Statistics
| Branch: | Revision:

root / target-i386 / kvm.c @ 7e680753

History | View | Annotate | Download (57.2 kB)

1
/*
2
 * QEMU KVM support
3
 *
4
 * Copyright (C) 2006-2008 Qumranet Technologies
5
 * Copyright IBM, Corp. 2008
6
 *
7
 * Authors:
8
 *  Anthony Liguori   <aliguori@us.ibm.com>
9
 *
10
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11
 * See the COPYING file in the top-level directory.
12
 *
13
 */
14

    
15
#include <sys/types.h>
16
#include <sys/ioctl.h>
17
#include <sys/mman.h>
18
#include <sys/utsname.h>
19

    
20
#include <linux/kvm.h>
21
#include <linux/kvm_para.h>
22

    
23
#include "qemu-common.h"
24
#include "sysemu.h"
25
#include "kvm.h"
26
#include "cpu.h"
27
#include "gdbstub.h"
28
#include "host-utils.h"
29
#include "hw/pc.h"
30
#include "hw/apic.h"
31
#include "ioport.h"
32
#include "hyperv.h"
33

    
34
//#define DEBUG_KVM
35

    
36
#ifdef DEBUG_KVM
37
#define DPRINTF(fmt, ...) \
38
    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
39
#else
40
#define DPRINTF(fmt, ...) \
41
    do { } while (0)
42
#endif
43

    
44
#define MSR_KVM_WALL_CLOCK  0x11
45
#define MSR_KVM_SYSTEM_TIME 0x12
46

    
47
#ifndef BUS_MCEERR_AR
48
#define BUS_MCEERR_AR 4
49
#endif
50
#ifndef BUS_MCEERR_AO
51
#define BUS_MCEERR_AO 5
52
#endif
53

    
54
const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
55
    KVM_CAP_INFO(SET_TSS_ADDR),
56
    KVM_CAP_INFO(EXT_CPUID),
57
    KVM_CAP_INFO(MP_STATE),
58
    KVM_CAP_LAST_INFO
59
};
60

    
61
static bool has_msr_star;
62
static bool has_msr_hsave_pa;
63
static bool has_msr_tsc_deadline;
64
static bool has_msr_async_pf_en;
65
static bool has_msr_misc_enable;
66
static int lm_capable_kernel;
67

    
68
static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
69
{
70
    struct kvm_cpuid2 *cpuid;
71
    int r, size;
72

    
73
    size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
74
    cpuid = (struct kvm_cpuid2 *)g_malloc0(size);
75
    cpuid->nent = max;
76
    r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
77
    if (r == 0 && cpuid->nent >= max) {
78
        r = -E2BIG;
79
    }
80
    if (r < 0) {
81
        if (r == -E2BIG) {
82
            g_free(cpuid);
83
            return NULL;
84
        } else {
85
            fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
86
                    strerror(-r));
87
            exit(1);
88
        }
89
    }
90
    return cpuid;
91
}
92

    
93
struct kvm_para_features {
94
    int cap;
95
    int feature;
96
} para_features[] = {
97
    { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
98
    { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
99
    { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
100
    { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
101
    { -1, -1 }
102
};
103

    
104
static int get_para_features(KVMState *s)
105
{
106
    int i, features = 0;
107

    
108
    for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
109
        if (kvm_check_extension(s, para_features[i].cap)) {
110
            features |= (1 << para_features[i].feature);
111
        }
112
    }
113

    
114
    return features;
115
}
116

    
117

    
118
uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
119
                                      uint32_t index, int reg)
120
{
121
    struct kvm_cpuid2 *cpuid;
122
    int i, max;
123
    uint32_t ret = 0;
124
    uint32_t cpuid_1_edx;
125
    int has_kvm_features = 0;
126

    
127
    max = 1;
128
    while ((cpuid = try_get_cpuid(s, max)) == NULL) {
129
        max *= 2;
130
    }
131

    
132
    for (i = 0; i < cpuid->nent; ++i) {
133
        if (cpuid->entries[i].function == function &&
134
            cpuid->entries[i].index == index) {
135
            if (cpuid->entries[i].function == KVM_CPUID_FEATURES) {
136
                has_kvm_features = 1;
137
            }
138
            switch (reg) {
139
            case R_EAX:
140
                ret = cpuid->entries[i].eax;
141
                break;
142
            case R_EBX:
143
                ret = cpuid->entries[i].ebx;
144
                break;
145
            case R_ECX:
146
                ret = cpuid->entries[i].ecx;
147
                break;
148
            case R_EDX:
149
                ret = cpuid->entries[i].edx;
150
                switch (function) {
151
                case 1:
152
                    /* KVM before 2.6.30 misreports the following features */
153
                    ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
154
                    break;
155
                case 0x80000001:
156
                    /* On Intel, kvm returns cpuid according to the Intel spec,
157
                     * so add missing bits according to the AMD spec:
158
                     */
159
                    cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
160
                    ret |= cpuid_1_edx & 0x183f7ff;
161
                    break;
162
                }
163
                break;
164
            }
165
        }
166
    }
167

    
168
    g_free(cpuid);
169

    
170
    /* fallback for older kernels */
171
    if (!has_kvm_features && (function == KVM_CPUID_FEATURES)) {
172
        ret = get_para_features(s);
173
    }
174

    
175
    return ret;
176
}
177

    
178
typedef struct HWPoisonPage {
179
    ram_addr_t ram_addr;
180
    QLIST_ENTRY(HWPoisonPage) list;
181
} HWPoisonPage;
182

    
183
static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
184
    QLIST_HEAD_INITIALIZER(hwpoison_page_list);
185

    
186
static void kvm_unpoison_all(void *param)
187
{
188
    HWPoisonPage *page, *next_page;
189

    
190
    QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
191
        QLIST_REMOVE(page, list);
192
        qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
193
        g_free(page);
194
    }
195
}
196

    
197
static void kvm_hwpoison_page_add(ram_addr_t ram_addr)
198
{
199
    HWPoisonPage *page;
200

    
201
    QLIST_FOREACH(page, &hwpoison_page_list, list) {
202
        if (page->ram_addr == ram_addr) {
203
            return;
204
        }
205
    }
206
    page = g_malloc(sizeof(HWPoisonPage));
207
    page->ram_addr = ram_addr;
208
    QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
209
}
210

    
211
static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
212
                                     int *max_banks)
213
{
214
    int r;
215

    
216
    r = kvm_check_extension(s, KVM_CAP_MCE);
217
    if (r > 0) {
218
        *max_banks = r;
219
        return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
220
    }
221
    return -ENOSYS;
222
}
223

    
224
static void kvm_mce_inject(CPUState *env, target_phys_addr_t paddr, int code)
225
{
226
    uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
227
                      MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
228
    uint64_t mcg_status = MCG_STATUS_MCIP;
229

    
230
    if (code == BUS_MCEERR_AR) {
231
        status |= MCI_STATUS_AR | 0x134;
232
        mcg_status |= MCG_STATUS_EIPV;
233
    } else {
234
        status |= 0xc0;
235
        mcg_status |= MCG_STATUS_RIPV;
236
    }
237
    cpu_x86_inject_mce(NULL, env, 9, status, mcg_status, paddr,
238
                       (MCM_ADDR_PHYS << 6) | 0xc,
239
                       cpu_x86_support_mca_broadcast(env) ?
240
                       MCE_INJECT_BROADCAST : 0);
241
}
242

    
243
static void hardware_memory_error(void)
244
{
245
    fprintf(stderr, "Hardware memory error!\n");
246
    exit(1);
247
}
248

    
249
int kvm_arch_on_sigbus_vcpu(CPUState *env, int code, void *addr)
250
{
251
    ram_addr_t ram_addr;
252
    target_phys_addr_t paddr;
253

    
254
    if ((env->mcg_cap & MCG_SER_P) && addr
255
        && (code == BUS_MCEERR_AR || code == BUS_MCEERR_AO)) {
256
        if (qemu_ram_addr_from_host(addr, &ram_addr) ||
257
            !kvm_physical_memory_addr_from_host(env->kvm_state, addr, &paddr)) {
258
            fprintf(stderr, "Hardware memory error for memory used by "
259
                    "QEMU itself instead of guest system!\n");
260
            /* Hope we are lucky for AO MCE */
261
            if (code == BUS_MCEERR_AO) {
262
                return 0;
263
            } else {
264
                hardware_memory_error();
265
            }
266
        }
267
        kvm_hwpoison_page_add(ram_addr);
268
        kvm_mce_inject(env, paddr, code);
269
    } else {
270
        if (code == BUS_MCEERR_AO) {
271
            return 0;
272
        } else if (code == BUS_MCEERR_AR) {
273
            hardware_memory_error();
274
        } else {
275
            return 1;
276
        }
277
    }
278
    return 0;
279
}
280

    
281
int kvm_arch_on_sigbus(int code, void *addr)
282
{
283
    if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
284
        ram_addr_t ram_addr;
285
        target_phys_addr_t paddr;
286

    
287
        /* Hope we are lucky for AO MCE */
288
        if (qemu_ram_addr_from_host(addr, &ram_addr) ||
289
            !kvm_physical_memory_addr_from_host(first_cpu->kvm_state, addr,
290
                                                &paddr)) {
291
            fprintf(stderr, "Hardware memory error for memory used by "
292
                    "QEMU itself instead of guest system!: %p\n", addr);
293
            return 0;
294
        }
295
        kvm_hwpoison_page_add(ram_addr);
296
        kvm_mce_inject(first_cpu, paddr, code);
297
    } else {
298
        if (code == BUS_MCEERR_AO) {
299
            return 0;
300
        } else if (code == BUS_MCEERR_AR) {
301
            hardware_memory_error();
302
        } else {
303
            return 1;
304
        }
305
    }
306
    return 0;
307
}
308

    
309
static int kvm_inject_mce_oldstyle(CPUState *env)
310
{
311
    if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) {
312
        unsigned int bank, bank_num = env->mcg_cap & 0xff;
313
        struct kvm_x86_mce mce;
314

    
315
        env->exception_injected = -1;
316

    
317
        /*
318
         * There must be at least one bank in use if an MCE is pending.
319
         * Find it and use its values for the event injection.
320
         */
321
        for (bank = 0; bank < bank_num; bank++) {
322
            if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
323
                break;
324
            }
325
        }
326
        assert(bank < bank_num);
327

    
328
        mce.bank = bank;
329
        mce.status = env->mce_banks[bank * 4 + 1];
330
        mce.mcg_status = env->mcg_status;
331
        mce.addr = env->mce_banks[bank * 4 + 2];
332
        mce.misc = env->mce_banks[bank * 4 + 3];
333

    
334
        return kvm_vcpu_ioctl(env, KVM_X86_SET_MCE, &mce);
335
    }
336
    return 0;
337
}
338

    
339
static void cpu_update_state(void *opaque, int running, RunState state)
340
{
341
    CPUState *env = opaque;
342

    
343
    if (running) {
344
        env->tsc_valid = false;
345
    }
346
}
347

    
348
int kvm_arch_init_vcpu(CPUState *env)
349
{
350
    struct {
351
        struct kvm_cpuid2 cpuid;
352
        struct kvm_cpuid_entry2 entries[100];
353
    } QEMU_PACKED cpuid_data;
354
    KVMState *s = env->kvm_state;
355
    uint32_t limit, i, j, cpuid_i;
356
    uint32_t unused;
357
    struct kvm_cpuid_entry2 *c;
358
    uint32_t signature[3];
359
    int r;
360

    
361
    env->cpuid_features &= kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
362

    
363
    i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
364
    env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX);
365
    env->cpuid_ext_features |= i;
366

    
367
    env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(s, 0x80000001,
368
                                                             0, R_EDX);
369
    env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(s, 0x80000001,
370
                                                             0, R_ECX);
371
    env->cpuid_svm_features  &= kvm_arch_get_supported_cpuid(s, 0x8000000A,
372
                                                             0, R_EDX);
373

    
374
    cpuid_i = 0;
375

    
376
    /* Paravirtualization CPUIDs */
377
    c = &cpuid_data.entries[cpuid_i++];
378
    memset(c, 0, sizeof(*c));
379
    c->function = KVM_CPUID_SIGNATURE;
380
    if (!hyperv_enabled()) {
381
        memcpy(signature, "KVMKVMKVM\0\0\0", 12);
382
        c->eax = 0;
383
    } else {
384
        memcpy(signature, "Microsoft Hv", 12);
385
        c->eax = HYPERV_CPUID_MIN;
386
    }
387
    c->ebx = signature[0];
388
    c->ecx = signature[1];
389
    c->edx = signature[2];
390

    
391
    c = &cpuid_data.entries[cpuid_i++];
392
    memset(c, 0, sizeof(*c));
393
    c->function = KVM_CPUID_FEATURES;
394
    c->eax = env->cpuid_kvm_features &
395
        kvm_arch_get_supported_cpuid(s, KVM_CPUID_FEATURES, 0, R_EAX);
396

    
397
    if (hyperv_enabled()) {
398
        memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12);
399
        c->eax = signature[0];
400

    
401
        c = &cpuid_data.entries[cpuid_i++];
402
        memset(c, 0, sizeof(*c));
403
        c->function = HYPERV_CPUID_VERSION;
404
        c->eax = 0x00001bbc;
405
        c->ebx = 0x00060001;
406

    
407
        c = &cpuid_data.entries[cpuid_i++];
408
        memset(c, 0, sizeof(*c));
409
        c->function = HYPERV_CPUID_FEATURES;
410
        if (hyperv_relaxed_timing_enabled()) {
411
            c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
412
        }
413
        if (hyperv_vapic_recommended()) {
414
            c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
415
            c->eax |= HV_X64_MSR_APIC_ACCESS_AVAILABLE;
416
        }
417

    
418
        c = &cpuid_data.entries[cpuid_i++];
419
        memset(c, 0, sizeof(*c));
420
        c->function = HYPERV_CPUID_ENLIGHTMENT_INFO;
421
        if (hyperv_relaxed_timing_enabled()) {
422
            c->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED;
423
        }
424
        if (hyperv_vapic_recommended()) {
425
            c->eax |= HV_X64_APIC_ACCESS_RECOMMENDED;
426
        }
427
        c->ebx = hyperv_get_spinlock_retries();
428

    
429
        c = &cpuid_data.entries[cpuid_i++];
430
        memset(c, 0, sizeof(*c));
431
        c->function = HYPERV_CPUID_IMPLEMENT_LIMITS;
432
        c->eax = 0x40;
433
        c->ebx = 0x40;
434

    
435
        c = &cpuid_data.entries[cpuid_i++];
436
        memset(c, 0, sizeof(*c));
437
        c->function = KVM_CPUID_SIGNATURE_NEXT;
438
        memcpy(signature, "KVMKVMKVM\0\0\0", 12);
439
        c->eax = 0;
440
        c->ebx = signature[0];
441
        c->ecx = signature[1];
442
        c->edx = signature[2];
443
    }
444

    
445
    has_msr_async_pf_en = c->eax & (1 << KVM_FEATURE_ASYNC_PF);
446

    
447
    cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
448

    
449
    for (i = 0; i <= limit; i++) {
450
        c = &cpuid_data.entries[cpuid_i++];
451

    
452
        switch (i) {
453
        case 2: {
454
            /* Keep reading function 2 till all the input is received */
455
            int times;
456

    
457
            c->function = i;
458
            c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
459
                       KVM_CPUID_FLAG_STATE_READ_NEXT;
460
            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
461
            times = c->eax & 0xff;
462

    
463
            for (j = 1; j < times; ++j) {
464
                c = &cpuid_data.entries[cpuid_i++];
465
                c->function = i;
466
                c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
467
                cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
468
            }
469
            break;
470
        }
471
        case 4:
472
        case 0xb:
473
        case 0xd:
474
            for (j = 0; ; j++) {
475
                if (i == 0xd && j == 64) {
476
                    break;
477
                }
478
                c->function = i;
479
                c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
480
                c->index = j;
481
                cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
482

    
483
                if (i == 4 && c->eax == 0) {
484
                    break;
485
                }
486
                if (i == 0xb && !(c->ecx & 0xff00)) {
487
                    break;
488
                }
489
                if (i == 0xd && c->eax == 0) {
490
                    continue;
491
                }
492
                c = &cpuid_data.entries[cpuid_i++];
493
            }
494
            break;
495
        default:
496
            c->function = i;
497
            c->flags = 0;
498
            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
499
            break;
500
        }
501
    }
502
    cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
503

    
504
    for (i = 0x80000000; i <= limit; i++) {
505
        c = &cpuid_data.entries[cpuid_i++];
506

    
507
        c->function = i;
508
        c->flags = 0;
509
        cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
510
    }
511

    
512
    /* Call Centaur's CPUID instructions they are supported. */
513
    if (env->cpuid_xlevel2 > 0) {
514
        env->cpuid_ext4_features &=
515
            kvm_arch_get_supported_cpuid(s, 0xC0000001, 0, R_EDX);
516
        cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
517

    
518
        for (i = 0xC0000000; i <= limit; i++) {
519
            c = &cpuid_data.entries[cpuid_i++];
520

    
521
            c->function = i;
522
            c->flags = 0;
523
            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
524
        }
525
    }
526

    
527
    cpuid_data.cpuid.nent = cpuid_i;
528

    
529
    if (((env->cpuid_version >> 8)&0xF) >= 6
530
        && (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA)
531
        && kvm_check_extension(env->kvm_state, KVM_CAP_MCE) > 0) {
532
        uint64_t mcg_cap;
533
        int banks;
534
        int ret;
535

    
536
        ret = kvm_get_mce_cap_supported(env->kvm_state, &mcg_cap, &banks);
537
        if (ret < 0) {
538
            fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
539
            return ret;
540
        }
541

    
542
        if (banks > MCE_BANKS_DEF) {
543
            banks = MCE_BANKS_DEF;
544
        }
545
        mcg_cap &= MCE_CAP_DEF;
546
        mcg_cap |= banks;
547
        ret = kvm_vcpu_ioctl(env, KVM_X86_SETUP_MCE, &mcg_cap);
548
        if (ret < 0) {
549
            fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
550
            return ret;
551
        }
552

    
553
        env->mcg_cap = mcg_cap;
554
    }
555

    
556
    qemu_add_vm_change_state_handler(cpu_update_state, env);
557

    
558
    cpuid_data.cpuid.padding = 0;
559
    r = kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
560
    if (r) {
561
        return r;
562
    }
563

    
564
    r = kvm_check_extension(env->kvm_state, KVM_CAP_TSC_CONTROL);
565
    if (r && env->tsc_khz) {
566
        r = kvm_vcpu_ioctl(env, KVM_SET_TSC_KHZ, env->tsc_khz);
567
        if (r < 0) {
568
            fprintf(stderr, "KVM_SET_TSC_KHZ failed\n");
569
            return r;
570
        }
571
    }
572

    
573
    if (kvm_has_xsave()) {
574
        env->kvm_xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave));
575
    }
576

    
577
    return 0;
578
}
579

    
580
void kvm_arch_reset_vcpu(CPUState *env)
581
{
582
    env->exception_injected = -1;
583
    env->interrupt_injected = -1;
584
    env->xcr0 = 1;
585
    if (kvm_irqchip_in_kernel()) {
586
        env->mp_state = cpu_is_bsp(env) ? KVM_MP_STATE_RUNNABLE :
587
                                          KVM_MP_STATE_UNINITIALIZED;
588
    } else {
589
        env->mp_state = KVM_MP_STATE_RUNNABLE;
590
    }
591
}
592

    
593
static int kvm_get_supported_msrs(KVMState *s)
594
{
595
    static int kvm_supported_msrs;
596
    int ret = 0;
597

    
598
    /* first time */
599
    if (kvm_supported_msrs == 0) {
600
        struct kvm_msr_list msr_list, *kvm_msr_list;
601

    
602
        kvm_supported_msrs = -1;
603

    
604
        /* Obtain MSR list from KVM.  These are the MSRs that we must
605
         * save/restore */
606
        msr_list.nmsrs = 0;
607
        ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
608
        if (ret < 0 && ret != -E2BIG) {
609
            return ret;
610
        }
611
        /* Old kernel modules had a bug and could write beyond the provided
612
           memory. Allocate at least a safe amount of 1K. */
613
        kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
614
                                              msr_list.nmsrs *
615
                                              sizeof(msr_list.indices[0])));
616

    
617
        kvm_msr_list->nmsrs = msr_list.nmsrs;
618
        ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
619
        if (ret >= 0) {
620
            int i;
621

    
622
            for (i = 0; i < kvm_msr_list->nmsrs; i++) {
623
                if (kvm_msr_list->indices[i] == MSR_STAR) {
624
                    has_msr_star = true;
625
                    continue;
626
                }
627
                if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
628
                    has_msr_hsave_pa = true;
629
                    continue;
630
                }
631
                if (kvm_msr_list->indices[i] == MSR_IA32_TSCDEADLINE) {
632
                    has_msr_tsc_deadline = true;
633
                    continue;
634
                }
635
                if (kvm_msr_list->indices[i] == MSR_IA32_MISC_ENABLE) {
636
                    has_msr_misc_enable = true;
637
                    continue;
638
                }
639
            }
640
        }
641

    
642
        g_free(kvm_msr_list);
643
    }
644

    
645
    return ret;
646
}
647

    
648
int kvm_arch_init(KVMState *s)
649
{
650
    QemuOptsList *list = qemu_find_opts("machine");
651
    uint64_t identity_base = 0xfffbc000;
652
    uint64_t shadow_mem;
653
    int ret;
654
    struct utsname utsname;
655

    
656
    ret = kvm_get_supported_msrs(s);
657
    if (ret < 0) {
658
        return ret;
659
    }
660

    
661
    uname(&utsname);
662
    lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
663

    
664
    /*
665
     * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
666
     * In order to use vm86 mode, an EPT identity map and a TSS  are needed.
667
     * Since these must be part of guest physical memory, we need to allocate
668
     * them, both by setting their start addresses in the kernel and by
669
     * creating a corresponding e820 entry. We need 4 pages before the BIOS.
670
     *
671
     * Older KVM versions may not support setting the identity map base. In
672
     * that case we need to stick with the default, i.e. a 256K maximum BIOS
673
     * size.
674
     */
675
    if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
676
        /* Allows up to 16M BIOSes. */
677
        identity_base = 0xfeffc000;
678

    
679
        ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
680
        if (ret < 0) {
681
            return ret;
682
        }
683
    }
684

    
685
    /* Set TSS base one page after EPT identity map. */
686
    ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
687
    if (ret < 0) {
688
        return ret;
689
    }
690

    
691
    /* Tell fw_cfg to notify the BIOS to reserve the range. */
692
    ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
693
    if (ret < 0) {
694
        fprintf(stderr, "e820_add_entry() table is full\n");
695
        return ret;
696
    }
697
    qemu_register_reset(kvm_unpoison_all, NULL);
698

    
699
    if (!QTAILQ_EMPTY(&list->head)) {
700
        shadow_mem = qemu_opt_get_size(QTAILQ_FIRST(&list->head),
701
                                       "kvm_shadow_mem", -1);
702
        if (shadow_mem != -1) {
703
            shadow_mem /= 4096;
704
            ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
705
            if (ret < 0) {
706
                return ret;
707
            }
708
        }
709
    }
710
    return 0;
711
}
712

    
713
static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
714
{
715
    lhs->selector = rhs->selector;
716
    lhs->base = rhs->base;
717
    lhs->limit = rhs->limit;
718
    lhs->type = 3;
719
    lhs->present = 1;
720
    lhs->dpl = 3;
721
    lhs->db = 0;
722
    lhs->s = 1;
723
    lhs->l = 0;
724
    lhs->g = 0;
725
    lhs->avl = 0;
726
    lhs->unusable = 0;
727
}
728

    
729
static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
730
{
731
    unsigned flags = rhs->flags;
732
    lhs->selector = rhs->selector;
733
    lhs->base = rhs->base;
734
    lhs->limit = rhs->limit;
735
    lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
736
    lhs->present = (flags & DESC_P_MASK) != 0;
737
    lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
738
    lhs->db = (flags >> DESC_B_SHIFT) & 1;
739
    lhs->s = (flags & DESC_S_MASK) != 0;
740
    lhs->l = (flags >> DESC_L_SHIFT) & 1;
741
    lhs->g = (flags & DESC_G_MASK) != 0;
742
    lhs->avl = (flags & DESC_AVL_MASK) != 0;
743
    lhs->unusable = 0;
744
    lhs->padding = 0;
745
}
746

    
747
static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
748
{
749
    lhs->selector = rhs->selector;
750
    lhs->base = rhs->base;
751
    lhs->limit = rhs->limit;
752
    lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
753
                 (rhs->present * DESC_P_MASK) |
754
                 (rhs->dpl << DESC_DPL_SHIFT) |
755
                 (rhs->db << DESC_B_SHIFT) |
756
                 (rhs->s * DESC_S_MASK) |
757
                 (rhs->l << DESC_L_SHIFT) |
758
                 (rhs->g * DESC_G_MASK) |
759
                 (rhs->avl * DESC_AVL_MASK);
760
}
761

    
762
static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
763
{
764
    if (set) {
765
        *kvm_reg = *qemu_reg;
766
    } else {
767
        *qemu_reg = *kvm_reg;
768
    }
769
}
770

    
771
static int kvm_getput_regs(CPUState *env, int set)
772
{
773
    struct kvm_regs regs;
774
    int ret = 0;
775

    
776
    if (!set) {
777
        ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
778
        if (ret < 0) {
779
            return ret;
780
        }
781
    }
782

    
783
    kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
784
    kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
785
    kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
786
    kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
787
    kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
788
    kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
789
    kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
790
    kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
791
#ifdef TARGET_X86_64
792
    kvm_getput_reg(&regs.r8, &env->regs[8], set);
793
    kvm_getput_reg(&regs.r9, &env->regs[9], set);
794
    kvm_getput_reg(&regs.r10, &env->regs[10], set);
795
    kvm_getput_reg(&regs.r11, &env->regs[11], set);
796
    kvm_getput_reg(&regs.r12, &env->regs[12], set);
797
    kvm_getput_reg(&regs.r13, &env->regs[13], set);
798
    kvm_getput_reg(&regs.r14, &env->regs[14], set);
799
    kvm_getput_reg(&regs.r15, &env->regs[15], set);
800
#endif
801

    
802
    kvm_getput_reg(&regs.rflags, &env->eflags, set);
803
    kvm_getput_reg(&regs.rip, &env->eip, set);
804

    
805
    if (set) {
806
        ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
807
    }
808

    
809
    return ret;
810
}
811

    
812
static int kvm_put_fpu(CPUState *env)
813
{
814
    struct kvm_fpu fpu;
815
    int i;
816

    
817
    memset(&fpu, 0, sizeof fpu);
818
    fpu.fsw = env->fpus & ~(7 << 11);
819
    fpu.fsw |= (env->fpstt & 7) << 11;
820
    fpu.fcw = env->fpuc;
821
    fpu.last_opcode = env->fpop;
822
    fpu.last_ip = env->fpip;
823
    fpu.last_dp = env->fpdp;
824
    for (i = 0; i < 8; ++i) {
825
        fpu.ftwx |= (!env->fptags[i]) << i;
826
    }
827
    memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
828
    memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
829
    fpu.mxcsr = env->mxcsr;
830

    
831
    return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
832
}
833

    
834
#define XSAVE_FCW_FSW     0
835
#define XSAVE_FTW_FOP     1
836
#define XSAVE_CWD_RIP     2
837
#define XSAVE_CWD_RDP     4
838
#define XSAVE_MXCSR       6
839
#define XSAVE_ST_SPACE    8
840
#define XSAVE_XMM_SPACE   40
841
#define XSAVE_XSTATE_BV   128
842
#define XSAVE_YMMH_SPACE  144
843

    
844
static int kvm_put_xsave(CPUState *env)
845
{
846
    struct kvm_xsave* xsave = env->kvm_xsave_buf;
847
    uint16_t cwd, swd, twd;
848
    int i, r;
849

    
850
    if (!kvm_has_xsave()) {
851
        return kvm_put_fpu(env);
852
    }
853

    
854
    memset(xsave, 0, sizeof(struct kvm_xsave));
855
    twd = 0;
856
    swd = env->fpus & ~(7 << 11);
857
    swd |= (env->fpstt & 7) << 11;
858
    cwd = env->fpuc;
859
    for (i = 0; i < 8; ++i) {
860
        twd |= (!env->fptags[i]) << i;
861
    }
862
    xsave->region[XSAVE_FCW_FSW] = (uint32_t)(swd << 16) + cwd;
863
    xsave->region[XSAVE_FTW_FOP] = (uint32_t)(env->fpop << 16) + twd;
864
    memcpy(&xsave->region[XSAVE_CWD_RIP], &env->fpip, sizeof(env->fpip));
865
    memcpy(&xsave->region[XSAVE_CWD_RDP], &env->fpdp, sizeof(env->fpdp));
866
    memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
867
            sizeof env->fpregs);
868
    memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
869
            sizeof env->xmm_regs);
870
    xsave->region[XSAVE_MXCSR] = env->mxcsr;
871
    *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
872
    memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
873
            sizeof env->ymmh_regs);
874
    r = kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave);
875
    return r;
876
}
877

    
878
static int kvm_put_xcrs(CPUState *env)
879
{
880
    struct kvm_xcrs xcrs;
881

    
882
    if (!kvm_has_xcrs()) {
883
        return 0;
884
    }
885

    
886
    xcrs.nr_xcrs = 1;
887
    xcrs.flags = 0;
888
    xcrs.xcrs[0].xcr = 0;
889
    xcrs.xcrs[0].value = env->xcr0;
890
    return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs);
891
}
892

    
893
static int kvm_put_sregs(CPUState *env)
894
{
895
    struct kvm_sregs sregs;
896

    
897
    memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
898
    if (env->interrupt_injected >= 0) {
899
        sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
900
                (uint64_t)1 << (env->interrupt_injected % 64);
901
    }
902

    
903
    if ((env->eflags & VM_MASK)) {
904
        set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
905
        set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
906
        set_v8086_seg(&sregs.es, &env->segs[R_ES]);
907
        set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
908
        set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
909
        set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
910
    } else {
911
        set_seg(&sregs.cs, &env->segs[R_CS]);
912
        set_seg(&sregs.ds, &env->segs[R_DS]);
913
        set_seg(&sregs.es, &env->segs[R_ES]);
914
        set_seg(&sregs.fs, &env->segs[R_FS]);
915
        set_seg(&sregs.gs, &env->segs[R_GS]);
916
        set_seg(&sregs.ss, &env->segs[R_SS]);
917
    }
918

    
919
    set_seg(&sregs.tr, &env->tr);
920
    set_seg(&sregs.ldt, &env->ldt);
921

    
922
    sregs.idt.limit = env->idt.limit;
923
    sregs.idt.base = env->idt.base;
924
    memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
925
    sregs.gdt.limit = env->gdt.limit;
926
    sregs.gdt.base = env->gdt.base;
927
    memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
928

    
929
    sregs.cr0 = env->cr[0];
930
    sregs.cr2 = env->cr[2];
931
    sregs.cr3 = env->cr[3];
932
    sregs.cr4 = env->cr[4];
933

    
934
    sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
935
    sregs.apic_base = cpu_get_apic_base(env->apic_state);
936

    
937
    sregs.efer = env->efer;
938

    
939
    return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
940
}
941

    
942
static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
943
                              uint32_t index, uint64_t value)
944
{
945
    entry->index = index;
946
    entry->data = value;
947
}
948

    
949
static int kvm_put_msrs(CPUState *env, int level)
950
{
951
    struct {
952
        struct kvm_msrs info;
953
        struct kvm_msr_entry entries[100];
954
    } msr_data;
955
    struct kvm_msr_entry *msrs = msr_data.entries;
956
    int n = 0;
957

    
958
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
959
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
960
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
961
    kvm_msr_entry_set(&msrs[n++], MSR_PAT, env->pat);
962
    if (has_msr_star) {
963
        kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
964
    }
965
    if (has_msr_hsave_pa) {
966
        kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
967
    }
968
    if (has_msr_tsc_deadline) {
969
        kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSCDEADLINE, env->tsc_deadline);
970
    }
971
    if (has_msr_misc_enable) {
972
        kvm_msr_entry_set(&msrs[n++], MSR_IA32_MISC_ENABLE,
973
                          env->msr_ia32_misc_enable);
974
    }
975
#ifdef TARGET_X86_64
976
    if (lm_capable_kernel) {
977
        kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
978
        kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
979
        kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
980
        kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
981
    }
982
#endif
983
    if (level == KVM_PUT_FULL_STATE) {
984
        /*
985
         * KVM is yet unable to synchronize TSC values of multiple VCPUs on
986
         * writeback. Until this is fixed, we only write the offset to SMP
987
         * guests after migration, desynchronizing the VCPUs, but avoiding
988
         * huge jump-backs that would occur without any writeback at all.
989
         */
990
        if (smp_cpus == 1 || env->tsc != 0) {
991
            kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
992
        }
993
    }
994
    /*
995
     * The following paravirtual MSRs have side effects on the guest or are
996
     * too heavy for normal writeback. Limit them to reset or full state
997
     * updates.
998
     */
999
    if (level >= KVM_PUT_RESET_STATE) {
1000
        kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
1001
                          env->system_time_msr);
1002
        kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
1003
        if (has_msr_async_pf_en) {
1004
            kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN,
1005
                              env->async_pf_en_msr);
1006
        }
1007
        if (hyperv_hypercall_available()) {
1008
            kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_GUEST_OS_ID, 0);
1009
            kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_HYPERCALL, 0);
1010
        }
1011
        if (hyperv_vapic_recommended()) {
1012
            kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_APIC_ASSIST_PAGE, 0);
1013
        }
1014
    }
1015
    if (env->mcg_cap) {
1016
        int i;
1017

    
1018
        kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
1019
        kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
1020
        for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1021
            kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
1022
        }
1023
    }
1024

    
1025
    msr_data.info.nmsrs = n;
1026

    
1027
    return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
1028

    
1029
}
1030

    
1031

    
1032
static int kvm_get_fpu(CPUState *env)
1033
{
1034
    struct kvm_fpu fpu;
1035
    int i, ret;
1036

    
1037
    ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
1038
    if (ret < 0) {
1039
        return ret;
1040
    }
1041

    
1042
    env->fpstt = (fpu.fsw >> 11) & 7;
1043
    env->fpus = fpu.fsw;
1044
    env->fpuc = fpu.fcw;
1045
    env->fpop = fpu.last_opcode;
1046
    env->fpip = fpu.last_ip;
1047
    env->fpdp = fpu.last_dp;
1048
    for (i = 0; i < 8; ++i) {
1049
        env->fptags[i] = !((fpu.ftwx >> i) & 1);
1050
    }
1051
    memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
1052
    memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
1053
    env->mxcsr = fpu.mxcsr;
1054

    
1055
    return 0;
1056
}
1057

    
1058
static int kvm_get_xsave(CPUState *env)
1059
{
1060
    struct kvm_xsave* xsave = env->kvm_xsave_buf;
1061
    int ret, i;
1062
    uint16_t cwd, swd, twd;
1063

    
1064
    if (!kvm_has_xsave()) {
1065
        return kvm_get_fpu(env);
1066
    }
1067

    
1068
    ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave);
1069
    if (ret < 0) {
1070
        return ret;
1071
    }
1072

    
1073
    cwd = (uint16_t)xsave->region[XSAVE_FCW_FSW];
1074
    swd = (uint16_t)(xsave->region[XSAVE_FCW_FSW] >> 16);
1075
    twd = (uint16_t)xsave->region[XSAVE_FTW_FOP];
1076
    env->fpop = (uint16_t)(xsave->region[XSAVE_FTW_FOP] >> 16);
1077
    env->fpstt = (swd >> 11) & 7;
1078
    env->fpus = swd;
1079
    env->fpuc = cwd;
1080
    for (i = 0; i < 8; ++i) {
1081
        env->fptags[i] = !((twd >> i) & 1);
1082
    }
1083
    memcpy(&env->fpip, &xsave->region[XSAVE_CWD_RIP], sizeof(env->fpip));
1084
    memcpy(&env->fpdp, &xsave->region[XSAVE_CWD_RDP], sizeof(env->fpdp));
1085
    env->mxcsr = xsave->region[XSAVE_MXCSR];
1086
    memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
1087
            sizeof env->fpregs);
1088
    memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
1089
            sizeof env->xmm_regs);
1090
    env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
1091
    memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
1092
            sizeof env->ymmh_regs);
1093
    return 0;
1094
}
1095

    
1096
static int kvm_get_xcrs(CPUState *env)
1097
{
1098
    int i, ret;
1099
    struct kvm_xcrs xcrs;
1100

    
1101
    if (!kvm_has_xcrs()) {
1102
        return 0;
1103
    }
1104

    
1105
    ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs);
1106
    if (ret < 0) {
1107
        return ret;
1108
    }
1109

    
1110
    for (i = 0; i < xcrs.nr_xcrs; i++) {
1111
        /* Only support xcr0 now */
1112
        if (xcrs.xcrs[0].xcr == 0) {
1113
            env->xcr0 = xcrs.xcrs[0].value;
1114
            break;
1115
        }
1116
    }
1117
    return 0;
1118
}
1119

    
1120
static int kvm_get_sregs(CPUState *env)
1121
{
1122
    struct kvm_sregs sregs;
1123
    uint32_t hflags;
1124
    int bit, i, ret;
1125

    
1126
    ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
1127
    if (ret < 0) {
1128
        return ret;
1129
    }
1130

    
1131
    /* There can only be one pending IRQ set in the bitmap at a time, so try
1132
       to find it and save its number instead (-1 for none). */
1133
    env->interrupt_injected = -1;
1134
    for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
1135
        if (sregs.interrupt_bitmap[i]) {
1136
            bit = ctz64(sregs.interrupt_bitmap[i]);
1137
            env->interrupt_injected = i * 64 + bit;
1138
            break;
1139
        }
1140
    }
1141

    
1142
    get_seg(&env->segs[R_CS], &sregs.cs);
1143
    get_seg(&env->segs[R_DS], &sregs.ds);
1144
    get_seg(&env->segs[R_ES], &sregs.es);
1145
    get_seg(&env->segs[R_FS], &sregs.fs);
1146
    get_seg(&env->segs[R_GS], &sregs.gs);
1147
    get_seg(&env->segs[R_SS], &sregs.ss);
1148

    
1149
    get_seg(&env->tr, &sregs.tr);
1150
    get_seg(&env->ldt, &sregs.ldt);
1151

    
1152
    env->idt.limit = sregs.idt.limit;
1153
    env->idt.base = sregs.idt.base;
1154
    env->gdt.limit = sregs.gdt.limit;
1155
    env->gdt.base = sregs.gdt.base;
1156

    
1157
    env->cr[0] = sregs.cr0;
1158
    env->cr[2] = sregs.cr2;
1159
    env->cr[3] = sregs.cr3;
1160
    env->cr[4] = sregs.cr4;
1161

    
1162
    env->efer = sregs.efer;
1163

    
1164
    /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
1165

    
1166
#define HFLAG_COPY_MASK \
1167
    ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1168
       HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1169
       HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1170
       HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
1171

    
1172
    hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1173
    hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1174
    hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
1175
                (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
1176
    hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1177
    hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
1178
                (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
1179

    
1180
    if (env->efer & MSR_EFER_LMA) {
1181
        hflags |= HF_LMA_MASK;
1182
    }
1183

    
1184
    if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1185
        hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1186
    } else {
1187
        hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
1188
                    (DESC_B_SHIFT - HF_CS32_SHIFT);
1189
        hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
1190
                    (DESC_B_SHIFT - HF_SS32_SHIFT);
1191
        if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
1192
            !(hflags & HF_CS32_MASK)) {
1193
            hflags |= HF_ADDSEG_MASK;
1194
        } else {
1195
            hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
1196
                        env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
1197
        }
1198
    }
1199
    env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
1200

    
1201
    return 0;
1202
}
1203

    
1204
static int kvm_get_msrs(CPUState *env)
1205
{
1206
    struct {
1207
        struct kvm_msrs info;
1208
        struct kvm_msr_entry entries[100];
1209
    } msr_data;
1210
    struct kvm_msr_entry *msrs = msr_data.entries;
1211
    int ret, i, n;
1212

    
1213
    n = 0;
1214
    msrs[n++].index = MSR_IA32_SYSENTER_CS;
1215
    msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1216
    msrs[n++].index = MSR_IA32_SYSENTER_EIP;
1217
    msrs[n++].index = MSR_PAT;
1218
    if (has_msr_star) {
1219
        msrs[n++].index = MSR_STAR;
1220
    }
1221
    if (has_msr_hsave_pa) {
1222
        msrs[n++].index = MSR_VM_HSAVE_PA;
1223
    }
1224
    if (has_msr_tsc_deadline) {
1225
        msrs[n++].index = MSR_IA32_TSCDEADLINE;
1226
    }
1227
    if (has_msr_misc_enable) {
1228
        msrs[n++].index = MSR_IA32_MISC_ENABLE;
1229
    }
1230

    
1231
    if (!env->tsc_valid) {
1232
        msrs[n++].index = MSR_IA32_TSC;
1233
        env->tsc_valid = !runstate_is_running();
1234
    }
1235

    
1236
#ifdef TARGET_X86_64
1237
    if (lm_capable_kernel) {
1238
        msrs[n++].index = MSR_CSTAR;
1239
        msrs[n++].index = MSR_KERNELGSBASE;
1240
        msrs[n++].index = MSR_FMASK;
1241
        msrs[n++].index = MSR_LSTAR;
1242
    }
1243
#endif
1244
    msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1245
    msrs[n++].index = MSR_KVM_WALL_CLOCK;
1246
    if (has_msr_async_pf_en) {
1247
        msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
1248
    }
1249

    
1250
    if (env->mcg_cap) {
1251
        msrs[n++].index = MSR_MCG_STATUS;
1252
        msrs[n++].index = MSR_MCG_CTL;
1253
        for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1254
            msrs[n++].index = MSR_MC0_CTL + i;
1255
        }
1256
    }
1257

    
1258
    msr_data.info.nmsrs = n;
1259
    ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
1260
    if (ret < 0) {
1261
        return ret;
1262
    }
1263

    
1264
    for (i = 0; i < ret; i++) {
1265
        switch (msrs[i].index) {
1266
        case MSR_IA32_SYSENTER_CS:
1267
            env->sysenter_cs = msrs[i].data;
1268
            break;
1269
        case MSR_IA32_SYSENTER_ESP:
1270
            env->sysenter_esp = msrs[i].data;
1271
            break;
1272
        case MSR_IA32_SYSENTER_EIP:
1273
            env->sysenter_eip = msrs[i].data;
1274
            break;
1275
        case MSR_PAT:
1276
            env->pat = msrs[i].data;
1277
            break;
1278
        case MSR_STAR:
1279
            env->star = msrs[i].data;
1280
            break;
1281
#ifdef TARGET_X86_64
1282
        case MSR_CSTAR:
1283
            env->cstar = msrs[i].data;
1284
            break;
1285
        case MSR_KERNELGSBASE:
1286
            env->kernelgsbase = msrs[i].data;
1287
            break;
1288
        case MSR_FMASK:
1289
            env->fmask = msrs[i].data;
1290
            break;
1291
        case MSR_LSTAR:
1292
            env->lstar = msrs[i].data;
1293
            break;
1294
#endif
1295
        case MSR_IA32_TSC:
1296
            env->tsc = msrs[i].data;
1297
            break;
1298
        case MSR_IA32_TSCDEADLINE:
1299
            env->tsc_deadline = msrs[i].data;
1300
            break;
1301
        case MSR_VM_HSAVE_PA:
1302
            env->vm_hsave = msrs[i].data;
1303
            break;
1304
        case MSR_KVM_SYSTEM_TIME:
1305
            env->system_time_msr = msrs[i].data;
1306
            break;
1307
        case MSR_KVM_WALL_CLOCK:
1308
            env->wall_clock_msr = msrs[i].data;
1309
            break;
1310
        case MSR_MCG_STATUS:
1311
            env->mcg_status = msrs[i].data;
1312
            break;
1313
        case MSR_MCG_CTL:
1314
            env->mcg_ctl = msrs[i].data;
1315
            break;
1316
        case MSR_IA32_MISC_ENABLE:
1317
            env->msr_ia32_misc_enable = msrs[i].data;
1318
            break;
1319
        default:
1320
            if (msrs[i].index >= MSR_MC0_CTL &&
1321
                msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1322
                env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
1323
            }
1324
            break;
1325
        case MSR_KVM_ASYNC_PF_EN:
1326
            env->async_pf_en_msr = msrs[i].data;
1327
            break;
1328
        }
1329
    }
1330

    
1331
    return 0;
1332
}
1333

    
1334
static int kvm_put_mp_state(CPUState *env)
1335
{
1336
    struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
1337

    
1338
    return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
1339
}
1340

    
1341
static int kvm_get_mp_state(CPUState *env)
1342
{
1343
    struct kvm_mp_state mp_state;
1344
    int ret;
1345

    
1346
    ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
1347
    if (ret < 0) {
1348
        return ret;
1349
    }
1350
    env->mp_state = mp_state.mp_state;
1351
    if (kvm_irqchip_in_kernel()) {
1352
        env->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
1353
    }
1354
    return 0;
1355
}
1356

    
1357
static int kvm_get_apic(CPUState *env)
1358
{
1359
    DeviceState *apic = env->apic_state;
1360
    struct kvm_lapic_state kapic;
1361
    int ret;
1362

    
1363
    if (apic && kvm_irqchip_in_kernel()) {
1364
        ret = kvm_vcpu_ioctl(env, KVM_GET_LAPIC, &kapic);
1365
        if (ret < 0) {
1366
            return ret;
1367
        }
1368

    
1369
        kvm_get_apic_state(apic, &kapic);
1370
    }
1371
    return 0;
1372
}
1373

    
1374
static int kvm_put_apic(CPUState *env)
1375
{
1376
    DeviceState *apic = env->apic_state;
1377
    struct kvm_lapic_state kapic;
1378

    
1379
    if (apic && kvm_irqchip_in_kernel()) {
1380
        kvm_put_apic_state(apic, &kapic);
1381

    
1382
        return kvm_vcpu_ioctl(env, KVM_SET_LAPIC, &kapic);
1383
    }
1384
    return 0;
1385
}
1386

    
1387
static int kvm_put_vcpu_events(CPUState *env, int level)
1388
{
1389
    struct kvm_vcpu_events events;
1390

    
1391
    if (!kvm_has_vcpu_events()) {
1392
        return 0;
1393
    }
1394

    
1395
    events.exception.injected = (env->exception_injected >= 0);
1396
    events.exception.nr = env->exception_injected;
1397
    events.exception.has_error_code = env->has_error_code;
1398
    events.exception.error_code = env->error_code;
1399
    events.exception.pad = 0;
1400

    
1401
    events.interrupt.injected = (env->interrupt_injected >= 0);
1402
    events.interrupt.nr = env->interrupt_injected;
1403
    events.interrupt.soft = env->soft_interrupt;
1404

    
1405
    events.nmi.injected = env->nmi_injected;
1406
    events.nmi.pending = env->nmi_pending;
1407
    events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
1408
    events.nmi.pad = 0;
1409

    
1410
    events.sipi_vector = env->sipi_vector;
1411

    
1412
    events.flags = 0;
1413
    if (level >= KVM_PUT_RESET_STATE) {
1414
        events.flags |=
1415
            KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1416
    }
1417

    
1418
    return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
1419
}
1420

    
1421
static int kvm_get_vcpu_events(CPUState *env)
1422
{
1423
    struct kvm_vcpu_events events;
1424
    int ret;
1425

    
1426
    if (!kvm_has_vcpu_events()) {
1427
        return 0;
1428
    }
1429

    
1430
    ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
1431
    if (ret < 0) {
1432
       return ret;
1433
    }
1434
    env->exception_injected =
1435
       events.exception.injected ? events.exception.nr : -1;
1436
    env->has_error_code = events.exception.has_error_code;
1437
    env->error_code = events.exception.error_code;
1438

    
1439
    env->interrupt_injected =
1440
        events.interrupt.injected ? events.interrupt.nr : -1;
1441
    env->soft_interrupt = events.interrupt.soft;
1442

    
1443
    env->nmi_injected = events.nmi.injected;
1444
    env->nmi_pending = events.nmi.pending;
1445
    if (events.nmi.masked) {
1446
        env->hflags2 |= HF2_NMI_MASK;
1447
    } else {
1448
        env->hflags2 &= ~HF2_NMI_MASK;
1449
    }
1450

    
1451
    env->sipi_vector = events.sipi_vector;
1452

    
1453
    return 0;
1454
}
1455

    
1456
static int kvm_guest_debug_workarounds(CPUState *env)
1457
{
1458
    int ret = 0;
1459
    unsigned long reinject_trap = 0;
1460

    
1461
    if (!kvm_has_vcpu_events()) {
1462
        if (env->exception_injected == 1) {
1463
            reinject_trap = KVM_GUESTDBG_INJECT_DB;
1464
        } else if (env->exception_injected == 3) {
1465
            reinject_trap = KVM_GUESTDBG_INJECT_BP;
1466
        }
1467
        env->exception_injected = -1;
1468
    }
1469

    
1470
    /*
1471
     * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1472
     * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1473
     * by updating the debug state once again if single-stepping is on.
1474
     * Another reason to call kvm_update_guest_debug here is a pending debug
1475
     * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1476
     * reinject them via SET_GUEST_DEBUG.
1477
     */
1478
    if (reinject_trap ||
1479
        (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1480
        ret = kvm_update_guest_debug(env, reinject_trap);
1481
    }
1482
    return ret;
1483
}
1484

    
1485
static int kvm_put_debugregs(CPUState *env)
1486
{
1487
    struct kvm_debugregs dbgregs;
1488
    int i;
1489

    
1490
    if (!kvm_has_debugregs()) {
1491
        return 0;
1492
    }
1493

    
1494
    for (i = 0; i < 4; i++) {
1495
        dbgregs.db[i] = env->dr[i];
1496
    }
1497
    dbgregs.dr6 = env->dr[6];
1498
    dbgregs.dr7 = env->dr[7];
1499
    dbgregs.flags = 0;
1500

    
1501
    return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs);
1502
}
1503

    
1504
static int kvm_get_debugregs(CPUState *env)
1505
{
1506
    struct kvm_debugregs dbgregs;
1507
    int i, ret;
1508

    
1509
    if (!kvm_has_debugregs()) {
1510
        return 0;
1511
    }
1512

    
1513
    ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs);
1514
    if (ret < 0) {
1515
        return ret;
1516
    }
1517
    for (i = 0; i < 4; i++) {
1518
        env->dr[i] = dbgregs.db[i];
1519
    }
1520
    env->dr[4] = env->dr[6] = dbgregs.dr6;
1521
    env->dr[5] = env->dr[7] = dbgregs.dr7;
1522

    
1523
    return 0;
1524
}
1525

    
1526
int kvm_arch_put_registers(CPUState *env, int level)
1527
{
1528
    int ret;
1529

    
1530
    assert(cpu_is_stopped(env) || qemu_cpu_is_self(env));
1531

    
1532
    ret = kvm_getput_regs(env, 1);
1533
    if (ret < 0) {
1534
        return ret;
1535
    }
1536
    ret = kvm_put_xsave(env);
1537
    if (ret < 0) {
1538
        return ret;
1539
    }
1540
    ret = kvm_put_xcrs(env);
1541
    if (ret < 0) {
1542
        return ret;
1543
    }
1544
    ret = kvm_put_sregs(env);
1545
    if (ret < 0) {
1546
        return ret;
1547
    }
1548
    /* must be before kvm_put_msrs */
1549
    ret = kvm_inject_mce_oldstyle(env);
1550
    if (ret < 0) {
1551
        return ret;
1552
    }
1553
    ret = kvm_put_msrs(env, level);
1554
    if (ret < 0) {
1555
        return ret;
1556
    }
1557
    if (level >= KVM_PUT_RESET_STATE) {
1558
        ret = kvm_put_mp_state(env);
1559
        if (ret < 0) {
1560
            return ret;
1561
        }
1562
        ret = kvm_put_apic(env);
1563
        if (ret < 0) {
1564
            return ret;
1565
        }
1566
    }
1567
    ret = kvm_put_vcpu_events(env, level);
1568
    if (ret < 0) {
1569
        return ret;
1570
    }
1571
    ret = kvm_put_debugregs(env);
1572
    if (ret < 0) {
1573
        return ret;
1574
    }
1575
    /* must be last */
1576
    ret = kvm_guest_debug_workarounds(env);
1577
    if (ret < 0) {
1578
        return ret;
1579
    }
1580
    return 0;
1581
}
1582

    
1583
int kvm_arch_get_registers(CPUState *env)
1584
{
1585
    int ret;
1586

    
1587
    assert(cpu_is_stopped(env) || qemu_cpu_is_self(env));
1588

    
1589
    ret = kvm_getput_regs(env, 0);
1590
    if (ret < 0) {
1591
        return ret;
1592
    }
1593
    ret = kvm_get_xsave(env);
1594
    if (ret < 0) {
1595
        return ret;
1596
    }
1597
    ret = kvm_get_xcrs(env);
1598
    if (ret < 0) {
1599
        return ret;
1600
    }
1601
    ret = kvm_get_sregs(env);
1602
    if (ret < 0) {
1603
        return ret;
1604
    }
1605
    ret = kvm_get_msrs(env);
1606
    if (ret < 0) {
1607
        return ret;
1608
    }
1609
    ret = kvm_get_mp_state(env);
1610
    if (ret < 0) {
1611
        return ret;
1612
    }
1613
    ret = kvm_get_apic(env);
1614
    if (ret < 0) {
1615
        return ret;
1616
    }
1617
    ret = kvm_get_vcpu_events(env);
1618
    if (ret < 0) {
1619
        return ret;
1620
    }
1621
    ret = kvm_get_debugregs(env);
1622
    if (ret < 0) {
1623
        return ret;
1624
    }
1625
    return 0;
1626
}
1627

    
1628
void kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
1629
{
1630
    int ret;
1631

    
1632
    /* Inject NMI */
1633
    if (env->interrupt_request & CPU_INTERRUPT_NMI) {
1634
        env->interrupt_request &= ~CPU_INTERRUPT_NMI;
1635
        DPRINTF("injected NMI\n");
1636
        ret = kvm_vcpu_ioctl(env, KVM_NMI);
1637
        if (ret < 0) {
1638
            fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
1639
                    strerror(-ret));
1640
        }
1641
    }
1642

    
1643
    if (!kvm_irqchip_in_kernel()) {
1644
        /* Force the VCPU out of its inner loop to process any INIT requests
1645
         * or pending TPR access reports. */
1646
        if (env->interrupt_request &
1647
            (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
1648
            env->exit_request = 1;
1649
        }
1650

    
1651
        /* Try to inject an interrupt if the guest can accept it */
1652
        if (run->ready_for_interrupt_injection &&
1653
            (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1654
            (env->eflags & IF_MASK)) {
1655
            int irq;
1656

    
1657
            env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1658
            irq = cpu_get_pic_interrupt(env);
1659
            if (irq >= 0) {
1660
                struct kvm_interrupt intr;
1661

    
1662
                intr.irq = irq;
1663
                DPRINTF("injected interrupt %d\n", irq);
1664
                ret = kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
1665
                if (ret < 0) {
1666
                    fprintf(stderr,
1667
                            "KVM: injection failed, interrupt lost (%s)\n",
1668
                            strerror(-ret));
1669
                }
1670
            }
1671
        }
1672

    
1673
        /* If we have an interrupt but the guest is not ready to receive an
1674
         * interrupt, request an interrupt window exit.  This will
1675
         * cause a return to userspace as soon as the guest is ready to
1676
         * receive interrupts. */
1677
        if ((env->interrupt_request & CPU_INTERRUPT_HARD)) {
1678
            run->request_interrupt_window = 1;
1679
        } else {
1680
            run->request_interrupt_window = 0;
1681
        }
1682

    
1683
        DPRINTF("setting tpr\n");
1684
        run->cr8 = cpu_get_apic_tpr(env->apic_state);
1685
    }
1686
}
1687

    
1688
void kvm_arch_post_run(CPUState *env, struct kvm_run *run)
1689
{
1690
    if (run->if_flag) {
1691
        env->eflags |= IF_MASK;
1692
    } else {
1693
        env->eflags &= ~IF_MASK;
1694
    }
1695
    cpu_set_apic_tpr(env->apic_state, run->cr8);
1696
    cpu_set_apic_base(env->apic_state, run->apic_base);
1697
}
1698

    
1699
int kvm_arch_process_async_events(CPUState *env)
1700
{
1701
    if (env->interrupt_request & CPU_INTERRUPT_MCE) {
1702
        /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
1703
        assert(env->mcg_cap);
1704

    
1705
        env->interrupt_request &= ~CPU_INTERRUPT_MCE;
1706

    
1707
        kvm_cpu_synchronize_state(env);
1708

    
1709
        if (env->exception_injected == EXCP08_DBLE) {
1710
            /* this means triple fault */
1711
            qemu_system_reset_request();
1712
            env->exit_request = 1;
1713
            return 0;
1714
        }
1715
        env->exception_injected = EXCP12_MCHK;
1716
        env->has_error_code = 0;
1717

    
1718
        env->halted = 0;
1719
        if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
1720
            env->mp_state = KVM_MP_STATE_RUNNABLE;
1721
        }
1722
    }
1723

    
1724
    if (kvm_irqchip_in_kernel()) {
1725
        return 0;
1726
    }
1727

    
1728
    if (((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1729
         (env->eflags & IF_MASK)) ||
1730
        (env->interrupt_request & CPU_INTERRUPT_NMI)) {
1731
        env->halted = 0;
1732
    }
1733
    if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1734
        kvm_cpu_synchronize_state(env);
1735
        do_cpu_init(env);
1736
    }
1737
    if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1738
        kvm_cpu_synchronize_state(env);
1739
        do_cpu_sipi(env);
1740
    }
1741
    if (env->interrupt_request & CPU_INTERRUPT_TPR) {
1742
        env->interrupt_request &= ~CPU_INTERRUPT_TPR;
1743
        kvm_cpu_synchronize_state(env);
1744
        apic_handle_tpr_access_report(env->apic_state, env->eip,
1745
                                      env->tpr_access_type);
1746
    }
1747

    
1748
    return env->halted;
1749
}
1750

    
1751
static int kvm_handle_halt(CPUState *env)
1752
{
1753
    if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1754
          (env->eflags & IF_MASK)) &&
1755
        !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1756
        env->halted = 1;
1757
        return EXCP_HLT;
1758
    }
1759

    
1760
    return 0;
1761
}
1762

    
1763
static int kvm_handle_tpr_access(CPUState *env)
1764
{
1765
    struct kvm_run *run = env->kvm_run;
1766

    
1767
    apic_handle_tpr_access_report(env->apic_state, run->tpr_access.rip,
1768
                                  run->tpr_access.is_write ? TPR_ACCESS_WRITE
1769
                                                           : TPR_ACCESS_READ);
1770
    return 1;
1771
}
1772

    
1773
int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1774
{
1775
    static const uint8_t int3 = 0xcc;
1776

    
1777
    if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
1778
        cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1)) {
1779
        return -EINVAL;
1780
    }
1781
    return 0;
1782
}
1783

    
1784
int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1785
{
1786
    uint8_t int3;
1787

    
1788
    if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
1789
        cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
1790
        return -EINVAL;
1791
    }
1792
    return 0;
1793
}
1794

    
1795
static struct {
1796
    target_ulong addr;
1797
    int len;
1798
    int type;
1799
} hw_breakpoint[4];
1800

    
1801
static int nb_hw_breakpoint;
1802

    
1803
static int find_hw_breakpoint(target_ulong addr, int len, int type)
1804
{
1805
    int n;
1806

    
1807
    for (n = 0; n < nb_hw_breakpoint; n++) {
1808
        if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1809
            (hw_breakpoint[n].len == len || len == -1)) {
1810
            return n;
1811
        }
1812
    }
1813
    return -1;
1814
}
1815

    
1816
int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1817
                                  target_ulong len, int type)
1818
{
1819
    switch (type) {
1820
    case GDB_BREAKPOINT_HW:
1821
        len = 1;
1822
        break;
1823
    case GDB_WATCHPOINT_WRITE:
1824
    case GDB_WATCHPOINT_ACCESS:
1825
        switch (len) {
1826
        case 1:
1827
            break;
1828
        case 2:
1829
        case 4:
1830
        case 8:
1831
            if (addr & (len - 1)) {
1832
                return -EINVAL;
1833
            }
1834
            break;
1835
        default:
1836
            return -EINVAL;
1837
        }
1838
        break;
1839
    default:
1840
        return -ENOSYS;
1841
    }
1842

    
1843
    if (nb_hw_breakpoint == 4) {
1844
        return -ENOBUFS;
1845
    }
1846
    if (find_hw_breakpoint(addr, len, type) >= 0) {
1847
        return -EEXIST;
1848
    }
1849
    hw_breakpoint[nb_hw_breakpoint].addr = addr;
1850
    hw_breakpoint[nb_hw_breakpoint].len = len;
1851
    hw_breakpoint[nb_hw_breakpoint].type = type;
1852
    nb_hw_breakpoint++;
1853

    
1854
    return 0;
1855
}
1856

    
1857
int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1858
                                  target_ulong len, int type)
1859
{
1860
    int n;
1861

    
1862
    n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
1863
    if (n < 0) {
1864
        return -ENOENT;
1865
    }
1866
    nb_hw_breakpoint--;
1867
    hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1868

    
1869
    return 0;
1870
}
1871

    
1872
void kvm_arch_remove_all_hw_breakpoints(void)
1873
{
1874
    nb_hw_breakpoint = 0;
1875
}
1876

    
1877
static CPUWatchpoint hw_watchpoint;
1878

    
1879
static int kvm_handle_debug(struct kvm_debug_exit_arch *arch_info)
1880
{
1881
    int ret = 0;
1882
    int n;
1883

    
1884
    if (arch_info->exception == 1) {
1885
        if (arch_info->dr6 & (1 << 14)) {
1886
            if (cpu_single_env->singlestep_enabled) {
1887
                ret = EXCP_DEBUG;
1888
            }
1889
        } else {
1890
            for (n = 0; n < 4; n++) {
1891
                if (arch_info->dr6 & (1 << n)) {
1892
                    switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1893
                    case 0x0:
1894
                        ret = EXCP_DEBUG;
1895
                        break;
1896
                    case 0x1:
1897
                        ret = EXCP_DEBUG;
1898
                        cpu_single_env->watchpoint_hit = &hw_watchpoint;
1899
                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1900
                        hw_watchpoint.flags = BP_MEM_WRITE;
1901
                        break;
1902
                    case 0x3:
1903
                        ret = EXCP_DEBUG;
1904
                        cpu_single_env->watchpoint_hit = &hw_watchpoint;
1905
                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1906
                        hw_watchpoint.flags = BP_MEM_ACCESS;
1907
                        break;
1908
                    }
1909
                }
1910
            }
1911
        }
1912
    } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc)) {
1913
        ret = EXCP_DEBUG;
1914
    }
1915
    if (ret == 0) {
1916
        cpu_synchronize_state(cpu_single_env);
1917
        assert(cpu_single_env->exception_injected == -1);
1918

    
1919
        /* pass to guest */
1920
        cpu_single_env->exception_injected = arch_info->exception;
1921
        cpu_single_env->has_error_code = 0;
1922
    }
1923

    
1924
    return ret;
1925
}
1926

    
1927
void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
1928
{
1929
    const uint8_t type_code[] = {
1930
        [GDB_BREAKPOINT_HW] = 0x0,
1931
        [GDB_WATCHPOINT_WRITE] = 0x1,
1932
        [GDB_WATCHPOINT_ACCESS] = 0x3
1933
    };
1934
    const uint8_t len_code[] = {
1935
        [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1936
    };
1937
    int n;
1938

    
1939
    if (kvm_sw_breakpoints_active(env)) {
1940
        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1941
    }
1942
    if (nb_hw_breakpoint > 0) {
1943
        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1944
        dbg->arch.debugreg[7] = 0x0600;
1945
        for (n = 0; n < nb_hw_breakpoint; n++) {
1946
            dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
1947
            dbg->arch.debugreg[7] |= (2 << (n * 2)) |
1948
                (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
1949
                ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
1950
        }
1951
    }
1952
}
1953

    
1954
static bool host_supports_vmx(void)
1955
{
1956
    uint32_t ecx, unused;
1957

    
1958
    host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
1959
    return ecx & CPUID_EXT_VMX;
1960
}
1961

    
1962
#define VMX_INVALID_GUEST_STATE 0x80000021
1963

    
1964
int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
1965
{
1966
    uint64_t code;
1967
    int ret;
1968

    
1969
    switch (run->exit_reason) {
1970
    case KVM_EXIT_HLT:
1971
        DPRINTF("handle_hlt\n");
1972
        ret = kvm_handle_halt(env);
1973
        break;
1974
    case KVM_EXIT_SET_TPR:
1975
        ret = 0;
1976
        break;
1977
    case KVM_EXIT_TPR_ACCESS:
1978
        ret = kvm_handle_tpr_access(env);
1979
        break;
1980
    case KVM_EXIT_FAIL_ENTRY:
1981
        code = run->fail_entry.hardware_entry_failure_reason;
1982
        fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
1983
                code);
1984
        if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
1985
            fprintf(stderr,
1986
                    "\nIf you're running a guest on an Intel machine without "
1987
                        "unrestricted mode\n"
1988
                    "support, the failure can be most likely due to the guest "
1989
                        "entering an invalid\n"
1990
                    "state for Intel VT. For example, the guest maybe running "
1991
                        "in big real mode\n"
1992
                    "which is not supported on less recent Intel processors."
1993
                        "\n\n");
1994
        }
1995
        ret = -1;
1996
        break;
1997
    case KVM_EXIT_EXCEPTION:
1998
        fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
1999
                run->ex.exception, run->ex.error_code);
2000
        ret = -1;
2001
        break;
2002
    case KVM_EXIT_DEBUG:
2003
        DPRINTF("kvm_exit_debug\n");
2004
        ret = kvm_handle_debug(&run->debug.arch);
2005
        break;
2006
    default:
2007
        fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
2008
        ret = -1;
2009
        break;
2010
    }
2011

    
2012
    return ret;
2013
}
2014

    
2015
bool kvm_arch_stop_on_emulation_error(CPUState *env)
2016
{
2017
    kvm_cpu_synchronize_state(env);
2018
    return !(env->cr[0] & CR0_PE_MASK) ||
2019
           ((env->segs[R_CS].selector  & 3) != 3);
2020
}
2021

    
2022
void kvm_arch_init_irq_routing(KVMState *s)
2023
{
2024
    if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
2025
        /* If kernel can't do irq routing, interrupt source
2026
         * override 0->2 cannot be set up as required by HPET.
2027
         * So we have to disable it.
2028
         */
2029
        no_hpet = 1;
2030
    }
2031
}