Statistics
| Branch: | Revision:

root / cpu-all.h @ 7c637366

History | View | Annotate | Download (16.6 kB)

1
/*
2
 * defines common to all virtual CPUs
3
 *
4
 *  Copyright (c) 2003 Fabrice Bellard
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18
 */
19
#ifndef CPU_ALL_H
20
#define CPU_ALL_H
21

    
22
#include "qemu-common.h"
23
#include "qemu-tls.h"
24
#include "cpu-common.h"
25

    
26
/* some important defines:
27
 *
28
 * WORDS_ALIGNED : if defined, the host cpu can only make word aligned
29
 * memory accesses.
30
 *
31
 * HOST_WORDS_BIGENDIAN : if defined, the host cpu is big endian and
32
 * otherwise little endian.
33
 *
34
 * (TARGET_WORDS_ALIGNED : same for target cpu (not supported yet))
35
 *
36
 * TARGET_WORDS_BIGENDIAN : same for target cpu
37
 */
38

    
39
#if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
40
#define BSWAP_NEEDED
41
#endif
42

    
43
#ifdef BSWAP_NEEDED
44

    
45
static inline uint16_t tswap16(uint16_t s)
46
{
47
    return bswap16(s);
48
}
49

    
50
static inline uint32_t tswap32(uint32_t s)
51
{
52
    return bswap32(s);
53
}
54

    
55
static inline uint64_t tswap64(uint64_t s)
56
{
57
    return bswap64(s);
58
}
59

    
60
static inline void tswap16s(uint16_t *s)
61
{
62
    *s = bswap16(*s);
63
}
64

    
65
static inline void tswap32s(uint32_t *s)
66
{
67
    *s = bswap32(*s);
68
}
69

    
70
static inline void tswap64s(uint64_t *s)
71
{
72
    *s = bswap64(*s);
73
}
74

    
75
#else
76

    
77
static inline uint16_t tswap16(uint16_t s)
78
{
79
    return s;
80
}
81

    
82
static inline uint32_t tswap32(uint32_t s)
83
{
84
    return s;
85
}
86

    
87
static inline uint64_t tswap64(uint64_t s)
88
{
89
    return s;
90
}
91

    
92
static inline void tswap16s(uint16_t *s)
93
{
94
}
95

    
96
static inline void tswap32s(uint32_t *s)
97
{
98
}
99

    
100
static inline void tswap64s(uint64_t *s)
101
{
102
}
103

    
104
#endif
105

    
106
#if TARGET_LONG_SIZE == 4
107
#define tswapl(s) tswap32(s)
108
#define tswapls(s) tswap32s((uint32_t *)(s))
109
#define bswaptls(s) bswap32s(s)
110
#else
111
#define tswapl(s) tswap64(s)
112
#define tswapls(s) tswap64s((uint64_t *)(s))
113
#define bswaptls(s) bswap64s(s)
114
#endif
115

    
116
/* CPU memory access without any memory or io remapping */
117

    
118
/*
119
 * the generic syntax for the memory accesses is:
120
 *
121
 * load: ld{type}{sign}{size}{endian}_{access_type}(ptr)
122
 *
123
 * store: st{type}{size}{endian}_{access_type}(ptr, val)
124
 *
125
 * type is:
126
 * (empty): integer access
127
 *   f    : float access
128
 *
129
 * sign is:
130
 * (empty): for floats or 32 bit size
131
 *   u    : unsigned
132
 *   s    : signed
133
 *
134
 * size is:
135
 *   b: 8 bits
136
 *   w: 16 bits
137
 *   l: 32 bits
138
 *   q: 64 bits
139
 *
140
 * endian is:
141
 * (empty): target cpu endianness or 8 bit access
142
 *   r    : reversed target cpu endianness (not implemented yet)
143
 *   be   : big endian (not implemented yet)
144
 *   le   : little endian (not implemented yet)
145
 *
146
 * access_type is:
147
 *   raw    : host memory access
148
 *   user   : user mode access using soft MMU
149
 *   kernel : kernel mode access using soft MMU
150
 */
151

    
152
/* target-endianness CPU memory access functions */
153
#if defined(TARGET_WORDS_BIGENDIAN)
154
#define lduw_p(p) lduw_be_p(p)
155
#define ldsw_p(p) ldsw_be_p(p)
156
#define ldl_p(p) ldl_be_p(p)
157
#define ldq_p(p) ldq_be_p(p)
158
#define ldfl_p(p) ldfl_be_p(p)
159
#define ldfq_p(p) ldfq_be_p(p)
160
#define stw_p(p, v) stw_be_p(p, v)
161
#define stl_p(p, v) stl_be_p(p, v)
162
#define stq_p(p, v) stq_be_p(p, v)
163
#define stfl_p(p, v) stfl_be_p(p, v)
164
#define stfq_p(p, v) stfq_be_p(p, v)
165
#else
166
#define lduw_p(p) lduw_le_p(p)
167
#define ldsw_p(p) ldsw_le_p(p)
168
#define ldl_p(p) ldl_le_p(p)
169
#define ldq_p(p) ldq_le_p(p)
170
#define ldfl_p(p) ldfl_le_p(p)
171
#define ldfq_p(p) ldfq_le_p(p)
172
#define stw_p(p, v) stw_le_p(p, v)
173
#define stl_p(p, v) stl_le_p(p, v)
174
#define stq_p(p, v) stq_le_p(p, v)
175
#define stfl_p(p, v) stfl_le_p(p, v)
176
#define stfq_p(p, v) stfq_le_p(p, v)
177
#endif
178

    
179
/* MMU memory access macros */
180

    
181
#if defined(CONFIG_USER_ONLY)
182
#include <assert.h>
183
#include "qemu-types.h"
184

    
185
/* On some host systems the guest address space is reserved on the host.
186
 * This allows the guest address space to be offset to a convenient location.
187
 */
188
#if defined(CONFIG_USE_GUEST_BASE)
189
extern unsigned long guest_base;
190
extern int have_guest_base;
191
extern unsigned long reserved_va;
192
#define GUEST_BASE guest_base
193
#define RESERVED_VA reserved_va
194
#else
195
#define GUEST_BASE 0ul
196
#define RESERVED_VA 0ul
197
#endif
198

    
199
/* All direct uses of g2h and h2g need to go away for usermode softmmu.  */
200
#define g2h(x) ((void *)((unsigned long)(x) + GUEST_BASE))
201

    
202
#if HOST_LONG_BITS <= TARGET_VIRT_ADDR_SPACE_BITS
203
#define h2g_valid(x) 1
204
#else
205
#define h2g_valid(x) ({ \
206
    unsigned long __guest = (unsigned long)(x) - GUEST_BASE; \
207
    __guest < (1ul << TARGET_VIRT_ADDR_SPACE_BITS); \
208
})
209
#endif
210

    
211
#define h2g(x) ({ \
212
    unsigned long __ret = (unsigned long)(x) - GUEST_BASE; \
213
    /* Check if given address fits target address space */ \
214
    assert(h2g_valid(x)); \
215
    (abi_ulong)__ret; \
216
})
217

    
218
#define saddr(x) g2h(x)
219
#define laddr(x) g2h(x)
220

    
221
#else /* !CONFIG_USER_ONLY */
222
/* NOTE: we use double casts if pointers and target_ulong have
223
   different sizes */
224
#define saddr(x) (uint8_t *)(long)(x)
225
#define laddr(x) (uint8_t *)(long)(x)
226
#endif
227

    
228
#define ldub_raw(p) ldub_p(laddr((p)))
229
#define ldsb_raw(p) ldsb_p(laddr((p)))
230
#define lduw_raw(p) lduw_p(laddr((p)))
231
#define ldsw_raw(p) ldsw_p(laddr((p)))
232
#define ldl_raw(p) ldl_p(laddr((p)))
233
#define ldq_raw(p) ldq_p(laddr((p)))
234
#define ldfl_raw(p) ldfl_p(laddr((p)))
235
#define ldfq_raw(p) ldfq_p(laddr((p)))
236
#define stb_raw(p, v) stb_p(saddr((p)), v)
237
#define stw_raw(p, v) stw_p(saddr((p)), v)
238
#define stl_raw(p, v) stl_p(saddr((p)), v)
239
#define stq_raw(p, v) stq_p(saddr((p)), v)
240
#define stfl_raw(p, v) stfl_p(saddr((p)), v)
241
#define stfq_raw(p, v) stfq_p(saddr((p)), v)
242

    
243

    
244
#if defined(CONFIG_USER_ONLY)
245

    
246
/* if user mode, no other memory access functions */
247
#define ldub(p) ldub_raw(p)
248
#define ldsb(p) ldsb_raw(p)
249
#define lduw(p) lduw_raw(p)
250
#define ldsw(p) ldsw_raw(p)
251
#define ldl(p) ldl_raw(p)
252
#define ldq(p) ldq_raw(p)
253
#define ldfl(p) ldfl_raw(p)
254
#define ldfq(p) ldfq_raw(p)
255
#define stb(p, v) stb_raw(p, v)
256
#define stw(p, v) stw_raw(p, v)
257
#define stl(p, v) stl_raw(p, v)
258
#define stq(p, v) stq_raw(p, v)
259
#define stfl(p, v) stfl_raw(p, v)
260
#define stfq(p, v) stfq_raw(p, v)
261

    
262
#define ldub_code(p) ldub_raw(p)
263
#define ldsb_code(p) ldsb_raw(p)
264
#define lduw_code(p) lduw_raw(p)
265
#define ldsw_code(p) ldsw_raw(p)
266
#define ldl_code(p) ldl_raw(p)
267
#define ldq_code(p) ldq_raw(p)
268

    
269
#define ldub_kernel(p) ldub_raw(p)
270
#define ldsb_kernel(p) ldsb_raw(p)
271
#define lduw_kernel(p) lduw_raw(p)
272
#define ldsw_kernel(p) ldsw_raw(p)
273
#define ldl_kernel(p) ldl_raw(p)
274
#define ldq_kernel(p) ldq_raw(p)
275
#define ldfl_kernel(p) ldfl_raw(p)
276
#define ldfq_kernel(p) ldfq_raw(p)
277
#define stb_kernel(p, v) stb_raw(p, v)
278
#define stw_kernel(p, v) stw_raw(p, v)
279
#define stl_kernel(p, v) stl_raw(p, v)
280
#define stq_kernel(p, v) stq_raw(p, v)
281
#define stfl_kernel(p, v) stfl_raw(p, v)
282
#define stfq_kernel(p, vt) stfq_raw(p, v)
283

    
284
#endif /* defined(CONFIG_USER_ONLY) */
285

    
286
/* page related stuff */
287

    
288
#define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS)
289
#define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
290
#define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)
291

    
292
/* ??? These should be the larger of unsigned long and target_ulong.  */
293
extern unsigned long qemu_real_host_page_size;
294
extern unsigned long qemu_host_page_size;
295
extern unsigned long qemu_host_page_mask;
296

    
297
#define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask)
298

    
299
/* same as PROT_xxx */
300
#define PAGE_READ      0x0001
301
#define PAGE_WRITE     0x0002
302
#define PAGE_EXEC      0x0004
303
#define PAGE_BITS      (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
304
#define PAGE_VALID     0x0008
305
/* original state of the write flag (used when tracking self-modifying
306
   code */
307
#define PAGE_WRITE_ORG 0x0010
308
#if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
309
/* FIXME: Code that sets/uses this is broken and needs to go away.  */
310
#define PAGE_RESERVED  0x0020
311
#endif
312

    
313
#if defined(CONFIG_USER_ONLY)
314
void page_dump(FILE *f);
315

    
316
typedef int (*walk_memory_regions_fn)(void *, abi_ulong,
317
                                      abi_ulong, unsigned long);
318
int walk_memory_regions(void *, walk_memory_regions_fn);
319

    
320
int page_get_flags(target_ulong address);
321
void page_set_flags(target_ulong start, target_ulong end, int flags);
322
int page_check_range(target_ulong start, target_ulong len, int flags);
323
#endif
324

    
325
CPUState *cpu_copy(CPUState *env);
326
CPUState *qemu_get_cpu(int cpu);
327

    
328
#define CPU_DUMP_CODE 0x00010000
329

    
330
void cpu_dump_state(CPUState *env, FILE *f, fprintf_function cpu_fprintf,
331
                    int flags);
332
void cpu_dump_statistics(CPUState *env, FILE *f, fprintf_function cpu_fprintf,
333
                         int flags);
334

    
335
void QEMU_NORETURN cpu_abort(CPUState *env, const char *fmt, ...)
336
    GCC_FMT_ATTR(2, 3);
337
extern CPUState *first_cpu;
338
DECLARE_TLS(CPUState *,cpu_single_env);
339
#define cpu_single_env tls_var(cpu_single_env)
340

    
341
/* Flags for use in ENV->INTERRUPT_PENDING.
342

343
   The numbers assigned here are non-sequential in order to preserve
344
   binary compatibility with the vmstate dump.  Bit 0 (0x0001) was
345
   previously used for CPU_INTERRUPT_EXIT, and is cleared when loading
346
   the vmstate dump.  */
347

    
348
/* External hardware interrupt pending.  This is typically used for
349
   interrupts from devices.  */
350
#define CPU_INTERRUPT_HARD        0x0002
351

    
352
/* Exit the current TB.  This is typically used when some system-level device
353
   makes some change to the memory mapping.  E.g. the a20 line change.  */
354
#define CPU_INTERRUPT_EXITTB      0x0004
355

    
356
/* Halt the CPU.  */
357
#define CPU_INTERRUPT_HALT        0x0020
358

    
359
/* Debug event pending.  */
360
#define CPU_INTERRUPT_DEBUG       0x0080
361

    
362
/* Several target-specific external hardware interrupts.  Each target/cpu.h
363
   should define proper names based on these defines.  */
364
#define CPU_INTERRUPT_TGT_EXT_0   0x0008
365
#define CPU_INTERRUPT_TGT_EXT_1   0x0010
366
#define CPU_INTERRUPT_TGT_EXT_2   0x0040
367
#define CPU_INTERRUPT_TGT_EXT_3   0x0200
368
#define CPU_INTERRUPT_TGT_EXT_4   0x1000
369

    
370
/* Several target-specific internal interrupts.  These differ from the
371
   preceding target-specific interrupts in that they are intended to
372
   originate from within the cpu itself, typically in response to some
373
   instruction being executed.  These, therefore, are not masked while
374
   single-stepping within the debugger.  */
375
#define CPU_INTERRUPT_TGT_INT_0   0x0100
376
#define CPU_INTERRUPT_TGT_INT_1   0x0400
377
#define CPU_INTERRUPT_TGT_INT_2   0x0800
378

    
379
/* First unused bit: 0x2000.  */
380

    
381
/* The set of all bits that should be masked when single-stepping.  */
382
#define CPU_INTERRUPT_SSTEP_MASK \
383
    (CPU_INTERRUPT_HARD          \
384
     | CPU_INTERRUPT_TGT_EXT_0   \
385
     | CPU_INTERRUPT_TGT_EXT_1   \
386
     | CPU_INTERRUPT_TGT_EXT_2   \
387
     | CPU_INTERRUPT_TGT_EXT_3   \
388
     | CPU_INTERRUPT_TGT_EXT_4)
389

    
390
#ifndef CONFIG_USER_ONLY
391
typedef void (*CPUInterruptHandler)(CPUState *, int);
392

    
393
extern CPUInterruptHandler cpu_interrupt_handler;
394

    
395
static inline void cpu_interrupt(CPUState *s, int mask)
396
{
397
    cpu_interrupt_handler(s, mask);
398
}
399
#else /* USER_ONLY */
400
void cpu_interrupt(CPUState *env, int mask);
401
#endif /* USER_ONLY */
402

    
403
void cpu_reset_interrupt(CPUState *env, int mask);
404

    
405
void cpu_exit(CPUState *s);
406

    
407
bool qemu_cpu_has_work(CPUState *env);
408

    
409
/* Breakpoint/watchpoint flags */
410
#define BP_MEM_READ           0x01
411
#define BP_MEM_WRITE          0x02
412
#define BP_MEM_ACCESS         (BP_MEM_READ | BP_MEM_WRITE)
413
#define BP_STOP_BEFORE_ACCESS 0x04
414
#define BP_WATCHPOINT_HIT     0x08
415
#define BP_GDB                0x10
416
#define BP_CPU                0x20
417

    
418
int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
419
                          CPUBreakpoint **breakpoint);
420
int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags);
421
void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint);
422
void cpu_breakpoint_remove_all(CPUState *env, int mask);
423
int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
424
                          int flags, CPUWatchpoint **watchpoint);
425
int cpu_watchpoint_remove(CPUState *env, target_ulong addr,
426
                          target_ulong len, int flags);
427
void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint);
428
void cpu_watchpoint_remove_all(CPUState *env, int mask);
429

    
430
#define SSTEP_ENABLE  0x1  /* Enable simulated HW single stepping */
431
#define SSTEP_NOIRQ   0x2  /* Do not use IRQ while single stepping */
432
#define SSTEP_NOTIMER 0x4  /* Do not Timers while single stepping */
433

    
434
void cpu_single_step(CPUState *env, int enabled);
435
void cpu_reset(CPUState *s);
436
int cpu_is_stopped(CPUState *env);
437
void run_on_cpu(CPUState *env, void (*func)(void *data), void *data);
438

    
439
#define CPU_LOG_TB_OUT_ASM (1 << 0)
440
#define CPU_LOG_TB_IN_ASM  (1 << 1)
441
#define CPU_LOG_TB_OP      (1 << 2)
442
#define CPU_LOG_TB_OP_OPT  (1 << 3)
443
#define CPU_LOG_INT        (1 << 4)
444
#define CPU_LOG_EXEC       (1 << 5)
445
#define CPU_LOG_PCALL      (1 << 6)
446
#define CPU_LOG_IOPORT     (1 << 7)
447
#define CPU_LOG_TB_CPU     (1 << 8)
448
#define CPU_LOG_RESET      (1 << 9)
449

    
450
/* define log items */
451
typedef struct CPULogItem {
452
    int mask;
453
    const char *name;
454
    const char *help;
455
} CPULogItem;
456

    
457
extern const CPULogItem cpu_log_items[];
458

    
459
void cpu_set_log(int log_flags);
460
void cpu_set_log_filename(const char *filename);
461
int cpu_str_to_log_mask(const char *str);
462

    
463
#if !defined(CONFIG_USER_ONLY)
464

    
465
/* Return the physical page corresponding to a virtual one. Use it
466
   only for debugging because no protection checks are done. Return -1
467
   if no page found. */
468
target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr);
469

    
470
/* memory API */
471

    
472
extern int phys_ram_fd;
473
extern ram_addr_t ram_size;
474

    
475
/* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
476
#define RAM_PREALLOC_MASK   (1 << 0)
477

    
478
typedef struct RAMBlock {
479
    struct MemoryRegion *mr;
480
    uint8_t *host;
481
    ram_addr_t offset;
482
    ram_addr_t length;
483
    uint32_t flags;
484
    char idstr[256];
485
    QLIST_ENTRY(RAMBlock) next;
486
#if defined(__linux__) && !defined(TARGET_S390X)
487
    int fd;
488
#endif
489
} RAMBlock;
490

    
491
typedef struct RAMList {
492
    uint8_t *phys_dirty;
493
    QLIST_HEAD(, RAMBlock) blocks;
494
} RAMList;
495
extern RAMList ram_list;
496

    
497
extern const char *mem_path;
498
extern int mem_prealloc;
499

    
500
/* physical memory access */
501

    
502
/* MMIO pages are identified by a combination of an IO device index and
503
   3 flags.  The ROMD code stores the page ram offset in iotlb entry, 
504
   so only a limited number of ids are avaiable.  */
505

    
506
#define IO_MEM_NB_ENTRIES  (1 << (TARGET_PAGE_BITS  - IO_MEM_SHIFT))
507

    
508
/* Flags stored in the low bits of the TLB virtual address.  These are
509
   defined so that fast path ram access is all zeros.  */
510
/* Zero if TLB entry is valid.  */
511
#define TLB_INVALID_MASK   (1 << 3)
512
/* Set if TLB entry references a clean RAM page.  The iotlb entry will
513
   contain the page physical address.  */
514
#define TLB_NOTDIRTY    (1 << 4)
515
/* Set if TLB entry is an IO callback.  */
516
#define TLB_MMIO        (1 << 5)
517

    
518
#define VGA_DIRTY_FLAG       0x01
519
#define CODE_DIRTY_FLAG      0x02
520
#define MIGRATION_DIRTY_FLAG 0x08
521

    
522
/* read dirty bit (return 0 or 1) */
523
static inline int cpu_physical_memory_is_dirty(ram_addr_t addr)
524
{
525
    return ram_list.phys_dirty[addr >> TARGET_PAGE_BITS] == 0xff;
526
}
527

    
528
static inline int cpu_physical_memory_get_dirty_flags(ram_addr_t addr)
529
{
530
    return ram_list.phys_dirty[addr >> TARGET_PAGE_BITS];
531
}
532

    
533
static inline int cpu_physical_memory_get_dirty(ram_addr_t addr,
534
                                                int dirty_flags)
535
{
536
    return ram_list.phys_dirty[addr >> TARGET_PAGE_BITS] & dirty_flags;
537
}
538

    
539
static inline void cpu_physical_memory_set_dirty(ram_addr_t addr)
540
{
541
    ram_list.phys_dirty[addr >> TARGET_PAGE_BITS] = 0xff;
542
}
543

    
544
static inline int cpu_physical_memory_set_dirty_flags(ram_addr_t addr,
545
                                                      int dirty_flags)
546
{
547
    return ram_list.phys_dirty[addr >> TARGET_PAGE_BITS] |= dirty_flags;
548
}
549

    
550
static inline void cpu_physical_memory_mask_dirty_range(ram_addr_t start,
551
                                                        int length,
552
                                                        int dirty_flags)
553
{
554
    int i, mask, len;
555
    uint8_t *p;
556

    
557
    len = length >> TARGET_PAGE_BITS;
558
    mask = ~dirty_flags;
559
    p = ram_list.phys_dirty + (start >> TARGET_PAGE_BITS);
560
    for (i = 0; i < len; i++) {
561
        p[i] &= mask;
562
    }
563
}
564

    
565
void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
566
                                     int dirty_flags);
567
void cpu_tlb_update_dirty(CPUState *env);
568

    
569
int cpu_physical_memory_set_dirty_tracking(int enable);
570

    
571
int cpu_physical_memory_get_dirty_tracking(void);
572

    
573
void dump_exec_info(FILE *f, fprintf_function cpu_fprintf);
574
#endif /* !CONFIG_USER_ONLY */
575

    
576
int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
577
                        uint8_t *buf, int len, int is_write);
578

    
579
#endif /* CPU_ALL_H */