Statistics
| Branch: | Revision:

root / include / exec / cpu-all.h @ 7dca8043

History | View | Annotate | Download (15.6 kB)

1
/*
2
 * defines common to all virtual CPUs
3
 *
4
 *  Copyright (c) 2003 Fabrice Bellard
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18
 */
19
#ifndef CPU_ALL_H
20
#define CPU_ALL_H
21

    
22
#include "qemu-common.h"
23
#include "qemu/tls.h"
24
#include "exec/cpu-common.h"
25
#include "qemu/thread.h"
26

    
27
/* some important defines:
28
 *
29
 * WORDS_ALIGNED : if defined, the host cpu can only make word aligned
30
 * memory accesses.
31
 *
32
 * HOST_WORDS_BIGENDIAN : if defined, the host cpu is big endian and
33
 * otherwise little endian.
34
 *
35
 * (TARGET_WORDS_ALIGNED : same for target cpu (not supported yet))
36
 *
37
 * TARGET_WORDS_BIGENDIAN : same for target cpu
38
 */
39

    
40
#if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
41
#define BSWAP_NEEDED
42
#endif
43

    
44
#ifdef BSWAP_NEEDED
45

    
46
static inline uint16_t tswap16(uint16_t s)
47
{
48
    return bswap16(s);
49
}
50

    
51
static inline uint32_t tswap32(uint32_t s)
52
{
53
    return bswap32(s);
54
}
55

    
56
static inline uint64_t tswap64(uint64_t s)
57
{
58
    return bswap64(s);
59
}
60

    
61
static inline void tswap16s(uint16_t *s)
62
{
63
    *s = bswap16(*s);
64
}
65

    
66
static inline void tswap32s(uint32_t *s)
67
{
68
    *s = bswap32(*s);
69
}
70

    
71
static inline void tswap64s(uint64_t *s)
72
{
73
    *s = bswap64(*s);
74
}
75

    
76
#else
77

    
78
static inline uint16_t tswap16(uint16_t s)
79
{
80
    return s;
81
}
82

    
83
static inline uint32_t tswap32(uint32_t s)
84
{
85
    return s;
86
}
87

    
88
static inline uint64_t tswap64(uint64_t s)
89
{
90
    return s;
91
}
92

    
93
static inline void tswap16s(uint16_t *s)
94
{
95
}
96

    
97
static inline void tswap32s(uint32_t *s)
98
{
99
}
100

    
101
static inline void tswap64s(uint64_t *s)
102
{
103
}
104

    
105
#endif
106

    
107
#if TARGET_LONG_SIZE == 4
108
#define tswapl(s) tswap32(s)
109
#define tswapls(s) tswap32s((uint32_t *)(s))
110
#define bswaptls(s) bswap32s(s)
111
#else
112
#define tswapl(s) tswap64(s)
113
#define tswapls(s) tswap64s((uint64_t *)(s))
114
#define bswaptls(s) bswap64s(s)
115
#endif
116

    
117
/* CPU memory access without any memory or io remapping */
118

    
119
/*
120
 * the generic syntax for the memory accesses is:
121
 *
122
 * load: ld{type}{sign}{size}{endian}_{access_type}(ptr)
123
 *
124
 * store: st{type}{size}{endian}_{access_type}(ptr, val)
125
 *
126
 * type is:
127
 * (empty): integer access
128
 *   f    : float access
129
 *
130
 * sign is:
131
 * (empty): for floats or 32 bit size
132
 *   u    : unsigned
133
 *   s    : signed
134
 *
135
 * size is:
136
 *   b: 8 bits
137
 *   w: 16 bits
138
 *   l: 32 bits
139
 *   q: 64 bits
140
 *
141
 * endian is:
142
 * (empty): target cpu endianness or 8 bit access
143
 *   r    : reversed target cpu endianness (not implemented yet)
144
 *   be   : big endian (not implemented yet)
145
 *   le   : little endian (not implemented yet)
146
 *
147
 * access_type is:
148
 *   raw    : host memory access
149
 *   user   : user mode access using soft MMU
150
 *   kernel : kernel mode access using soft MMU
151
 */
152

    
153
/* target-endianness CPU memory access functions */
154
#if defined(TARGET_WORDS_BIGENDIAN)
155
#define lduw_p(p) lduw_be_p(p)
156
#define ldsw_p(p) ldsw_be_p(p)
157
#define ldl_p(p) ldl_be_p(p)
158
#define ldq_p(p) ldq_be_p(p)
159
#define ldfl_p(p) ldfl_be_p(p)
160
#define ldfq_p(p) ldfq_be_p(p)
161
#define stw_p(p, v) stw_be_p(p, v)
162
#define stl_p(p, v) stl_be_p(p, v)
163
#define stq_p(p, v) stq_be_p(p, v)
164
#define stfl_p(p, v) stfl_be_p(p, v)
165
#define stfq_p(p, v) stfq_be_p(p, v)
166
#else
167
#define lduw_p(p) lduw_le_p(p)
168
#define ldsw_p(p) ldsw_le_p(p)
169
#define ldl_p(p) ldl_le_p(p)
170
#define ldq_p(p) ldq_le_p(p)
171
#define ldfl_p(p) ldfl_le_p(p)
172
#define ldfq_p(p) ldfq_le_p(p)
173
#define stw_p(p, v) stw_le_p(p, v)
174
#define stl_p(p, v) stl_le_p(p, v)
175
#define stq_p(p, v) stq_le_p(p, v)
176
#define stfl_p(p, v) stfl_le_p(p, v)
177
#define stfq_p(p, v) stfq_le_p(p, v)
178
#endif
179

    
180
/* MMU memory access macros */
181

    
182
#if defined(CONFIG_USER_ONLY)
183
#include <assert.h>
184
#include "exec/user/abitypes.h"
185

    
186
/* On some host systems the guest address space is reserved on the host.
187
 * This allows the guest address space to be offset to a convenient location.
188
 */
189
#if defined(CONFIG_USE_GUEST_BASE)
190
extern unsigned long guest_base;
191
extern int have_guest_base;
192
extern unsigned long reserved_va;
193
#define GUEST_BASE guest_base
194
#define RESERVED_VA reserved_va
195
#else
196
#define GUEST_BASE 0ul
197
#define RESERVED_VA 0ul
198
#endif
199

    
200
/* All direct uses of g2h and h2g need to go away for usermode softmmu.  */
201
#define g2h(x) ((void *)((unsigned long)(target_ulong)(x) + GUEST_BASE))
202

    
203
#if HOST_LONG_BITS <= TARGET_VIRT_ADDR_SPACE_BITS
204
#define h2g_valid(x) 1
205
#else
206
#define h2g_valid(x) ({ \
207
    unsigned long __guest = (unsigned long)(x) - GUEST_BASE; \
208
    (__guest < (1ul << TARGET_VIRT_ADDR_SPACE_BITS)) && \
209
    (!RESERVED_VA || (__guest < RESERVED_VA)); \
210
})
211
#endif
212

    
213
#define h2g(x) ({ \
214
    unsigned long __ret = (unsigned long)(x) - GUEST_BASE; \
215
    /* Check if given address fits target address space */ \
216
    assert(h2g_valid(x)); \
217
    (abi_ulong)__ret; \
218
})
219

    
220
#define saddr(x) g2h(x)
221
#define laddr(x) g2h(x)
222

    
223
#else /* !CONFIG_USER_ONLY */
224
/* NOTE: we use double casts if pointers and target_ulong have
225
   different sizes */
226
#define saddr(x) (uint8_t *)(intptr_t)(x)
227
#define laddr(x) (uint8_t *)(intptr_t)(x)
228
#endif
229

    
230
#define ldub_raw(p) ldub_p(laddr((p)))
231
#define ldsb_raw(p) ldsb_p(laddr((p)))
232
#define lduw_raw(p) lduw_p(laddr((p)))
233
#define ldsw_raw(p) ldsw_p(laddr((p)))
234
#define ldl_raw(p) ldl_p(laddr((p)))
235
#define ldq_raw(p) ldq_p(laddr((p)))
236
#define ldfl_raw(p) ldfl_p(laddr((p)))
237
#define ldfq_raw(p) ldfq_p(laddr((p)))
238
#define stb_raw(p, v) stb_p(saddr((p)), v)
239
#define stw_raw(p, v) stw_p(saddr((p)), v)
240
#define stl_raw(p, v) stl_p(saddr((p)), v)
241
#define stq_raw(p, v) stq_p(saddr((p)), v)
242
#define stfl_raw(p, v) stfl_p(saddr((p)), v)
243
#define stfq_raw(p, v) stfq_p(saddr((p)), v)
244

    
245

    
246
#if defined(CONFIG_USER_ONLY)
247

    
248
/* if user mode, no other memory access functions */
249
#define ldub(p) ldub_raw(p)
250
#define ldsb(p) ldsb_raw(p)
251
#define lduw(p) lduw_raw(p)
252
#define ldsw(p) ldsw_raw(p)
253
#define ldl(p) ldl_raw(p)
254
#define ldq(p) ldq_raw(p)
255
#define ldfl(p) ldfl_raw(p)
256
#define ldfq(p) ldfq_raw(p)
257
#define stb(p, v) stb_raw(p, v)
258
#define stw(p, v) stw_raw(p, v)
259
#define stl(p, v) stl_raw(p, v)
260
#define stq(p, v) stq_raw(p, v)
261
#define stfl(p, v) stfl_raw(p, v)
262
#define stfq(p, v) stfq_raw(p, v)
263

    
264
#define cpu_ldub_code(env1, p) ldub_raw(p)
265
#define cpu_ldsb_code(env1, p) ldsb_raw(p)
266
#define cpu_lduw_code(env1, p) lduw_raw(p)
267
#define cpu_ldsw_code(env1, p) ldsw_raw(p)
268
#define cpu_ldl_code(env1, p) ldl_raw(p)
269
#define cpu_ldq_code(env1, p) ldq_raw(p)
270

    
271
#define cpu_ldub_data(env, addr) ldub_raw(addr)
272
#define cpu_lduw_data(env, addr) lduw_raw(addr)
273
#define cpu_ldsw_data(env, addr) ldsw_raw(addr)
274
#define cpu_ldl_data(env, addr) ldl_raw(addr)
275
#define cpu_ldq_data(env, addr) ldq_raw(addr)
276

    
277
#define cpu_stb_data(env, addr, data) stb_raw(addr, data)
278
#define cpu_stw_data(env, addr, data) stw_raw(addr, data)
279
#define cpu_stl_data(env, addr, data) stl_raw(addr, data)
280
#define cpu_stq_data(env, addr, data) stq_raw(addr, data)
281

    
282
#define cpu_ldub_kernel(env, addr) ldub_raw(addr)
283
#define cpu_lduw_kernel(env, addr) lduw_raw(addr)
284
#define cpu_ldsw_kernel(env, addr) ldsw_raw(addr)
285
#define cpu_ldl_kernel(env, addr) ldl_raw(addr)
286
#define cpu_ldq_kernel(env, addr) ldq_raw(addr)
287

    
288
#define cpu_stb_kernel(env, addr, data) stb_raw(addr, data)
289
#define cpu_stw_kernel(env, addr, data) stw_raw(addr, data)
290
#define cpu_stl_kernel(env, addr, data) stl_raw(addr, data)
291
#define cpu_stq_kernel(env, addr, data) stq_raw(addr, data)
292

    
293
#define ldub_kernel(p) ldub_raw(p)
294
#define ldsb_kernel(p) ldsb_raw(p)
295
#define lduw_kernel(p) lduw_raw(p)
296
#define ldsw_kernel(p) ldsw_raw(p)
297
#define ldl_kernel(p) ldl_raw(p)
298
#define ldq_kernel(p) ldq_raw(p)
299
#define ldfl_kernel(p) ldfl_raw(p)
300
#define ldfq_kernel(p) ldfq_raw(p)
301
#define stb_kernel(p, v) stb_raw(p, v)
302
#define stw_kernel(p, v) stw_raw(p, v)
303
#define stl_kernel(p, v) stl_raw(p, v)
304
#define stq_kernel(p, v) stq_raw(p, v)
305
#define stfl_kernel(p, v) stfl_raw(p, v)
306
#define stfq_kernel(p, vt) stfq_raw(p, v)
307

    
308
#define cpu_ldub_data(env, addr) ldub_raw(addr)
309
#define cpu_lduw_data(env, addr) lduw_raw(addr)
310
#define cpu_ldl_data(env, addr) ldl_raw(addr)
311

    
312
#define cpu_stb_data(env, addr, data) stb_raw(addr, data)
313
#define cpu_stw_data(env, addr, data) stw_raw(addr, data)
314
#define cpu_stl_data(env, addr, data) stl_raw(addr, data)
315
#endif /* defined(CONFIG_USER_ONLY) */
316

    
317
/* page related stuff */
318

    
319
#define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS)
320
#define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
321
#define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)
322

    
323
/* ??? These should be the larger of uintptr_t and target_ulong.  */
324
extern uintptr_t qemu_real_host_page_size;
325
extern uintptr_t qemu_host_page_size;
326
extern uintptr_t qemu_host_page_mask;
327

    
328
#define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask)
329

    
330
/* same as PROT_xxx */
331
#define PAGE_READ      0x0001
332
#define PAGE_WRITE     0x0002
333
#define PAGE_EXEC      0x0004
334
#define PAGE_BITS      (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
335
#define PAGE_VALID     0x0008
336
/* original state of the write flag (used when tracking self-modifying
337
   code */
338
#define PAGE_WRITE_ORG 0x0010
339
#if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
340
/* FIXME: Code that sets/uses this is broken and needs to go away.  */
341
#define PAGE_RESERVED  0x0020
342
#endif
343

    
344
#if defined(CONFIG_USER_ONLY)
345
void page_dump(FILE *f);
346

    
347
typedef int (*walk_memory_regions_fn)(void *, abi_ulong,
348
                                      abi_ulong, unsigned long);
349
int walk_memory_regions(void *, walk_memory_regions_fn);
350

    
351
int page_get_flags(target_ulong address);
352
void page_set_flags(target_ulong start, target_ulong end, int flags);
353
int page_check_range(target_ulong start, target_ulong len, int flags);
354
#endif
355

    
356
CPUArchState *cpu_copy(CPUArchState *env);
357

    
358
#define CPU_DUMP_CODE 0x00010000
359
#define CPU_DUMP_FPU 0x00020000 /* dump FPU register state, not just integer */
360
/* dump info about TCG QEMU's condition code optimization state */
361
#define CPU_DUMP_CCOP 0x00040000
362

    
363
void cpu_dump_state(CPUArchState *env, FILE *f, fprintf_function cpu_fprintf,
364
                    int flags);
365
void cpu_dump_statistics(CPUArchState *env, FILE *f, fprintf_function cpu_fprintf,
366
                         int flags);
367

    
368
void QEMU_NORETURN cpu_abort(CPUArchState *env, const char *fmt, ...)
369
    GCC_FMT_ATTR(2, 3);
370
extern CPUArchState *first_cpu;
371
DECLARE_TLS(CPUArchState *,cpu_single_env);
372
#define cpu_single_env tls_var(cpu_single_env)
373

    
374
/* Flags for use in ENV->INTERRUPT_PENDING.
375

376
   The numbers assigned here are non-sequential in order to preserve
377
   binary compatibility with the vmstate dump.  Bit 0 (0x0001) was
378
   previously used for CPU_INTERRUPT_EXIT, and is cleared when loading
379
   the vmstate dump.  */
380

    
381
/* External hardware interrupt pending.  This is typically used for
382
   interrupts from devices.  */
383
#define CPU_INTERRUPT_HARD        0x0002
384

    
385
/* Exit the current TB.  This is typically used when some system-level device
386
   makes some change to the memory mapping.  E.g. the a20 line change.  */
387
#define CPU_INTERRUPT_EXITTB      0x0004
388

    
389
/* Halt the CPU.  */
390
#define CPU_INTERRUPT_HALT        0x0020
391

    
392
/* Debug event pending.  */
393
#define CPU_INTERRUPT_DEBUG       0x0080
394

    
395
/* Several target-specific external hardware interrupts.  Each target/cpu.h
396
   should define proper names based on these defines.  */
397
#define CPU_INTERRUPT_TGT_EXT_0   0x0008
398
#define CPU_INTERRUPT_TGT_EXT_1   0x0010
399
#define CPU_INTERRUPT_TGT_EXT_2   0x0040
400
#define CPU_INTERRUPT_TGT_EXT_3   0x0200
401
#define CPU_INTERRUPT_TGT_EXT_4   0x1000
402

    
403
/* Several target-specific internal interrupts.  These differ from the
404
   preceding target-specific interrupts in that they are intended to
405
   originate from within the cpu itself, typically in response to some
406
   instruction being executed.  These, therefore, are not masked while
407
   single-stepping within the debugger.  */
408
#define CPU_INTERRUPT_TGT_INT_0   0x0100
409
#define CPU_INTERRUPT_TGT_INT_1   0x0400
410
#define CPU_INTERRUPT_TGT_INT_2   0x0800
411
#define CPU_INTERRUPT_TGT_INT_3   0x2000
412

    
413
/* First unused bit: 0x4000.  */
414

    
415
/* The set of all bits that should be masked when single-stepping.  */
416
#define CPU_INTERRUPT_SSTEP_MASK \
417
    (CPU_INTERRUPT_HARD          \
418
     | CPU_INTERRUPT_TGT_EXT_0   \
419
     | CPU_INTERRUPT_TGT_EXT_1   \
420
     | CPU_INTERRUPT_TGT_EXT_2   \
421
     | CPU_INTERRUPT_TGT_EXT_3   \
422
     | CPU_INTERRUPT_TGT_EXT_4)
423

    
424
void cpu_exit(CPUArchState *s);
425

    
426
/* Breakpoint/watchpoint flags */
427
#define BP_MEM_READ           0x01
428
#define BP_MEM_WRITE          0x02
429
#define BP_MEM_ACCESS         (BP_MEM_READ | BP_MEM_WRITE)
430
#define BP_STOP_BEFORE_ACCESS 0x04
431
#define BP_WATCHPOINT_HIT     0x08
432
#define BP_GDB                0x10
433
#define BP_CPU                0x20
434

    
435
int cpu_breakpoint_insert(CPUArchState *env, target_ulong pc, int flags,
436
                          CPUBreakpoint **breakpoint);
437
int cpu_breakpoint_remove(CPUArchState *env, target_ulong pc, int flags);
438
void cpu_breakpoint_remove_by_ref(CPUArchState *env, CPUBreakpoint *breakpoint);
439
void cpu_breakpoint_remove_all(CPUArchState *env, int mask);
440
int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
441
                          int flags, CPUWatchpoint **watchpoint);
442
int cpu_watchpoint_remove(CPUArchState *env, target_ulong addr,
443
                          target_ulong len, int flags);
444
void cpu_watchpoint_remove_by_ref(CPUArchState *env, CPUWatchpoint *watchpoint);
445
void cpu_watchpoint_remove_all(CPUArchState *env, int mask);
446

    
447
#define SSTEP_ENABLE  0x1  /* Enable simulated HW single stepping */
448
#define SSTEP_NOIRQ   0x2  /* Do not use IRQ while single stepping */
449
#define SSTEP_NOTIMER 0x4  /* Do not Timers while single stepping */
450

    
451
void cpu_single_step(CPUArchState *env, int enabled);
452

    
453
#if !defined(CONFIG_USER_ONLY)
454

    
455
/* Return the physical page corresponding to a virtual one. Use it
456
   only for debugging because no protection checks are done. Return -1
457
   if no page found. */
458
hwaddr cpu_get_phys_page_debug(CPUArchState *env, target_ulong addr);
459

    
460
/* memory API */
461

    
462
extern int phys_ram_fd;
463
extern ram_addr_t ram_size;
464

    
465
/* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
466
#define RAM_PREALLOC_MASK   (1 << 0)
467

    
468
typedef struct RAMBlock {
469
    struct MemoryRegion *mr;
470
    uint8_t *host;
471
    ram_addr_t offset;
472
    ram_addr_t length;
473
    uint32_t flags;
474
    char idstr[256];
475
    /* Reads can take either the iothread or the ramlist lock.
476
     * Writes must take both locks.
477
     */
478
    QTAILQ_ENTRY(RAMBlock) next;
479
#if defined(__linux__) && !defined(TARGET_S390X)
480
    int fd;
481
#endif
482
} RAMBlock;
483

    
484
typedef struct RAMList {
485
    QemuMutex mutex;
486
    /* Protected by the iothread lock.  */
487
    uint8_t *phys_dirty;
488
    RAMBlock *mru_block;
489
    /* Protected by the ramlist lock.  */
490
    QTAILQ_HEAD(, RAMBlock) blocks;
491
    uint32_t version;
492
} RAMList;
493
extern RAMList ram_list;
494

    
495
extern const char *mem_path;
496
extern int mem_prealloc;
497

    
498
/* Flags stored in the low bits of the TLB virtual address.  These are
499
   defined so that fast path ram access is all zeros.  */
500
/* Zero if TLB entry is valid.  */
501
#define TLB_INVALID_MASK   (1 << 3)
502
/* Set if TLB entry references a clean RAM page.  The iotlb entry will
503
   contain the page physical address.  */
504
#define TLB_NOTDIRTY    (1 << 4)
505
/* Set if TLB entry is an IO callback.  */
506
#define TLB_MMIO        (1 << 5)
507

    
508
void dump_exec_info(FILE *f, fprintf_function cpu_fprintf);
509
ram_addr_t last_ram_offset(void);
510
void qemu_mutex_lock_ramlist(void);
511
void qemu_mutex_unlock_ramlist(void);
512
#endif /* !CONFIG_USER_ONLY */
513

    
514
int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
515
                        uint8_t *buf, int len, int is_write);
516

    
517
#endif /* CPU_ALL_H */