Statistics
| Branch: | Revision:

root / kvm-all.c @ 7ae26bd4

History | View | Annotate | Download (49.8 kB)

1
/*
2
 * QEMU KVM support
3
 *
4
 * Copyright IBM, Corp. 2008
5
 *           Red Hat, Inc. 2008
6
 *
7
 * Authors:
8
 *  Anthony Liguori   <aliguori@us.ibm.com>
9
 *  Glauber Costa     <gcosta@redhat.com>
10
 *
11
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12
 * See the COPYING file in the top-level directory.
13
 *
14
 */
15

    
16
#include <sys/types.h>
17
#include <sys/ioctl.h>
18
#include <sys/mman.h>
19
#include <stdarg.h>
20

    
21
#include <linux/kvm.h>
22

    
23
#include "qemu-common.h"
24
#include "qemu-barrier.h"
25
#include "qemu-option.h"
26
#include "qemu-config.h"
27
#include "sysemu.h"
28
#include "hw/hw.h"
29
#include "hw/msi.h"
30
#include "gdbstub.h"
31
#include "kvm.h"
32
#include "bswap.h"
33
#include "memory.h"
34
#include "exec-memory.h"
35
#include "event_notifier.h"
36

    
37
/* This check must be after config-host.h is included */
38
#ifdef CONFIG_EVENTFD
39
#include <sys/eventfd.h>
40
#endif
41

    
42
/* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */
43
#define PAGE_SIZE TARGET_PAGE_SIZE
44

    
45
//#define DEBUG_KVM
46

    
47
#ifdef DEBUG_KVM
48
#define DPRINTF(fmt, ...) \
49
    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
50
#else
51
#define DPRINTF(fmt, ...) \
52
    do { } while (0)
53
#endif
54

    
55
#define KVM_MSI_HASHTAB_SIZE    256
56

    
57
typedef struct KVMSlot
58
{
59
    target_phys_addr_t start_addr;
60
    ram_addr_t memory_size;
61
    void *ram;
62
    int slot;
63
    int flags;
64
} KVMSlot;
65

    
66
typedef struct kvm_dirty_log KVMDirtyLog;
67

    
68
struct KVMState
69
{
70
    KVMSlot slots[32];
71
    int fd;
72
    int vmfd;
73
    int coalesced_mmio;
74
    struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
75
    bool coalesced_flush_in_progress;
76
    int broken_set_mem_region;
77
    int migration_log;
78
    int vcpu_events;
79
    int robust_singlestep;
80
    int debugregs;
81
#ifdef KVM_CAP_SET_GUEST_DEBUG
82
    struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
83
#endif
84
    int pit_state2;
85
    int xsave, xcrs;
86
    int many_ioeventfds;
87
    /* The man page (and posix) say ioctl numbers are signed int, but
88
     * they're not.  Linux, glibc and *BSD all treat ioctl numbers as
89
     * unsigned, and treating them as signed here can break things */
90
    unsigned irqchip_inject_ioctl;
91
#ifdef KVM_CAP_IRQ_ROUTING
92
    struct kvm_irq_routing *irq_routes;
93
    int nr_allocated_irq_routes;
94
    uint32_t *used_gsi_bitmap;
95
    unsigned int gsi_count;
96
    QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
97
    bool direct_msi;
98
#endif
99
};
100

    
101
KVMState *kvm_state;
102
bool kvm_kernel_irqchip;
103
bool kvm_async_interrupts_allowed;
104

    
105
static const KVMCapabilityInfo kvm_required_capabilites[] = {
106
    KVM_CAP_INFO(USER_MEMORY),
107
    KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
108
    KVM_CAP_LAST_INFO
109
};
110

    
111
static KVMSlot *kvm_alloc_slot(KVMState *s)
112
{
113
    int i;
114

    
115
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
116
        if (s->slots[i].memory_size == 0) {
117
            return &s->slots[i];
118
        }
119
    }
120

    
121
    fprintf(stderr, "%s: no free slot available\n", __func__);
122
    abort();
123
}
124

    
125
static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
126
                                         target_phys_addr_t start_addr,
127
                                         target_phys_addr_t end_addr)
128
{
129
    int i;
130

    
131
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
132
        KVMSlot *mem = &s->slots[i];
133

    
134
        if (start_addr == mem->start_addr &&
135
            end_addr == mem->start_addr + mem->memory_size) {
136
            return mem;
137
        }
138
    }
139

    
140
    return NULL;
141
}
142

    
143
/*
144
 * Find overlapping slot with lowest start address
145
 */
146
static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
147
                                            target_phys_addr_t start_addr,
148
                                            target_phys_addr_t end_addr)
149
{
150
    KVMSlot *found = NULL;
151
    int i;
152

    
153
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
154
        KVMSlot *mem = &s->slots[i];
155

    
156
        if (mem->memory_size == 0 ||
157
            (found && found->start_addr < mem->start_addr)) {
158
            continue;
159
        }
160

    
161
        if (end_addr > mem->start_addr &&
162
            start_addr < mem->start_addr + mem->memory_size) {
163
            found = mem;
164
        }
165
    }
166

    
167
    return found;
168
}
169

    
170
int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
171
                                       target_phys_addr_t *phys_addr)
172
{
173
    int i;
174

    
175
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
176
        KVMSlot *mem = &s->slots[i];
177

    
178
        if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
179
            *phys_addr = mem->start_addr + (ram - mem->ram);
180
            return 1;
181
        }
182
    }
183

    
184
    return 0;
185
}
186

    
187
static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
188
{
189
    struct kvm_userspace_memory_region mem;
190

    
191
    mem.slot = slot->slot;
192
    mem.guest_phys_addr = slot->start_addr;
193
    mem.memory_size = slot->memory_size;
194
    mem.userspace_addr = (unsigned long)slot->ram;
195
    mem.flags = slot->flags;
196
    if (s->migration_log) {
197
        mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
198
    }
199
    return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
200
}
201

    
202
static void kvm_reset_vcpu(void *opaque)
203
{
204
    CPUArchState *env = opaque;
205

    
206
    kvm_arch_reset_vcpu(env);
207
}
208

    
209
int kvm_init_vcpu(CPUArchState *env)
210
{
211
    KVMState *s = kvm_state;
212
    long mmap_size;
213
    int ret;
214

    
215
    DPRINTF("kvm_init_vcpu\n");
216

    
217
    ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
218
    if (ret < 0) {
219
        DPRINTF("kvm_create_vcpu failed\n");
220
        goto err;
221
    }
222

    
223
    env->kvm_fd = ret;
224
    env->kvm_state = s;
225
    env->kvm_vcpu_dirty = 1;
226

    
227
    mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
228
    if (mmap_size < 0) {
229
        ret = mmap_size;
230
        DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
231
        goto err;
232
    }
233

    
234
    env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
235
                        env->kvm_fd, 0);
236
    if (env->kvm_run == MAP_FAILED) {
237
        ret = -errno;
238
        DPRINTF("mmap'ing vcpu state failed\n");
239
        goto err;
240
    }
241

    
242
    if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
243
        s->coalesced_mmio_ring =
244
            (void *)env->kvm_run + s->coalesced_mmio * PAGE_SIZE;
245
    }
246

    
247
    ret = kvm_arch_init_vcpu(env);
248
    if (ret == 0) {
249
        qemu_register_reset(kvm_reset_vcpu, env);
250
        kvm_arch_reset_vcpu(env);
251
    }
252
err:
253
    return ret;
254
}
255

    
256
/*
257
 * dirty pages logging control
258
 */
259

    
260
static int kvm_mem_flags(KVMState *s, bool log_dirty)
261
{
262
    return log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0;
263
}
264

    
265
static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty)
266
{
267
    KVMState *s = kvm_state;
268
    int flags, mask = KVM_MEM_LOG_DIRTY_PAGES;
269
    int old_flags;
270

    
271
    old_flags = mem->flags;
272

    
273
    flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty);
274
    mem->flags = flags;
275

    
276
    /* If nothing changed effectively, no need to issue ioctl */
277
    if (s->migration_log) {
278
        flags |= KVM_MEM_LOG_DIRTY_PAGES;
279
    }
280

    
281
    if (flags == old_flags) {
282
        return 0;
283
    }
284

    
285
    return kvm_set_user_memory_region(s, mem);
286
}
287

    
288
static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
289
                                      ram_addr_t size, bool log_dirty)
290
{
291
    KVMState *s = kvm_state;
292
    KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
293

    
294
    if (mem == NULL)  {
295
        fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
296
                TARGET_FMT_plx "\n", __func__, phys_addr,
297
                (target_phys_addr_t)(phys_addr + size - 1));
298
        return -EINVAL;
299
    }
300
    return kvm_slot_dirty_pages_log_change(mem, log_dirty);
301
}
302

    
303
static void kvm_log_start(MemoryListener *listener,
304
                          MemoryRegionSection *section)
305
{
306
    int r;
307

    
308
    r = kvm_dirty_pages_log_change(section->offset_within_address_space,
309
                                   section->size, true);
310
    if (r < 0) {
311
        abort();
312
    }
313
}
314

    
315
static void kvm_log_stop(MemoryListener *listener,
316
                          MemoryRegionSection *section)
317
{
318
    int r;
319

    
320
    r = kvm_dirty_pages_log_change(section->offset_within_address_space,
321
                                   section->size, false);
322
    if (r < 0) {
323
        abort();
324
    }
325
}
326

    
327
static int kvm_set_migration_log(int enable)
328
{
329
    KVMState *s = kvm_state;
330
    KVMSlot *mem;
331
    int i, err;
332

    
333
    s->migration_log = enable;
334

    
335
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
336
        mem = &s->slots[i];
337

    
338
        if (!mem->memory_size) {
339
            continue;
340
        }
341
        if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
342
            continue;
343
        }
344
        err = kvm_set_user_memory_region(s, mem);
345
        if (err) {
346
            return err;
347
        }
348
    }
349
    return 0;
350
}
351

    
352
/* get kvm's dirty pages bitmap and update qemu's */
353
static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
354
                                         unsigned long *bitmap)
355
{
356
    unsigned int i, j;
357
    unsigned long page_number, c;
358
    target_phys_addr_t addr, addr1;
359
    unsigned int len = ((section->size / TARGET_PAGE_SIZE) + HOST_LONG_BITS - 1) / HOST_LONG_BITS;
360
    unsigned long hpratio = getpagesize() / TARGET_PAGE_SIZE;
361

    
362
    /*
363
     * bitmap-traveling is faster than memory-traveling (for addr...)
364
     * especially when most of the memory is not dirty.
365
     */
366
    for (i = 0; i < len; i++) {
367
        if (bitmap[i] != 0) {
368
            c = leul_to_cpu(bitmap[i]);
369
            do {
370
                j = ffsl(c) - 1;
371
                c &= ~(1ul << j);
372
                page_number = (i * HOST_LONG_BITS + j) * hpratio;
373
                addr1 = page_number * TARGET_PAGE_SIZE;
374
                addr = section->offset_within_region + addr1;
375
                memory_region_set_dirty(section->mr, addr,
376
                                        TARGET_PAGE_SIZE * hpratio);
377
            } while (c != 0);
378
        }
379
    }
380
    return 0;
381
}
382

    
383
#define ALIGN(x, y)  (((x)+(y)-1) & ~((y)-1))
384

    
385
/**
386
 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
387
 * This function updates qemu's dirty bitmap using
388
 * memory_region_set_dirty().  This means all bits are set
389
 * to dirty.
390
 *
391
 * @start_add: start of logged region.
392
 * @end_addr: end of logged region.
393
 */
394
static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection *section)
395
{
396
    KVMState *s = kvm_state;
397
    unsigned long size, allocated_size = 0;
398
    KVMDirtyLog d;
399
    KVMSlot *mem;
400
    int ret = 0;
401
    target_phys_addr_t start_addr = section->offset_within_address_space;
402
    target_phys_addr_t end_addr = start_addr + section->size;
403

    
404
    d.dirty_bitmap = NULL;
405
    while (start_addr < end_addr) {
406
        mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
407
        if (mem == NULL) {
408
            break;
409
        }
410

    
411
        /* XXX bad kernel interface alert
412
         * For dirty bitmap, kernel allocates array of size aligned to
413
         * bits-per-long.  But for case when the kernel is 64bits and
414
         * the userspace is 32bits, userspace can't align to the same
415
         * bits-per-long, since sizeof(long) is different between kernel
416
         * and user space.  This way, userspace will provide buffer which
417
         * may be 4 bytes less than the kernel will use, resulting in
418
         * userspace memory corruption (which is not detectable by valgrind
419
         * too, in most cases).
420
         * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
421
         * a hope that sizeof(long) wont become >8 any time soon.
422
         */
423
        size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
424
                     /*HOST_LONG_BITS*/ 64) / 8;
425
        if (!d.dirty_bitmap) {
426
            d.dirty_bitmap = g_malloc(size);
427
        } else if (size > allocated_size) {
428
            d.dirty_bitmap = g_realloc(d.dirty_bitmap, size);
429
        }
430
        allocated_size = size;
431
        memset(d.dirty_bitmap, 0, allocated_size);
432

    
433
        d.slot = mem->slot;
434

    
435
        if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
436
            DPRINTF("ioctl failed %d\n", errno);
437
            ret = -1;
438
            break;
439
        }
440

    
441
        kvm_get_dirty_pages_log_range(section, d.dirty_bitmap);
442
        start_addr = mem->start_addr + mem->memory_size;
443
    }
444
    g_free(d.dirty_bitmap);
445

    
446
    return ret;
447
}
448

    
449
int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
450
{
451
    int ret = -ENOSYS;
452
    KVMState *s = kvm_state;
453

    
454
    if (s->coalesced_mmio) {
455
        struct kvm_coalesced_mmio_zone zone;
456

    
457
        zone.addr = start;
458
        zone.size = size;
459
        zone.pad = 0;
460

    
461
        ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
462
    }
463

    
464
    return ret;
465
}
466

    
467
int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
468
{
469
    int ret = -ENOSYS;
470
    KVMState *s = kvm_state;
471

    
472
    if (s->coalesced_mmio) {
473
        struct kvm_coalesced_mmio_zone zone;
474

    
475
        zone.addr = start;
476
        zone.size = size;
477
        zone.pad = 0;
478

    
479
        ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
480
    }
481

    
482
    return ret;
483
}
484

    
485
int kvm_check_extension(KVMState *s, unsigned int extension)
486
{
487
    int ret;
488

    
489
    ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
490
    if (ret < 0) {
491
        ret = 0;
492
    }
493

    
494
    return ret;
495
}
496

    
497
static int kvm_check_many_ioeventfds(void)
498
{
499
    /* Userspace can use ioeventfd for io notification.  This requires a host
500
     * that supports eventfd(2) and an I/O thread; since eventfd does not
501
     * support SIGIO it cannot interrupt the vcpu.
502
     *
503
     * Older kernels have a 6 device limit on the KVM io bus.  Find out so we
504
     * can avoid creating too many ioeventfds.
505
     */
506
#if defined(CONFIG_EVENTFD)
507
    int ioeventfds[7];
508
    int i, ret = 0;
509
    for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
510
        ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
511
        if (ioeventfds[i] < 0) {
512
            break;
513
        }
514
        ret = kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, true);
515
        if (ret < 0) {
516
            close(ioeventfds[i]);
517
            break;
518
        }
519
    }
520

    
521
    /* Decide whether many devices are supported or not */
522
    ret = i == ARRAY_SIZE(ioeventfds);
523

    
524
    while (i-- > 0) {
525
        kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, false);
526
        close(ioeventfds[i]);
527
    }
528
    return ret;
529
#else
530
    return 0;
531
#endif
532
}
533

    
534
static const KVMCapabilityInfo *
535
kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
536
{
537
    while (list->name) {
538
        if (!kvm_check_extension(s, list->value)) {
539
            return list;
540
        }
541
        list++;
542
    }
543
    return NULL;
544
}
545

    
546
static void kvm_set_phys_mem(MemoryRegionSection *section, bool add)
547
{
548
    KVMState *s = kvm_state;
549
    KVMSlot *mem, old;
550
    int err;
551
    MemoryRegion *mr = section->mr;
552
    bool log_dirty = memory_region_is_logging(mr);
553
    target_phys_addr_t start_addr = section->offset_within_address_space;
554
    ram_addr_t size = section->size;
555
    void *ram = NULL;
556
    unsigned delta;
557

    
558
    /* kvm works in page size chunks, but the function may be called
559
       with sub-page size and unaligned start address. */
560
    delta = TARGET_PAGE_ALIGN(size) - size;
561
    if (delta > size) {
562
        return;
563
    }
564
    start_addr += delta;
565
    size -= delta;
566
    size &= TARGET_PAGE_MASK;
567
    if (!size || (start_addr & ~TARGET_PAGE_MASK)) {
568
        return;
569
    }
570

    
571
    if (!memory_region_is_ram(mr)) {
572
        return;
573
    }
574

    
575
    ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta;
576

    
577
    while (1) {
578
        mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
579
        if (!mem) {
580
            break;
581
        }
582

    
583
        if (add && start_addr >= mem->start_addr &&
584
            (start_addr + size <= mem->start_addr + mem->memory_size) &&
585
            (ram - start_addr == mem->ram - mem->start_addr)) {
586
            /* The new slot fits into the existing one and comes with
587
             * identical parameters - update flags and done. */
588
            kvm_slot_dirty_pages_log_change(mem, log_dirty);
589
            return;
590
        }
591

    
592
        old = *mem;
593

    
594
        if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
595
            kvm_physical_sync_dirty_bitmap(section);
596
        }
597

    
598
        /* unregister the overlapping slot */
599
        mem->memory_size = 0;
600
        err = kvm_set_user_memory_region(s, mem);
601
        if (err) {
602
            fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
603
                    __func__, strerror(-err));
604
            abort();
605
        }
606

    
607
        /* Workaround for older KVM versions: we can't join slots, even not by
608
         * unregistering the previous ones and then registering the larger
609
         * slot. We have to maintain the existing fragmentation. Sigh.
610
         *
611
         * This workaround assumes that the new slot starts at the same
612
         * address as the first existing one. If not or if some overlapping
613
         * slot comes around later, we will fail (not seen in practice so far)
614
         * - and actually require a recent KVM version. */
615
        if (s->broken_set_mem_region &&
616
            old.start_addr == start_addr && old.memory_size < size && add) {
617
            mem = kvm_alloc_slot(s);
618
            mem->memory_size = old.memory_size;
619
            mem->start_addr = old.start_addr;
620
            mem->ram = old.ram;
621
            mem->flags = kvm_mem_flags(s, log_dirty);
622

    
623
            err = kvm_set_user_memory_region(s, mem);
624
            if (err) {
625
                fprintf(stderr, "%s: error updating slot: %s\n", __func__,
626
                        strerror(-err));
627
                abort();
628
            }
629

    
630
            start_addr += old.memory_size;
631
            ram += old.memory_size;
632
            size -= old.memory_size;
633
            continue;
634
        }
635

    
636
        /* register prefix slot */
637
        if (old.start_addr < start_addr) {
638
            mem = kvm_alloc_slot(s);
639
            mem->memory_size = start_addr - old.start_addr;
640
            mem->start_addr = old.start_addr;
641
            mem->ram = old.ram;
642
            mem->flags =  kvm_mem_flags(s, log_dirty);
643

    
644
            err = kvm_set_user_memory_region(s, mem);
645
            if (err) {
646
                fprintf(stderr, "%s: error registering prefix slot: %s\n",
647
                        __func__, strerror(-err));
648
#ifdef TARGET_PPC
649
                fprintf(stderr, "%s: This is probably because your kernel's " \
650
                                "PAGE_SIZE is too big. Please try to use 4k " \
651
                                "PAGE_SIZE!\n", __func__);
652
#endif
653
                abort();
654
            }
655
        }
656

    
657
        /* register suffix slot */
658
        if (old.start_addr + old.memory_size > start_addr + size) {
659
            ram_addr_t size_delta;
660

    
661
            mem = kvm_alloc_slot(s);
662
            mem->start_addr = start_addr + size;
663
            size_delta = mem->start_addr - old.start_addr;
664
            mem->memory_size = old.memory_size - size_delta;
665
            mem->ram = old.ram + size_delta;
666
            mem->flags = kvm_mem_flags(s, log_dirty);
667

    
668
            err = kvm_set_user_memory_region(s, mem);
669
            if (err) {
670
                fprintf(stderr, "%s: error registering suffix slot: %s\n",
671
                        __func__, strerror(-err));
672
                abort();
673
            }
674
        }
675
    }
676

    
677
    /* in case the KVM bug workaround already "consumed" the new slot */
678
    if (!size) {
679
        return;
680
    }
681
    if (!add) {
682
        return;
683
    }
684
    mem = kvm_alloc_slot(s);
685
    mem->memory_size = size;
686
    mem->start_addr = start_addr;
687
    mem->ram = ram;
688
    mem->flags = kvm_mem_flags(s, log_dirty);
689

    
690
    err = kvm_set_user_memory_region(s, mem);
691
    if (err) {
692
        fprintf(stderr, "%s: error registering slot: %s\n", __func__,
693
                strerror(-err));
694
        abort();
695
    }
696
}
697

    
698
static void kvm_begin(MemoryListener *listener)
699
{
700
}
701

    
702
static void kvm_commit(MemoryListener *listener)
703
{
704
}
705

    
706
static void kvm_region_add(MemoryListener *listener,
707
                           MemoryRegionSection *section)
708
{
709
    kvm_set_phys_mem(section, true);
710
}
711

    
712
static void kvm_region_del(MemoryListener *listener,
713
                           MemoryRegionSection *section)
714
{
715
    kvm_set_phys_mem(section, false);
716
}
717

    
718
static void kvm_region_nop(MemoryListener *listener,
719
                           MemoryRegionSection *section)
720
{
721
}
722

    
723
static void kvm_log_sync(MemoryListener *listener,
724
                         MemoryRegionSection *section)
725
{
726
    int r;
727

    
728
    r = kvm_physical_sync_dirty_bitmap(section);
729
    if (r < 0) {
730
        abort();
731
    }
732
}
733

    
734
static void kvm_log_global_start(struct MemoryListener *listener)
735
{
736
    int r;
737

    
738
    r = kvm_set_migration_log(1);
739
    assert(r >= 0);
740
}
741

    
742
static void kvm_log_global_stop(struct MemoryListener *listener)
743
{
744
    int r;
745

    
746
    r = kvm_set_migration_log(0);
747
    assert(r >= 0);
748
}
749

    
750
static void kvm_mem_ioeventfd_add(MemoryRegionSection *section,
751
                                  bool match_data, uint64_t data, int fd)
752
{
753
    int r;
754

    
755
    assert(match_data && section->size <= 8);
756

    
757
    r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
758
                               data, true, section->size);
759
    if (r < 0) {
760
        abort();
761
    }
762
}
763

    
764
static void kvm_mem_ioeventfd_del(MemoryRegionSection *section,
765
                                  bool match_data, uint64_t data, int fd)
766
{
767
    int r;
768

    
769
    r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
770
                               data, false, section->size);
771
    if (r < 0) {
772
        abort();
773
    }
774
}
775

    
776
static void kvm_io_ioeventfd_add(MemoryRegionSection *section,
777
                                 bool match_data, uint64_t data, int fd)
778
{
779
    int r;
780

    
781
    assert(match_data && section->size == 2);
782

    
783
    r = kvm_set_ioeventfd_pio_word(fd, section->offset_within_address_space,
784
                                   data, true);
785
    if (r < 0) {
786
        abort();
787
    }
788
}
789

    
790
static void kvm_io_ioeventfd_del(MemoryRegionSection *section,
791
                                 bool match_data, uint64_t data, int fd)
792

    
793
{
794
    int r;
795

    
796
    r = kvm_set_ioeventfd_pio_word(fd, section->offset_within_address_space,
797
                                   data, false);
798
    if (r < 0) {
799
        abort();
800
    }
801
}
802

    
803
static void kvm_eventfd_add(MemoryListener *listener,
804
                            MemoryRegionSection *section,
805
                            bool match_data, uint64_t data,
806
                            EventNotifier *e)
807
{
808
    if (section->address_space == get_system_memory()) {
809
        kvm_mem_ioeventfd_add(section, match_data, data,
810
                              event_notifier_get_fd(e));
811
    } else {
812
        kvm_io_ioeventfd_add(section, match_data, data,
813
                             event_notifier_get_fd(e));
814
    }
815
}
816

    
817
static void kvm_eventfd_del(MemoryListener *listener,
818
                            MemoryRegionSection *section,
819
                            bool match_data, uint64_t data,
820
                            EventNotifier *e)
821
{
822
    if (section->address_space == get_system_memory()) {
823
        kvm_mem_ioeventfd_del(section, match_data, data,
824
                              event_notifier_get_fd(e));
825
    } else {
826
        kvm_io_ioeventfd_del(section, match_data, data,
827
                             event_notifier_get_fd(e));
828
    }
829
}
830

    
831
static MemoryListener kvm_memory_listener = {
832
    .begin = kvm_begin,
833
    .commit = kvm_commit,
834
    .region_add = kvm_region_add,
835
    .region_del = kvm_region_del,
836
    .region_nop = kvm_region_nop,
837
    .log_start = kvm_log_start,
838
    .log_stop = kvm_log_stop,
839
    .log_sync = kvm_log_sync,
840
    .log_global_start = kvm_log_global_start,
841
    .log_global_stop = kvm_log_global_stop,
842
    .eventfd_add = kvm_eventfd_add,
843
    .eventfd_del = kvm_eventfd_del,
844
    .priority = 10,
845
};
846

    
847
static void kvm_handle_interrupt(CPUArchState *env, int mask)
848
{
849
    env->interrupt_request |= mask;
850

    
851
    if (!qemu_cpu_is_self(env)) {
852
        qemu_cpu_kick(env);
853
    }
854
}
855

    
856
int kvm_irqchip_set_irq(KVMState *s, int irq, int level)
857
{
858
    struct kvm_irq_level event;
859
    int ret;
860

    
861
    assert(kvm_async_interrupts_enabled());
862

    
863
    event.level = level;
864
    event.irq = irq;
865
    ret = kvm_vm_ioctl(s, s->irqchip_inject_ioctl, &event);
866
    if (ret < 0) {
867
        perror("kvm_set_irqchip_line");
868
        abort();
869
    }
870

    
871
    return (s->irqchip_inject_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
872
}
873

    
874
#ifdef KVM_CAP_IRQ_ROUTING
875
typedef struct KVMMSIRoute {
876
    struct kvm_irq_routing_entry kroute;
877
    QTAILQ_ENTRY(KVMMSIRoute) entry;
878
} KVMMSIRoute;
879

    
880
static void set_gsi(KVMState *s, unsigned int gsi)
881
{
882
    s->used_gsi_bitmap[gsi / 32] |= 1U << (gsi % 32);
883
}
884

    
885
static void clear_gsi(KVMState *s, unsigned int gsi)
886
{
887
    s->used_gsi_bitmap[gsi / 32] &= ~(1U << (gsi % 32));
888
}
889

    
890
static void kvm_init_irq_routing(KVMState *s)
891
{
892
    int gsi_count, i;
893

    
894
    gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING);
895
    if (gsi_count > 0) {
896
        unsigned int gsi_bits, i;
897

    
898
        /* Round up so we can search ints using ffs */
899
        gsi_bits = ALIGN(gsi_count, 32);
900
        s->used_gsi_bitmap = g_malloc0(gsi_bits / 8);
901
        s->gsi_count = gsi_count;
902

    
903
        /* Mark any over-allocated bits as already in use */
904
        for (i = gsi_count; i < gsi_bits; i++) {
905
            set_gsi(s, i);
906
        }
907
    }
908

    
909
    s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
910
    s->nr_allocated_irq_routes = 0;
911

    
912
    if (!s->direct_msi) {
913
        for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
914
            QTAILQ_INIT(&s->msi_hashtab[i]);
915
        }
916
    }
917

    
918
    kvm_arch_init_irq_routing(s);
919
}
920

    
921
static void kvm_irqchip_commit_routes(KVMState *s)
922
{
923
    int ret;
924

    
925
    s->irq_routes->flags = 0;
926
    ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
927
    assert(ret == 0);
928
}
929

    
930
static void kvm_add_routing_entry(KVMState *s,
931
                                  struct kvm_irq_routing_entry *entry)
932
{
933
    struct kvm_irq_routing_entry *new;
934
    int n, size;
935

    
936
    if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
937
        n = s->nr_allocated_irq_routes * 2;
938
        if (n < 64) {
939
            n = 64;
940
        }
941
        size = sizeof(struct kvm_irq_routing);
942
        size += n * sizeof(*new);
943
        s->irq_routes = g_realloc(s->irq_routes, size);
944
        s->nr_allocated_irq_routes = n;
945
    }
946
    n = s->irq_routes->nr++;
947
    new = &s->irq_routes->entries[n];
948
    memset(new, 0, sizeof(*new));
949
    new->gsi = entry->gsi;
950
    new->type = entry->type;
951
    new->flags = entry->flags;
952
    new->u = entry->u;
953

    
954
    set_gsi(s, entry->gsi);
955

    
956
    kvm_irqchip_commit_routes(s);
957
}
958

    
959
void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
960
{
961
    struct kvm_irq_routing_entry e;
962

    
963
    assert(pin < s->gsi_count);
964

    
965
    e.gsi = irq;
966
    e.type = KVM_IRQ_ROUTING_IRQCHIP;
967
    e.flags = 0;
968
    e.u.irqchip.irqchip = irqchip;
969
    e.u.irqchip.pin = pin;
970
    kvm_add_routing_entry(s, &e);
971
}
972

    
973
void kvm_irqchip_release_virq(KVMState *s, int virq)
974
{
975
    struct kvm_irq_routing_entry *e;
976
    int i;
977

    
978
    for (i = 0; i < s->irq_routes->nr; i++) {
979
        e = &s->irq_routes->entries[i];
980
        if (e->gsi == virq) {
981
            s->irq_routes->nr--;
982
            *e = s->irq_routes->entries[s->irq_routes->nr];
983
        }
984
    }
985
    clear_gsi(s, virq);
986

    
987
    kvm_irqchip_commit_routes(s);
988
}
989

    
990
static unsigned int kvm_hash_msi(uint32_t data)
991
{
992
    /* This is optimized for IA32 MSI layout. However, no other arch shall
993
     * repeat the mistake of not providing a direct MSI injection API. */
994
    return data & 0xff;
995
}
996

    
997
static void kvm_flush_dynamic_msi_routes(KVMState *s)
998
{
999
    KVMMSIRoute *route, *next;
1000
    unsigned int hash;
1001

    
1002
    for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1003
        QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1004
            kvm_irqchip_release_virq(s, route->kroute.gsi);
1005
            QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1006
            g_free(route);
1007
        }
1008
    }
1009
}
1010

    
1011
static int kvm_irqchip_get_virq(KVMState *s)
1012
{
1013
    uint32_t *word = s->used_gsi_bitmap;
1014
    int max_words = ALIGN(s->gsi_count, 32) / 32;
1015
    int i, bit;
1016
    bool retry = true;
1017

    
1018
again:
1019
    /* Return the lowest unused GSI in the bitmap */
1020
    for (i = 0; i < max_words; i++) {
1021
        bit = ffs(~word[i]);
1022
        if (!bit) {
1023
            continue;
1024
        }
1025

    
1026
        return bit - 1 + i * 32;
1027
    }
1028
    if (!s->direct_msi && retry) {
1029
        retry = false;
1030
        kvm_flush_dynamic_msi_routes(s);
1031
        goto again;
1032
    }
1033
    return -ENOSPC;
1034

    
1035
}
1036

    
1037
static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1038
{
1039
    unsigned int hash = kvm_hash_msi(msg.data);
1040
    KVMMSIRoute *route;
1041

    
1042
    QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1043
        if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1044
            route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1045
            route->kroute.u.msi.data == msg.data) {
1046
            return route;
1047
        }
1048
    }
1049
    return NULL;
1050
}
1051

    
1052
int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1053
{
1054
    struct kvm_msi msi;
1055
    KVMMSIRoute *route;
1056

    
1057
    if (s->direct_msi) {
1058
        msi.address_lo = (uint32_t)msg.address;
1059
        msi.address_hi = msg.address >> 32;
1060
        msi.data = msg.data;
1061
        msi.flags = 0;
1062
        memset(msi.pad, 0, sizeof(msi.pad));
1063

    
1064
        return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1065
    }
1066

    
1067
    route = kvm_lookup_msi_route(s, msg);
1068
    if (!route) {
1069
        int virq;
1070

    
1071
        virq = kvm_irqchip_get_virq(s);
1072
        if (virq < 0) {
1073
            return virq;
1074
        }
1075

    
1076
        route = g_malloc(sizeof(KVMMSIRoute));
1077
        route->kroute.gsi = virq;
1078
        route->kroute.type = KVM_IRQ_ROUTING_MSI;
1079
        route->kroute.flags = 0;
1080
        route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1081
        route->kroute.u.msi.address_hi = msg.address >> 32;
1082
        route->kroute.u.msi.data = msg.data;
1083

    
1084
        kvm_add_routing_entry(s, &route->kroute);
1085

    
1086
        QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1087
                           entry);
1088
    }
1089

    
1090
    assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1091

    
1092
    return kvm_irqchip_set_irq(s, route->kroute.gsi, 1);
1093
}
1094

    
1095
int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1096
{
1097
    struct kvm_irq_routing_entry kroute;
1098
    int virq;
1099

    
1100
    if (!kvm_irqchip_in_kernel()) {
1101
        return -ENOSYS;
1102
    }
1103

    
1104
    virq = kvm_irqchip_get_virq(s);
1105
    if (virq < 0) {
1106
        return virq;
1107
    }
1108

    
1109
    kroute.gsi = virq;
1110
    kroute.type = KVM_IRQ_ROUTING_MSI;
1111
    kroute.flags = 0;
1112
    kroute.u.msi.address_lo = (uint32_t)msg.address;
1113
    kroute.u.msi.address_hi = msg.address >> 32;
1114
    kroute.u.msi.data = msg.data;
1115

    
1116
    kvm_add_routing_entry(s, &kroute);
1117

    
1118
    return virq;
1119
}
1120

    
1121
static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1122
{
1123
    struct kvm_irqfd irqfd = {
1124
        .fd = fd,
1125
        .gsi = virq,
1126
        .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
1127
    };
1128

    
1129
    if (!kvm_irqchip_in_kernel()) {
1130
        return -ENOSYS;
1131
    }
1132

    
1133
    return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
1134
}
1135

    
1136
#else /* !KVM_CAP_IRQ_ROUTING */
1137

    
1138
static void kvm_init_irq_routing(KVMState *s)
1139
{
1140
}
1141

    
1142
void kvm_irqchip_release_virq(KVMState *s, int virq)
1143
{
1144
}
1145

    
1146
int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1147
{
1148
    abort();
1149
}
1150

    
1151
int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1152
{
1153
    return -ENOSYS;
1154
}
1155

    
1156
static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1157
{
1158
    abort();
1159
}
1160
#endif /* !KVM_CAP_IRQ_ROUTING */
1161

    
1162
int kvm_irqchip_add_irqfd(KVMState *s, int fd, int virq)
1163
{
1164
    return kvm_irqchip_assign_irqfd(s, fd, virq, true);
1165
}
1166

    
1167
int kvm_irqchip_add_irq_notifier(KVMState *s, EventNotifier *n, int virq)
1168
{
1169
    return kvm_irqchip_add_irqfd(s, event_notifier_get_fd(n), virq);
1170
}
1171

    
1172
int kvm_irqchip_remove_irqfd(KVMState *s, int fd, int virq)
1173
{
1174
    return kvm_irqchip_assign_irqfd(s, fd, virq, false);
1175
}
1176

    
1177
int kvm_irqchip_remove_irq_notifier(KVMState *s, EventNotifier *n, int virq)
1178
{
1179
    return kvm_irqchip_remove_irqfd(s, event_notifier_get_fd(n), virq);
1180
}
1181

    
1182
static int kvm_irqchip_create(KVMState *s)
1183
{
1184
    QemuOptsList *list = qemu_find_opts("machine");
1185
    int ret;
1186

    
1187
    if (QTAILQ_EMPTY(&list->head) ||
1188
        !qemu_opt_get_bool(QTAILQ_FIRST(&list->head),
1189
                           "kernel_irqchip", true) ||
1190
        !kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
1191
        return 0;
1192
    }
1193

    
1194
    ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
1195
    if (ret < 0) {
1196
        fprintf(stderr, "Create kernel irqchip failed\n");
1197
        return ret;
1198
    }
1199

    
1200
    s->irqchip_inject_ioctl = KVM_IRQ_LINE;
1201
    if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
1202
        s->irqchip_inject_ioctl = KVM_IRQ_LINE_STATUS;
1203
    }
1204
    kvm_kernel_irqchip = true;
1205
    /* If we have an in-kernel IRQ chip then we must have asynchronous
1206
     * interrupt delivery (though the reverse is not necessarily true)
1207
     */
1208
    kvm_async_interrupts_allowed = true;
1209

    
1210
    kvm_init_irq_routing(s);
1211

    
1212
    return 0;
1213
}
1214

    
1215
static int kvm_max_vcpus(KVMState *s)
1216
{
1217
    int ret;
1218

    
1219
    /* Find number of supported CPUs using the recommended
1220
     * procedure from the kernel API documentation to cope with
1221
     * older kernels that may be missing capabilities.
1222
     */
1223
    ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
1224
    if (ret) {
1225
        return ret;
1226
    }
1227
    ret = kvm_check_extension(s, KVM_CAP_NR_VCPUS);
1228
    if (ret) {
1229
        return ret;
1230
    }
1231

    
1232
    return 4;
1233
}
1234

    
1235
int kvm_init(void)
1236
{
1237
    static const char upgrade_note[] =
1238
        "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1239
        "(see http://sourceforge.net/projects/kvm).\n";
1240
    KVMState *s;
1241
    const KVMCapabilityInfo *missing_cap;
1242
    int ret;
1243
    int i;
1244
    int max_vcpus;
1245

    
1246
    s = g_malloc0(sizeof(KVMState));
1247

    
1248
    /*
1249
     * On systems where the kernel can support different base page
1250
     * sizes, host page size may be different from TARGET_PAGE_SIZE,
1251
     * even with KVM.  TARGET_PAGE_SIZE is assumed to be the minimum
1252
     * page size for the system though.
1253
     */
1254
    assert(TARGET_PAGE_SIZE <= getpagesize());
1255

    
1256
#ifdef KVM_CAP_SET_GUEST_DEBUG
1257
    QTAILQ_INIT(&s->kvm_sw_breakpoints);
1258
#endif
1259
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
1260
        s->slots[i].slot = i;
1261
    }
1262
    s->vmfd = -1;
1263
    s->fd = qemu_open("/dev/kvm", O_RDWR);
1264
    if (s->fd == -1) {
1265
        fprintf(stderr, "Could not access KVM kernel module: %m\n");
1266
        ret = -errno;
1267
        goto err;
1268
    }
1269

    
1270
    ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
1271
    if (ret < KVM_API_VERSION) {
1272
        if (ret > 0) {
1273
            ret = -EINVAL;
1274
        }
1275
        fprintf(stderr, "kvm version too old\n");
1276
        goto err;
1277
    }
1278

    
1279
    if (ret > KVM_API_VERSION) {
1280
        ret = -EINVAL;
1281
        fprintf(stderr, "kvm version not supported\n");
1282
        goto err;
1283
    }
1284

    
1285
    max_vcpus = kvm_max_vcpus(s);
1286
    if (smp_cpus > max_vcpus) {
1287
        ret = -EINVAL;
1288
        fprintf(stderr, "Number of SMP cpus requested (%d) exceeds max cpus "
1289
                "supported by KVM (%d)\n", smp_cpus, max_vcpus);
1290
        goto err;
1291
    }
1292

    
1293
    s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
1294
    if (s->vmfd < 0) {
1295
#ifdef TARGET_S390X
1296
        fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
1297
                        "your host kernel command line\n");
1298
#endif
1299
        ret = s->vmfd;
1300
        goto err;
1301
    }
1302

    
1303
    missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
1304
    if (!missing_cap) {
1305
        missing_cap =
1306
            kvm_check_extension_list(s, kvm_arch_required_capabilities);
1307
    }
1308
    if (missing_cap) {
1309
        ret = -EINVAL;
1310
        fprintf(stderr, "kvm does not support %s\n%s",
1311
                missing_cap->name, upgrade_note);
1312
        goto err;
1313
    }
1314

    
1315
    s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
1316

    
1317
    s->broken_set_mem_region = 1;
1318
    ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
1319
    if (ret > 0) {
1320
        s->broken_set_mem_region = 0;
1321
    }
1322

    
1323
#ifdef KVM_CAP_VCPU_EVENTS
1324
    s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
1325
#endif
1326

    
1327
    s->robust_singlestep =
1328
        kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
1329

    
1330
#ifdef KVM_CAP_DEBUGREGS
1331
    s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
1332
#endif
1333

    
1334
#ifdef KVM_CAP_XSAVE
1335
    s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
1336
#endif
1337

    
1338
#ifdef KVM_CAP_XCRS
1339
    s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
1340
#endif
1341

    
1342
#ifdef KVM_CAP_PIT_STATE2
1343
    s->pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
1344
#endif
1345

    
1346
#ifdef KVM_CAP_IRQ_ROUTING
1347
    s->direct_msi = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
1348
#endif
1349

    
1350
    ret = kvm_arch_init(s);
1351
    if (ret < 0) {
1352
        goto err;
1353
    }
1354

    
1355
    ret = kvm_irqchip_create(s);
1356
    if (ret < 0) {
1357
        goto err;
1358
    }
1359

    
1360
    kvm_state = s;
1361
    memory_listener_register(&kvm_memory_listener, NULL);
1362

    
1363
    s->many_ioeventfds = kvm_check_many_ioeventfds();
1364

    
1365
    cpu_interrupt_handler = kvm_handle_interrupt;
1366

    
1367
    return 0;
1368

    
1369
err:
1370
    if (s) {
1371
        if (s->vmfd >= 0) {
1372
            close(s->vmfd);
1373
        }
1374
        if (s->fd != -1) {
1375
            close(s->fd);
1376
        }
1377
    }
1378
    g_free(s);
1379

    
1380
    return ret;
1381
}
1382

    
1383
static void kvm_handle_io(uint16_t port, void *data, int direction, int size,
1384
                          uint32_t count)
1385
{
1386
    int i;
1387
    uint8_t *ptr = data;
1388

    
1389
    for (i = 0; i < count; i++) {
1390
        if (direction == KVM_EXIT_IO_IN) {
1391
            switch (size) {
1392
            case 1:
1393
                stb_p(ptr, cpu_inb(port));
1394
                break;
1395
            case 2:
1396
                stw_p(ptr, cpu_inw(port));
1397
                break;
1398
            case 4:
1399
                stl_p(ptr, cpu_inl(port));
1400
                break;
1401
            }
1402
        } else {
1403
            switch (size) {
1404
            case 1:
1405
                cpu_outb(port, ldub_p(ptr));
1406
                break;
1407
            case 2:
1408
                cpu_outw(port, lduw_p(ptr));
1409
                break;
1410
            case 4:
1411
                cpu_outl(port, ldl_p(ptr));
1412
                break;
1413
            }
1414
        }
1415

    
1416
        ptr += size;
1417
    }
1418
}
1419

    
1420
static int kvm_handle_internal_error(CPUArchState *env, struct kvm_run *run)
1421
{
1422
    fprintf(stderr, "KVM internal error.");
1423
    if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
1424
        int i;
1425

    
1426
        fprintf(stderr, " Suberror: %d\n", run->internal.suberror);
1427
        for (i = 0; i < run->internal.ndata; ++i) {
1428
            fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
1429
                    i, (uint64_t)run->internal.data[i]);
1430
        }
1431
    } else {
1432
        fprintf(stderr, "\n");
1433
    }
1434
    if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
1435
        fprintf(stderr, "emulation failure\n");
1436
        if (!kvm_arch_stop_on_emulation_error(env)) {
1437
            cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
1438
            return EXCP_INTERRUPT;
1439
        }
1440
    }
1441
    /* FIXME: Should trigger a qmp message to let management know
1442
     * something went wrong.
1443
     */
1444
    return -1;
1445
}
1446

    
1447
void kvm_flush_coalesced_mmio_buffer(void)
1448
{
1449
    KVMState *s = kvm_state;
1450

    
1451
    if (s->coalesced_flush_in_progress) {
1452
        return;
1453
    }
1454

    
1455
    s->coalesced_flush_in_progress = true;
1456

    
1457
    if (s->coalesced_mmio_ring) {
1458
        struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
1459
        while (ring->first != ring->last) {
1460
            struct kvm_coalesced_mmio *ent;
1461

    
1462
            ent = &ring->coalesced_mmio[ring->first];
1463

    
1464
            cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
1465
            smp_wmb();
1466
            ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
1467
        }
1468
    }
1469

    
1470
    s->coalesced_flush_in_progress = false;
1471
}
1472

    
1473
static void do_kvm_cpu_synchronize_state(void *_env)
1474
{
1475
    CPUArchState *env = _env;
1476

    
1477
    if (!env->kvm_vcpu_dirty) {
1478
        kvm_arch_get_registers(env);
1479
        env->kvm_vcpu_dirty = 1;
1480
    }
1481
}
1482

    
1483
void kvm_cpu_synchronize_state(CPUArchState *env)
1484
{
1485
    if (!env->kvm_vcpu_dirty) {
1486
        run_on_cpu(env, do_kvm_cpu_synchronize_state, env);
1487
    }
1488
}
1489

    
1490
void kvm_cpu_synchronize_post_reset(CPUArchState *env)
1491
{
1492
    kvm_arch_put_registers(env, KVM_PUT_RESET_STATE);
1493
    env->kvm_vcpu_dirty = 0;
1494
}
1495

    
1496
void kvm_cpu_synchronize_post_init(CPUArchState *env)
1497
{
1498
    kvm_arch_put_registers(env, KVM_PUT_FULL_STATE);
1499
    env->kvm_vcpu_dirty = 0;
1500
}
1501

    
1502
int kvm_cpu_exec(CPUArchState *env)
1503
{
1504
    struct kvm_run *run = env->kvm_run;
1505
    int ret, run_ret;
1506

    
1507
    DPRINTF("kvm_cpu_exec()\n");
1508

    
1509
    if (kvm_arch_process_async_events(env)) {
1510
        env->exit_request = 0;
1511
        return EXCP_HLT;
1512
    }
1513

    
1514
    do {
1515
        if (env->kvm_vcpu_dirty) {
1516
            kvm_arch_put_registers(env, KVM_PUT_RUNTIME_STATE);
1517
            env->kvm_vcpu_dirty = 0;
1518
        }
1519

    
1520
        kvm_arch_pre_run(env, run);
1521
        if (env->exit_request) {
1522
            DPRINTF("interrupt exit requested\n");
1523
            /*
1524
             * KVM requires us to reenter the kernel after IO exits to complete
1525
             * instruction emulation. This self-signal will ensure that we
1526
             * leave ASAP again.
1527
             */
1528
            qemu_cpu_kick_self();
1529
        }
1530
        qemu_mutex_unlock_iothread();
1531

    
1532
        run_ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
1533

    
1534
        qemu_mutex_lock_iothread();
1535
        kvm_arch_post_run(env, run);
1536

    
1537
        kvm_flush_coalesced_mmio_buffer();
1538

    
1539
        if (run_ret < 0) {
1540
            if (run_ret == -EINTR || run_ret == -EAGAIN) {
1541
                DPRINTF("io window exit\n");
1542
                ret = EXCP_INTERRUPT;
1543
                break;
1544
            }
1545
            fprintf(stderr, "error: kvm run failed %s\n",
1546
                    strerror(-run_ret));
1547
            abort();
1548
        }
1549

    
1550
        switch (run->exit_reason) {
1551
        case KVM_EXIT_IO:
1552
            DPRINTF("handle_io\n");
1553
            kvm_handle_io(run->io.port,
1554
                          (uint8_t *)run + run->io.data_offset,
1555
                          run->io.direction,
1556
                          run->io.size,
1557
                          run->io.count);
1558
            ret = 0;
1559
            break;
1560
        case KVM_EXIT_MMIO:
1561
            DPRINTF("handle_mmio\n");
1562
            cpu_physical_memory_rw(run->mmio.phys_addr,
1563
                                   run->mmio.data,
1564
                                   run->mmio.len,
1565
                                   run->mmio.is_write);
1566
            ret = 0;
1567
            break;
1568
        case KVM_EXIT_IRQ_WINDOW_OPEN:
1569
            DPRINTF("irq_window_open\n");
1570
            ret = EXCP_INTERRUPT;
1571
            break;
1572
        case KVM_EXIT_SHUTDOWN:
1573
            DPRINTF("shutdown\n");
1574
            qemu_system_reset_request();
1575
            ret = EXCP_INTERRUPT;
1576
            break;
1577
        case KVM_EXIT_UNKNOWN:
1578
            fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
1579
                    (uint64_t)run->hw.hardware_exit_reason);
1580
            ret = -1;
1581
            break;
1582
        case KVM_EXIT_INTERNAL_ERROR:
1583
            ret = kvm_handle_internal_error(env, run);
1584
            break;
1585
        default:
1586
            DPRINTF("kvm_arch_handle_exit\n");
1587
            ret = kvm_arch_handle_exit(env, run);
1588
            break;
1589
        }
1590
    } while (ret == 0);
1591

    
1592
    if (ret < 0) {
1593
        cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
1594
        vm_stop(RUN_STATE_INTERNAL_ERROR);
1595
    }
1596

    
1597
    env->exit_request = 0;
1598
    return ret;
1599
}
1600

    
1601
int kvm_ioctl(KVMState *s, int type, ...)
1602
{
1603
    int ret;
1604
    void *arg;
1605
    va_list ap;
1606

    
1607
    va_start(ap, type);
1608
    arg = va_arg(ap, void *);
1609
    va_end(ap);
1610

    
1611
    ret = ioctl(s->fd, type, arg);
1612
    if (ret == -1) {
1613
        ret = -errno;
1614
    }
1615
    return ret;
1616
}
1617

    
1618
int kvm_vm_ioctl(KVMState *s, int type, ...)
1619
{
1620
    int ret;
1621
    void *arg;
1622
    va_list ap;
1623

    
1624
    va_start(ap, type);
1625
    arg = va_arg(ap, void *);
1626
    va_end(ap);
1627

    
1628
    ret = ioctl(s->vmfd, type, arg);
1629
    if (ret == -1) {
1630
        ret = -errno;
1631
    }
1632
    return ret;
1633
}
1634

    
1635
int kvm_vcpu_ioctl(CPUArchState *env, int type, ...)
1636
{
1637
    int ret;
1638
    void *arg;
1639
    va_list ap;
1640

    
1641
    va_start(ap, type);
1642
    arg = va_arg(ap, void *);
1643
    va_end(ap);
1644

    
1645
    ret = ioctl(env->kvm_fd, type, arg);
1646
    if (ret == -1) {
1647
        ret = -errno;
1648
    }
1649
    return ret;
1650
}
1651

    
1652
int kvm_has_sync_mmu(void)
1653
{
1654
    return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
1655
}
1656

    
1657
int kvm_has_vcpu_events(void)
1658
{
1659
    return kvm_state->vcpu_events;
1660
}
1661

    
1662
int kvm_has_robust_singlestep(void)
1663
{
1664
    return kvm_state->robust_singlestep;
1665
}
1666

    
1667
int kvm_has_debugregs(void)
1668
{
1669
    return kvm_state->debugregs;
1670
}
1671

    
1672
int kvm_has_xsave(void)
1673
{
1674
    return kvm_state->xsave;
1675
}
1676

    
1677
int kvm_has_xcrs(void)
1678
{
1679
    return kvm_state->xcrs;
1680
}
1681

    
1682
int kvm_has_pit_state2(void)
1683
{
1684
    return kvm_state->pit_state2;
1685
}
1686

    
1687
int kvm_has_many_ioeventfds(void)
1688
{
1689
    if (!kvm_enabled()) {
1690
        return 0;
1691
    }
1692
    return kvm_state->many_ioeventfds;
1693
}
1694

    
1695
int kvm_has_gsi_routing(void)
1696
{
1697
#ifdef KVM_CAP_IRQ_ROUTING
1698
    return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
1699
#else
1700
    return false;
1701
#endif
1702
}
1703

    
1704
int kvm_allows_irq0_override(void)
1705
{
1706
    return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
1707
}
1708

    
1709
void *kvm_vmalloc(ram_addr_t size)
1710
{
1711
#ifdef TARGET_S390X
1712
    void *mem;
1713

    
1714
    mem = kvm_arch_vmalloc(size);
1715
    if (mem) {
1716
        return mem;
1717
    }
1718
#endif
1719
    return qemu_vmalloc(size);
1720
}
1721

    
1722
void kvm_setup_guest_memory(void *start, size_t size)
1723
{
1724
    if (!kvm_has_sync_mmu()) {
1725
        int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
1726

    
1727
        if (ret) {
1728
            perror("qemu_madvise");
1729
            fprintf(stderr,
1730
                    "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1731
            exit(1);
1732
        }
1733
    }
1734
}
1735

    
1736
#ifdef KVM_CAP_SET_GUEST_DEBUG
1737
struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUArchState *env,
1738
                                                 target_ulong pc)
1739
{
1740
    struct kvm_sw_breakpoint *bp;
1741

    
1742
    QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
1743
        if (bp->pc == pc) {
1744
            return bp;
1745
        }
1746
    }
1747
    return NULL;
1748
}
1749

    
1750
int kvm_sw_breakpoints_active(CPUArchState *env)
1751
{
1752
    return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
1753
}
1754

    
1755
struct kvm_set_guest_debug_data {
1756
    struct kvm_guest_debug dbg;
1757
    CPUArchState *env;
1758
    int err;
1759
};
1760

    
1761
static void kvm_invoke_set_guest_debug(void *data)
1762
{
1763
    struct kvm_set_guest_debug_data *dbg_data = data;
1764
    CPUArchState *env = dbg_data->env;
1765

    
1766
    dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
1767
}
1768

    
1769
int kvm_update_guest_debug(CPUArchState *env, unsigned long reinject_trap)
1770
{
1771
    struct kvm_set_guest_debug_data data;
1772

    
1773
    data.dbg.control = reinject_trap;
1774

    
1775
    if (env->singlestep_enabled) {
1776
        data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1777
    }
1778
    kvm_arch_update_guest_debug(env, &data.dbg);
1779
    data.env = env;
1780

    
1781
    run_on_cpu(env, kvm_invoke_set_guest_debug, &data);
1782
    return data.err;
1783
}
1784

    
1785
int kvm_insert_breakpoint(CPUArchState *current_env, target_ulong addr,
1786
                          target_ulong len, int type)
1787
{
1788
    struct kvm_sw_breakpoint *bp;
1789
    CPUArchState *env;
1790
    int err;
1791

    
1792
    if (type == GDB_BREAKPOINT_SW) {
1793
        bp = kvm_find_sw_breakpoint(current_env, addr);
1794
        if (bp) {
1795
            bp->use_count++;
1796
            return 0;
1797
        }
1798

    
1799
        bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
1800
        if (!bp) {
1801
            return -ENOMEM;
1802
        }
1803

    
1804
        bp->pc = addr;
1805
        bp->use_count = 1;
1806
        err = kvm_arch_insert_sw_breakpoint(current_env, bp);
1807
        if (err) {
1808
            g_free(bp);
1809
            return err;
1810
        }
1811

    
1812
        QTAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
1813
                          bp, entry);
1814
    } else {
1815
        err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1816
        if (err) {
1817
            return err;
1818
        }
1819
    }
1820

    
1821
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
1822
        err = kvm_update_guest_debug(env, 0);
1823
        if (err) {
1824
            return err;
1825
        }
1826
    }
1827
    return 0;
1828
}
1829

    
1830
int kvm_remove_breakpoint(CPUArchState *current_env, target_ulong addr,
1831
                          target_ulong len, int type)
1832
{
1833
    struct kvm_sw_breakpoint *bp;
1834
    CPUArchState *env;
1835
    int err;
1836

    
1837
    if (type == GDB_BREAKPOINT_SW) {
1838
        bp = kvm_find_sw_breakpoint(current_env, addr);
1839
        if (!bp) {
1840
            return -ENOENT;
1841
        }
1842

    
1843
        if (bp->use_count > 1) {
1844
            bp->use_count--;
1845
            return 0;
1846
        }
1847

    
1848
        err = kvm_arch_remove_sw_breakpoint(current_env, bp);
1849
        if (err) {
1850
            return err;
1851
        }
1852

    
1853
        QTAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
1854
        g_free(bp);
1855
    } else {
1856
        err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1857
        if (err) {
1858
            return err;
1859
        }
1860
    }
1861

    
1862
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
1863
        err = kvm_update_guest_debug(env, 0);
1864
        if (err) {
1865
            return err;
1866
        }
1867
    }
1868
    return 0;
1869
}
1870

    
1871
void kvm_remove_all_breakpoints(CPUArchState *current_env)
1872
{
1873
    struct kvm_sw_breakpoint *bp, *next;
1874
    KVMState *s = current_env->kvm_state;
1875
    CPUArchState *env;
1876

    
1877
    QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1878
        if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1879
            /* Try harder to find a CPU that currently sees the breakpoint. */
1880
            for (env = first_cpu; env != NULL; env = env->next_cpu) {
1881
                if (kvm_arch_remove_sw_breakpoint(env, bp) == 0) {
1882
                    break;
1883
                }
1884
            }
1885
        }
1886
    }
1887
    kvm_arch_remove_all_hw_breakpoints();
1888

    
1889
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
1890
        kvm_update_guest_debug(env, 0);
1891
    }
1892
}
1893

    
1894
#else /* !KVM_CAP_SET_GUEST_DEBUG */
1895

    
1896
int kvm_update_guest_debug(CPUArchState *env, unsigned long reinject_trap)
1897
{
1898
    return -EINVAL;
1899
}
1900

    
1901
int kvm_insert_breakpoint(CPUArchState *current_env, target_ulong addr,
1902
                          target_ulong len, int type)
1903
{
1904
    return -EINVAL;
1905
}
1906

    
1907
int kvm_remove_breakpoint(CPUArchState *current_env, target_ulong addr,
1908
                          target_ulong len, int type)
1909
{
1910
    return -EINVAL;
1911
}
1912

    
1913
void kvm_remove_all_breakpoints(CPUArchState *current_env)
1914
{
1915
}
1916
#endif /* !KVM_CAP_SET_GUEST_DEBUG */
1917

    
1918
int kvm_set_signal_mask(CPUArchState *env, const sigset_t *sigset)
1919
{
1920
    struct kvm_signal_mask *sigmask;
1921
    int r;
1922

    
1923
    if (!sigset) {
1924
        return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL);
1925
    }
1926

    
1927
    sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
1928

    
1929
    sigmask->len = 8;
1930
    memcpy(sigmask->sigset, sigset, sizeof(*sigset));
1931
    r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask);
1932
    g_free(sigmask);
1933

    
1934
    return r;
1935
}
1936

    
1937
int kvm_set_ioeventfd_mmio(int fd, uint32_t addr, uint32_t val, bool assign,
1938
                           uint32_t size)
1939
{
1940
    int ret;
1941
    struct kvm_ioeventfd iofd;
1942

    
1943
    iofd.datamatch = val;
1944
    iofd.addr = addr;
1945
    iofd.len = size;
1946
    iofd.flags = KVM_IOEVENTFD_FLAG_DATAMATCH;
1947
    iofd.fd = fd;
1948

    
1949
    if (!kvm_enabled()) {
1950
        return -ENOSYS;
1951
    }
1952

    
1953
    if (!assign) {
1954
        iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1955
    }
1956

    
1957
    ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1958

    
1959
    if (ret < 0) {
1960
        return -errno;
1961
    }
1962

    
1963
    return 0;
1964
}
1965

    
1966
int kvm_set_ioeventfd_pio_word(int fd, uint16_t addr, uint16_t val, bool assign)
1967
{
1968
    struct kvm_ioeventfd kick = {
1969
        .datamatch = val,
1970
        .addr = addr,
1971
        .len = 2,
1972
        .flags = KVM_IOEVENTFD_FLAG_DATAMATCH | KVM_IOEVENTFD_FLAG_PIO,
1973
        .fd = fd,
1974
    };
1975
    int r;
1976
    if (!kvm_enabled()) {
1977
        return -ENOSYS;
1978
    }
1979
    if (!assign) {
1980
        kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1981
    }
1982
    r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1983
    if (r < 0) {
1984
        return r;
1985
    }
1986
    return 0;
1987
}
1988

    
1989
int kvm_on_sigbus_vcpu(CPUArchState *env, int code, void *addr)
1990
{
1991
    return kvm_arch_on_sigbus_vcpu(env, code, addr);
1992
}
1993

    
1994
int kvm_on_sigbus(int code, void *addr)
1995
{
1996
    return kvm_arch_on_sigbus(code, addr);
1997
}