Statistics
| Branch: | Revision:

root / target-alpha / op_helper.c @ 7ad7e3c3

History | View | Annotate | Download (25.1 kB)

1
/*
2
 *  Alpha emulation cpu micro-operations helpers for qemu.
3
 *
4
 *  Copyright (c) 2007 Jocelyn Mayer
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18
 */
19

    
20
#include "exec.h"
21
#include "host-utils.h"
22
#include "softfloat.h"
23
#include "helper.h"
24

    
25
/*****************************************************************************/
26
/* Exceptions processing helpers */
27
void helper_excp (int excp, int error)
28
{
29
    env->exception_index = excp;
30
    env->error_code = error;
31
    cpu_loop_exit();
32
}
33

    
34
uint64_t helper_load_pcc (void)
35
{
36
    /* XXX: TODO */
37
    return 0;
38
}
39

    
40
uint64_t helper_load_fpcr (void)
41
{
42
    return cpu_alpha_load_fpcr (env);
43
}
44

    
45
void helper_store_fpcr (uint64_t val)
46
{
47
    cpu_alpha_store_fpcr (env, val);
48
}
49

    
50
static spinlock_t intr_cpu_lock = SPIN_LOCK_UNLOCKED;
51

    
52
uint64_t helper_rs(void)
53
{
54
    uint64_t tmp;
55

    
56
    spin_lock(&intr_cpu_lock);
57
    tmp = env->intr_flag;
58
    env->intr_flag = 1;
59
    spin_unlock(&intr_cpu_lock);
60

    
61
    return tmp;
62
}
63

    
64
uint64_t helper_rc(void)
65
{
66
    uint64_t tmp;
67

    
68
    spin_lock(&intr_cpu_lock);
69
    tmp = env->intr_flag;
70
    env->intr_flag = 0;
71
    spin_unlock(&intr_cpu_lock);
72

    
73
    return tmp;
74
}
75

    
76
uint64_t helper_addqv (uint64_t op1, uint64_t op2)
77
{
78
    uint64_t tmp = op1;
79
    op1 += op2;
80
    if (unlikely((tmp ^ op2 ^ (-1ULL)) & (tmp ^ op1) & (1ULL << 63))) {
81
        helper_excp(EXCP_ARITH, EXCP_ARITH_OVERFLOW);
82
    }
83
    return op1;
84
}
85

    
86
uint64_t helper_addlv (uint64_t op1, uint64_t op2)
87
{
88
    uint64_t tmp = op1;
89
    op1 = (uint32_t)(op1 + op2);
90
    if (unlikely((tmp ^ op2 ^ (-1UL)) & (tmp ^ op1) & (1UL << 31))) {
91
        helper_excp(EXCP_ARITH, EXCP_ARITH_OVERFLOW);
92
    }
93
    return op1;
94
}
95

    
96
uint64_t helper_subqv (uint64_t op1, uint64_t op2)
97
{
98
    uint64_t res;
99
    res = op1 - op2;
100
    if (unlikely((op1 ^ op2) & (res ^ op1) & (1ULL << 63))) {
101
        helper_excp(EXCP_ARITH, EXCP_ARITH_OVERFLOW);
102
    }
103
    return res;
104
}
105

    
106
uint64_t helper_sublv (uint64_t op1, uint64_t op2)
107
{
108
    uint32_t res;
109
    res = op1 - op2;
110
    if (unlikely((op1 ^ op2) & (res ^ op1) & (1UL << 31))) {
111
        helper_excp(EXCP_ARITH, EXCP_ARITH_OVERFLOW);
112
    }
113
    return res;
114
}
115

    
116
uint64_t helper_mullv (uint64_t op1, uint64_t op2)
117
{
118
    int64_t res = (int64_t)op1 * (int64_t)op2;
119

    
120
    if (unlikely((int32_t)res != res)) {
121
        helper_excp(EXCP_ARITH, EXCP_ARITH_OVERFLOW);
122
    }
123
    return (int64_t)((int32_t)res);
124
}
125

    
126
uint64_t helper_mulqv (uint64_t op1, uint64_t op2)
127
{
128
    uint64_t tl, th;
129

    
130
    muls64(&tl, &th, op1, op2);
131
    /* If th != 0 && th != -1, then we had an overflow */
132
    if (unlikely((th + 1) > 1)) {
133
        helper_excp(EXCP_ARITH, EXCP_ARITH_OVERFLOW);
134
    }
135
    return tl;
136
}
137

    
138
uint64_t helper_umulh (uint64_t op1, uint64_t op2)
139
{
140
    uint64_t tl, th;
141

    
142
    mulu64(&tl, &th, op1, op2);
143
    return th;
144
}
145

    
146
uint64_t helper_ctpop (uint64_t arg)
147
{
148
    return ctpop64(arg);
149
}
150

    
151
uint64_t helper_ctlz (uint64_t arg)
152
{
153
    return clz64(arg);
154
}
155

    
156
uint64_t helper_cttz (uint64_t arg)
157
{
158
    return ctz64(arg);
159
}
160

    
161
static inline uint64_t byte_zap(uint64_t op, uint8_t mskb)
162
{
163
    uint64_t mask;
164

    
165
    mask = 0;
166
    mask |= ((mskb >> 0) & 1) * 0x00000000000000FFULL;
167
    mask |= ((mskb >> 1) & 1) * 0x000000000000FF00ULL;
168
    mask |= ((mskb >> 2) & 1) * 0x0000000000FF0000ULL;
169
    mask |= ((mskb >> 3) & 1) * 0x00000000FF000000ULL;
170
    mask |= ((mskb >> 4) & 1) * 0x000000FF00000000ULL;
171
    mask |= ((mskb >> 5) & 1) * 0x0000FF0000000000ULL;
172
    mask |= ((mskb >> 6) & 1) * 0x00FF000000000000ULL;
173
    mask |= ((mskb >> 7) & 1) * 0xFF00000000000000ULL;
174

    
175
    return op & ~mask;
176
}
177

    
178
uint64_t helper_zap(uint64_t val, uint64_t mask)
179
{
180
    return byte_zap(val, mask);
181
}
182

    
183
uint64_t helper_zapnot(uint64_t val, uint64_t mask)
184
{
185
    return byte_zap(val, ~mask);
186
}
187

    
188
uint64_t helper_cmpbge (uint64_t op1, uint64_t op2)
189
{
190
    uint8_t opa, opb, res;
191
    int i;
192

    
193
    res = 0;
194
    for (i = 0; i < 8; i++) {
195
        opa = op1 >> (i * 8);
196
        opb = op2 >> (i * 8);
197
        if (opa >= opb)
198
            res |= 1 << i;
199
    }
200
    return res;
201
}
202

    
203
uint64_t helper_minub8 (uint64_t op1, uint64_t op2)
204
{
205
    uint64_t res = 0;
206
    uint8_t opa, opb, opr;
207
    int i;
208

    
209
    for (i = 0; i < 8; ++i) {
210
        opa = op1 >> (i * 8);
211
        opb = op2 >> (i * 8);
212
        opr = opa < opb ? opa : opb;
213
        res |= (uint64_t)opr << (i * 8);
214
    }
215
    return res;
216
}
217

    
218
uint64_t helper_minsb8 (uint64_t op1, uint64_t op2)
219
{
220
    uint64_t res = 0;
221
    int8_t opa, opb;
222
    uint8_t opr;
223
    int i;
224

    
225
    for (i = 0; i < 8; ++i) {
226
        opa = op1 >> (i * 8);
227
        opb = op2 >> (i * 8);
228
        opr = opa < opb ? opa : opb;
229
        res |= (uint64_t)opr << (i * 8);
230
    }
231
    return res;
232
}
233

    
234
uint64_t helper_minuw4 (uint64_t op1, uint64_t op2)
235
{
236
    uint64_t res = 0;
237
    uint16_t opa, opb, opr;
238
    int i;
239

    
240
    for (i = 0; i < 4; ++i) {
241
        opa = op1 >> (i * 16);
242
        opb = op2 >> (i * 16);
243
        opr = opa < opb ? opa : opb;
244
        res |= (uint64_t)opr << (i * 16);
245
    }
246
    return res;
247
}
248

    
249
uint64_t helper_minsw4 (uint64_t op1, uint64_t op2)
250
{
251
    uint64_t res = 0;
252
    int16_t opa, opb;
253
    uint16_t opr;
254
    int i;
255

    
256
    for (i = 0; i < 4; ++i) {
257
        opa = op1 >> (i * 16);
258
        opb = op2 >> (i * 16);
259
        opr = opa < opb ? opa : opb;
260
        res |= (uint64_t)opr << (i * 16);
261
    }
262
    return res;
263
}
264

    
265
uint64_t helper_maxub8 (uint64_t op1, uint64_t op2)
266
{
267
    uint64_t res = 0;
268
    uint8_t opa, opb, opr;
269
    int i;
270

    
271
    for (i = 0; i < 8; ++i) {
272
        opa = op1 >> (i * 8);
273
        opb = op2 >> (i * 8);
274
        opr = opa > opb ? opa : opb;
275
        res |= (uint64_t)opr << (i * 8);
276
    }
277
    return res;
278
}
279

    
280
uint64_t helper_maxsb8 (uint64_t op1, uint64_t op2)
281
{
282
    uint64_t res = 0;
283
    int8_t opa, opb;
284
    uint8_t opr;
285
    int i;
286

    
287
    for (i = 0; i < 8; ++i) {
288
        opa = op1 >> (i * 8);
289
        opb = op2 >> (i * 8);
290
        opr = opa > opb ? opa : opb;
291
        res |= (uint64_t)opr << (i * 8);
292
    }
293
    return res;
294
}
295

    
296
uint64_t helper_maxuw4 (uint64_t op1, uint64_t op2)
297
{
298
    uint64_t res = 0;
299
    uint16_t opa, opb, opr;
300
    int i;
301

    
302
    for (i = 0; i < 4; ++i) {
303
        opa = op1 >> (i * 16);
304
        opb = op2 >> (i * 16);
305
        opr = opa > opb ? opa : opb;
306
        res |= (uint64_t)opr << (i * 16);
307
    }
308
    return res;
309
}
310

    
311
uint64_t helper_maxsw4 (uint64_t op1, uint64_t op2)
312
{
313
    uint64_t res = 0;
314
    int16_t opa, opb;
315
    uint16_t opr;
316
    int i;
317

    
318
    for (i = 0; i < 4; ++i) {
319
        opa = op1 >> (i * 16);
320
        opb = op2 >> (i * 16);
321
        opr = opa > opb ? opa : opb;
322
        res |= (uint64_t)opr << (i * 16);
323
    }
324
    return res;
325
}
326

    
327
uint64_t helper_perr (uint64_t op1, uint64_t op2)
328
{
329
    uint64_t res = 0;
330
    uint8_t opa, opb, opr;
331
    int i;
332

    
333
    for (i = 0; i < 8; ++i) {
334
        opa = op1 >> (i * 8);
335
        opb = op2 >> (i * 8);
336
        if (opa >= opb)
337
            opr = opa - opb;
338
        else
339
            opr = opb - opa;
340
        res += opr;
341
    }
342
    return res;
343
}
344

    
345
uint64_t helper_pklb (uint64_t op1)
346
{
347
    return (op1 & 0xff) | ((op1 >> 24) & 0xff00);
348
}
349

    
350
uint64_t helper_pkwb (uint64_t op1)
351
{
352
    return ((op1 & 0xff)
353
            | ((op1 >> 8) & 0xff00)
354
            | ((op1 >> 16) & 0xff0000)
355
            | ((op1 >> 24) & 0xff000000));
356
}
357

    
358
uint64_t helper_unpkbl (uint64_t op1)
359
{
360
    return (op1 & 0xff) | ((op1 & 0xff00) << 24);
361
}
362

    
363
uint64_t helper_unpkbw (uint64_t op1)
364
{
365
    return ((op1 & 0xff)
366
            | ((op1 & 0xff00) << 8)
367
            | ((op1 & 0xff0000) << 16)
368
            | ((op1 & 0xff000000) << 24));
369
}
370

    
371
/* Floating point helpers */
372

    
373
/* F floating (VAX) */
374
static inline uint64_t float32_to_f(float32 fa)
375
{
376
    uint64_t r, exp, mant, sig;
377
    CPU_FloatU a;
378

    
379
    a.f = fa;
380
    sig = ((uint64_t)a.l & 0x80000000) << 32;
381
    exp = (a.l >> 23) & 0xff;
382
    mant = ((uint64_t)a.l & 0x007fffff) << 29;
383

    
384
    if (exp == 255) {
385
        /* NaN or infinity */
386
        r = 1; /* VAX dirty zero */
387
    } else if (exp == 0) {
388
        if (mant == 0) {
389
            /* Zero */
390
            r = 0;
391
        } else {
392
            /* Denormalized */
393
            r = sig | ((exp + 1) << 52) | mant;
394
        }
395
    } else {
396
        if (exp >= 253) {
397
            /* Overflow */
398
            r = 1; /* VAX dirty zero */
399
        } else {
400
            r = sig | ((exp + 2) << 52);
401
        }
402
    }
403

    
404
    return r;
405
}
406

    
407
static inline float32 f_to_float32(uint64_t a)
408
{
409
    uint32_t exp, mant_sig;
410
    CPU_FloatU r;
411

    
412
    exp = ((a >> 55) & 0x80) | ((a >> 52) & 0x7f);
413
    mant_sig = ((a >> 32) & 0x80000000) | ((a >> 29) & 0x007fffff);
414

    
415
    if (unlikely(!exp && mant_sig)) {
416
        /* Reserved operands / Dirty zero */
417
        helper_excp(EXCP_OPCDEC, 0);
418
    }
419

    
420
    if (exp < 3) {
421
        /* Underflow */
422
        r.l = 0;
423
    } else {
424
        r.l = ((exp - 2) << 23) | mant_sig;
425
    }
426

    
427
    return r.f;
428
}
429

    
430
uint32_t helper_f_to_memory (uint64_t a)
431
{
432
    uint32_t r;
433
    r =  (a & 0x00001fffe0000000ull) >> 13;
434
    r |= (a & 0x07ffe00000000000ull) >> 45;
435
    r |= (a & 0xc000000000000000ull) >> 48;
436
    return r;
437
}
438

    
439
uint64_t helper_memory_to_f (uint32_t a)
440
{
441
    uint64_t r;
442
    r =  ((uint64_t)(a & 0x0000c000)) << 48;
443
    r |= ((uint64_t)(a & 0x003fffff)) << 45;
444
    r |= ((uint64_t)(a & 0xffff0000)) << 13;
445
    if (!(a & 0x00004000))
446
        r |= 0x7ll << 59;
447
    return r;
448
}
449

    
450
uint64_t helper_addf (uint64_t a, uint64_t b)
451
{
452
    float32 fa, fb, fr;
453

    
454
    fa = f_to_float32(a);
455
    fb = f_to_float32(b);
456
    fr = float32_add(fa, fb, &FP_STATUS);
457
    return float32_to_f(fr);
458
}
459

    
460
uint64_t helper_subf (uint64_t a, uint64_t b)
461
{
462
    float32 fa, fb, fr;
463

    
464
    fa = f_to_float32(a);
465
    fb = f_to_float32(b);
466
    fr = float32_sub(fa, fb, &FP_STATUS);
467
    return float32_to_f(fr);
468
}
469

    
470
uint64_t helper_mulf (uint64_t a, uint64_t b)
471
{
472
    float32 fa, fb, fr;
473

    
474
    fa = f_to_float32(a);
475
    fb = f_to_float32(b);
476
    fr = float32_mul(fa, fb, &FP_STATUS);
477
    return float32_to_f(fr);
478
}
479

    
480
uint64_t helper_divf (uint64_t a, uint64_t b)
481
{
482
    float32 fa, fb, fr;
483

    
484
    fa = f_to_float32(a);
485
    fb = f_to_float32(b);
486
    fr = float32_div(fa, fb, &FP_STATUS);
487
    return float32_to_f(fr);
488
}
489

    
490
uint64_t helper_sqrtf (uint64_t t)
491
{
492
    float32 ft, fr;
493

    
494
    ft = f_to_float32(t);
495
    fr = float32_sqrt(ft, &FP_STATUS);
496
    return float32_to_f(fr);
497
}
498

    
499

    
500
/* G floating (VAX) */
501
static inline uint64_t float64_to_g(float64 fa)
502
{
503
    uint64_t r, exp, mant, sig;
504
    CPU_DoubleU a;
505

    
506
    a.d = fa;
507
    sig = a.ll & 0x8000000000000000ull;
508
    exp = (a.ll >> 52) & 0x7ff;
509
    mant = a.ll & 0x000fffffffffffffull;
510

    
511
    if (exp == 2047) {
512
        /* NaN or infinity */
513
        r = 1; /* VAX dirty zero */
514
    } else if (exp == 0) {
515
        if (mant == 0) {
516
            /* Zero */
517
            r = 0;
518
        } else {
519
            /* Denormalized */
520
            r = sig | ((exp + 1) << 52) | mant;
521
        }
522
    } else {
523
        if (exp >= 2045) {
524
            /* Overflow */
525
            r = 1; /* VAX dirty zero */
526
        } else {
527
            r = sig | ((exp + 2) << 52);
528
        }
529
    }
530

    
531
    return r;
532
}
533

    
534
static inline float64 g_to_float64(uint64_t a)
535
{
536
    uint64_t exp, mant_sig;
537
    CPU_DoubleU r;
538

    
539
    exp = (a >> 52) & 0x7ff;
540
    mant_sig = a & 0x800fffffffffffffull;
541

    
542
    if (!exp && mant_sig) {
543
        /* Reserved operands / Dirty zero */
544
        helper_excp(EXCP_OPCDEC, 0);
545
    }
546

    
547
    if (exp < 3) {
548
        /* Underflow */
549
        r.ll = 0;
550
    } else {
551
        r.ll = ((exp - 2) << 52) | mant_sig;
552
    }
553

    
554
    return r.d;
555
}
556

    
557
uint64_t helper_g_to_memory (uint64_t a)
558
{
559
    uint64_t r;
560
    r =  (a & 0x000000000000ffffull) << 48;
561
    r |= (a & 0x00000000ffff0000ull) << 16;
562
    r |= (a & 0x0000ffff00000000ull) >> 16;
563
    r |= (a & 0xffff000000000000ull) >> 48;
564
    return r;
565
}
566

    
567
uint64_t helper_memory_to_g (uint64_t a)
568
{
569
    uint64_t r;
570
    r =  (a & 0x000000000000ffffull) << 48;
571
    r |= (a & 0x00000000ffff0000ull) << 16;
572
    r |= (a & 0x0000ffff00000000ull) >> 16;
573
    r |= (a & 0xffff000000000000ull) >> 48;
574
    return r;
575
}
576

    
577
uint64_t helper_addg (uint64_t a, uint64_t b)
578
{
579
    float64 fa, fb, fr;
580

    
581
    fa = g_to_float64(a);
582
    fb = g_to_float64(b);
583
    fr = float64_add(fa, fb, &FP_STATUS);
584
    return float64_to_g(fr);
585
}
586

    
587
uint64_t helper_subg (uint64_t a, uint64_t b)
588
{
589
    float64 fa, fb, fr;
590

    
591
    fa = g_to_float64(a);
592
    fb = g_to_float64(b);
593
    fr = float64_sub(fa, fb, &FP_STATUS);
594
    return float64_to_g(fr);
595
}
596

    
597
uint64_t helper_mulg (uint64_t a, uint64_t b)
598
{
599
    float64 fa, fb, fr;
600

    
601
    fa = g_to_float64(a);
602
    fb = g_to_float64(b);
603
    fr = float64_mul(fa, fb, &FP_STATUS);
604
    return float64_to_g(fr);
605
}
606

    
607
uint64_t helper_divg (uint64_t a, uint64_t b)
608
{
609
    float64 fa, fb, fr;
610

    
611
    fa = g_to_float64(a);
612
    fb = g_to_float64(b);
613
    fr = float64_div(fa, fb, &FP_STATUS);
614
    return float64_to_g(fr);
615
}
616

    
617
uint64_t helper_sqrtg (uint64_t a)
618
{
619
    float64 fa, fr;
620

    
621
    fa = g_to_float64(a);
622
    fr = float64_sqrt(fa, &FP_STATUS);
623
    return float64_to_g(fr);
624
}
625

    
626

    
627
/* S floating (single) */
628

    
629
/* Taken from linux/arch/alpha/kernel/traps.c, s_mem_to_reg.  */
630
static inline uint64_t float32_to_s_int(uint32_t fi)
631
{
632
    uint32_t frac = fi & 0x7fffff;
633
    uint32_t sign = fi >> 31;
634
    uint32_t exp_msb = (fi >> 30) & 1;
635
    uint32_t exp_low = (fi >> 23) & 0x7f;
636
    uint32_t exp;
637

    
638
    exp = (exp_msb << 10) | exp_low;
639
    if (exp_msb) {
640
        if (exp_low == 0x7f)
641
            exp = 0x7ff;
642
    } else {
643
        if (exp_low != 0x00)
644
            exp |= 0x380;
645
    }
646

    
647
    return (((uint64_t)sign << 63)
648
            | ((uint64_t)exp << 52)
649
            | ((uint64_t)frac << 29));
650
}
651

    
652
static inline uint64_t float32_to_s(float32 fa)
653
{
654
    CPU_FloatU a;
655
    a.f = fa;
656
    return float32_to_s_int(a.l);
657
}
658

    
659
static inline uint32_t s_to_float32_int(uint64_t a)
660
{
661
    return ((a >> 32) & 0xc0000000) | ((a >> 29) & 0x3fffffff);
662
}
663

    
664
static inline float32 s_to_float32(uint64_t a)
665
{
666
    CPU_FloatU r;
667
    r.l = s_to_float32_int(a);
668
    return r.f;
669
}
670

    
671
uint32_t helper_s_to_memory (uint64_t a)
672
{
673
    return s_to_float32_int(a);
674
}
675

    
676
uint64_t helper_memory_to_s (uint32_t a)
677
{
678
    return float32_to_s_int(a);
679
}
680

    
681
uint64_t helper_adds (uint64_t a, uint64_t b)
682
{
683
    float32 fa, fb, fr;
684

    
685
    fa = s_to_float32(a);
686
    fb = s_to_float32(b);
687
    fr = float32_add(fa, fb, &FP_STATUS);
688
    return float32_to_s(fr);
689
}
690

    
691
uint64_t helper_subs (uint64_t a, uint64_t b)
692
{
693
    float32 fa, fb, fr;
694

    
695
    fa = s_to_float32(a);
696
    fb = s_to_float32(b);
697
    fr = float32_sub(fa, fb, &FP_STATUS);
698
    return float32_to_s(fr);
699
}
700

    
701
uint64_t helper_muls (uint64_t a, uint64_t b)
702
{
703
    float32 fa, fb, fr;
704

    
705
    fa = s_to_float32(a);
706
    fb = s_to_float32(b);
707
    fr = float32_mul(fa, fb, &FP_STATUS);
708
    return float32_to_s(fr);
709
}
710

    
711
uint64_t helper_divs (uint64_t a, uint64_t b)
712
{
713
    float32 fa, fb, fr;
714

    
715
    fa = s_to_float32(a);
716
    fb = s_to_float32(b);
717
    fr = float32_div(fa, fb, &FP_STATUS);
718
    return float32_to_s(fr);
719
}
720

    
721
uint64_t helper_sqrts (uint64_t a)
722
{
723
    float32 fa, fr;
724

    
725
    fa = s_to_float32(a);
726
    fr = float32_sqrt(fa, &FP_STATUS);
727
    return float32_to_s(fr);
728
}
729

    
730

    
731
/* T floating (double) */
732
static inline float64 t_to_float64(uint64_t a)
733
{
734
    /* Memory format is the same as float64 */
735
    CPU_DoubleU r;
736
    r.ll = a;
737
    return r.d;
738
}
739

    
740
static inline uint64_t float64_to_t(float64 fa)
741
{
742
    /* Memory format is the same as float64 */
743
    CPU_DoubleU r;
744
    r.d = fa;
745
    return r.ll;
746
}
747

    
748
uint64_t helper_addt (uint64_t a, uint64_t b)
749
{
750
    float64 fa, fb, fr;
751

    
752
    fa = t_to_float64(a);
753
    fb = t_to_float64(b);
754
    fr = float64_add(fa, fb, &FP_STATUS);
755
    return float64_to_t(fr);
756
}
757

    
758
uint64_t helper_subt (uint64_t a, uint64_t b)
759
{
760
    float64 fa, fb, fr;
761

    
762
    fa = t_to_float64(a);
763
    fb = t_to_float64(b);
764
    fr = float64_sub(fa, fb, &FP_STATUS);
765
    return float64_to_t(fr);
766
}
767

    
768
uint64_t helper_mult (uint64_t a, uint64_t b)
769
{
770
    float64 fa, fb, fr;
771

    
772
    fa = t_to_float64(a);
773
    fb = t_to_float64(b);
774
    fr = float64_mul(fa, fb, &FP_STATUS);
775
    return float64_to_t(fr);
776
}
777

    
778
uint64_t helper_divt (uint64_t a, uint64_t b)
779
{
780
    float64 fa, fb, fr;
781

    
782
    fa = t_to_float64(a);
783
    fb = t_to_float64(b);
784
    fr = float64_div(fa, fb, &FP_STATUS);
785
    return float64_to_t(fr);
786
}
787

    
788
uint64_t helper_sqrtt (uint64_t a)
789
{
790
    float64 fa, fr;
791

    
792
    fa = t_to_float64(a);
793
    fr = float64_sqrt(fa, &FP_STATUS);
794
    return float64_to_t(fr);
795
}
796

    
797

    
798
/* Sign copy */
799
uint64_t helper_cpys(uint64_t a, uint64_t b)
800
{
801
    return (a & 0x8000000000000000ULL) | (b & ~0x8000000000000000ULL);
802
}
803

    
804
uint64_t helper_cpysn(uint64_t a, uint64_t b)
805
{
806
    return ((~a) & 0x8000000000000000ULL) | (b & ~0x8000000000000000ULL);
807
}
808

    
809
uint64_t helper_cpyse(uint64_t a, uint64_t b)
810
{
811
    return (a & 0xFFF0000000000000ULL) | (b & ~0xFFF0000000000000ULL);
812
}
813

    
814

    
815
/* Comparisons */
816
uint64_t helper_cmptun (uint64_t a, uint64_t b)
817
{
818
    float64 fa, fb;
819

    
820
    fa = t_to_float64(a);
821
    fb = t_to_float64(b);
822

    
823
    if (float64_is_nan(fa) || float64_is_nan(fb))
824
        return 0x4000000000000000ULL;
825
    else
826
        return 0;
827
}
828

    
829
uint64_t helper_cmpteq(uint64_t a, uint64_t b)
830
{
831
    float64 fa, fb;
832

    
833
    fa = t_to_float64(a);
834
    fb = t_to_float64(b);
835

    
836
    if (float64_eq(fa, fb, &FP_STATUS))
837
        return 0x4000000000000000ULL;
838
    else
839
        return 0;
840
}
841

    
842
uint64_t helper_cmptle(uint64_t a, uint64_t b)
843
{
844
    float64 fa, fb;
845

    
846
    fa = t_to_float64(a);
847
    fb = t_to_float64(b);
848

    
849
    if (float64_le(fa, fb, &FP_STATUS))
850
        return 0x4000000000000000ULL;
851
    else
852
        return 0;
853
}
854

    
855
uint64_t helper_cmptlt(uint64_t a, uint64_t b)
856
{
857
    float64 fa, fb;
858

    
859
    fa = t_to_float64(a);
860
    fb = t_to_float64(b);
861

    
862
    if (float64_lt(fa, fb, &FP_STATUS))
863
        return 0x4000000000000000ULL;
864
    else
865
        return 0;
866
}
867

    
868
uint64_t helper_cmpgeq(uint64_t a, uint64_t b)
869
{
870
    float64 fa, fb;
871

    
872
    fa = g_to_float64(a);
873
    fb = g_to_float64(b);
874

    
875
    if (float64_eq(fa, fb, &FP_STATUS))
876
        return 0x4000000000000000ULL;
877
    else
878
        return 0;
879
}
880

    
881
uint64_t helper_cmpgle(uint64_t a, uint64_t b)
882
{
883
    float64 fa, fb;
884

    
885
    fa = g_to_float64(a);
886
    fb = g_to_float64(b);
887

    
888
    if (float64_le(fa, fb, &FP_STATUS))
889
        return 0x4000000000000000ULL;
890
    else
891
        return 0;
892
}
893

    
894
uint64_t helper_cmpglt(uint64_t a, uint64_t b)
895
{
896
    float64 fa, fb;
897

    
898
    fa = g_to_float64(a);
899
    fb = g_to_float64(b);
900

    
901
    if (float64_lt(fa, fb, &FP_STATUS))
902
        return 0x4000000000000000ULL;
903
    else
904
        return 0;
905
}
906

    
907
/* Floating point format conversion */
908
uint64_t helper_cvtts (uint64_t a)
909
{
910
    float64 fa;
911
    float32 fr;
912

    
913
    fa = t_to_float64(a);
914
    fr = float64_to_float32(fa, &FP_STATUS);
915
    return float32_to_s(fr);
916
}
917

    
918
uint64_t helper_cvtst (uint64_t a)
919
{
920
    float32 fa;
921
    float64 fr;
922

    
923
    fa = s_to_float32(a);
924
    fr = float32_to_float64(fa, &FP_STATUS);
925
    return float64_to_t(fr);
926
}
927

    
928
uint64_t helper_cvtqs (uint64_t a)
929
{
930
    float32 fr = int64_to_float32(a, &FP_STATUS);
931
    return float32_to_s(fr);
932
}
933

    
934
uint64_t helper_cvttq (uint64_t a)
935
{
936
    float64 fa = t_to_float64(a);
937
    return float64_to_int64_round_to_zero(fa, &FP_STATUS);
938
}
939

    
940
uint64_t helper_cvtqt (uint64_t a)
941
{
942
    float64 fr = int64_to_float64(a, &FP_STATUS);
943
    return float64_to_t(fr);
944
}
945

    
946
uint64_t helper_cvtqf (uint64_t a)
947
{
948
    float32 fr = int64_to_float32(a, &FP_STATUS);
949
    return float32_to_f(fr);
950
}
951

    
952
uint64_t helper_cvtgf (uint64_t a)
953
{
954
    float64 fa;
955
    float32 fr;
956

    
957
    fa = g_to_float64(a);
958
    fr = float64_to_float32(fa, &FP_STATUS);
959
    return float32_to_f(fr);
960
}
961

    
962
uint64_t helper_cvtgq (uint64_t a)
963
{
964
    float64 fa = g_to_float64(a);
965
    return float64_to_int64_round_to_zero(fa, &FP_STATUS);
966
}
967

    
968
uint64_t helper_cvtqg (uint64_t a)
969
{
970
    float64 fr;
971
    fr = int64_to_float64(a, &FP_STATUS);
972
    return float64_to_g(fr);
973
}
974

    
975
uint64_t helper_cvtlq (uint64_t a)
976
{
977
    int32_t lo = a >> 29;
978
    int32_t hi = a >> 32;
979
    return (lo & 0x3FFFFFFF) | (hi & 0xc0000000);
980
}
981

    
982
static inline uint64_t __helper_cvtql(uint64_t a, int s, int v)
983
{
984
    uint64_t r;
985

    
986
    r = ((uint64_t)(a & 0xC0000000)) << 32;
987
    r |= ((uint64_t)(a & 0x7FFFFFFF)) << 29;
988

    
989
    if (v && (int64_t)((int32_t)r) != (int64_t)r) {
990
        helper_excp(EXCP_ARITH, EXCP_ARITH_OVERFLOW);
991
    }
992
    if (s) {
993
        /* TODO */
994
    }
995
    return r;
996
}
997

    
998
uint64_t helper_cvtql (uint64_t a)
999
{
1000
    return __helper_cvtql(a, 0, 0);
1001
}
1002

    
1003
uint64_t helper_cvtqlv (uint64_t a)
1004
{
1005
    return __helper_cvtql(a, 0, 1);
1006
}
1007

    
1008
uint64_t helper_cvtqlsv (uint64_t a)
1009
{
1010
    return __helper_cvtql(a, 1, 1);
1011
}
1012

    
1013
/* PALcode support special instructions */
1014
#if !defined (CONFIG_USER_ONLY)
1015
void helper_hw_rei (void)
1016
{
1017
    env->pc = env->ipr[IPR_EXC_ADDR] & ~3;
1018
    env->ipr[IPR_EXC_ADDR] = env->ipr[IPR_EXC_ADDR] & 1;
1019
    /* XXX: re-enable interrupts and memory mapping */
1020
}
1021

    
1022
void helper_hw_ret (uint64_t a)
1023
{
1024
    env->pc = a & ~3;
1025
    env->ipr[IPR_EXC_ADDR] = a & 1;
1026
    /* XXX: re-enable interrupts and memory mapping */
1027
}
1028

    
1029
uint64_t helper_mfpr (int iprn, uint64_t val)
1030
{
1031
    uint64_t tmp;
1032

    
1033
    if (cpu_alpha_mfpr(env, iprn, &tmp) == 0)
1034
        val = tmp;
1035

    
1036
    return val;
1037
}
1038

    
1039
void helper_mtpr (int iprn, uint64_t val)
1040
{
1041
    cpu_alpha_mtpr(env, iprn, val, NULL);
1042
}
1043

    
1044
void helper_set_alt_mode (void)
1045
{
1046
    env->saved_mode = env->ps & 0xC;
1047
    env->ps = (env->ps & ~0xC) | (env->ipr[IPR_ALT_MODE] & 0xC);
1048
}
1049

    
1050
void helper_restore_mode (void)
1051
{
1052
    env->ps = (env->ps & ~0xC) | env->saved_mode;
1053
}
1054

    
1055
#endif
1056

    
1057
/*****************************************************************************/
1058
/* Softmmu support */
1059
#if !defined (CONFIG_USER_ONLY)
1060

    
1061
/* XXX: the two following helpers are pure hacks.
1062
 *      Hopefully, we emulate the PALcode, then we should never see
1063
 *      HW_LD / HW_ST instructions.
1064
 */
1065
uint64_t helper_ld_virt_to_phys (uint64_t virtaddr)
1066
{
1067
    uint64_t tlb_addr, physaddr;
1068
    int index, mmu_idx;
1069
    void *retaddr;
1070

    
1071
    mmu_idx = cpu_mmu_index(env);
1072
    index = (virtaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1073
 redo:
1074
    tlb_addr = env->tlb_table[mmu_idx][index].addr_read;
1075
    if ((virtaddr & TARGET_PAGE_MASK) ==
1076
        (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1077
        physaddr = virtaddr + env->tlb_table[mmu_idx][index].addend;
1078
    } else {
1079
        /* the page is not in the TLB : fill it */
1080
        retaddr = GETPC();
1081
        tlb_fill(virtaddr, 0, mmu_idx, retaddr);
1082
        goto redo;
1083
    }
1084
    return physaddr;
1085
}
1086

    
1087
uint64_t helper_st_virt_to_phys (uint64_t virtaddr)
1088
{
1089
    uint64_t tlb_addr, physaddr;
1090
    int index, mmu_idx;
1091
    void *retaddr;
1092

    
1093
    mmu_idx = cpu_mmu_index(env);
1094
    index = (virtaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1095
 redo:
1096
    tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
1097
    if ((virtaddr & TARGET_PAGE_MASK) ==
1098
        (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1099
        physaddr = virtaddr + env->tlb_table[mmu_idx][index].addend;
1100
    } else {
1101
        /* the page is not in the TLB : fill it */
1102
        retaddr = GETPC();
1103
        tlb_fill(virtaddr, 1, mmu_idx, retaddr);
1104
        goto redo;
1105
    }
1106
    return physaddr;
1107
}
1108

    
1109
void helper_ldl_raw(uint64_t t0, uint64_t t1)
1110
{
1111
    ldl_raw(t1, t0);
1112
}
1113

    
1114
void helper_ldq_raw(uint64_t t0, uint64_t t1)
1115
{
1116
    ldq_raw(t1, t0);
1117
}
1118

    
1119
void helper_ldl_l_raw(uint64_t t0, uint64_t t1)
1120
{
1121
    env->lock = t1;
1122
    ldl_raw(t1, t0);
1123
}
1124

    
1125
void helper_ldq_l_raw(uint64_t t0, uint64_t t1)
1126
{
1127
    env->lock = t1;
1128
    ldl_raw(t1, t0);
1129
}
1130

    
1131
void helper_ldl_kernel(uint64_t t0, uint64_t t1)
1132
{
1133
    ldl_kernel(t1, t0);
1134
}
1135

    
1136
void helper_ldq_kernel(uint64_t t0, uint64_t t1)
1137
{
1138
    ldq_kernel(t1, t0);
1139
}
1140

    
1141
void helper_ldl_data(uint64_t t0, uint64_t t1)
1142
{
1143
    ldl_data(t1, t0);
1144
}
1145

    
1146
void helper_ldq_data(uint64_t t0, uint64_t t1)
1147
{
1148
    ldq_data(t1, t0);
1149
}
1150

    
1151
void helper_stl_raw(uint64_t t0, uint64_t t1)
1152
{
1153
    stl_raw(t1, t0);
1154
}
1155

    
1156
void helper_stq_raw(uint64_t t0, uint64_t t1)
1157
{
1158
    stq_raw(t1, t0);
1159
}
1160

    
1161
uint64_t helper_stl_c_raw(uint64_t t0, uint64_t t1)
1162
{
1163
    uint64_t ret;
1164

    
1165
    if (t1 == env->lock) {
1166
        stl_raw(t1, t0);
1167
        ret = 0;
1168
    } else
1169
        ret = 1;
1170

    
1171
    env->lock = 1;
1172

    
1173
    return ret;
1174
}
1175

    
1176
uint64_t helper_stq_c_raw(uint64_t t0, uint64_t t1)
1177
{
1178
    uint64_t ret;
1179

    
1180
    if (t1 == env->lock) {
1181
        stq_raw(t1, t0);
1182
        ret = 0;
1183
    } else
1184
        ret = 1;
1185

    
1186
    env->lock = 1;
1187

    
1188
    return ret;
1189
}
1190

    
1191
#define MMUSUFFIX _mmu
1192

    
1193
#define SHIFT 0
1194
#include "softmmu_template.h"
1195

    
1196
#define SHIFT 1
1197
#include "softmmu_template.h"
1198

    
1199
#define SHIFT 2
1200
#include "softmmu_template.h"
1201

    
1202
#define SHIFT 3
1203
#include "softmmu_template.h"
1204

    
1205
/* try to fill the TLB and return an exception if error. If retaddr is
1206
   NULL, it means that the function was called in C code (i.e. not
1207
   from generated code or from helper.c) */
1208
/* XXX: fix it to restore all registers */
1209
void tlb_fill (target_ulong addr, int is_write, int mmu_idx, void *retaddr)
1210
{
1211
    TranslationBlock *tb;
1212
    CPUState *saved_env;
1213
    unsigned long pc;
1214
    int ret;
1215

    
1216
    /* XXX: hack to restore env in all cases, even if not called from
1217
       generated code */
1218
    saved_env = env;
1219
    env = cpu_single_env;
1220
    ret = cpu_alpha_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
1221
    if (!likely(ret == 0)) {
1222
        if (likely(retaddr)) {
1223
            /* now we have a real cpu fault */
1224
            pc = (unsigned long)retaddr;
1225
            tb = tb_find_pc(pc);
1226
            if (likely(tb)) {
1227
                /* the PC is inside the translated code. It means that we have
1228
                   a virtual CPU fault */
1229
                cpu_restore_state(tb, env, pc, NULL);
1230
            }
1231
        }
1232
        /* Exception index and error code are already set */
1233
        cpu_loop_exit();
1234
    }
1235
    env = saved_env;
1236
}
1237

    
1238
#endif