331
};
4332

    
4333
static void select_soundhw (const char *optarg)
4334
{
4335
    struct soundhw *c;
4336

    
4337
    if (*optarg == '?') {
4338
    show_valid_cards:
4339

    
4340
        printf ("Valid sound card names (comma separated):\n");
4341
        for (c = soundhw; c->name; ++c) {
4342
            printf ("%-11s %s\n", c->name, c->descr);
4343
        }
4344
        printf ("\n-soundhw all will enable all of the above\n");
4345
        exit (*optarg != '?');
4346
    }
4347
    else {
4348
        size_t l;
4349
        const char *p;
4350
        char *e;
4351
        int bad_card = 0;
4352

    
4353
        if (!strcmp (optarg, "all")) {
4354
            for (c = soundhw; c->name; ++c) {
4355
                c->enabled = 1;
4356
            }
4357
            return;
4358
        }
4359

    
4360
        p = optarg;
4361
        while (*p) {
4362
            e = strchr (p, ',');
4363
            l = !e ? strlen (p) : (size_t) (e - p);
4364

    
4365
            for (c = soundhw; c->name; ++c) {
4366
                if (!strncmp (c->name, p, l)) {
4367
                    c->enabled = 1;
4368
                    break;
4369
                }
4370
            }
4371

    
4372
            if (!c->name) {
4373
                if (l > 80) {
4374
                    fprintf (stderr,
4375
                             "Unknown sound card name (too big to show)\n");
4376
                }
4377
                else {
4378
                    fprintf (stderr, "Unknown sound card name `%.*s'\n",
4379
                             (int) l, p);
4380
                }
4381
                bad_card = 1;
4382
            }
4383
            p += l + (e != NULL);
4384
        }
4385

    
4386
        if (bad_card)
4387
            goto show_valid_cards;
4388
    }
4389
}
4390
#endif
4391

    
4392
static void select_vgahw (const char *p)
4393
{
4394
    const char *opts;
4395

    
4396
    if (strstart(p, "std", &opts)) {
4397
        cirrus_vga_enabled = 0;
4398
        vmsvga_enabled = 0;
4399
    } else if (strstart(p, "cirrus", &opts)) {
4400
        cirrus_vga_enabled = 1;
4401
        vmsvga_enabled = 0;
4402
    } else if (strstart(p, "vmware", &opts)) {
4403
        cirrus_vga_enabled = 0;
4404
        vmsvga_enabled = 1;
4405
    } else {
4406
    invalid_vga:
4407
        fprintf(stderr, "Unknown vga type: %s\n", p);
4408
        exit(1);
4409
    }
4410
    while (*opts) {
4411
        const char *nextopt;
4412

    
4413
        if (strstart(opts, ",retrace=", &nextopt)) {
4414
            opts = nextopt;
4415
            if (strstart(opts, "dumb", &nextopt))
4416
                vga_retrace_method = VGA_RETRACE_DUMB;
4417
            else if (strstart(opts, "precise", &nextopt))
4418
                vga_retrace_method = VGA_RETRACE_PRECISE;
4419
            else goto invalid_vga;
4420
        } else goto invalid_vga;
4421
        opts = nextopt;
4422
    }
4423
}
4424

    
4425
#ifdef _WIN32
4426
static BOOL WINAPI qemu_ctrl_handler(DWORD type)
4427
{
4428
    exit(STATUS_CONTROL_C_EXIT);
4429
    return TRUE;
4430
}
4431
#endif
4432

    
4433
static int qemu_uuid_parse(const char *str, uint8_t *uuid)
4434
{
4435
    int ret;
4436

    
4437
    if(strlen(str) != 36)
4438
        return -1;
4439

    
4440
    ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
4441
            &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
4442
            &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14], &uuid[15]);
4443

    
4444
    if(ret != 16)
4445
        return -1;
4446

    
4447
    return 0;
4448
}
4449

    
4450
#define MAX_NET_CLIENTS 32
4451

    
4452
#ifndef _WIN32
4453

    
4454
static void termsig_handler(int signal)
4455
{
4456
    qemu_system_shutdown_request();
4457
}
4458

    
4459
static void termsig_setup(void)
4460
{
4461
    struct sigaction act;
4462

    
4463
    memset(&act, 0, sizeof(act));
4464
    act.sa_handler = termsig_handler;
4465
    sigaction(SIGINT,  &act, NULL);
4466
    sigaction(SIGHUP,  &act, NULL);
4467
    sigaction(SIGTERM, &act, NULL);
4468
}
4469

    
4470
#endif
4471

    
4472
int main(int argc, char **argv, char **envp)
4473
{
4474
#ifdef CONFIG_GDBSTUB
4475
    int use_gdbstub;
4476
    const char *gdbstub_port;
4477
#endif
4478
    uint32_t boot_devices_bitmap = 0;
4479
    int i;
4480
    int snapshot, linux_boot, net_boot;
4481
    const char *initrd_filename;
4482
    const char *kernel_filename, *kernel_cmdline;
4483
    const char *boot_devices = "";
4484
    DisplayState *ds = &display_state;
4485
    int cyls, heads, secs, translation;
4486
    const char *net_clients[MAX_NET_CLIENTS];
4487
    int nb_net_clients;
4488
    const char *bt_opts[MAX_BT_CMDLINE];
4489
    int nb_bt_opts;
4490
    int hda_index;
4491
    int optind;
4492
    const char *r, *optarg;
4493
    CharDriverState *monitor_hd;
4494
    const char *monitor_device;
4495
    const char *serial_devices[MAX_SERIAL_PORTS];
4496
    int serial_device_index;
4497
    const char *parallel_devices[MAX_PARALLEL_PORTS];
4498
    int parallel_device_index;
4499
    const char *loadvm = NULL;
4500
    QEMUMachine *machine;
4501
    const char *cpu_model;
4502
    const char *usb_devices[MAX_USB_CMDLINE];
4503
    int usb_devices_index;
4504
    int fds[2];
4505
    int tb_size;
4506
    const char *pid_file = NULL;
4507
    int autostart;
4508
    const char *incoming = NULL;
4509

    
4510
    qemu_cache_utils_init(envp);
4511

    
4512
    LIST_INIT (&vm_change_state_head);
4513
#ifndef _WIN32
4514
    {
4515
        struct sigaction act;
4516
        sigfillset(&act.sa_mask);
4517
        act.sa_flags = 0;
4518
        act.sa_handler = SIG_IGN;
4519
        sigaction(SIGPIPE, &act, NULL);
4520
    }
4521
#else
4522
    SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
4523
    /* Note: cpu_interrupt() is currently not SMP safe, so we force
4524
       QEMU to run on a single CPU */
4525
    {
4526
        HANDLE h;
4527
        DWORD mask, smask;
4528
        int i;
4529
        h = GetCurrentProcess();
4530
        if (GetProcessAffinityMask(h, &mask, &smask)) {
4531
            for(i = 0; i < 32; i++) {
4532
                if (mask & (1 << i))
4533
                    break;
4534
            }
4535
            if (i != 32) {
4536
                mask = 1 << i;
4537
                SetProcessAffinityMask(h, mask);
4538
            }
4539
        }
4540
    }
4541
#endif
4542

    
4543
    register_machines();
4544
    machine = first_machine;
4545
    cpu_model = NULL;
4546
    initrd_filename = NULL;
4547
    ram_size = 0;
4548
    vga_ram_size = VGA_RAM_SIZE;
4549
#ifdef CONFIG_GDBSTUB
4550
    use_gdbstub = 0;
4551
    gdbstub_port = DEFAULT_GDBSTUB_PORT;
4552
#endif
4553
    snapshot = 0;
4554
    nographic = 0;
4555
    curses = 0;
4556
    kernel_filename = NULL;
4557
    kernel_cmdline = "";
4558
    cyls = heads = secs = 0;
4559
    translation = BIOS_ATA_TRANSLATION_AUTO;
4560
    monitor_device = "vc";
4561

    
4562
    serial_devices[0] = "vc:80Cx24C";
4563
    for(i = 1; i < MAX_SERIAL_PORTS; i++)
4564
        serial_devices[i] = NULL;
4565
    serial_device_index = 0;
4566

    
4567
    parallel_devices[0] = "vc:640x480";
4568
    for(i = 1; i < MAX_PARALLEL_PORTS; i++)
4569
        parallel_devices[i] = NULL;
4570
    parallel_device_index = 0;
4571

    
4572
    usb_devices_index = 0;
4573

    
4574
    nb_net_clients = 0;
4575
    nb_bt_opts = 0;
4576
    nb_drives = 0;
4577
    nb_drives_opt = 0;
4578
    hda_index = -1;
4579

    
4580
    nb_nics = 0;
4581

    
4582
    tb_size = 0;
4583
    autostart= 1;
4584

    
4585
    optind = 1;
4586
    for(;;) {
4587
        if (optind >= argc)
4588
            break;
4589
        r = argv[optind];
4590
        if (r[0] != '-') {
4591
            hda_index = drive_add(argv[optind++], HD_ALIAS, 0);
4592
        } else {
4593
            const QEMUOption *popt;
4594

    
4595
            optind++;
4596
            /* Treat --foo the same as -foo.  */
4597
            if (r[1] == '-')
4598
                r++;
4599
            popt = qemu_options;
4600
            for(;;) {
4601
                if (!popt->name) {
4602
                    fprintf(stderr, "%s: invalid option -- '%s'\n",
4603
                            argv[0], r);
4604
                    exit(1);
4605
                }
4606
                if (!strcmp(popt->name, r + 1))
4607
                    break;
4608
                popt++;
4609
            }
4610
            if (popt->flags & HAS_ARG) {
4611
                if (optind >= argc) {
4612
                    fprintf(stderr, "%s: option '%s' requires an argument\n",
4613
                            argv[0], r);
4614
                    exit(1);
4615
                }
4616
                optarg = argv[optind++];
4617
            } else {
4618
                optarg = NULL;
4619
            }
4620

    
4621
            switch(popt->index) {
4622
            case QEMU_OPTION_M:
4623
                machine = find_machine(optarg);
4624
                if (!machine) {
4625
                    QEMUMachine *m;
4626
                    printf("Supported machines are:\n");
4627
                    for(m = first_machine; m != NULL; m = m->next) {
4628
                        printf("%-10s %s%s\n",
4629
                               m->name, m->desc,
4630
                               m == first_machine ? " (default)" : "");
4631
                    }
4632
                    exit(*optarg != '?');
4633
                }
4634
                break;
4635
            case QEMU_OPTION_cpu:
4636
                /* hw initialization will check this */
4637
                if (*optarg == '?') {
4638
/* XXX: implement xxx_cpu_list for targets that still miss it */
4639
#if defined(cpu_list)
4640
                    cpu_list(stdout, &fprintf);
4641
#endif
4642
                    exit(0);
4643
                } else {
4644
                    cpu_model = optarg;
4645
                }
4646
                break;
4647
            case QEMU_OPTION_initrd:
4648
                initrd_filename = optarg;
4649
                break;
4650
            case QEMU_OPTION_hda:
4651
                if (cyls == 0)
4652
                    hda_index = drive_add(optarg, HD_ALIAS, 0);
4653
                else
4654
                    hda_index = drive_add(optarg, HD_ALIAS
4655
                             ",cyls=%d,heads=%d,secs=%d%s",
4656
                             0, cyls, heads, secs,
4657
                             translation == BIOS_ATA_TRANSLATION_LBA ?
4658
                                 ",trans=lba" :
4659
                             translation == BIOS_ATA_TRANSLATION_NONE ?
4660
                                 ",trans=none" : "");
4661
                 break;
4662
            case QEMU_OPTION_hdb:
4663
            case QEMU_OPTION_hdc:
4664
            case QEMU_OPTION_hdd:
4665
                drive_add(optarg, HD_ALIAS, popt->index - QEMU_OPTION_hda);
4666
                break;
4667
            case QEMU_OPTION_drive:
4668
                drive_add(NULL, "%s", optarg);
4669
                break;
4670
            case QEMU_OPTION_mtdblock:
4671
                drive_add(optarg, MTD_ALIAS);
4672
                break;
4673
            case QEMU_OPTION_sd:
4674
                drive_add(optarg, SD_ALIAS);
4675
                break;
4676
            case QEMU_OPTION_pflash:
4677
                drive_add(optarg, PFLASH_ALIAS);
4678
                break;
4679
            case QEMU_OPTION_snapshot:
4680
                snapshot = 1;
4681
                break;
4682
            case QEMU_OPTION_hdachs:
4683
                {
4684
                    const char *p;
4685
                    p = optarg;
4686
                    cyls = strtol(p, (char **)&p, 0);
4687
                    if (cyls < 1 || cyls > 16383)
4688
                        goto chs_fail;
4689
                    if (*p != ',')
4690
                        goto chs_fail;
4691
                    p++;
4692
                    heads = strtol(p, (char **)&p, 0);
4693
                    if (heads < 1 || heads > 16)
4694
                        goto chs_fail;
4695
                    if (*p != ',')
4696
                        goto chs_fail;
4697
                    p++;
4698
                    secs = strtol(p, (char **)&p, 0);
4699
                    if (secs < 1 || secs > 63)
4700
                        goto chs_fail;
4701
                    if (*p == ',') {
4702
                        p++;
4703
                        if (!strcmp(p, "none"))
4704
                            translation = BIOS_ATA_TRANSLATION_NONE;
4705
                        else if (!strcmp(p, "lba"))
4706
                            translation = BIOS_ATA_TRANSLATION_LBA;
4707
                        else if (!strcmp(p, "auto"))
4708
                            translation = BIOS_ATA_TRANSLATION_AUTO;
4709
                        else
4710
                            goto chs_fail;
4711
                    } else if (*p != '\0') {
4712
                    chs_fail:
4713
                        fprintf(stderr, "qemu: invalid physical CHS format\n");
4714
                        exit(1);
4715
                    }
4716
                    if (hda_index != -1)
4717
                        snprintf(drives_opt[hda_index].opt,
4718
                                 sizeof(drives_opt[hda_index].opt),
4719
                                 HD_ALIAS ",cyls=%d,heads=%d,secs=%d%s",
4720
                                 0, cyls, heads, secs,
4721
                                 translation == BIOS_ATA_TRANSLATION_LBA ?
4722
                                         ",trans=lba" :
4723
                                 translation == BIOS_ATA_TRANSLATION_NONE ?
4724
                                     ",trans=none" : "");
4725
                }
4726
                break;
4727
            case QEMU_OPTION_nographic:
4728
                nographic = 1;
4729
                break;
4730
#ifdef CONFIG_CURSES
4731
            case QEMU_OPTION_curses:
4732
                curses = 1;
4733
                break;
4734
#endif
4735
            case QEMU_OPTION_portrait:
4736
                graphic_rotate = 1;
4737
                break;
4738
            case QEMU_OPTION_kernel:
4739
                kernel_filename = optarg;
4740
                break;
4741
            case QEMU_OPTION_append:
4742
                kernel_cmdline = optarg;
4743
                break;
4744
            case QEMU_OPTION_cdrom:
4745
                drive_add(optarg, CDROM_ALIAS);
4746
                break;
4747
            case QEMU_OPTION_boot:
4748
                boot_devices = optarg;
4749
                /* We just do some generic consistency checks */
4750
                {
4751
                    /* Could easily be extended to 64 devices if needed */
4752
                    const char *p;
4753
                    
4754
                    boot_devices_bitmap = 0;
4755
                    for (p = boot_devices; *p != '\0'; p++) {
4756
                        /* Allowed boot devices are:
4757
                         * a b     : floppy disk drives
4758
                         * c ... f : IDE disk drives
4759
                         * g ... m : machine implementation dependant drives
4760
                         * n ... p : network devices
4761
                         * It's up to each machine implementation to check
4762
                         * if the given boot devices match the actual hardware
4763
                         * implementation and firmware features.
4764
                         */
4765
                        if (*p < 'a' || *p > 'q') {
4766
                            fprintf(stderr, "Invalid boot device '%c'\n", *p);
4767
                            exit(1);
4768
                        }
4769
                        if (boot_devices_bitmap & (1 << (*p - 'a'))) {
4770
                            fprintf(stderr,
4771
                                    "Boot device '%c' was given twice\n",*p);
4772
                            exit(1);
4773
                        }
4774
                        boot_devices_bitmap |= 1 << (*p - 'a');
4775
                    }
4776
                }
4777
                break;
4778
            case QEMU_OPTION_fda:
4779
            case QEMU_OPTION_fdb:
4780
                drive_add(optarg, FD_ALIAS, popt->index - QEMU_OPTION_fda);
4781
                break;
4782
#ifdef TARGET_I386
4783
            case QEMU_OPTION_no_fd_bootchk:
4784
                fd_bootchk = 0;
4785
                break;
4786
#endif
4787
            case QEMU_OPTION_net:
4788
                if (nb_net_clients >= MAX_NET_CLIENTS) {
4789
                    fprintf(stderr, "qemu: too many network clients\n");
4790
                    exit(1);
4791
                }
4792
                net_clients[nb_net_clients] = optarg;
4793
                nb_net_clients++;
4794
                break;
4795
#ifdef CONFIG_SLIRP
4796
            case QEMU_OPTION_tftp:
4797
                tftp_prefix = optarg;
4798
                break;
4799
            case QEMU_OPTION_bootp:
4800
                bootp_filename = optarg;
4801
                break;
4802
#ifndef _WIN32
4803
            case QEMU_OPTION_smb:
4804
                net_slirp_smb(optarg);
4805
                break;
4806
#endif
4807
            case QEMU_OPTION_redir:
4808
                net_slirp_redir(optarg);
4809
                break;
4810
#endif
4811
            case QEMU_OPTION_bt:
4812
                if (nb_bt_opts >= MAX_BT_CMDLINE) {
4813
                    fprintf(stderr, "qemu: too many bluetooth options\n");
4814
                    exit(1);
4815
                }
4816
                bt_opts[nb_bt_opts++] = optarg;
4817
                break;
4818
#ifdef HAS_AUDIO
4819
            case QEMU_OPTION_audio_help:
4820
                AUD_help ();
4821
                exit (0);
4822
                break;
4823
            case QEMU_OPTION_soundhw:
4824
                select_soundhw (optarg);
4825
                break;
4826
#endif
4827
            case QEMU_OPTION_h:
4828
                help(0);
4829
                break;
4830
            case QEMU_OPTION_m: {
4831
                uint64_t value;
4832
                char *ptr;
4833

    
4834
                value = strtoul(optarg, &ptr, 10);
4835
                switch (*ptr) {
4836
                case 0: case 'M': case 'm':
4837
                    value <<= 20;
4838
                    break;
4839
                case 'G': case 'g':
4840
                    value <<= 30;
4841
                    break;
4842
                default:
4843
                    fprintf(stderr, "qemu: invalid ram size: %s\n", optarg);
4844
                    exit(1);
4845
                }
4846

    
4847
                /* On 32-bit hosts, QEMU is limited by virtual address space */
4848
                if (value > (2047 << 20)
4849
#ifndef USE_KQEMU
4850
                    && HOST_LONG_BITS == 32
4851
#endif
4852
                    ) {
4853
                    fprintf(stderr, "qemu: at most 2047 MB RAM can be simulated\n");
4854
                    exit(1);
4855
                }
4856
                if (value != (uint64_t)(ram_addr_t)value) {
4857
                    fprintf(stderr, "qemu: ram size too large\n");
4858
                    exit(1);
4859
                }
4860
                ram_size = value;
4861
                break;
4862
            }
4863
            case QEMU_OPTION_d:
4864
                {
4865
                    int mask;
4866
                    const CPULogItem *item;
4867

    
4868
                    mask = cpu_str_to_log_mask(optarg);
4869
                    if (!mask) {
4870
                        printf("Log items (comma separated):\n");
4871
                    for(item = cpu_log_items; item->mask != 0; item++) {
4872
                        printf("%-10s %s\n", item->name, item->help);
4873
                    }
4874
                    exit(1);
4875
                    }
4876
                    cpu_set_log(mask);
4877
                }
4878
                break;
4879
#ifdef CONFIG_GDBSTUB
4880
            case QEMU_OPTION_s:
4881
                use_gdbstub = 1;
4882
                break;
4883
            case QEMU_OPTION_p:
4884
                gdbstub_port = optarg;
4885
                break;
4886
#endif
4887
            case QEMU_OPTION_L:
4888
                bios_dir = optarg;
4889
                break;
4890
            case QEMU_OPTION_bios:
4891
                bios_name = optarg;
4892
                break;
4893
            case QEMU_OPTION_S:
4894
                autostart = 0;
4895
                break;
4896
            case QEMU_OPTION_k:
4897
                keyboard_layout = optarg;
4898
                break;
4899
            case QEMU_OPTION_localtime:
4900
                rtc_utc = 0;
4901
                break;
4902
            case QEMU_OPTION_vga:
4903
                select_vgahw (optarg);
4904
                break;
4905
            case QEMU_OPTION_g:
4906
                {
4907
                    const char *p;
4908
                    int w, h, depth;
4909
                    p = optarg;
4910
                    w = strtol(p, (char **)&p, 10);
4911
                    if (w <= 0) {
4912
                    graphic_error:
4913
                        fprintf(stderr, "qemu: invalid resolution or depth\n");
4914
                        exit(1);
4915
                    }
4916
                    if (*p != 'x')
4917
                        goto graphic_error;
4918
                    p++;
4919
                    h = strtol(p, (char **)&p, 10);
4920
                    if (h <= 0)
4921
                        goto graphic_error;
4922
                    if (*p == 'x') {
4923
                        p++;
4924
                        depth = strtol(p, (char **)&p, 10);
4925
                        if (depth != 8 && depth != 15 && depth != 16 &&
4926
                            depth != 24 && depth != 32)
4927
                            goto graphic_error;
4928
                    } else if (*p == '\0') {
4929
                        depth = graphic_depth;
4930
                    } else {
4931
                        goto graphic_error;
4932
                    }
4933

    
4934
                    graphic_width = w;
4935
                    graphic_height = h;
4936
                    graphic_depth = depth;
4937
                }
4938
                break;
4939
            case QEMU_OPTION_echr:
4940
                {
4941
                    char *r;
4942
                    term_escape_char = strtol(optarg, &r, 0);
4943
                    if (r == optarg)
4944
                        printf("Bad argument to echr\n");
4945
                    break;
4946
                }
4947
            case QEMU_OPTION_monitor:
4948
                monitor_device = optarg;
4949
                break;
4950
            case QEMU_OPTION_serial:
4951
                if (serial_device_index >= MAX_SERIAL_PORTS) {
4952
                    fprintf(stderr, "qemu: too many serial ports\n");
4953
                    exit(1);
4954
                }
4955
                serial_devices[serial_device_index] = optarg;
4956
                serial_device_index++;
4957
                break;
4958
            case QEMU_OPTION_parallel:
4959
                if (parallel_device_index >= MAX_PARALLEL_PORTS) {
4960
                    fprintf(stderr, "qemu: too many parallel ports\n");
4961
                    exit(1);
4962
                }
4963
                parallel_devices[parallel_device_index] = optarg;
4964
                parallel_device_index++;
4965
                break;
4966
            case QEMU_OPTION_loadvm:
4967
                loadvm = optarg;
4968
                break;
4969
            case QEMU_OPTION_full_screen:
4970
                full_screen = 1;
4971
                break;
4972
#ifdef CONFIG_SDL
4973
            case QEMU_OPTION_no_frame:
4974
                no_frame = 1;
4975
                break;
4976
            case QEMU_OPTION_alt_grab:
4977
                alt_grab = 1;
4978
                break;
4979
            case QEMU_OPTION_no_quit:
4980
                no_quit = 1;
4981
                break;
4982
#endif
4983
            case QEMU_OPTION_pidfile:
4984
                pid_file = optarg;
4985
                break;
4986
#ifdef TARGET_I386
4987
            case QEMU_OPTION_win2k_hack:
4988
                win2k_install_hack = 1;
4989
                break;
4990
#endif
4991
#ifdef USE_KQEMU
4992
            case QEMU_OPTION_no_kqemu:
4993
                kqemu_allowed = 0;
4994
                break;
4995
            case QEMU_OPTION_kernel_kqemu:
4996
                kqemu_allowed = 2;
4997
                break;
4998
#endif
4999
#ifdef CONFIG_KVM
5000
            case QEMU_OPTION_enable_kvm:
5001
                kvm_allowed = 1;
5002
#ifdef USE_KQEMU
5003
                kqemu_allowed = 0;
5004
#endif
5005
                break;
5006
#endif
5007
            case QEMU_OPTION_usb:
5008
                usb_enabled = 1;
5009
                break;
5010
            case QEMU_OPTION_usbdevice:
5011
                usb_enabled = 1;
5012
                if (usb_devices_index >= MAX_USB_CMDLINE) {
5013
                    fprintf(stderr, "Too many USB devices\n");
5014
                    exit(1);
5015
                }
5016
                usb_devices[usb_devices_index] = optarg;
5017
                usb_devices_index++;
5018
                break;
5019
            case QEMU_OPTION_smp:
5020
                smp_cpus = atoi(optarg);
5021
                if (smp_cpus < 1) {
5022
                    fprintf(stderr, "Invalid number of CPUs\n");
5023
                    exit(1);
5024
                }
5025
                break;
5026
            case QEMU_OPTION_vnc:
5027
                vnc_display = optarg;
5028
                break;
5029
            case QEMU_OPTION_no_acpi:
5030
                acpi_enabled = 0;
5031
                break;
5032
            case QEMU_OPTION_no_hpet:
5033
                no_hpet = 1;
5034
                break;
5035
            case QEMU_OPTION_no_reboot:
5036
                no_reboot = 1;
5037
                break;
5038
            case QEMU_OPTION_no_shutdown:
5039
                no_shutdown = 1;
5040
                break;
5041
            case QEMU_OPTION_show_cursor:
5042
                cursor_hide = 0;
5043
                break;
5044
            case QEMU_OPTION_uuid:
5045
                if(qemu_uuid_parse(optarg, qemu_uuid) < 0) {
5046
                    fprintf(stderr, "Fail to parse UUID string."
5047
                            " Wrong format.\n");
5048
                    exit(1);
5049
                }
5050
                break;
5051
            case QEMU_OPTION_daemonize:
5052
                daemonize = 1;
5053
                break;
5054
            case QEMU_OPTION_option_rom:
5055
                if (nb_option_roms >= MAX_OPTION_ROMS) {
5056
                    fprintf(stderr, "Too many option ROMs\n");
5057
                    exit(1);
5058
                }
5059
                option_rom[nb_option_roms] = optarg;
5060
                nb_option_roms++;
5061
                break;
5062
            case QEMU_OPTION_semihosting:
5063
                semihosting_enabled = 1;
5064
                break;
5065
            case QEMU_OPTION_name:
5066
                qemu_name = optarg;
5067
                break;
5068
#if defined(TARGET_SPARC) || defined(TARGET_PPC)
5069
            case QEMU_OPTION_prom_env:
5070
                if (nb_prom_envs >= MAX_PROM_ENVS) {
5071
                    fprintf(stderr, "Too many prom variables\n");
5072
                    exit(1);
5073
                }
5074
                prom_envs[nb_prom_envs] = optarg;
5075
                nb_prom_envs++;
5076
                break;
5077
#endif
5078
#ifdef TARGET_ARM
5079
            case QEMU_OPTION_old_param:
5080
                old_param = 1;
5081
                break;
5082
#endif
5083
            case QEMU_OPTION_clock:
5084
                configure_alarms(optarg);
5085
                break;
5086
            case QEMU_OPTION_startdate:
5087
                {
5088
                    struct tm tm;
5089
                    time_t rtc_start_date;
5090
                    if (!strcmp(optarg, "now")) {
5091
                        rtc_date_offset = -1;
5092
                    } else {
5093
                        if (sscanf(optarg, "%d-%d-%dT%d:%d:%d",
5094
                               &tm.tm_year,
5095
                               &tm.tm_mon,
5096
                               &tm.tm_mday,
5097
                               &tm.tm_hour,
5098
                               &tm.tm_min,
5099
                               &tm.tm_sec) == 6) {
5100
                            /* OK */
5101
                        } else if (sscanf(optarg, "%d-%d-%d",
5102
                                          &tm.tm_year,
5103
                                          &tm.tm_mon,
5104
                                          &tm.tm_mday) == 3) {
5105
                            tm.tm_hour = 0;
5106
                            tm.tm_min = 0;
5107
                            tm.tm_sec = 0;
5108
                        } else {
5109
                            goto date_fail;
5110
                        }
5111
                        tm.tm_year -= 1900;
5112
                        tm.tm_mon--;
5113
                        rtc_start_date = mktimegm(&tm);
5114
                        if (rtc_start_date == -1) {
5115
                        date_fail:
5116
                            fprintf(stderr, "Invalid date format. Valid format are:\n"
5117
                                    "'now' or '2006-06-17T16:01:21' or '2006-06-17'\n");
5118
                            exit(1);
5119
                        }
5120
                        rtc_date_offset = time(NULL) - rtc_start_date;
5121
                    }
5122
                }
5123
                break;
5124
            case QEMU_OPTION_tb_size:
5125
                tb_size = strtol(optarg, NULL, 0);
5126
                if (tb_size < 0)
5127
                    tb_size = 0;
5128
                break;
5129
            case QEMU_OPTION_icount:
5130
                use_icount = 1;
5131
                if (strcmp(optarg, "auto") == 0) {
5132
                    icount_time_shift = -1;
5133
                } else {
5134
                    icount_time_shift = strtol(optarg, NULL, 0);
5135
                }
5136
                break;
5137
            case QEMU_OPTION_incoming:
5138
                incoming = optarg;
5139
                break;
5140
            }
5141
        }
5142
    }
5143

    
5144
#if defined(CONFIG_KVM) && defined(USE_KQEMU)
5145
    if (kvm_allowed && kqemu_allowed) {
5146
        fprintf(stderr,
5147
                "You can not enable both KVM and kqemu at the same time\n");
5148
        exit(1);
5149
    }
5150
#endif
5151

    
5152
    machine->max_cpus = machine->max_cpus ?: 1; /* Default to UP */
5153
    if (smp_cpus > machine->max_cpus) {
5154
        fprintf(stderr, "Number of SMP cpus requested (%d), exceeds max cpus "
5155
                "supported by machine `%s' (%d)\n", smp_cpus,  machine->name,
5156
                machine->max_cpus);
5157
        exit(1);
5158
    }
5159

    
5160
    if (nographic) {
5161
       if (serial_device_index == 0)
5162
           serial_devices[0] = "stdio";
5163
       if (parallel_device_index == 0)
5164
           parallel_devices[0] = "null";
5165
       if (strncmp(monitor_device, "vc", 2) == 0)
5166
           monitor_device = "stdio";
5167
    }
5168

    
5169
#ifndef _WIN32
5170
    if (daemonize) {
5171
        pid_t pid;
5172

    
5173
        if (pipe(fds) == -1)
5174
            exit(1);
5175

    
5176
        pid = fork();
5177
        if (pid > 0) {
5178
            uint8_t status;
5179
            ssize_t len;
5180

    
5181
            close(fds[1]);
5182

    
5183
        again:
5184
            len = read(fds[0], &status, 1);
5185
            if (len == -1 && (errno == EINTR))
5186
                goto again;
5187

    
5188
            if (len != 1)
5189
                exit(1);
5190
            else if (status == 1) {
5191
                fprintf(stderr, "Could not acquire pidfile\n");
5192
                exit(1);
5193
            } else
5194
                exit(0);
5195
        } else if (pid < 0)
5196
            exit(1);
5197

    
5198
        setsid();
5199

    
5200
        pid = fork();
5201
        if (pid > 0)
5202
            exit(0);
5203
        else if (pid < 0)
5204
            exit(1);
5205

    
5206
        umask(027);
5207

    
5208
        signal(SIGTSTP, SIG_IGN);
5209
        signal(SIGTTOU, SIG_IGN);
5210
        signal(SIGTTIN, SIG_IGN);
5211
    }
5212
#endif
5213

    
5214
    if (pid_file && qemu_create_pidfile(pid_file) != 0) {
5215
        if (daemonize) {
5216
            uint8_t status = 1;
5217
            write(fds[1], &status, 1);
5218
        } else
5219
            fprintf(stderr, "Could not acquire pid file\n");
5220
        exit(1);
5221
    }
5222

    
5223
#ifdef USE_KQEMU
5224
    if (smp_cpus > 1)
5225
        kqemu_allowed = 0;
5226
#endif
5227
    linux_boot = (kernel_filename != NULL);
5228
    net_boot = (boot_devices_bitmap >> ('n' - 'a')) & 0xF;
5229

    
5230
    if (!linux_boot && net_boot == 0 &&
5231
        !machine->nodisk_ok && nb_drives_opt == 0)
5232
        help(1);
5233

    
5234
    if (!linux_boot && *kernel_cmdline != '\0') {
5235
        fprintf(stderr, "-append only allowed with -kernel option\n");
5236
        exit(1);
5237
    }
5238

    
5239
    if (!linux_boot && initrd_filename != NULL) {
5240
        fprintf(stderr, "-initrd only allowed with -kernel option\n");
5241
        exit(1);
5242
    }
5243

    
5244
    /* boot to floppy or the default cd if no hard disk defined yet */
5245
    if (!boot_devices[0]) {
5246
        boot_devices = "cad";
5247
    }
5248
    setvbuf(stdout, NULL, _IOLBF, 0);
5249

    
5250
    init_timers();
5251
    if (init_timer_alarm() < 0) {
5252
        fprintf(stderr, "could not initialize alarm timer\n");
5253
        exit(1);
5254
    }
5255
    if (use_icount && icount_time_shift < 0) {
5256
        use_icount = 2;
5257
        /* 125MIPS seems a reasonable initial guess at the guest speed.
5258
           It will be corrected fairly quickly anyway.  */
5259
        icount_time_shift = 3;
5260
        init_icount_adjust();
5261
    }
5262

    
5263
#ifdef _WIN32
5264
    socket_init();
5265
#endif
5266

    
5267
    /* init network clients */
5268
    if (nb_net_clients == 0) {
5269
        /* if no clients, we use a default config */
5270
        net_clients[nb_net_clients++] = "nic";
5271
#ifdef CONFIG_SLIRP
5272
        net_clients[nb_net_clients++] = "user";
5273
#endif
5274
    }
5275

    
5276
    for(i = 0;i < nb_net_clients; i++) {
5277
        if (net_client_parse(net_clients[i]) < 0)
5278
            exit(1);
5279
    }
5280
    net_client_check();
5281

    
5282
#ifdef TARGET_I386
5283
    /* XXX: this should be moved in the PC machine instantiation code */
5284
    if (net_boot != 0) {
5285
        int netroms = 0;
5286
        for (i = 0; i < nb_nics && i < 4; i++) {
5287
            const char *model = nd_table[i].model;
5288
            char buf[1024];
5289
            if (net_boot & (1 << i)) {
5290
                if (model == NULL)
5291
                    model = "ne2k_pci";
5292
                snprintf(buf, sizeof(buf), "%s/pxe-%s.bin", bios_dir, model);
5293
                if (get_image_size(buf) > 0) {
5294
                    if (nb_option_roms >= MAX_OPTION_ROMS) {
5295
                        fprintf(stderr, "Too many option ROMs\n");
5296
                        exit(1);
5297
                    }
5298
                    option_rom[nb_option_roms] = strdup(buf);
5299
                    nb_option_roms++;
5300
                    netroms++;
5301
                }
5302
            }
5303
        }
5304
        if (netroms == 0) {
5305
            fprintf(stderr, "No valid PXE rom found for network device\n");
5306
            exit(1);
5307
        }
5308
    }
5309
#endif
5310

    
5311
    /* init the bluetooth world */
5312
    for (i = 0; i < nb_bt_opts; i++)
5313
        if (bt_parse(bt_opts[i]))
5314
            exit(1);
5315

    
5316
    /* init the memory */
5317
    phys_ram_size = machine->ram_require & ~RAMSIZE_FIXED;
5318

    
5319
    if (machine->ram_require & RAMSIZE_FIXED) {
5320
        if (ram_size > 0) {
5321
            if (ram_size < phys_ram_size) {
5322
                fprintf(stderr, "Machine `%s' requires %llu bytes of memory\n",
5323
                                machine->name, (unsigned long long) phys_ram_size);
5324
                exit(-1);
5325
            }
5326

    
5327
            phys_ram_size = ram_size;
5328
        } else
5329
            ram_size = phys_ram_size;
5330
    } else {
5331
        if (ram_size == 0)
5332
            ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
5333

    
5334
        phys_ram_size += ram_size;
5335
    }
5336

    
5337
    phys_ram_base = qemu_vmalloc(phys_ram_size);
5338
    if (!phys_ram_base) {
5339
        fprintf(stderr, "Could not allocate physical memory\n");
5340
        exit(1);
5341
    }
5342

    
5343
    /* init the dynamic translator */
5344
    cpu_exec_init_all(tb_size * 1024 * 1024);
5345

    
5346
    bdrv_init();
5347

    
5348
    /* we always create the cdrom drive, even if no disk is there */
5349

    
5350
    if (nb_drives_opt < MAX_DRIVES)
5351
        drive_add(NULL, CDROM_ALIAS);
5352

    
5353
    /* we always create at least one floppy */
5354

    
5355
    if (nb_drives_opt < MAX_DRIVES)
5356
        drive_add(NULL, FD_ALIAS, 0);
5357

    
5358
    /* we always create one sd slot, even if no card is in it */
5359

    
5360
    if (nb_drives_opt < MAX_DRIVES)
5361
        drive_add(NULL, SD_ALIAS);
5362

    
5363
    /* open the virtual block devices */
5364

    
5365
    for(i = 0; i < nb_drives_opt; i++)
5366
        if (drive_init(&drives_opt[i], snapshot, machine) == -1)
5367
            exit(1);
5368

    
5369
    register_savevm("timer", 0, 2, timer_save, timer_load, NULL);
5370
    register_savevm_live("ram", 0, 3, ram_save_live, NULL, ram_load, NULL);
5371

    
5372
    /* terminal init */
5373
    memset(&display_state, 0, sizeof(display_state));
5374
    if (nographic) {
5375
        if (curses) {
5376
            fprintf(stderr, "fatal: -nographic can't be used with -curses\n");
5377
            exit(1);
5378
        }
5379
        /* nearly nothing to do */
5380
        dumb_display_init(ds);
5381
    } else if (vnc_display != NULL) {
5382
        vnc_display_init(ds);
5383
        if (vnc_display_open(ds, vnc_display) < 0)
5384
            exit(1);
5385
    } else
5386
#if defined(CONFIG_CURSES)
5387
    if (curses) {
5388
        curses_display_init(ds, full_screen);
5389
    } else
5390
#endif
5391
    {
5392
#if defined(CONFIG_SDL)
5393
        sdl_display_init(ds, full_screen, no_frame);
5394
#elif defined(CONFIG_COCOA)
5395
        cocoa_display_init(ds, full_screen);
5396
#else
5397
        dumb_display_init(ds);
5398
#endif
5399
    }
5400

    
5401
#ifndef _WIN32
5402
    /* must be after terminal init, SDL library changes signal handlers */
5403
    termsig_setup();
5404
#endif
5405

    
5406
    /* Maintain compatibility with multiple stdio monitors */
5407
    if (!strcmp(monitor_device,"stdio")) {
5408
        for (i = 0; i < MAX_SERIAL_PORTS; i++) {
5409
            const char *devname = serial_devices[i];
5410
            if (devname && !strcmp(devname,"mon:stdio")) {
5411
                monitor_device = NULL;
5412
                break;
5413
            } else if (devname && !strcmp(devname,"stdio")) {
5414
                monitor_device = NULL;
5415
                serial_devices[i] = "mon:stdio";
5416
                break;
5417
            }
5418
        }
5419
    }
5420
    if (monitor_device) {
5421
        monitor_hd = qemu_chr_open("monitor", monitor_device);
5422
        if (!monitor_hd) {
5423
            fprintf(stderr, "qemu: could not open monitor device '%s'\n", monitor_device);
5424
            exit(1);
5425
        }
5426
        monitor_init(monitor_hd, !nographic);
5427
    }
5428

    
5429
    for(i = 0; i < MAX_SERIAL_PORTS; i++) {
5430
        const char *devname = serial_devices[i];
5431
        if (devname && strcmp(devname, "none")) {
5432
            char label[32];
5433
            snprintf(label, sizeof(label), "serial%d", i);
5434
            serial_hds[i] = qemu_chr_open(label, devname);
5435
            if (!serial_hds[i]) {
5436
                fprintf(stderr, "qemu: could not open serial device '%s'\n",
5437
                        devname);
5438
                exit(1);
5439
            }
5440
            if (strstart(devname, "vc", 0))
5441
                qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
5442
        }
5443
    }
5444

    
5445
    for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
5446
        const char *devname = parallel_devices[i];
5447
        if (devname && strcmp(devname, "none")) {
5448
            char label[32];
5449
            snprintf(label, sizeof(label), "parallel%d", i);
5450
            parallel_hds[i] = qemu_chr_open(label, devname);
5451
            if (!parallel_hds[i]) {
5452
                fprintf(stderr, "qemu: could not open parallel device '%s'\n",
5453
                        devname);
5454
                exit(1);
5455
            }
5456
            if (strstart(devname, "vc", 0))
5457
                qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
5458
        }
5459
    }
5460

    
5461
    if (kvm_enabled()) {
5462
        int ret;
5463

    
5464
        ret = kvm_init(smp_cpus);
5465
        if (ret < 0) {
5466
            fprintf(stderr, "failed to initialize KVM\n");
5467
            exit(1);
5468
        }
5469
    }
5470

    
5471
    machine->init(ram_size, vga_ram_size, boot_devices, ds,
5472
                  kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
5473

    
5474
    /* Set KVM's vcpu state to qemu's initial CPUState. */
5475
    if (kvm_enabled()) {
5476
        int ret;
5477

    
5478
        ret = kvm_sync_vcpus();
5479
        if (ret < 0) {
5480
            fprintf(stderr, "failed to initialize vcpus\n");
5481
            exit(1);
5482
        }
5483
    }
5484

    
5485
    /* init USB devices */
5486
    if (usb_enabled) {
5487
        for(i = 0; i < usb_devices_index; i++) {
5488
            if (usb_device_add(usb_devices[i]) < 0) {
5489
                fprintf(stderr, "Warning: could not add USB device %s\n",
5490
                        usb_devices[i]);
5491
            }
5492
        }
5493
    }
5494

    
5495
    if (display_state.dpy_refresh) {
5496
        display_state.gui_timer = qemu_new_timer(rt_clock, gui_update, &display_state);
5497
        qemu_mod_timer(display_state.gui_timer, qemu_get_clock(rt_clock));
5498
    }
5499

    
5500
#ifdef CONFIG_GDBSTUB
5501
    if (use_gdbstub) {
5502
        /* XXX: use standard host:port notation and modify options
5503
           accordingly. */
5504
        if (gdbserver_start(gdbstub_port) < 0) {
5505
            fprintf(stderr, "qemu: could not open gdbstub device on port '%s'\n",
5506
                    gdbstub_port);
5507
            exit(1);
5508
        }
5509
    }
5510
#endif
5511

    
5512
    if (loadvm)
5513
        do_loadvm(loadvm);
5514

    
5515
    if (incoming) {
5516
        autostart = 0; /* fixme how to deal with -daemonize */
5517
        qemu_start_incoming_migration(incoming);
5518
    }
5519

    
5520
    {
5521
        /* XXX: simplify init */
5522
        read_passwords();
5523
        if (autostart) {
5524
            vm_start();
5525
        }
5526
    }
5527

    
5528
    if (daemonize) {
5529
        uint8_t status = 0;
5530
        ssize_t len;
5531
        int fd;
5532

    
5533
    again1:
5534
        len = write(fds[1], &status, 1);
5535
        if (len == -1 && (errno == EINTR))
5536
            goto again1;
5537

    
5538
        if (len != 1)
5539
            exit(1);
5540

    
5541
        chdir("/");
5542
        TFR(fd = open("/dev/null", O_RDWR));
5543
        if (fd == -1)
5544
            exit(1);
5545

    
5546
        dup2(fd, 0);
5547
        dup2(fd, 1);
5548
        dup2(fd, 2);
5549

    
5550
        close(fd);
5551
    }
5552

    
5553
    main_loop();
5554
    quit_timers();
5555
    net_cleanup();
5556

    
5557
    return 0;
5558
}