Statistics
| Branch: | Revision:

root / target-microblaze / op_helper.c @ 7e680753

History | View | Annotate | Download (12.9 kB)

1
/*
2
 *  Microblaze helper routines.
3
 *
4
 *  Copyright (c) 2009 Edgar E. Iglesias <edgar.iglesias@gmail.com>.
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18
 */
19

    
20
#include <assert.h>
21
#include "cpu.h"
22
#include "dyngen-exec.h"
23
#include "helper.h"
24
#include "host-utils.h"
25

    
26
#define D(x)
27

    
28
#if !defined(CONFIG_USER_ONLY)
29
#include "softmmu_exec.h"
30

    
31
#define MMUSUFFIX _mmu
32
#define SHIFT 0
33
#include "softmmu_template.h"
34
#define SHIFT 1
35
#include "softmmu_template.h"
36
#define SHIFT 2
37
#include "softmmu_template.h"
38
#define SHIFT 3
39
#include "softmmu_template.h"
40

    
41
/* Try to fill the TLB and return an exception if error. If retaddr is
42
   NULL, it means that the function was called in C code (i.e. not
43
   from generated code or from helper.c) */
44
/* XXX: fix it to restore all registers */
45
void tlb_fill(CPUState *env1, target_ulong addr, int is_write, int mmu_idx,
46
              void *retaddr)
47
{
48
    TranslationBlock *tb;
49
    CPUState *saved_env;
50
    unsigned long pc;
51
    int ret;
52

    
53
    saved_env = env;
54
    env = env1;
55

    
56
    ret = cpu_mb_handle_mmu_fault(env, addr, is_write, mmu_idx);
57
    if (unlikely(ret)) {
58
        if (retaddr) {
59
            /* now we have a real cpu fault */
60
            pc = (unsigned long)retaddr;
61
            tb = tb_find_pc(pc);
62
            if (tb) {
63
                /* the PC is inside the translated code. It means that we have
64
                   a virtual CPU fault */
65
                cpu_restore_state(tb, env, pc);
66
            }
67
        }
68
        cpu_loop_exit(env);
69
    }
70
    env = saved_env;
71
}
72
#endif
73

    
74
void helper_put(uint32_t id, uint32_t ctrl, uint32_t data)
75
{
76
    int test = ctrl & STREAM_TEST;
77
    int atomic = ctrl & STREAM_ATOMIC;
78
    int control = ctrl & STREAM_CONTROL;
79
    int nonblock = ctrl & STREAM_NONBLOCK;
80
    int exception = ctrl & STREAM_EXCEPTION;
81

    
82
    qemu_log("Unhandled stream put to stream-id=%d data=%x %s%s%s%s%s\n",
83
             id, data,
84
             test ? "t" : "",
85
             nonblock ? "n" : "",
86
             exception ? "e" : "",
87
             control ? "c" : "",
88
             atomic ? "a" : "");
89
}
90

    
91
uint32_t helper_get(uint32_t id, uint32_t ctrl)
92
{
93
    int test = ctrl & STREAM_TEST;
94
    int atomic = ctrl & STREAM_ATOMIC;
95
    int control = ctrl & STREAM_CONTROL;
96
    int nonblock = ctrl & STREAM_NONBLOCK;
97
    int exception = ctrl & STREAM_EXCEPTION;
98

    
99
    qemu_log("Unhandled stream get from stream-id=%d %s%s%s%s%s\n",
100
             id,
101
             test ? "t" : "",
102
             nonblock ? "n" : "",
103
             exception ? "e" : "",
104
             control ? "c" : "",
105
             atomic ? "a" : "");
106
    return 0xdead0000 | id;
107
}
108

    
109
void helper_raise_exception(uint32_t index)
110
{
111
    env->exception_index = index;
112
    cpu_loop_exit(env);
113
}
114

    
115
void helper_debug(void)
116
{
117
    int i;
118

    
119
    qemu_log("PC=%8.8x\n", env->sregs[SR_PC]);
120
    qemu_log("rmsr=%x resr=%x rear=%x debug[%x] imm=%x iflags=%x\n",
121
             env->sregs[SR_MSR], env->sregs[SR_ESR], env->sregs[SR_EAR],
122
             env->debug, env->imm, env->iflags);
123
    qemu_log("btaken=%d btarget=%x mode=%s(saved=%s) eip=%d ie=%d\n",
124
             env->btaken, env->btarget,
125
             (env->sregs[SR_MSR] & MSR_UM) ? "user" : "kernel",
126
             (env->sregs[SR_MSR] & MSR_UMS) ? "user" : "kernel",
127
             (env->sregs[SR_MSR] & MSR_EIP),
128
             (env->sregs[SR_MSR] & MSR_IE));
129
    for (i = 0; i < 32; i++) {
130
        qemu_log("r%2.2d=%8.8x ", i, env->regs[i]);
131
        if ((i + 1) % 4 == 0)
132
            qemu_log("\n");
133
    }
134
    qemu_log("\n\n");
135
}
136

    
137
static inline uint32_t compute_carry(uint32_t a, uint32_t b, uint32_t cin)
138
{
139
    uint32_t cout = 0;
140

    
141
    if ((b == ~0) && cin)
142
        cout = 1;
143
    else if ((~0 - a) < (b + cin))
144
        cout = 1;
145
    return cout;
146
}
147

    
148
uint32_t helper_cmp(uint32_t a, uint32_t b)
149
{
150
    uint32_t t;
151

    
152
    t = b + ~a + 1;
153
    if ((b & 0x80000000) ^ (a & 0x80000000))
154
        t = (t & 0x7fffffff) | (b & 0x80000000);
155
    return t;
156
}
157

    
158
uint32_t helper_cmpu(uint32_t a, uint32_t b)
159
{
160
    uint32_t t;
161

    
162
    t = b + ~a + 1;
163
    if ((b & 0x80000000) ^ (a & 0x80000000))
164
        t = (t & 0x7fffffff) | (a & 0x80000000);
165
    return t;
166
}
167

    
168
uint32_t helper_clz(uint32_t t0)
169
{
170
    return clz32(t0);
171
}
172

    
173
uint32_t helper_carry(uint32_t a, uint32_t b, uint32_t cf)
174
{
175
    uint32_t ncf;
176
    ncf = compute_carry(a, b, cf);
177
    return ncf;
178
}
179

    
180
static inline int div_prepare(uint32_t a, uint32_t b)
181
{
182
    if (b == 0) {
183
        env->sregs[SR_MSR] |= MSR_DZ;
184

    
185
        if ((env->sregs[SR_MSR] & MSR_EE)
186
            && !(env->pvr.regs[2] & PVR2_DIV_ZERO_EXC_MASK)) {
187
            env->sregs[SR_ESR] = ESR_EC_DIVZERO;
188
            helper_raise_exception(EXCP_HW_EXCP);
189
        }
190
        return 0;
191
    }
192
    env->sregs[SR_MSR] &= ~MSR_DZ;
193
    return 1;
194
}
195

    
196
uint32_t helper_divs(uint32_t a, uint32_t b)
197
{
198
    if (!div_prepare(a, b))
199
        return 0;
200
    return (int32_t)a / (int32_t)b;
201
}
202

    
203
uint32_t helper_divu(uint32_t a, uint32_t b)
204
{
205
    if (!div_prepare(a, b))
206
        return 0;
207
    return a / b;
208
}
209

    
210
/* raise FPU exception.  */
211
static void raise_fpu_exception(void)
212
{
213
    env->sregs[SR_ESR] = ESR_EC_FPU;
214
    helper_raise_exception(EXCP_HW_EXCP);
215
}
216

    
217
static void update_fpu_flags(int flags)
218
{
219
    int raise = 0;
220

    
221
    if (flags & float_flag_invalid) {
222
        env->sregs[SR_FSR] |= FSR_IO;
223
        raise = 1;
224
    }
225
    if (flags & float_flag_divbyzero) {
226
        env->sregs[SR_FSR] |= FSR_DZ;
227
        raise = 1;
228
    }
229
    if (flags & float_flag_overflow) {
230
        env->sregs[SR_FSR] |= FSR_OF;
231
        raise = 1;
232
    }
233
    if (flags & float_flag_underflow) {
234
        env->sregs[SR_FSR] |= FSR_UF;
235
        raise = 1;
236
    }
237
    if (raise
238
        && (env->pvr.regs[2] & PVR2_FPU_EXC_MASK)
239
        && (env->sregs[SR_MSR] & MSR_EE)) {
240
        raise_fpu_exception();
241
    }
242
}
243

    
244
uint32_t helper_fadd(uint32_t a, uint32_t b)
245
{
246
    CPU_FloatU fd, fa, fb;
247
    int flags;
248

    
249
    set_float_exception_flags(0, &env->fp_status);
250
    fa.l = a;
251
    fb.l = b;
252
    fd.f = float32_add(fa.f, fb.f, &env->fp_status);
253

    
254
    flags = get_float_exception_flags(&env->fp_status);
255
    update_fpu_flags(flags);
256
    return fd.l;
257
}
258

    
259
uint32_t helper_frsub(uint32_t a, uint32_t b)
260
{
261
    CPU_FloatU fd, fa, fb;
262
    int flags;
263

    
264
    set_float_exception_flags(0, &env->fp_status);
265
    fa.l = a;
266
    fb.l = b;
267
    fd.f = float32_sub(fb.f, fa.f, &env->fp_status);
268
    flags = get_float_exception_flags(&env->fp_status);
269
    update_fpu_flags(flags);
270
    return fd.l;
271
}
272

    
273
uint32_t helper_fmul(uint32_t a, uint32_t b)
274
{
275
    CPU_FloatU fd, fa, fb;
276
    int flags;
277

    
278
    set_float_exception_flags(0, &env->fp_status);
279
    fa.l = a;
280
    fb.l = b;
281
    fd.f = float32_mul(fa.f, fb.f, &env->fp_status);
282
    flags = get_float_exception_flags(&env->fp_status);
283
    update_fpu_flags(flags);
284

    
285
    return fd.l;
286
}
287

    
288
uint32_t helper_fdiv(uint32_t a, uint32_t b)
289
{
290
    CPU_FloatU fd, fa, fb;
291
    int flags;
292

    
293
    set_float_exception_flags(0, &env->fp_status);
294
    fa.l = a;
295
    fb.l = b;
296
    fd.f = float32_div(fb.f, fa.f, &env->fp_status);
297
    flags = get_float_exception_flags(&env->fp_status);
298
    update_fpu_flags(flags);
299

    
300
    return fd.l;
301
}
302

    
303
uint32_t helper_fcmp_un(uint32_t a, uint32_t b)
304
{
305
    CPU_FloatU fa, fb;
306
    uint32_t r = 0;
307

    
308
    fa.l = a;
309
    fb.l = b;
310

    
311
    if (float32_is_signaling_nan(fa.f) || float32_is_signaling_nan(fb.f)) {
312
        update_fpu_flags(float_flag_invalid);
313
        r = 1;
314
    }
315

    
316
    if (float32_is_quiet_nan(fa.f) || float32_is_quiet_nan(fb.f)) {
317
        r = 1;
318
    }
319

    
320
    return r;
321
}
322

    
323
uint32_t helper_fcmp_lt(uint32_t a, uint32_t b)
324
{
325
    CPU_FloatU fa, fb;
326
    int r;
327
    int flags;
328

    
329
    set_float_exception_flags(0, &env->fp_status);
330
    fa.l = a;
331
    fb.l = b;
332
    r = float32_lt(fb.f, fa.f, &env->fp_status);
333
    flags = get_float_exception_flags(&env->fp_status);
334
    update_fpu_flags(flags & float_flag_invalid);
335

    
336
    return r;
337
}
338

    
339
uint32_t helper_fcmp_eq(uint32_t a, uint32_t b)
340
{
341
    CPU_FloatU fa, fb;
342
    int flags;
343
    int r;
344

    
345
    set_float_exception_flags(0, &env->fp_status);
346
    fa.l = a;
347
    fb.l = b;
348
    r = float32_eq_quiet(fa.f, fb.f, &env->fp_status);
349
    flags = get_float_exception_flags(&env->fp_status);
350
    update_fpu_flags(flags & float_flag_invalid);
351

    
352
    return r;
353
}
354

    
355
uint32_t helper_fcmp_le(uint32_t a, uint32_t b)
356
{
357
    CPU_FloatU fa, fb;
358
    int flags;
359
    int r;
360

    
361
    fa.l = a;
362
    fb.l = b;
363
    set_float_exception_flags(0, &env->fp_status);
364
    r = float32_le(fa.f, fb.f, &env->fp_status);
365
    flags = get_float_exception_flags(&env->fp_status);
366
    update_fpu_flags(flags & float_flag_invalid);
367

    
368

    
369
    return r;
370
}
371

    
372
uint32_t helper_fcmp_gt(uint32_t a, uint32_t b)
373
{
374
    CPU_FloatU fa, fb;
375
    int flags, r;
376

    
377
    fa.l = a;
378
    fb.l = b;
379
    set_float_exception_flags(0, &env->fp_status);
380
    r = float32_lt(fa.f, fb.f, &env->fp_status);
381
    flags = get_float_exception_flags(&env->fp_status);
382
    update_fpu_flags(flags & float_flag_invalid);
383
    return r;
384
}
385

    
386
uint32_t helper_fcmp_ne(uint32_t a, uint32_t b)
387
{
388
    CPU_FloatU fa, fb;
389
    int flags, r;
390

    
391
    fa.l = a;
392
    fb.l = b;
393
    set_float_exception_flags(0, &env->fp_status);
394
    r = !float32_eq_quiet(fa.f, fb.f, &env->fp_status);
395
    flags = get_float_exception_flags(&env->fp_status);
396
    update_fpu_flags(flags & float_flag_invalid);
397

    
398
    return r;
399
}
400

    
401
uint32_t helper_fcmp_ge(uint32_t a, uint32_t b)
402
{
403
    CPU_FloatU fa, fb;
404
    int flags, r;
405

    
406
    fa.l = a;
407
    fb.l = b;
408
    set_float_exception_flags(0, &env->fp_status);
409
    r = !float32_lt(fa.f, fb.f, &env->fp_status);
410
    flags = get_float_exception_flags(&env->fp_status);
411
    update_fpu_flags(flags & float_flag_invalid);
412

    
413
    return r;
414
}
415

    
416
uint32_t helper_flt(uint32_t a)
417
{
418
    CPU_FloatU fd, fa;
419

    
420
    fa.l = a;
421
    fd.f = int32_to_float32(fa.l, &env->fp_status);
422
    return fd.l;
423
}
424

    
425
uint32_t helper_fint(uint32_t a)
426
{
427
    CPU_FloatU fa;
428
    uint32_t r;
429
    int flags;
430

    
431
    set_float_exception_flags(0, &env->fp_status);
432
    fa.l = a;
433
    r = float32_to_int32(fa.f, &env->fp_status);
434
    flags = get_float_exception_flags(&env->fp_status);
435
    update_fpu_flags(flags);
436

    
437
    return r;
438
}
439

    
440
uint32_t helper_fsqrt(uint32_t a)
441
{
442
    CPU_FloatU fd, fa;
443
    int flags;
444

    
445
    set_float_exception_flags(0, &env->fp_status);
446
    fa.l = a;
447
    fd.l = float32_sqrt(fa.f, &env->fp_status);
448
    flags = get_float_exception_flags(&env->fp_status);
449
    update_fpu_flags(flags);
450

    
451
    return fd.l;
452
}
453

    
454
uint32_t helper_pcmpbf(uint32_t a, uint32_t b)
455
{
456
    unsigned int i;
457
    uint32_t mask = 0xff000000;
458

    
459
    for (i = 0; i < 4; i++) {
460
        if ((a & mask) == (b & mask))
461
            return i + 1;
462
        mask >>= 8;
463
    }
464
    return 0;
465
}
466

    
467
void helper_memalign(uint32_t addr, uint32_t dr, uint32_t wr, uint32_t mask)
468
{
469
    if (addr & mask) {
470
            qemu_log_mask(CPU_LOG_INT,
471
                          "unaligned access addr=%x mask=%x, wr=%d dr=r%d\n",
472
                          addr, mask, wr, dr);
473
            env->sregs[SR_EAR] = addr;
474
            env->sregs[SR_ESR] = ESR_EC_UNALIGNED_DATA | (wr << 10) \
475
                                 | (dr & 31) << 5;
476
            if (mask == 3) {
477
                env->sregs[SR_ESR] |= 1 << 11;
478
            }
479
            if (!(env->sregs[SR_MSR] & MSR_EE)) {
480
                return;
481
            }
482
            helper_raise_exception(EXCP_HW_EXCP);
483
    }
484
}
485

    
486
void helper_stackprot(uint32_t addr)
487
{
488
    if (addr < env->slr || addr > env->shr) {
489
            qemu_log("Stack protector violation at %x %x %x\n",
490
                     addr, env->slr, env->shr);
491
            env->sregs[SR_EAR] = addr;
492
            env->sregs[SR_ESR] = ESR_EC_STACKPROT;
493
            helper_raise_exception(EXCP_HW_EXCP);
494
    }
495
}
496

    
497
#if !defined(CONFIG_USER_ONLY)
498
/* Writes/reads to the MMU's special regs end up here.  */
499
uint32_t helper_mmu_read(uint32_t rn)
500
{
501
    return mmu_read(env, rn);
502
}
503

    
504
void helper_mmu_write(uint32_t rn, uint32_t v)
505
{
506
    mmu_write(env, rn, v);
507
}
508

    
509
void cpu_unassigned_access(CPUState *env1, target_phys_addr_t addr,
510
                           int is_write, int is_exec, int is_asi, int size)
511
{
512
    CPUState *saved_env;
513

    
514
    saved_env = env;
515
    env = env1;
516

    
517
    qemu_log_mask(CPU_LOG_INT, "Unassigned " TARGET_FMT_plx " wr=%d exe=%d\n",
518
             addr, is_write, is_exec);
519
    if (!(env->sregs[SR_MSR] & MSR_EE)) {
520
        env = saved_env;
521
        return;
522
    }
523

    
524
    env->sregs[SR_EAR] = addr;
525
    if (is_exec) {
526
        if ((env->pvr.regs[2] & PVR2_IOPB_BUS_EXC_MASK)) {
527
            env->sregs[SR_ESR] = ESR_EC_INSN_BUS;
528
            helper_raise_exception(EXCP_HW_EXCP);
529
        }
530
    } else {
531
        if ((env->pvr.regs[2] & PVR2_DOPB_BUS_EXC_MASK)) {
532
            env->sregs[SR_ESR] = ESR_EC_DATA_BUS;
533
            helper_raise_exception(EXCP_HW_EXCP);
534
        }
535
    }
536
    env = saved_env;
537
}
538
#endif