Statistics
| Branch: | Revision:

root / include / qemu / bswap.h @ 7db2145a

History | View | Annotate | Download (14.4 kB)

1
#ifndef BSWAP_H
2
#define BSWAP_H
3

    
4
#include "config-host.h"
5

    
6
#include <inttypes.h>
7
#include "fpu/softfloat.h"
8

    
9
#ifdef CONFIG_MACHINE_BSWAP_H
10
# include <sys/endian.h>
11
# include <sys/types.h>
12
# include <machine/bswap.h>
13
#elif defined(CONFIG_BYTESWAP_H)
14
# include <byteswap.h>
15

    
16
static inline uint16_t bswap16(uint16_t x)
17
{
18
    return bswap_16(x);
19
}
20

    
21
static inline uint32_t bswap32(uint32_t x)
22
{
23
    return bswap_32(x);
24
}
25

    
26
static inline uint64_t bswap64(uint64_t x)
27
{
28
    return bswap_64(x);
29
}
30
# else
31
static inline uint16_t bswap16(uint16_t x)
32
{
33
    return (((x & 0x00ff) << 8) |
34
            ((x & 0xff00) >> 8));
35
}
36

    
37
static inline uint32_t bswap32(uint32_t x)
38
{
39
    return (((x & 0x000000ffU) << 24) |
40
            ((x & 0x0000ff00U) <<  8) |
41
            ((x & 0x00ff0000U) >>  8) |
42
            ((x & 0xff000000U) >> 24));
43
}
44

    
45
static inline uint64_t bswap64(uint64_t x)
46
{
47
    return (((x & 0x00000000000000ffULL) << 56) |
48
            ((x & 0x000000000000ff00ULL) << 40) |
49
            ((x & 0x0000000000ff0000ULL) << 24) |
50
            ((x & 0x00000000ff000000ULL) <<  8) |
51
            ((x & 0x000000ff00000000ULL) >>  8) |
52
            ((x & 0x0000ff0000000000ULL) >> 24) |
53
            ((x & 0x00ff000000000000ULL) >> 40) |
54
            ((x & 0xff00000000000000ULL) >> 56));
55
}
56
#endif /* ! CONFIG_MACHINE_BSWAP_H */
57

    
58
static inline void bswap16s(uint16_t *s)
59
{
60
    *s = bswap16(*s);
61
}
62

    
63
static inline void bswap32s(uint32_t *s)
64
{
65
    *s = bswap32(*s);
66
}
67

    
68
static inline void bswap64s(uint64_t *s)
69
{
70
    *s = bswap64(*s);
71
}
72

    
73
#if defined(HOST_WORDS_BIGENDIAN)
74
#define be_bswap(v, size) (v)
75
#define le_bswap(v, size) bswap ## size(v)
76
#define be_bswaps(v, size)
77
#define le_bswaps(p, size) *p = bswap ## size(*p);
78
#else
79
#define le_bswap(v, size) (v)
80
#define be_bswap(v, size) bswap ## size(v)
81
#define le_bswaps(v, size)
82
#define be_bswaps(p, size) *p = bswap ## size(*p);
83
#endif
84

    
85
#define CPU_CONVERT(endian, size, type)\
86
static inline type endian ## size ## _to_cpu(type v)\
87
{\
88
    return endian ## _bswap(v, size);\
89
}\
90
\
91
static inline type cpu_to_ ## endian ## size(type v)\
92
{\
93
    return endian ## _bswap(v, size);\
94
}\
95
\
96
static inline void endian ## size ## _to_cpus(type *p)\
97
{\
98
    endian ## _bswaps(p, size)\
99
}\
100
\
101
static inline void cpu_to_ ## endian ## size ## s(type *p)\
102
{\
103
    endian ## _bswaps(p, size)\
104
}\
105
\
106
static inline type endian ## size ## _to_cpup(const type *p)\
107
{\
108
    return endian ## size ## _to_cpu(*p);\
109
}\
110
\
111
static inline void cpu_to_ ## endian ## size ## w(type *p, type v)\
112
{\
113
     *p = cpu_to_ ## endian ## size(v);\
114
}
115

    
116
CPU_CONVERT(be, 16, uint16_t)
117
CPU_CONVERT(be, 32, uint32_t)
118
CPU_CONVERT(be, 64, uint64_t)
119

    
120
CPU_CONVERT(le, 16, uint16_t)
121
CPU_CONVERT(le, 32, uint32_t)
122
CPU_CONVERT(le, 64, uint64_t)
123

    
124
/* unaligned versions (optimized for frequent unaligned accesses)*/
125

    
126
#if defined(__i386__) || defined(_ARCH_PPC)
127

    
128
#define cpu_to_le16wu(p, v) cpu_to_le16w(p, v)
129
#define cpu_to_le32wu(p, v) cpu_to_le32w(p, v)
130
#define le16_to_cpupu(p) le16_to_cpup(p)
131
#define le32_to_cpupu(p) le32_to_cpup(p)
132
#define be32_to_cpupu(p) be32_to_cpup(p)
133

    
134
#define cpu_to_be16wu(p, v) cpu_to_be16w(p, v)
135
#define cpu_to_be32wu(p, v) cpu_to_be32w(p, v)
136
#define cpu_to_be64wu(p, v) cpu_to_be64w(p, v)
137

    
138
#else
139

    
140
static inline void cpu_to_le16wu(uint16_t *p, uint16_t v)
141
{
142
    uint8_t *p1 = (uint8_t *)p;
143

    
144
    p1[0] = v & 0xff;
145
    p1[1] = v >> 8;
146
}
147

    
148
static inline void cpu_to_le32wu(uint32_t *p, uint32_t v)
149
{
150
    uint8_t *p1 = (uint8_t *)p;
151

    
152
    p1[0] = v & 0xff;
153
    p1[1] = v >> 8;
154
    p1[2] = v >> 16;
155
    p1[3] = v >> 24;
156
}
157

    
158
static inline uint16_t le16_to_cpupu(const uint16_t *p)
159
{
160
    const uint8_t *p1 = (const uint8_t *)p;
161
    return p1[0] | (p1[1] << 8);
162
}
163

    
164
static inline uint32_t le32_to_cpupu(const uint32_t *p)
165
{
166
    const uint8_t *p1 = (const uint8_t *)p;
167
    return p1[0] | (p1[1] << 8) | (p1[2] << 16) | (p1[3] << 24);
168
}
169

    
170
static inline uint32_t be32_to_cpupu(const uint32_t *p)
171
{
172
    const uint8_t *p1 = (const uint8_t *)p;
173
    return p1[3] | (p1[2] << 8) | (p1[1] << 16) | (p1[0] << 24);
174
}
175

    
176
static inline void cpu_to_be16wu(uint16_t *p, uint16_t v)
177
{
178
    uint8_t *p1 = (uint8_t *)p;
179

    
180
    p1[0] = v >> 8;
181
    p1[1] = v & 0xff;
182
}
183

    
184
static inline void cpu_to_be32wu(uint32_t *p, uint32_t v)
185
{
186
    uint8_t *p1 = (uint8_t *)p;
187

    
188
    p1[0] = v >> 24;
189
    p1[1] = v >> 16;
190
    p1[2] = v >> 8;
191
    p1[3] = v & 0xff;
192
}
193

    
194
static inline void cpu_to_be64wu(uint64_t *p, uint64_t v)
195
{
196
    uint8_t *p1 = (uint8_t *)p;
197

    
198
    p1[0] = v >> 56;
199
    p1[1] = v >> 48;
200
    p1[2] = v >> 40;
201
    p1[3] = v >> 32;
202
    p1[4] = v >> 24;
203
    p1[5] = v >> 16;
204
    p1[6] = v >> 8;
205
    p1[7] = v & 0xff;
206
}
207

    
208
#endif
209

    
210
#ifdef HOST_WORDS_BIGENDIAN
211
#define cpu_to_32wu cpu_to_be32wu
212
#define leul_to_cpu(v) glue(glue(le,HOST_LONG_BITS),_to_cpu)(v)
213
#else
214
#define cpu_to_32wu cpu_to_le32wu
215
#define leul_to_cpu(v) (v)
216
#endif
217

    
218
#undef le_bswap
219
#undef be_bswap
220
#undef le_bswaps
221
#undef be_bswaps
222

    
223
/* len must be one of 1, 2, 4 */
224
static inline uint32_t qemu_bswap_len(uint32_t value, int len)
225
{
226
    return bswap32(value) >> (32 - 8 * len);
227
}
228

    
229
/* Unions for reinterpreting between floats and integers.  */
230

    
231
typedef union {
232
    float32 f;
233
    uint32_t l;
234
} CPU_FloatU;
235

    
236
typedef union {
237
    float64 d;
238
#if defined(HOST_WORDS_BIGENDIAN)
239
    struct {
240
        uint32_t upper;
241
        uint32_t lower;
242
    } l;
243
#else
244
    struct {
245
        uint32_t lower;
246
        uint32_t upper;
247
    } l;
248
#endif
249
    uint64_t ll;
250
} CPU_DoubleU;
251

    
252
typedef union {
253
     floatx80 d;
254
     struct {
255
         uint64_t lower;
256
         uint16_t upper;
257
     } l;
258
} CPU_LDoubleU;
259

    
260
typedef union {
261
    float128 q;
262
#if defined(HOST_WORDS_BIGENDIAN)
263
    struct {
264
        uint32_t upmost;
265
        uint32_t upper;
266
        uint32_t lower;
267
        uint32_t lowest;
268
    } l;
269
    struct {
270
        uint64_t upper;
271
        uint64_t lower;
272
    } ll;
273
#else
274
    struct {
275
        uint32_t lowest;
276
        uint32_t lower;
277
        uint32_t upper;
278
        uint32_t upmost;
279
    } l;
280
    struct {
281
        uint64_t lower;
282
        uint64_t upper;
283
    } ll;
284
#endif
285
} CPU_QuadU;
286

    
287
/* unaligned/endian-independent pointer access */
288

    
289
/*
290
 * the generic syntax is:
291
 *
292
 * load: ld{type}{sign}{size}{endian}_p(ptr)
293
 *
294
 * store: st{type}{size}{endian}_p(ptr, val)
295
 *
296
 * Note there are small differences with the softmmu access API!
297
 *
298
 * type is:
299
 * (empty): integer access
300
 *   f    : float access
301
 *
302
 * sign is:
303
 * (empty): for floats or 32 bit size
304
 *   u    : unsigned
305
 *   s    : signed
306
 *
307
 * size is:
308
 *   b: 8 bits
309
 *   w: 16 bits
310
 *   l: 32 bits
311
 *   q: 64 bits
312
 *
313
 * endian is:
314
 * (empty): host endian
315
 *   be   : big endian
316
 *   le   : little endian
317
 */
318
static inline int ldub_p(const void *ptr)
319
{
320
    return *(uint8_t *)ptr;
321
}
322

    
323
static inline int ldsb_p(const void *ptr)
324
{
325
    return *(int8_t *)ptr;
326
}
327

    
328
static inline void stb_p(void *ptr, int v)
329
{
330
    *(uint8_t *)ptr = v;
331
}
332

    
333
/* Any compiler worth its salt will turn these memcpy into native unaligned
334
   operations.  Thus we don't need to play games with packed attributes, or
335
   inline byte-by-byte stores.  */
336

    
337
static inline int lduw_p(const void *ptr)
338
{
339
    uint16_t r;
340
    memcpy(&r, ptr, sizeof(r));
341
    return r;
342
}
343

    
344
static inline int ldsw_p(const void *ptr)
345
{
346
    int16_t r;
347
    memcpy(&r, ptr, sizeof(r));
348
    return r;
349
}
350

    
351
static inline void stw_p(void *ptr, uint16_t v)
352
{
353
    memcpy(ptr, &v, sizeof(v));
354
}
355

    
356
static inline int ldl_p(const void *ptr)
357
{
358
    int32_t r;
359
    memcpy(&r, ptr, sizeof(r));
360
    return r;
361
}
362

    
363
static inline void stl_p(void *ptr, uint32_t v)
364
{
365
    memcpy(ptr, &v, sizeof(v));
366
}
367

    
368
static inline uint64_t ldq_p(const void *ptr)
369
{
370
    uint64_t r;
371
    memcpy(&r, ptr, sizeof(r));
372
    return r;
373
}
374

    
375
static inline void stq_p(void *ptr, uint64_t v)
376
{
377
    memcpy(ptr, &v, sizeof(v));
378
}
379

    
380
/* NOTE: on arm, putting 2 in /proc/sys/debug/alignment so that the
381
   kernel handles unaligned load/stores may give better results, but
382
   it is a system wide setting : bad */
383
#if defined(HOST_WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
384

    
385
/* conservative code for little endian unaligned accesses */
386
static inline int lduw_le_p(const void *ptr)
387
{
388
#ifdef _ARCH_PPC
389
    int val;
390
    __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
391
    return val;
392
#else
393
    const uint8_t *p = ptr;
394
    return p[0] | (p[1] << 8);
395
#endif
396
}
397

    
398
static inline int ldsw_le_p(const void *ptr)
399
{
400
#ifdef _ARCH_PPC
401
    int val;
402
    __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
403
    return (int16_t)val;
404
#else
405
    const uint8_t *p = ptr;
406
    return (int16_t)(p[0] | (p[1] << 8));
407
#endif
408
}
409

    
410
static inline int ldl_le_p(const void *ptr)
411
{
412
#ifdef _ARCH_PPC
413
    int val;
414
    __asm__ __volatile__ ("lwbrx %0,0,%1" : "=r" (val) : "r" (ptr));
415
    return val;
416
#else
417
    const uint8_t *p = ptr;
418
    return p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24);
419
#endif
420
}
421

    
422
static inline uint64_t ldq_le_p(const void *ptr)
423
{
424
    const uint8_t *p = ptr;
425
    uint32_t v1, v2;
426
    v1 = ldl_le_p(p);
427
    v2 = ldl_le_p(p + 4);
428
    return v1 | ((uint64_t)v2 << 32);
429
}
430

    
431
static inline void stw_le_p(void *ptr, int v)
432
{
433
#ifdef _ARCH_PPC
434
    __asm__ __volatile__ ("sthbrx %1,0,%2" : "=m" (*(uint16_t *)ptr) : "r" (v), "r" (ptr));
435
#else
436
    uint8_t *p = ptr;
437
    p[0] = v;
438
    p[1] = v >> 8;
439
#endif
440
}
441

    
442
static inline void stl_le_p(void *ptr, int v)
443
{
444
#ifdef _ARCH_PPC
445
    __asm__ __volatile__ ("stwbrx %1,0,%2" : "=m" (*(uint32_t *)ptr) : "r" (v), "r" (ptr));
446
#else
447
    uint8_t *p = ptr;
448
    p[0] = v;
449
    p[1] = v >> 8;
450
    p[2] = v >> 16;
451
    p[3] = v >> 24;
452
#endif
453
}
454

    
455
static inline void stq_le_p(void *ptr, uint64_t v)
456
{
457
    uint8_t *p = ptr;
458
    stl_le_p(p, (uint32_t)v);
459
    stl_le_p(p + 4, v >> 32);
460
}
461

    
462
/* float access */
463

    
464
static inline float32 ldfl_le_p(const void *ptr)
465
{
466
    union {
467
        float32 f;
468
        uint32_t i;
469
    } u;
470
    u.i = ldl_le_p(ptr);
471
    return u.f;
472
}
473

    
474
static inline void stfl_le_p(void *ptr, float32 v)
475
{
476
    union {
477
        float32 f;
478
        uint32_t i;
479
    } u;
480
    u.f = v;
481
    stl_le_p(ptr, u.i);
482
}
483

    
484
static inline float64 ldfq_le_p(const void *ptr)
485
{
486
    CPU_DoubleU u;
487
    u.l.lower = ldl_le_p(ptr);
488
    u.l.upper = ldl_le_p(ptr + 4);
489
    return u.d;
490
}
491

    
492
static inline void stfq_le_p(void *ptr, float64 v)
493
{
494
    CPU_DoubleU u;
495
    u.d = v;
496
    stl_le_p(ptr, u.l.lower);
497
    stl_le_p(ptr + 4, u.l.upper);
498
}
499

    
500
#else
501

    
502
static inline int lduw_le_p(const void *ptr)
503
{
504
    return *(uint16_t *)ptr;
505
}
506

    
507
static inline int ldsw_le_p(const void *ptr)
508
{
509
    return *(int16_t *)ptr;
510
}
511

    
512
static inline int ldl_le_p(const void *ptr)
513
{
514
    return *(uint32_t *)ptr;
515
}
516

    
517
static inline uint64_t ldq_le_p(const void *ptr)
518
{
519
    return *(uint64_t *)ptr;
520
}
521

    
522
static inline void stw_le_p(void *ptr, int v)
523
{
524
    *(uint16_t *)ptr = v;
525
}
526

    
527
static inline void stl_le_p(void *ptr, int v)
528
{
529
    *(uint32_t *)ptr = v;
530
}
531

    
532
static inline void stq_le_p(void *ptr, uint64_t v)
533
{
534
    *(uint64_t *)ptr = v;
535
}
536

    
537
/* float access */
538

    
539
static inline float32 ldfl_le_p(const void *ptr)
540
{
541
    return *(float32 *)ptr;
542
}
543

    
544
static inline float64 ldfq_le_p(const void *ptr)
545
{
546
    return *(float64 *)ptr;
547
}
548

    
549
static inline void stfl_le_p(void *ptr, float32 v)
550
{
551
    *(float32 *)ptr = v;
552
}
553

    
554
static inline void stfq_le_p(void *ptr, float64 v)
555
{
556
    *(float64 *)ptr = v;
557
}
558
#endif
559

    
560
#if !defined(HOST_WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
561

    
562
static inline int lduw_be_p(const void *ptr)
563
{
564
#if defined(__i386__)
565
    int val;
566
    asm volatile ("movzwl %1, %0\n"
567
                  "xchgb %b0, %h0\n"
568
                  : "=q" (val)
569
                  : "m" (*(uint16_t *)ptr));
570
    return val;
571
#else
572
    const uint8_t *b = ptr;
573
    return ((b[0] << 8) | b[1]);
574
#endif
575
}
576

    
577
static inline int ldsw_be_p(const void *ptr)
578
{
579
#if defined(__i386__)
580
    int val;
581
    asm volatile ("movzwl %1, %0\n"
582
                  "xchgb %b0, %h0\n"
583
                  : "=q" (val)
584
                  : "m" (*(uint16_t *)ptr));
585
    return (int16_t)val;
586
#else
587
    const uint8_t *b = ptr;
588
    return (int16_t)((b[0] << 8) | b[1]);
589
#endif
590
}
591

    
592
static inline int ldl_be_p(const void *ptr)
593
{
594
#if defined(__i386__) || defined(__x86_64__)
595
    int val;
596
    asm volatile ("movl %1, %0\n"
597
                  "bswap %0\n"
598
                  : "=r" (val)
599
                  : "m" (*(uint32_t *)ptr));
600
    return val;
601
#else
602
    const uint8_t *b = ptr;
603
    return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
604
#endif
605
}
606

    
607
static inline uint64_t ldq_be_p(const void *ptr)
608
{
609
    uint32_t a,b;
610
    a = ldl_be_p(ptr);
611
    b = ldl_be_p((uint8_t *)ptr + 4);
612
    return (((uint64_t)a<<32)|b);
613
}
614

    
615
static inline void stw_be_p(void *ptr, int v)
616
{
617
#if defined(__i386__)
618
    asm volatile ("xchgb %b0, %h0\n"
619
                  "movw %w0, %1\n"
620
                  : "=q" (v)
621
                  : "m" (*(uint16_t *)ptr), "0" (v));
622
#else
623
    uint8_t *d = (uint8_t *) ptr;
624
    d[0] = v >> 8;
625
    d[1] = v;
626
#endif
627
}
628

    
629
static inline void stl_be_p(void *ptr, int v)
630
{
631
#if defined(__i386__) || defined(__x86_64__)
632
    asm volatile ("bswap %0\n"
633
                  "movl %0, %1\n"
634
                  : "=r" (v)
635
                  : "m" (*(uint32_t *)ptr), "0" (v));
636
#else
637
    uint8_t *d = (uint8_t *) ptr;
638
    d[0] = v >> 24;
639
    d[1] = v >> 16;
640
    d[2] = v >> 8;
641
    d[3] = v;
642
#endif
643
}
644

    
645
static inline void stq_be_p(void *ptr, uint64_t v)
646
{
647
    stl_be_p(ptr, v >> 32);
648
    stl_be_p((uint8_t *)ptr + 4, v);
649
}
650

    
651
/* float access */
652

    
653
static inline float32 ldfl_be_p(const void *ptr)
654
{
655
    union {
656
        float32 f;
657
        uint32_t i;
658
    } u;
659
    u.i = ldl_be_p(ptr);
660
    return u.f;
661
}
662

    
663
static inline void stfl_be_p(void *ptr, float32 v)
664
{
665
    union {
666
        float32 f;
667
        uint32_t i;
668
    } u;
669
    u.f = v;
670
    stl_be_p(ptr, u.i);
671
}
672

    
673
static inline float64 ldfq_be_p(const void *ptr)
674
{
675
    CPU_DoubleU u;
676
    u.l.upper = ldl_be_p(ptr);
677
    u.l.lower = ldl_be_p((uint8_t *)ptr + 4);
678
    return u.d;
679
}
680

    
681
static inline void stfq_be_p(void *ptr, float64 v)
682
{
683
    CPU_DoubleU u;
684
    u.d = v;
685
    stl_be_p(ptr, u.l.upper);
686
    stl_be_p((uint8_t *)ptr + 4, u.l.lower);
687
}
688

    
689
#else
690

    
691
static inline int lduw_be_p(const void *ptr)
692
{
693
    return *(uint16_t *)ptr;
694
}
695

    
696
static inline int ldsw_be_p(const void *ptr)
697
{
698
    return *(int16_t *)ptr;
699
}
700

    
701
static inline int ldl_be_p(const void *ptr)
702
{
703
    return *(uint32_t *)ptr;
704
}
705

    
706
static inline uint64_t ldq_be_p(const void *ptr)
707
{
708
    return *(uint64_t *)ptr;
709
}
710

    
711
static inline void stw_be_p(void *ptr, int v)
712
{
713
    *(uint16_t *)ptr = v;
714
}
715

    
716
static inline void stl_be_p(void *ptr, int v)
717
{
718
    *(uint32_t *)ptr = v;
719
}
720

    
721
static inline void stq_be_p(void *ptr, uint64_t v)
722
{
723
    *(uint64_t *)ptr = v;
724
}
725

    
726
/* float access */
727

    
728
static inline float32 ldfl_be_p(const void *ptr)
729
{
730
    return *(float32 *)ptr;
731
}
732

    
733
static inline float64 ldfq_be_p(const void *ptr)
734
{
735
    return *(float64 *)ptr;
736
}
737

    
738
static inline void stfl_be_p(void *ptr, float32 v)
739
{
740
    *(float32 *)ptr = v;
741
}
742

    
743
static inline void stfq_be_p(void *ptr, float64 v)
744
{
745
    *(float64 *)ptr = v;
746
}
747

    
748
#endif
749

    
750
#endif /* BSWAP_H */