Statistics
| Branch: | Revision:

root / kvm-all.c @ 7e680753

History | View | Annotate | Download (42.2 kB)

1
/*
2
 * QEMU KVM support
3
 *
4
 * Copyright IBM, Corp. 2008
5
 *           Red Hat, Inc. 2008
6
 *
7
 * Authors:
8
 *  Anthony Liguori   <aliguori@us.ibm.com>
9
 *  Glauber Costa     <gcosta@redhat.com>
10
 *
11
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12
 * See the COPYING file in the top-level directory.
13
 *
14
 */
15

    
16
#include <sys/types.h>
17
#include <sys/ioctl.h>
18
#include <sys/mman.h>
19
#include <stdarg.h>
20

    
21
#include <linux/kvm.h>
22

    
23
#include "qemu-common.h"
24
#include "qemu-barrier.h"
25
#include "sysemu.h"
26
#include "hw/hw.h"
27
#include "gdbstub.h"
28
#include "kvm.h"
29
#include "bswap.h"
30
#include "memory.h"
31
#include "exec-memory.h"
32

    
33
/* This check must be after config-host.h is included */
34
#ifdef CONFIG_EVENTFD
35
#include <sys/eventfd.h>
36
#endif
37

    
38
/* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
39
#define PAGE_SIZE TARGET_PAGE_SIZE
40

    
41
//#define DEBUG_KVM
42

    
43
#ifdef DEBUG_KVM
44
#define DPRINTF(fmt, ...) \
45
    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
46
#else
47
#define DPRINTF(fmt, ...) \
48
    do { } while (0)
49
#endif
50

    
51
typedef struct KVMSlot
52
{
53
    target_phys_addr_t start_addr;
54
    ram_addr_t memory_size;
55
    void *ram;
56
    int slot;
57
    int flags;
58
} KVMSlot;
59

    
60
typedef struct kvm_dirty_log KVMDirtyLog;
61

    
62
struct KVMState
63
{
64
    KVMSlot slots[32];
65
    int fd;
66
    int vmfd;
67
    int coalesced_mmio;
68
    struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
69
    bool coalesced_flush_in_progress;
70
    int broken_set_mem_region;
71
    int migration_log;
72
    int vcpu_events;
73
    int robust_singlestep;
74
    int debugregs;
75
#ifdef KVM_CAP_SET_GUEST_DEBUG
76
    struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
77
#endif
78
    int pit_in_kernel;
79
    int pit_state2;
80
    int xsave, xcrs;
81
    int many_ioeventfds;
82
    int irqchip_inject_ioctl;
83
#ifdef KVM_CAP_IRQ_ROUTING
84
    struct kvm_irq_routing *irq_routes;
85
    int nr_allocated_irq_routes;
86
    uint32_t *used_gsi_bitmap;
87
    unsigned int max_gsi;
88
#endif
89
};
90

    
91
KVMState *kvm_state;
92
bool kvm_kernel_irqchip;
93

    
94
static const KVMCapabilityInfo kvm_required_capabilites[] = {
95
    KVM_CAP_INFO(USER_MEMORY),
96
    KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
97
    KVM_CAP_LAST_INFO
98
};
99

    
100
static KVMSlot *kvm_alloc_slot(KVMState *s)
101
{
102
    int i;
103

    
104
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
105
        if (s->slots[i].memory_size == 0) {
106
            return &s->slots[i];
107
        }
108
    }
109

    
110
    fprintf(stderr, "%s: no free slot available\n", __func__);
111
    abort();
112
}
113

    
114
static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
115
                                         target_phys_addr_t start_addr,
116
                                         target_phys_addr_t end_addr)
117
{
118
    int i;
119

    
120
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
121
        KVMSlot *mem = &s->slots[i];
122

    
123
        if (start_addr == mem->start_addr &&
124
            end_addr == mem->start_addr + mem->memory_size) {
125
            return mem;
126
        }
127
    }
128

    
129
    return NULL;
130
}
131

    
132
/*
133
 * Find overlapping slot with lowest start address
134
 */
135
static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
136
                                            target_phys_addr_t start_addr,
137
                                            target_phys_addr_t end_addr)
138
{
139
    KVMSlot *found = NULL;
140
    int i;
141

    
142
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
143
        KVMSlot *mem = &s->slots[i];
144

    
145
        if (mem->memory_size == 0 ||
146
            (found && found->start_addr < mem->start_addr)) {
147
            continue;
148
        }
149

    
150
        if (end_addr > mem->start_addr &&
151
            start_addr < mem->start_addr + mem->memory_size) {
152
            found = mem;
153
        }
154
    }
155

    
156
    return found;
157
}
158

    
159
int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
160
                                       target_phys_addr_t *phys_addr)
161
{
162
    int i;
163

    
164
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
165
        KVMSlot *mem = &s->slots[i];
166

    
167
        if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
168
            *phys_addr = mem->start_addr + (ram - mem->ram);
169
            return 1;
170
        }
171
    }
172

    
173
    return 0;
174
}
175

    
176
static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
177
{
178
    struct kvm_userspace_memory_region mem;
179

    
180
    mem.slot = slot->slot;
181
    mem.guest_phys_addr = slot->start_addr;
182
    mem.memory_size = slot->memory_size;
183
    mem.userspace_addr = (unsigned long)slot->ram;
184
    mem.flags = slot->flags;
185
    if (s->migration_log) {
186
        mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
187
    }
188
    return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
189
}
190

    
191
static void kvm_reset_vcpu(void *opaque)
192
{
193
    CPUState *env = opaque;
194

    
195
    kvm_arch_reset_vcpu(env);
196
}
197

    
198
int kvm_pit_in_kernel(void)
199
{
200
    return kvm_state->pit_in_kernel;
201
}
202

    
203
int kvm_init_vcpu(CPUState *env)
204
{
205
    KVMState *s = kvm_state;
206
    long mmap_size;
207
    int ret;
208

    
209
    DPRINTF("kvm_init_vcpu\n");
210

    
211
    ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
212
    if (ret < 0) {
213
        DPRINTF("kvm_create_vcpu failed\n");
214
        goto err;
215
    }
216

    
217
    env->kvm_fd = ret;
218
    env->kvm_state = s;
219
    env->kvm_vcpu_dirty = 1;
220

    
221
    mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
222
    if (mmap_size < 0) {
223
        ret = mmap_size;
224
        DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
225
        goto err;
226
    }
227

    
228
    env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
229
                        env->kvm_fd, 0);
230
    if (env->kvm_run == MAP_FAILED) {
231
        ret = -errno;
232
        DPRINTF("mmap'ing vcpu state failed\n");
233
        goto err;
234
    }
235

    
236
    if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
237
        s->coalesced_mmio_ring =
238
            (void *)env->kvm_run + s->coalesced_mmio * PAGE_SIZE;
239
    }
240

    
241
    ret = kvm_arch_init_vcpu(env);
242
    if (ret == 0) {
243
        qemu_register_reset(kvm_reset_vcpu, env);
244
        kvm_arch_reset_vcpu(env);
245
    }
246
err:
247
    return ret;
248
}
249

    
250
/*
251
 * dirty pages logging control
252
 */
253

    
254
static int kvm_mem_flags(KVMState *s, bool log_dirty)
255
{
256
    return log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0;
257
}
258

    
259
static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty)
260
{
261
    KVMState *s = kvm_state;
262
    int flags, mask = KVM_MEM_LOG_DIRTY_PAGES;
263
    int old_flags;
264

    
265
    old_flags = mem->flags;
266

    
267
    flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty);
268
    mem->flags = flags;
269

    
270
    /* If nothing changed effectively, no need to issue ioctl */
271
    if (s->migration_log) {
272
        flags |= KVM_MEM_LOG_DIRTY_PAGES;
273
    }
274

    
275
    if (flags == old_flags) {
276
        return 0;
277
    }
278

    
279
    return kvm_set_user_memory_region(s, mem);
280
}
281

    
282
static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
283
                                      ram_addr_t size, bool log_dirty)
284
{
285
    KVMState *s = kvm_state;
286
    KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
287

    
288
    if (mem == NULL)  {
289
        fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
290
                TARGET_FMT_plx "\n", __func__, phys_addr,
291
                (target_phys_addr_t)(phys_addr + size - 1));
292
        return -EINVAL;
293
    }
294
    return kvm_slot_dirty_pages_log_change(mem, log_dirty);
295
}
296

    
297
static void kvm_log_start(MemoryListener *listener,
298
                          MemoryRegionSection *section)
299
{
300
    int r;
301

    
302
    r = kvm_dirty_pages_log_change(section->offset_within_address_space,
303
                                   section->size, true);
304
    if (r < 0) {
305
        abort();
306
    }
307
}
308

    
309
static void kvm_log_stop(MemoryListener *listener,
310
                          MemoryRegionSection *section)
311
{
312
    int r;
313

    
314
    r = kvm_dirty_pages_log_change(section->offset_within_address_space,
315
                                   section->size, false);
316
    if (r < 0) {
317
        abort();
318
    }
319
}
320

    
321
static int kvm_set_migration_log(int enable)
322
{
323
    KVMState *s = kvm_state;
324
    KVMSlot *mem;
325
    int i, err;
326

    
327
    s->migration_log = enable;
328

    
329
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
330
        mem = &s->slots[i];
331

    
332
        if (!mem->memory_size) {
333
            continue;
334
        }
335
        if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
336
            continue;
337
        }
338
        err = kvm_set_user_memory_region(s, mem);
339
        if (err) {
340
            return err;
341
        }
342
    }
343
    return 0;
344
}
345

    
346
/* get kvm's dirty pages bitmap and update qemu's */
347
static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
348
                                         unsigned long *bitmap)
349
{
350
    unsigned int i, j;
351
    unsigned long page_number, c;
352
    target_phys_addr_t addr, addr1;
353
    unsigned int len = ((section->size / TARGET_PAGE_SIZE) + HOST_LONG_BITS - 1) / HOST_LONG_BITS;
354

    
355
    /*
356
     * bitmap-traveling is faster than memory-traveling (for addr...)
357
     * especially when most of the memory is not dirty.
358
     */
359
    for (i = 0; i < len; i++) {
360
        if (bitmap[i] != 0) {
361
            c = leul_to_cpu(bitmap[i]);
362
            do {
363
                j = ffsl(c) - 1;
364
                c &= ~(1ul << j);
365
                page_number = i * HOST_LONG_BITS + j;
366
                addr1 = page_number * TARGET_PAGE_SIZE;
367
                addr = section->offset_within_region + addr1;
368
                memory_region_set_dirty(section->mr, addr, TARGET_PAGE_SIZE);
369
            } while (c != 0);
370
        }
371
    }
372
    return 0;
373
}
374

    
375
#define ALIGN(x, y)  (((x)+(y)-1) & ~((y)-1))
376

    
377
/**
378
 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
379
 * This function updates qemu's dirty bitmap using
380
 * memory_region_set_dirty().  This means all bits are set
381
 * to dirty.
382
 *
383
 * @start_add: start of logged region.
384
 * @end_addr: end of logged region.
385
 */
386
static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection *section)
387
{
388
    KVMState *s = kvm_state;
389
    unsigned long size, allocated_size = 0;
390
    KVMDirtyLog d;
391
    KVMSlot *mem;
392
    int ret = 0;
393
    target_phys_addr_t start_addr = section->offset_within_address_space;
394
    target_phys_addr_t end_addr = start_addr + section->size;
395

    
396
    d.dirty_bitmap = NULL;
397
    while (start_addr < end_addr) {
398
        mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
399
        if (mem == NULL) {
400
            break;
401
        }
402

    
403
        /* XXX bad kernel interface alert
404
         * For dirty bitmap, kernel allocates array of size aligned to
405
         * bits-per-long.  But for case when the kernel is 64bits and
406
         * the userspace is 32bits, userspace can't align to the same
407
         * bits-per-long, since sizeof(long) is different between kernel
408
         * and user space.  This way, userspace will provide buffer which
409
         * may be 4 bytes less than the kernel will use, resulting in
410
         * userspace memory corruption (which is not detectable by valgrind
411
         * too, in most cases).
412
         * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
413
         * a hope that sizeof(long) wont become >8 any time soon.
414
         */
415
        size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
416
                     /*HOST_LONG_BITS*/ 64) / 8;
417
        if (!d.dirty_bitmap) {
418
            d.dirty_bitmap = g_malloc(size);
419
        } else if (size > allocated_size) {
420
            d.dirty_bitmap = g_realloc(d.dirty_bitmap, size);
421
        }
422
        allocated_size = size;
423
        memset(d.dirty_bitmap, 0, allocated_size);
424

    
425
        d.slot = mem->slot;
426

    
427
        if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
428
            DPRINTF("ioctl failed %d\n", errno);
429
            ret = -1;
430
            break;
431
        }
432

    
433
        kvm_get_dirty_pages_log_range(section, d.dirty_bitmap);
434
        start_addr = mem->start_addr + mem->memory_size;
435
    }
436
    g_free(d.dirty_bitmap);
437

    
438
    return ret;
439
}
440

    
441
int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
442
{
443
    int ret = -ENOSYS;
444
    KVMState *s = kvm_state;
445

    
446
    if (s->coalesced_mmio) {
447
        struct kvm_coalesced_mmio_zone zone;
448

    
449
        zone.addr = start;
450
        zone.size = size;
451
        zone.pad = 0;
452

    
453
        ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
454
    }
455

    
456
    return ret;
457
}
458

    
459
int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
460
{
461
    int ret = -ENOSYS;
462
    KVMState *s = kvm_state;
463

    
464
    if (s->coalesced_mmio) {
465
        struct kvm_coalesced_mmio_zone zone;
466

    
467
        zone.addr = start;
468
        zone.size = size;
469
        zone.pad = 0;
470

    
471
        ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
472
    }
473

    
474
    return ret;
475
}
476

    
477
int kvm_check_extension(KVMState *s, unsigned int extension)
478
{
479
    int ret;
480

    
481
    ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
482
    if (ret < 0) {
483
        ret = 0;
484
    }
485

    
486
    return ret;
487
}
488

    
489
static int kvm_check_many_ioeventfds(void)
490
{
491
    /* Userspace can use ioeventfd for io notification.  This requires a host
492
     * that supports eventfd(2) and an I/O thread; since eventfd does not
493
     * support SIGIO it cannot interrupt the vcpu.
494
     *
495
     * Older kernels have a 6 device limit on the KVM io bus.  Find out so we
496
     * can avoid creating too many ioeventfds.
497
     */
498
#if defined(CONFIG_EVENTFD)
499
    int ioeventfds[7];
500
    int i, ret = 0;
501
    for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
502
        ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
503
        if (ioeventfds[i] < 0) {
504
            break;
505
        }
506
        ret = kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, true);
507
        if (ret < 0) {
508
            close(ioeventfds[i]);
509
            break;
510
        }
511
    }
512

    
513
    /* Decide whether many devices are supported or not */
514
    ret = i == ARRAY_SIZE(ioeventfds);
515

    
516
    while (i-- > 0) {
517
        kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, false);
518
        close(ioeventfds[i]);
519
    }
520
    return ret;
521
#else
522
    return 0;
523
#endif
524
}
525

    
526
static const KVMCapabilityInfo *
527
kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
528
{
529
    while (list->name) {
530
        if (!kvm_check_extension(s, list->value)) {
531
            return list;
532
        }
533
        list++;
534
    }
535
    return NULL;
536
}
537

    
538
static void kvm_set_phys_mem(MemoryRegionSection *section, bool add)
539
{
540
    KVMState *s = kvm_state;
541
    KVMSlot *mem, old;
542
    int err;
543
    MemoryRegion *mr = section->mr;
544
    bool log_dirty = memory_region_is_logging(mr);
545
    target_phys_addr_t start_addr = section->offset_within_address_space;
546
    ram_addr_t size = section->size;
547
    void *ram = NULL;
548
    unsigned delta;
549

    
550
    /* kvm works in page size chunks, but the function may be called
551
       with sub-page size and unaligned start address. */
552
    delta = TARGET_PAGE_ALIGN(size) - size;
553
    if (delta > size) {
554
        return;
555
    }
556
    start_addr += delta;
557
    size -= delta;
558
    size &= TARGET_PAGE_MASK;
559
    if (!size || (start_addr & ~TARGET_PAGE_MASK)) {
560
        return;
561
    }
562

    
563
    if (!memory_region_is_ram(mr)) {
564
        return;
565
    }
566

    
567
    ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta;
568

    
569
    while (1) {
570
        mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
571
        if (!mem) {
572
            break;
573
        }
574

    
575
        if (add && start_addr >= mem->start_addr &&
576
            (start_addr + size <= mem->start_addr + mem->memory_size) &&
577
            (ram - start_addr == mem->ram - mem->start_addr)) {
578
            /* The new slot fits into the existing one and comes with
579
             * identical parameters - update flags and done. */
580
            kvm_slot_dirty_pages_log_change(mem, log_dirty);
581
            return;
582
        }
583

    
584
        old = *mem;
585

    
586
        if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
587
            kvm_physical_sync_dirty_bitmap(section);
588
        }
589

    
590
        /* unregister the overlapping slot */
591
        mem->memory_size = 0;
592
        err = kvm_set_user_memory_region(s, mem);
593
        if (err) {
594
            fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
595
                    __func__, strerror(-err));
596
            abort();
597
        }
598

    
599
        /* Workaround for older KVM versions: we can't join slots, even not by
600
         * unregistering the previous ones and then registering the larger
601
         * slot. We have to maintain the existing fragmentation. Sigh.
602
         *
603
         * This workaround assumes that the new slot starts at the same
604
         * address as the first existing one. If not or if some overlapping
605
         * slot comes around later, we will fail (not seen in practice so far)
606
         * - and actually require a recent KVM version. */
607
        if (s->broken_set_mem_region &&
608
            old.start_addr == start_addr && old.memory_size < size && add) {
609
            mem = kvm_alloc_slot(s);
610
            mem->memory_size = old.memory_size;
611
            mem->start_addr = old.start_addr;
612
            mem->ram = old.ram;
613
            mem->flags = kvm_mem_flags(s, log_dirty);
614

    
615
            err = kvm_set_user_memory_region(s, mem);
616
            if (err) {
617
                fprintf(stderr, "%s: error updating slot: %s\n", __func__,
618
                        strerror(-err));
619
                abort();
620
            }
621

    
622
            start_addr += old.memory_size;
623
            ram += old.memory_size;
624
            size -= old.memory_size;
625
            continue;
626
        }
627

    
628
        /* register prefix slot */
629
        if (old.start_addr < start_addr) {
630
            mem = kvm_alloc_slot(s);
631
            mem->memory_size = start_addr - old.start_addr;
632
            mem->start_addr = old.start_addr;
633
            mem->ram = old.ram;
634
            mem->flags =  kvm_mem_flags(s, log_dirty);
635

    
636
            err = kvm_set_user_memory_region(s, mem);
637
            if (err) {
638
                fprintf(stderr, "%s: error registering prefix slot: %s\n",
639
                        __func__, strerror(-err));
640
#ifdef TARGET_PPC
641
                fprintf(stderr, "%s: This is probably because your kernel's " \
642
                                "PAGE_SIZE is too big. Please try to use 4k " \
643
                                "PAGE_SIZE!\n", __func__);
644
#endif
645
                abort();
646
            }
647
        }
648

    
649
        /* register suffix slot */
650
        if (old.start_addr + old.memory_size > start_addr + size) {
651
            ram_addr_t size_delta;
652

    
653
            mem = kvm_alloc_slot(s);
654
            mem->start_addr = start_addr + size;
655
            size_delta = mem->start_addr - old.start_addr;
656
            mem->memory_size = old.memory_size - size_delta;
657
            mem->ram = old.ram + size_delta;
658
            mem->flags = kvm_mem_flags(s, log_dirty);
659

    
660
            err = kvm_set_user_memory_region(s, mem);
661
            if (err) {
662
                fprintf(stderr, "%s: error registering suffix slot: %s\n",
663
                        __func__, strerror(-err));
664
                abort();
665
            }
666
        }
667
    }
668

    
669
    /* in case the KVM bug workaround already "consumed" the new slot */
670
    if (!size) {
671
        return;
672
    }
673
    if (!add) {
674
        return;
675
    }
676
    mem = kvm_alloc_slot(s);
677
    mem->memory_size = size;
678
    mem->start_addr = start_addr;
679
    mem->ram = ram;
680
    mem->flags = kvm_mem_flags(s, log_dirty);
681

    
682
    err = kvm_set_user_memory_region(s, mem);
683
    if (err) {
684
        fprintf(stderr, "%s: error registering slot: %s\n", __func__,
685
                strerror(-err));
686
        abort();
687
    }
688
}
689

    
690
static void kvm_begin(MemoryListener *listener)
691
{
692
}
693

    
694
static void kvm_commit(MemoryListener *listener)
695
{
696
}
697

    
698
static void kvm_region_add(MemoryListener *listener,
699
                           MemoryRegionSection *section)
700
{
701
    kvm_set_phys_mem(section, true);
702
}
703

    
704
static void kvm_region_del(MemoryListener *listener,
705
                           MemoryRegionSection *section)
706
{
707
    kvm_set_phys_mem(section, false);
708
}
709

    
710
static void kvm_region_nop(MemoryListener *listener,
711
                           MemoryRegionSection *section)
712
{
713
}
714

    
715
static void kvm_log_sync(MemoryListener *listener,
716
                         MemoryRegionSection *section)
717
{
718
    int r;
719

    
720
    r = kvm_physical_sync_dirty_bitmap(section);
721
    if (r < 0) {
722
        abort();
723
    }
724
}
725

    
726
static void kvm_log_global_start(struct MemoryListener *listener)
727
{
728
    int r;
729

    
730
    r = kvm_set_migration_log(1);
731
    assert(r >= 0);
732
}
733

    
734
static void kvm_log_global_stop(struct MemoryListener *listener)
735
{
736
    int r;
737

    
738
    r = kvm_set_migration_log(0);
739
    assert(r >= 0);
740
}
741

    
742
static void kvm_mem_ioeventfd_add(MemoryRegionSection *section,
743
                                  bool match_data, uint64_t data, int fd)
744
{
745
    int r;
746

    
747
    assert(match_data && section->size == 4);
748

    
749
    r = kvm_set_ioeventfd_mmio_long(fd, section->offset_within_address_space,
750
                                    data, true);
751
    if (r < 0) {
752
        abort();
753
    }
754
}
755

    
756
static void kvm_mem_ioeventfd_del(MemoryRegionSection *section,
757
                                  bool match_data, uint64_t data, int fd)
758
{
759
    int r;
760

    
761
    r = kvm_set_ioeventfd_mmio_long(fd, section->offset_within_address_space,
762
                                    data, false);
763
    if (r < 0) {
764
        abort();
765
    }
766
}
767

    
768
static void kvm_io_ioeventfd_add(MemoryRegionSection *section,
769
                                 bool match_data, uint64_t data, int fd)
770
{
771
    int r;
772

    
773
    assert(match_data && section->size == 2);
774

    
775
    r = kvm_set_ioeventfd_pio_word(fd, section->offset_within_address_space,
776
                                   data, true);
777
    if (r < 0) {
778
        abort();
779
    }
780
}
781

    
782
static void kvm_io_ioeventfd_del(MemoryRegionSection *section,
783
                                 bool match_data, uint64_t data, int fd)
784

    
785
{
786
    int r;
787

    
788
    r = kvm_set_ioeventfd_pio_word(fd, section->offset_within_address_space,
789
                                   data, false);
790
    if (r < 0) {
791
        abort();
792
    }
793
}
794

    
795
static void kvm_eventfd_add(MemoryListener *listener,
796
                            MemoryRegionSection *section,
797
                            bool match_data, uint64_t data, int fd)
798
{
799
    if (section->address_space == get_system_memory()) {
800
        kvm_mem_ioeventfd_add(section, match_data, data, fd);
801
    } else {
802
        kvm_io_ioeventfd_add(section, match_data, data, fd);
803
    }
804
}
805

    
806
static void kvm_eventfd_del(MemoryListener *listener,
807
                            MemoryRegionSection *section,
808
                            bool match_data, uint64_t data, int fd)
809
{
810
    if (section->address_space == get_system_memory()) {
811
        kvm_mem_ioeventfd_del(section, match_data, data, fd);
812
    } else {
813
        kvm_io_ioeventfd_del(section, match_data, data, fd);
814
    }
815
}
816

    
817
static MemoryListener kvm_memory_listener = {
818
    .begin = kvm_begin,
819
    .commit = kvm_commit,
820
    .region_add = kvm_region_add,
821
    .region_del = kvm_region_del,
822
    .region_nop = kvm_region_nop,
823
    .log_start = kvm_log_start,
824
    .log_stop = kvm_log_stop,
825
    .log_sync = kvm_log_sync,
826
    .log_global_start = kvm_log_global_start,
827
    .log_global_stop = kvm_log_global_stop,
828
    .eventfd_add = kvm_eventfd_add,
829
    .eventfd_del = kvm_eventfd_del,
830
    .priority = 10,
831
};
832

    
833
static void kvm_handle_interrupt(CPUState *env, int mask)
834
{
835
    env->interrupt_request |= mask;
836

    
837
    if (!qemu_cpu_is_self(env)) {
838
        qemu_cpu_kick(env);
839
    }
840
}
841

    
842
int kvm_irqchip_set_irq(KVMState *s, int irq, int level)
843
{
844
    struct kvm_irq_level event;
845
    int ret;
846

    
847
    assert(kvm_irqchip_in_kernel());
848

    
849
    event.level = level;
850
    event.irq = irq;
851
    ret = kvm_vm_ioctl(s, s->irqchip_inject_ioctl, &event);
852
    if (ret < 0) {
853
        perror("kvm_set_irqchip_line");
854
        abort();
855
    }
856

    
857
    return (s->irqchip_inject_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
858
}
859

    
860
#ifdef KVM_CAP_IRQ_ROUTING
861
static void set_gsi(KVMState *s, unsigned int gsi)
862
{
863
    assert(gsi < s->max_gsi);
864

    
865
    s->used_gsi_bitmap[gsi / 32] |= 1U << (gsi % 32);
866
}
867

    
868
static void kvm_init_irq_routing(KVMState *s)
869
{
870
    int gsi_count;
871

    
872
    gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING);
873
    if (gsi_count > 0) {
874
        unsigned int gsi_bits, i;
875

    
876
        /* Round up so we can search ints using ffs */
877
        gsi_bits = (gsi_count + 31) / 32;
878
        s->used_gsi_bitmap = g_malloc0(gsi_bits / 8);
879
        s->max_gsi = gsi_bits;
880

    
881
        /* Mark any over-allocated bits as already in use */
882
        for (i = gsi_count; i < gsi_bits; i++) {
883
            set_gsi(s, i);
884
        }
885
    }
886

    
887
    s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
888
    s->nr_allocated_irq_routes = 0;
889

    
890
    kvm_arch_init_irq_routing(s);
891
}
892

    
893
static void kvm_add_routing_entry(KVMState *s,
894
                                  struct kvm_irq_routing_entry *entry)
895
{
896
    struct kvm_irq_routing_entry *new;
897
    int n, size;
898

    
899
    if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
900
        n = s->nr_allocated_irq_routes * 2;
901
        if (n < 64) {
902
            n = 64;
903
        }
904
        size = sizeof(struct kvm_irq_routing);
905
        size += n * sizeof(*new);
906
        s->irq_routes = g_realloc(s->irq_routes, size);
907
        s->nr_allocated_irq_routes = n;
908
    }
909
    n = s->irq_routes->nr++;
910
    new = &s->irq_routes->entries[n];
911
    memset(new, 0, sizeof(*new));
912
    new->gsi = entry->gsi;
913
    new->type = entry->type;
914
    new->flags = entry->flags;
915
    new->u = entry->u;
916

    
917
    set_gsi(s, entry->gsi);
918
}
919

    
920
void kvm_irqchip_add_route(KVMState *s, int irq, int irqchip, int pin)
921
{
922
    struct kvm_irq_routing_entry e;
923

    
924
    e.gsi = irq;
925
    e.type = KVM_IRQ_ROUTING_IRQCHIP;
926
    e.flags = 0;
927
    e.u.irqchip.irqchip = irqchip;
928
    e.u.irqchip.pin = pin;
929
    kvm_add_routing_entry(s, &e);
930
}
931

    
932
int kvm_irqchip_commit_routes(KVMState *s)
933
{
934
    s->irq_routes->flags = 0;
935
    return kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
936
}
937

    
938
#else /* !KVM_CAP_IRQ_ROUTING */
939

    
940
static void kvm_init_irq_routing(KVMState *s)
941
{
942
}
943
#endif /* !KVM_CAP_IRQ_ROUTING */
944

    
945
static int kvm_irqchip_create(KVMState *s)
946
{
947
    QemuOptsList *list = qemu_find_opts("machine");
948
    int ret;
949

    
950
    if (QTAILQ_EMPTY(&list->head) ||
951
        !qemu_opt_get_bool(QTAILQ_FIRST(&list->head),
952
                           "kernel_irqchip", false) ||
953
        !kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
954
        return 0;
955
    }
956

    
957
    ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
958
    if (ret < 0) {
959
        fprintf(stderr, "Create kernel irqchip failed\n");
960
        return ret;
961
    }
962

    
963
    s->irqchip_inject_ioctl = KVM_IRQ_LINE;
964
    if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
965
        s->irqchip_inject_ioctl = KVM_IRQ_LINE_STATUS;
966
    }
967
    kvm_kernel_irqchip = true;
968

    
969
    kvm_init_irq_routing(s);
970

    
971
    return 0;
972
}
973

    
974
int kvm_init(void)
975
{
976
    static const char upgrade_note[] =
977
        "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
978
        "(see http://sourceforge.net/projects/kvm).\n";
979
    KVMState *s;
980
    const KVMCapabilityInfo *missing_cap;
981
    int ret;
982
    int i;
983

    
984
    s = g_malloc0(sizeof(KVMState));
985

    
986
#ifdef KVM_CAP_SET_GUEST_DEBUG
987
    QTAILQ_INIT(&s->kvm_sw_breakpoints);
988
#endif
989
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
990
        s->slots[i].slot = i;
991
    }
992
    s->vmfd = -1;
993
    s->fd = qemu_open("/dev/kvm", O_RDWR);
994
    if (s->fd == -1) {
995
        fprintf(stderr, "Could not access KVM kernel module: %m\n");
996
        ret = -errno;
997
        goto err;
998
    }
999

    
1000
    ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
1001
    if (ret < KVM_API_VERSION) {
1002
        if (ret > 0) {
1003
            ret = -EINVAL;
1004
        }
1005
        fprintf(stderr, "kvm version too old\n");
1006
        goto err;
1007
    }
1008

    
1009
    if (ret > KVM_API_VERSION) {
1010
        ret = -EINVAL;
1011
        fprintf(stderr, "kvm version not supported\n");
1012
        goto err;
1013
    }
1014

    
1015
    s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
1016
    if (s->vmfd < 0) {
1017
#ifdef TARGET_S390X
1018
        fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
1019
                        "your host kernel command line\n");
1020
#endif
1021
        ret = s->vmfd;
1022
        goto err;
1023
    }
1024

    
1025
    missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
1026
    if (!missing_cap) {
1027
        missing_cap =
1028
            kvm_check_extension_list(s, kvm_arch_required_capabilities);
1029
    }
1030
    if (missing_cap) {
1031
        ret = -EINVAL;
1032
        fprintf(stderr, "kvm does not support %s\n%s",
1033
                missing_cap->name, upgrade_note);
1034
        goto err;
1035
    }
1036

    
1037
    s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
1038

    
1039
    s->broken_set_mem_region = 1;
1040
    ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
1041
    if (ret > 0) {
1042
        s->broken_set_mem_region = 0;
1043
    }
1044

    
1045
#ifdef KVM_CAP_VCPU_EVENTS
1046
    s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
1047
#endif
1048

    
1049
    s->robust_singlestep =
1050
        kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
1051

    
1052
#ifdef KVM_CAP_DEBUGREGS
1053
    s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
1054
#endif
1055

    
1056
#ifdef KVM_CAP_XSAVE
1057
    s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
1058
#endif
1059

    
1060
#ifdef KVM_CAP_XCRS
1061
    s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
1062
#endif
1063

    
1064
#ifdef KVM_CAP_PIT_STATE2
1065
    s->pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
1066
#endif
1067

    
1068
    ret = kvm_arch_init(s);
1069
    if (ret < 0) {
1070
        goto err;
1071
    }
1072

    
1073
    ret = kvm_irqchip_create(s);
1074
    if (ret < 0) {
1075
        goto err;
1076
    }
1077

    
1078
    kvm_state = s;
1079
    memory_listener_register(&kvm_memory_listener, NULL);
1080

    
1081
    s->many_ioeventfds = kvm_check_many_ioeventfds();
1082

    
1083
    cpu_interrupt_handler = kvm_handle_interrupt;
1084

    
1085
    return 0;
1086

    
1087
err:
1088
    if (s) {
1089
        if (s->vmfd >= 0) {
1090
            close(s->vmfd);
1091
        }
1092
        if (s->fd != -1) {
1093
            close(s->fd);
1094
        }
1095
    }
1096
    g_free(s);
1097

    
1098
    return ret;
1099
}
1100

    
1101
static void kvm_handle_io(uint16_t port, void *data, int direction, int size,
1102
                          uint32_t count)
1103
{
1104
    int i;
1105
    uint8_t *ptr = data;
1106

    
1107
    for (i = 0; i < count; i++) {
1108
        if (direction == KVM_EXIT_IO_IN) {
1109
            switch (size) {
1110
            case 1:
1111
                stb_p(ptr, cpu_inb(port));
1112
                break;
1113
            case 2:
1114
                stw_p(ptr, cpu_inw(port));
1115
                break;
1116
            case 4:
1117
                stl_p(ptr, cpu_inl(port));
1118
                break;
1119
            }
1120
        } else {
1121
            switch (size) {
1122
            case 1:
1123
                cpu_outb(port, ldub_p(ptr));
1124
                break;
1125
            case 2:
1126
                cpu_outw(port, lduw_p(ptr));
1127
                break;
1128
            case 4:
1129
                cpu_outl(port, ldl_p(ptr));
1130
                break;
1131
            }
1132
        }
1133

    
1134
        ptr += size;
1135
    }
1136
}
1137

    
1138
static int kvm_handle_internal_error(CPUState *env, struct kvm_run *run)
1139
{
1140
    fprintf(stderr, "KVM internal error.");
1141
    if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
1142
        int i;
1143

    
1144
        fprintf(stderr, " Suberror: %d\n", run->internal.suberror);
1145
        for (i = 0; i < run->internal.ndata; ++i) {
1146
            fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
1147
                    i, (uint64_t)run->internal.data[i]);
1148
        }
1149
    } else {
1150
        fprintf(stderr, "\n");
1151
    }
1152
    if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
1153
        fprintf(stderr, "emulation failure\n");
1154
        if (!kvm_arch_stop_on_emulation_error(env)) {
1155
            cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
1156
            return EXCP_INTERRUPT;
1157
        }
1158
    }
1159
    /* FIXME: Should trigger a qmp message to let management know
1160
     * something went wrong.
1161
     */
1162
    return -1;
1163
}
1164

    
1165
void kvm_flush_coalesced_mmio_buffer(void)
1166
{
1167
    KVMState *s = kvm_state;
1168

    
1169
    if (s->coalesced_flush_in_progress) {
1170
        return;
1171
    }
1172

    
1173
    s->coalesced_flush_in_progress = true;
1174

    
1175
    if (s->coalesced_mmio_ring) {
1176
        struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
1177
        while (ring->first != ring->last) {
1178
            struct kvm_coalesced_mmio *ent;
1179

    
1180
            ent = &ring->coalesced_mmio[ring->first];
1181

    
1182
            cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
1183
            smp_wmb();
1184
            ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
1185
        }
1186
    }
1187

    
1188
    s->coalesced_flush_in_progress = false;
1189
}
1190

    
1191
static void do_kvm_cpu_synchronize_state(void *_env)
1192
{
1193
    CPUState *env = _env;
1194

    
1195
    if (!env->kvm_vcpu_dirty) {
1196
        kvm_arch_get_registers(env);
1197
        env->kvm_vcpu_dirty = 1;
1198
    }
1199
}
1200

    
1201
void kvm_cpu_synchronize_state(CPUState *env)
1202
{
1203
    if (!env->kvm_vcpu_dirty) {
1204
        run_on_cpu(env, do_kvm_cpu_synchronize_state, env);
1205
    }
1206
}
1207

    
1208
void kvm_cpu_synchronize_post_reset(CPUState *env)
1209
{
1210
    kvm_arch_put_registers(env, KVM_PUT_RESET_STATE);
1211
    env->kvm_vcpu_dirty = 0;
1212
}
1213

    
1214
void kvm_cpu_synchronize_post_init(CPUState *env)
1215
{
1216
    kvm_arch_put_registers(env, KVM_PUT_FULL_STATE);
1217
    env->kvm_vcpu_dirty = 0;
1218
}
1219

    
1220
int kvm_cpu_exec(CPUState *env)
1221
{
1222
    struct kvm_run *run = env->kvm_run;
1223
    int ret, run_ret;
1224

    
1225
    DPRINTF("kvm_cpu_exec()\n");
1226

    
1227
    if (kvm_arch_process_async_events(env)) {
1228
        env->exit_request = 0;
1229
        return EXCP_HLT;
1230
    }
1231

    
1232
    do {
1233
        if (env->kvm_vcpu_dirty) {
1234
            kvm_arch_put_registers(env, KVM_PUT_RUNTIME_STATE);
1235
            env->kvm_vcpu_dirty = 0;
1236
        }
1237

    
1238
        kvm_arch_pre_run(env, run);
1239
        if (env->exit_request) {
1240
            DPRINTF("interrupt exit requested\n");
1241
            /*
1242
             * KVM requires us to reenter the kernel after IO exits to complete
1243
             * instruction emulation. This self-signal will ensure that we
1244
             * leave ASAP again.
1245
             */
1246
            qemu_cpu_kick_self();
1247
        }
1248
        qemu_mutex_unlock_iothread();
1249

    
1250
        run_ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
1251

    
1252
        qemu_mutex_lock_iothread();
1253
        kvm_arch_post_run(env, run);
1254

    
1255
        kvm_flush_coalesced_mmio_buffer();
1256

    
1257
        if (run_ret < 0) {
1258
            if (run_ret == -EINTR || run_ret == -EAGAIN) {
1259
                DPRINTF("io window exit\n");
1260
                ret = EXCP_INTERRUPT;
1261
                break;
1262
            }
1263
            fprintf(stderr, "error: kvm run failed %s\n",
1264
                    strerror(-run_ret));
1265
            abort();
1266
        }
1267

    
1268
        switch (run->exit_reason) {
1269
        case KVM_EXIT_IO:
1270
            DPRINTF("handle_io\n");
1271
            kvm_handle_io(run->io.port,
1272
                          (uint8_t *)run + run->io.data_offset,
1273
                          run->io.direction,
1274
                          run->io.size,
1275
                          run->io.count);
1276
            ret = 0;
1277
            break;
1278
        case KVM_EXIT_MMIO:
1279
            DPRINTF("handle_mmio\n");
1280
            cpu_physical_memory_rw(run->mmio.phys_addr,
1281
                                   run->mmio.data,
1282
                                   run->mmio.len,
1283
                                   run->mmio.is_write);
1284
            ret = 0;
1285
            break;
1286
        case KVM_EXIT_IRQ_WINDOW_OPEN:
1287
            DPRINTF("irq_window_open\n");
1288
            ret = EXCP_INTERRUPT;
1289
            break;
1290
        case KVM_EXIT_SHUTDOWN:
1291
            DPRINTF("shutdown\n");
1292
            qemu_system_reset_request();
1293
            ret = EXCP_INTERRUPT;
1294
            break;
1295
        case KVM_EXIT_UNKNOWN:
1296
            fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
1297
                    (uint64_t)run->hw.hardware_exit_reason);
1298
            ret = -1;
1299
            break;
1300
        case KVM_EXIT_INTERNAL_ERROR:
1301
            ret = kvm_handle_internal_error(env, run);
1302
            break;
1303
        default:
1304
            DPRINTF("kvm_arch_handle_exit\n");
1305
            ret = kvm_arch_handle_exit(env, run);
1306
            break;
1307
        }
1308
    } while (ret == 0);
1309

    
1310
    if (ret < 0) {
1311
        cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
1312
        vm_stop(RUN_STATE_INTERNAL_ERROR);
1313
    }
1314

    
1315
    env->exit_request = 0;
1316
    return ret;
1317
}
1318

    
1319
int kvm_ioctl(KVMState *s, int type, ...)
1320
{
1321
    int ret;
1322
    void *arg;
1323
    va_list ap;
1324

    
1325
    va_start(ap, type);
1326
    arg = va_arg(ap, void *);
1327
    va_end(ap);
1328

    
1329
    ret = ioctl(s->fd, type, arg);
1330
    if (ret == -1) {
1331
        ret = -errno;
1332
    }
1333
    return ret;
1334
}
1335

    
1336
int kvm_vm_ioctl(KVMState *s, int type, ...)
1337
{
1338
    int ret;
1339
    void *arg;
1340
    va_list ap;
1341

    
1342
    va_start(ap, type);
1343
    arg = va_arg(ap, void *);
1344
    va_end(ap);
1345

    
1346
    ret = ioctl(s->vmfd, type, arg);
1347
    if (ret == -1) {
1348
        ret = -errno;
1349
    }
1350
    return ret;
1351
}
1352

    
1353
int kvm_vcpu_ioctl(CPUState *env, int type, ...)
1354
{
1355
    int ret;
1356
    void *arg;
1357
    va_list ap;
1358

    
1359
    va_start(ap, type);
1360
    arg = va_arg(ap, void *);
1361
    va_end(ap);
1362

    
1363
    ret = ioctl(env->kvm_fd, type, arg);
1364
    if (ret == -1) {
1365
        ret = -errno;
1366
    }
1367
    return ret;
1368
}
1369

    
1370
int kvm_has_sync_mmu(void)
1371
{
1372
    return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
1373
}
1374

    
1375
int kvm_has_vcpu_events(void)
1376
{
1377
    return kvm_state->vcpu_events;
1378
}
1379

    
1380
int kvm_has_robust_singlestep(void)
1381
{
1382
    return kvm_state->robust_singlestep;
1383
}
1384

    
1385
int kvm_has_debugregs(void)
1386
{
1387
    return kvm_state->debugregs;
1388
}
1389

    
1390
int kvm_has_xsave(void)
1391
{
1392
    return kvm_state->xsave;
1393
}
1394

    
1395
int kvm_has_xcrs(void)
1396
{
1397
    return kvm_state->xcrs;
1398
}
1399

    
1400
int kvm_has_pit_state2(void)
1401
{
1402
    return kvm_state->pit_state2;
1403
}
1404

    
1405
int kvm_has_many_ioeventfds(void)
1406
{
1407
    if (!kvm_enabled()) {
1408
        return 0;
1409
    }
1410
    return kvm_state->many_ioeventfds;
1411
}
1412

    
1413
int kvm_has_gsi_routing(void)
1414
{
1415
#ifdef KVM_CAP_IRQ_ROUTING
1416
    return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
1417
#else
1418
    return false;
1419
#endif
1420
}
1421

    
1422
int kvm_allows_irq0_override(void)
1423
{
1424
    return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
1425
}
1426

    
1427
void kvm_setup_guest_memory(void *start, size_t size)
1428
{
1429
    if (!kvm_has_sync_mmu()) {
1430
        int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
1431

    
1432
        if (ret) {
1433
            perror("qemu_madvise");
1434
            fprintf(stderr,
1435
                    "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1436
            exit(1);
1437
        }
1438
    }
1439
}
1440

    
1441
#ifdef KVM_CAP_SET_GUEST_DEBUG
1442
struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
1443
                                                 target_ulong pc)
1444
{
1445
    struct kvm_sw_breakpoint *bp;
1446

    
1447
    QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
1448
        if (bp->pc == pc) {
1449
            return bp;
1450
        }
1451
    }
1452
    return NULL;
1453
}
1454

    
1455
int kvm_sw_breakpoints_active(CPUState *env)
1456
{
1457
    return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
1458
}
1459

    
1460
struct kvm_set_guest_debug_data {
1461
    struct kvm_guest_debug dbg;
1462
    CPUState *env;
1463
    int err;
1464
};
1465

    
1466
static void kvm_invoke_set_guest_debug(void *data)
1467
{
1468
    struct kvm_set_guest_debug_data *dbg_data = data;
1469
    CPUState *env = dbg_data->env;
1470

    
1471
    dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
1472
}
1473

    
1474
int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1475
{
1476
    struct kvm_set_guest_debug_data data;
1477

    
1478
    data.dbg.control = reinject_trap;
1479

    
1480
    if (env->singlestep_enabled) {
1481
        data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1482
    }
1483
    kvm_arch_update_guest_debug(env, &data.dbg);
1484
    data.env = env;
1485

    
1486
    run_on_cpu(env, kvm_invoke_set_guest_debug, &data);
1487
    return data.err;
1488
}
1489

    
1490
int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1491
                          target_ulong len, int type)
1492
{
1493
    struct kvm_sw_breakpoint *bp;
1494
    CPUState *env;
1495
    int err;
1496

    
1497
    if (type == GDB_BREAKPOINT_SW) {
1498
        bp = kvm_find_sw_breakpoint(current_env, addr);
1499
        if (bp) {
1500
            bp->use_count++;
1501
            return 0;
1502
        }
1503

    
1504
        bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
1505
        if (!bp) {
1506
            return -ENOMEM;
1507
        }
1508

    
1509
        bp->pc = addr;
1510
        bp->use_count = 1;
1511
        err = kvm_arch_insert_sw_breakpoint(current_env, bp);
1512
        if (err) {
1513
            g_free(bp);
1514
            return err;
1515
        }
1516

    
1517
        QTAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
1518
                          bp, entry);
1519
    } else {
1520
        err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1521
        if (err) {
1522
            return err;
1523
        }
1524
    }
1525

    
1526
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
1527
        err = kvm_update_guest_debug(env, 0);
1528
        if (err) {
1529
            return err;
1530
        }
1531
    }
1532
    return 0;
1533
}
1534

    
1535
int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1536
                          target_ulong len, int type)
1537
{
1538
    struct kvm_sw_breakpoint *bp;
1539
    CPUState *env;
1540
    int err;
1541

    
1542
    if (type == GDB_BREAKPOINT_SW) {
1543
        bp = kvm_find_sw_breakpoint(current_env, addr);
1544
        if (!bp) {
1545
            return -ENOENT;
1546
        }
1547

    
1548
        if (bp->use_count > 1) {
1549
            bp->use_count--;
1550
            return 0;
1551
        }
1552

    
1553
        err = kvm_arch_remove_sw_breakpoint(current_env, bp);
1554
        if (err) {
1555
            return err;
1556
        }
1557

    
1558
        QTAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
1559
        g_free(bp);
1560
    } else {
1561
        err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1562
        if (err) {
1563
            return err;
1564
        }
1565
    }
1566

    
1567
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
1568
        err = kvm_update_guest_debug(env, 0);
1569
        if (err) {
1570
            return err;
1571
        }
1572
    }
1573
    return 0;
1574
}
1575

    
1576
void kvm_remove_all_breakpoints(CPUState *current_env)
1577
{
1578
    struct kvm_sw_breakpoint *bp, *next;
1579
    KVMState *s = current_env->kvm_state;
1580
    CPUState *env;
1581

    
1582
    QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1583
        if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1584
            /* Try harder to find a CPU that currently sees the breakpoint. */
1585
            for (env = first_cpu; env != NULL; env = env->next_cpu) {
1586
                if (kvm_arch_remove_sw_breakpoint(env, bp) == 0) {
1587
                    break;
1588
                }
1589
            }
1590
        }
1591
    }
1592
    kvm_arch_remove_all_hw_breakpoints();
1593

    
1594
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
1595
        kvm_update_guest_debug(env, 0);
1596
    }
1597
}
1598

    
1599
#else /* !KVM_CAP_SET_GUEST_DEBUG */
1600

    
1601
int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1602
{
1603
    return -EINVAL;
1604
}
1605

    
1606
int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1607
                          target_ulong len, int type)
1608
{
1609
    return -EINVAL;
1610
}
1611

    
1612
int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1613
                          target_ulong len, int type)
1614
{
1615
    return -EINVAL;
1616
}
1617

    
1618
void kvm_remove_all_breakpoints(CPUState *current_env)
1619
{
1620
}
1621
#endif /* !KVM_CAP_SET_GUEST_DEBUG */
1622

    
1623
int kvm_set_signal_mask(CPUState *env, const sigset_t *sigset)
1624
{
1625
    struct kvm_signal_mask *sigmask;
1626
    int r;
1627

    
1628
    if (!sigset) {
1629
        return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL);
1630
    }
1631

    
1632
    sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
1633

    
1634
    sigmask->len = 8;
1635
    memcpy(sigmask->sigset, sigset, sizeof(*sigset));
1636
    r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask);
1637
    g_free(sigmask);
1638

    
1639
    return r;
1640
}
1641

    
1642
int kvm_set_ioeventfd_mmio_long(int fd, uint32_t addr, uint32_t val, bool assign)
1643
{
1644
    int ret;
1645
    struct kvm_ioeventfd iofd;
1646

    
1647
    iofd.datamatch = val;
1648
    iofd.addr = addr;
1649
    iofd.len = 4;
1650
    iofd.flags = KVM_IOEVENTFD_FLAG_DATAMATCH;
1651
    iofd.fd = fd;
1652

    
1653
    if (!kvm_enabled()) {
1654
        return -ENOSYS;
1655
    }
1656

    
1657
    if (!assign) {
1658
        iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1659
    }
1660

    
1661
    ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1662

    
1663
    if (ret < 0) {
1664
        return -errno;
1665
    }
1666

    
1667
    return 0;
1668
}
1669

    
1670
int kvm_set_ioeventfd_pio_word(int fd, uint16_t addr, uint16_t val, bool assign)
1671
{
1672
    struct kvm_ioeventfd kick = {
1673
        .datamatch = val,
1674
        .addr = addr,
1675
        .len = 2,
1676
        .flags = KVM_IOEVENTFD_FLAG_DATAMATCH | KVM_IOEVENTFD_FLAG_PIO,
1677
        .fd = fd,
1678
    };
1679
    int r;
1680
    if (!kvm_enabled()) {
1681
        return -ENOSYS;
1682
    }
1683
    if (!assign) {
1684
        kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1685
    }
1686
    r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1687
    if (r < 0) {
1688
        return r;
1689
    }
1690
    return 0;
1691
}
1692

    
1693
int kvm_on_sigbus_vcpu(CPUState *env, int code, void *addr)
1694
{
1695
    return kvm_arch_on_sigbus_vcpu(env, code, addr);
1696
}
1697

    
1698
int kvm_on_sigbus(int code, void *addr)
1699
{
1700
    return kvm_arch_on_sigbus(code, addr);
1701
}