Statistics
| Branch: | Revision:

root / hw / spapr.c @ 7f763a5d

History | View | Annotate | Download (29.1 kB)

1
/*
2
 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3
 *
4
 * Copyright (c) 2004-2007 Fabrice Bellard
5
 * Copyright (c) 2007 Jocelyn Mayer
6
 * Copyright (c) 2010 David Gibson, IBM Corporation.
7
 *
8
 * Permission is hereby granted, free of charge, to any person obtaining a copy
9
 * of this software and associated documentation files (the "Software"), to deal
10
 * in the Software without restriction, including without limitation the rights
11
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12
 * copies of the Software, and to permit persons to whom the Software is
13
 * furnished to do so, subject to the following conditions:
14
 *
15
 * The above copyright notice and this permission notice shall be included in
16
 * all copies or substantial portions of the Software.
17
 *
18
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24
 * THE SOFTWARE.
25
 *
26
 */
27
#include "sysemu.h"
28
#include "hw.h"
29
#include "elf.h"
30
#include "net.h"
31
#include "blockdev.h"
32
#include "cpus.h"
33
#include "kvm.h"
34
#include "kvm_ppc.h"
35

    
36
#include "hw/boards.h"
37
#include "hw/ppc.h"
38
#include "hw/loader.h"
39

    
40
#include "hw/spapr.h"
41
#include "hw/spapr_vio.h"
42
#include "hw/spapr_pci.h"
43
#include "hw/xics.h"
44
#include "hw/msi.h"
45

    
46
#include "kvm.h"
47
#include "kvm_ppc.h"
48
#include "pci.h"
49
#include "vga-pci.h"
50

    
51
#include "exec-memory.h"
52
#include "hw/usb.h"
53

    
54
#include <libfdt.h>
55

    
56
/* SLOF memory layout:
57
 *
58
 * SLOF raw image loaded at 0, copies its romfs right below the flat
59
 * device-tree, then position SLOF itself 31M below that
60
 *
61
 * So we set FW_OVERHEAD to 40MB which should account for all of that
62
 * and more
63
 *
64
 * We load our kernel at 4M, leaving space for SLOF initial image
65
 */
66
#define FDT_MAX_SIZE            0x10000
67
#define RTAS_MAX_SIZE           0x10000
68
#define FW_MAX_SIZE             0x400000
69
#define FW_FILE_NAME            "slof.bin"
70
#define FW_OVERHEAD             0x2800000
71
#define KERNEL_LOAD_ADDR        FW_MAX_SIZE
72

    
73
#define MIN_RMA_SLOF            128UL
74

    
75
#define TIMEBASE_FREQ           512000000ULL
76

    
77
#define MAX_CPUS                256
78
#define XICS_IRQS               1024
79

    
80
#define SPAPR_PCI_BUID          0x800000020000001ULL
81
#define SPAPR_PCI_MEM_WIN_ADDR  (0x10000000000ULL + 0xA0000000)
82
#define SPAPR_PCI_MEM_WIN_SIZE  0x20000000
83
#define SPAPR_PCI_IO_WIN_ADDR   (0x10000000000ULL + 0x80000000)
84
#define SPAPR_PCI_MSI_WIN_ADDR  (0x10000000000ULL + 0x90000000)
85

    
86
#define PHANDLE_XICP            0x00001111
87

    
88
#define HTAB_SIZE(spapr)        (1ULL << ((spapr)->htab_shift))
89

    
90
sPAPREnvironment *spapr;
91

    
92
int spapr_allocate_irq(int hint, enum xics_irq_type type)
93
{
94
    int irq;
95

    
96
    if (hint) {
97
        irq = hint;
98
        /* FIXME: we should probably check for collisions somehow */
99
    } else {
100
        irq = spapr->next_irq++;
101
    }
102

    
103
    /* Configure irq type */
104
    if (!xics_get_qirq(spapr->icp, irq)) {
105
        return 0;
106
    }
107

    
108
    xics_set_irq_type(spapr->icp, irq, type);
109

    
110
    return irq;
111
}
112

    
113
/* Allocate block of consequtive IRQs, returns a number of the first */
114
int spapr_allocate_irq_block(int num, enum xics_irq_type type)
115
{
116
    int first = -1;
117
    int i;
118

    
119
    for (i = 0; i < num; ++i) {
120
        int irq;
121

    
122
        irq = spapr_allocate_irq(0, type);
123
        if (!irq) {
124
            return -1;
125
        }
126

    
127
        if (0 == i) {
128
            first = irq;
129
        }
130

    
131
        /* If the above doesn't create a consecutive block then that's
132
         * an internal bug */
133
        assert(irq == (first + i));
134
    }
135

    
136
    return first;
137
}
138

    
139
static int spapr_fixup_cpu_dt(void *fdt, sPAPREnvironment *spapr)
140
{
141
    int ret = 0, offset;
142
    CPUPPCState *env;
143
    char cpu_model[32];
144
    int smt = kvmppc_smt_threads();
145
    uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
146

    
147
    assert(spapr->cpu_model);
148

    
149
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
150
        uint32_t associativity[] = {cpu_to_be32(0x5),
151
                                    cpu_to_be32(0x0),
152
                                    cpu_to_be32(0x0),
153
                                    cpu_to_be32(0x0),
154
                                    cpu_to_be32(env->numa_node),
155
                                    cpu_to_be32(env->cpu_index)};
156

    
157
        if ((env->cpu_index % smt) != 0) {
158
            continue;
159
        }
160

    
161
        snprintf(cpu_model, 32, "/cpus/%s@%x", spapr->cpu_model,
162
                 env->cpu_index);
163

    
164
        offset = fdt_path_offset(fdt, cpu_model);
165
        if (offset < 0) {
166
            return offset;
167
        }
168

    
169
        if (nb_numa_nodes > 1) {
170
            ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
171
                              sizeof(associativity));
172
            if (ret < 0) {
173
                return ret;
174
            }
175
        }
176

    
177
        ret = fdt_setprop(fdt, offset, "ibm,pft-size",
178
                          pft_size_prop, sizeof(pft_size_prop));
179
        if (ret < 0) {
180
            return ret;
181
        }
182
    }
183
    return ret;
184
}
185

    
186

    
187
static size_t create_page_sizes_prop(CPUPPCState *env, uint32_t *prop,
188
                                     size_t maxsize)
189
{
190
    size_t maxcells = maxsize / sizeof(uint32_t);
191
    int i, j, count;
192
    uint32_t *p = prop;
193

    
194
    for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
195
        struct ppc_one_seg_page_size *sps = &env->sps.sps[i];
196

    
197
        if (!sps->page_shift) {
198
            break;
199
        }
200
        for (count = 0; count < PPC_PAGE_SIZES_MAX_SZ; count++) {
201
            if (sps->enc[count].page_shift == 0) {
202
                break;
203
            }
204
        }
205
        if ((p - prop) >= (maxcells - 3 - count * 2)) {
206
            break;
207
        }
208
        *(p++) = cpu_to_be32(sps->page_shift);
209
        *(p++) = cpu_to_be32(sps->slb_enc);
210
        *(p++) = cpu_to_be32(count);
211
        for (j = 0; j < count; j++) {
212
            *(p++) = cpu_to_be32(sps->enc[j].page_shift);
213
            *(p++) = cpu_to_be32(sps->enc[j].pte_enc);
214
        }
215
    }
216

    
217
    return (p - prop) * sizeof(uint32_t);
218
}
219

    
220
#define _FDT(exp) \
221
    do { \
222
        int ret = (exp);                                           \
223
        if (ret < 0) {                                             \
224
            fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \
225
                    #exp, fdt_strerror(ret));                      \
226
            exit(1);                                               \
227
        }                                                          \
228
    } while (0)
229

    
230

    
231
static void *spapr_create_fdt_skel(const char *cpu_model,
232
                                   target_phys_addr_t initrd_base,
233
                                   target_phys_addr_t initrd_size,
234
                                   target_phys_addr_t kernel_size,
235
                                   const char *boot_device,
236
                                   const char *kernel_cmdline)
237
{
238
    void *fdt;
239
    CPUPPCState *env;
240
    uint32_t start_prop = cpu_to_be32(initrd_base);
241
    uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size);
242
    char hypertas_prop[] = "hcall-pft\0hcall-term\0hcall-dabr\0hcall-interrupt"
243
        "\0hcall-tce\0hcall-vio\0hcall-splpar\0hcall-bulk";
244
    char qemu_hypertas_prop[] = "hcall-memop1";
245
    uint32_t refpoints[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)};
246
    uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(smp_cpus)};
247
    char *modelname;
248
    int i, smt = kvmppc_smt_threads();
249
    unsigned char vec5[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80};
250

    
251
    fdt = g_malloc0(FDT_MAX_SIZE);
252
    _FDT((fdt_create(fdt, FDT_MAX_SIZE)));
253

    
254
    if (kernel_size) {
255
        _FDT((fdt_add_reservemap_entry(fdt, KERNEL_LOAD_ADDR, kernel_size)));
256
    }
257
    if (initrd_size) {
258
        _FDT((fdt_add_reservemap_entry(fdt, initrd_base, initrd_size)));
259
    }
260
    _FDT((fdt_finish_reservemap(fdt)));
261

    
262
    /* Root node */
263
    _FDT((fdt_begin_node(fdt, "")));
264
    _FDT((fdt_property_string(fdt, "device_type", "chrp")));
265
    _FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)")));
266

    
267
    _FDT((fdt_property_cell(fdt, "#address-cells", 0x2)));
268
    _FDT((fdt_property_cell(fdt, "#size-cells", 0x2)));
269

    
270
    /* /chosen */
271
    _FDT((fdt_begin_node(fdt, "chosen")));
272

    
273
    /* Set Form1_affinity */
274
    _FDT((fdt_property(fdt, "ibm,architecture-vec-5", vec5, sizeof(vec5))));
275

    
276
    _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline)));
277
    _FDT((fdt_property(fdt, "linux,initrd-start",
278
                       &start_prop, sizeof(start_prop))));
279
    _FDT((fdt_property(fdt, "linux,initrd-end",
280
                       &end_prop, sizeof(end_prop))));
281
    if (kernel_size) {
282
        uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
283
                              cpu_to_be64(kernel_size) };
284

    
285
        _FDT((fdt_property(fdt, "qemu,boot-kernel", &kprop, sizeof(kprop))));
286
    }
287
    _FDT((fdt_property_string(fdt, "qemu,boot-device", boot_device)));
288
    _FDT((fdt_property_cell(fdt, "qemu,graphic-width", graphic_width)));
289
    _FDT((fdt_property_cell(fdt, "qemu,graphic-height", graphic_height)));
290
    _FDT((fdt_property_cell(fdt, "qemu,graphic-depth", graphic_depth)));
291

    
292
    _FDT((fdt_end_node(fdt)));
293

    
294
    /* cpus */
295
    _FDT((fdt_begin_node(fdt, "cpus")));
296

    
297
    _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
298
    _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
299

    
300
    modelname = g_strdup(cpu_model);
301

    
302
    for (i = 0; i < strlen(modelname); i++) {
303
        modelname[i] = toupper(modelname[i]);
304
    }
305

    
306
    /* This is needed during FDT finalization */
307
    spapr->cpu_model = g_strdup(modelname);
308

    
309
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
310
        int index = env->cpu_index;
311
        uint32_t servers_prop[smp_threads];
312
        uint32_t gservers_prop[smp_threads * 2];
313
        char *nodename;
314
        uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
315
                           0xffffffff, 0xffffffff};
316
        uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() : TIMEBASE_FREQ;
317
        uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
318
        uint32_t page_sizes_prop[64];
319
        size_t page_sizes_prop_size;
320

    
321
        if ((index % smt) != 0) {
322
            continue;
323
        }
324

    
325
        if (asprintf(&nodename, "%s@%x", modelname, index) < 0) {
326
            fprintf(stderr, "Allocation failure\n");
327
            exit(1);
328
        }
329

    
330
        _FDT((fdt_begin_node(fdt, nodename)));
331

    
332
        free(nodename);
333

    
334
        _FDT((fdt_property_cell(fdt, "reg", index)));
335
        _FDT((fdt_property_string(fdt, "device_type", "cpu")));
336

    
337
        _FDT((fdt_property_cell(fdt, "cpu-version", env->spr[SPR_PVR])));
338
        _FDT((fdt_property_cell(fdt, "dcache-block-size",
339
                                env->dcache_line_size)));
340
        _FDT((fdt_property_cell(fdt, "icache-block-size",
341
                                env->icache_line_size)));
342
        _FDT((fdt_property_cell(fdt, "timebase-frequency", tbfreq)));
343
        _FDT((fdt_property_cell(fdt, "clock-frequency", cpufreq)));
344
        _FDT((fdt_property_cell(fdt, "ibm,slb-size", env->slb_nr)));
345
        _FDT((fdt_property_string(fdt, "status", "okay")));
346
        _FDT((fdt_property(fdt, "64-bit", NULL, 0)));
347

    
348
        /* Build interrupt servers and gservers properties */
349
        for (i = 0; i < smp_threads; i++) {
350
            servers_prop[i] = cpu_to_be32(index + i);
351
            /* Hack, direct the group queues back to cpu 0 */
352
            gservers_prop[i*2] = cpu_to_be32(index + i);
353
            gservers_prop[i*2 + 1] = 0;
354
        }
355
        _FDT((fdt_property(fdt, "ibm,ppc-interrupt-server#s",
356
                           servers_prop, sizeof(servers_prop))));
357
        _FDT((fdt_property(fdt, "ibm,ppc-interrupt-gserver#s",
358
                           gservers_prop, sizeof(gservers_prop))));
359

    
360
        if (env->mmu_model & POWERPC_MMU_1TSEG) {
361
            _FDT((fdt_property(fdt, "ibm,processor-segment-sizes",
362
                               segs, sizeof(segs))));
363
        }
364

    
365
        /* Advertise VMX/VSX (vector extensions) if available
366
         *   0 / no property == no vector extensions
367
         *   1               == VMX / Altivec available
368
         *   2               == VSX available */
369
        if (env->insns_flags & PPC_ALTIVEC) {
370
            uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
371

    
372
            _FDT((fdt_property_cell(fdt, "ibm,vmx", vmx)));
373
        }
374

    
375
        /* Advertise DFP (Decimal Floating Point) if available
376
         *   0 / no property == no DFP
377
         *   1               == DFP available */
378
        if (env->insns_flags2 & PPC2_DFP) {
379
            _FDT((fdt_property_cell(fdt, "ibm,dfp", 1)));
380
        }
381

    
382
        page_sizes_prop_size = create_page_sizes_prop(env, page_sizes_prop,
383
                                                      sizeof(page_sizes_prop));
384
        if (page_sizes_prop_size) {
385
            _FDT((fdt_property(fdt, "ibm,segment-page-sizes",
386
                               page_sizes_prop, page_sizes_prop_size)));
387
        }
388

    
389
        _FDT((fdt_end_node(fdt)));
390
    }
391

    
392
    g_free(modelname);
393

    
394
    _FDT((fdt_end_node(fdt)));
395

    
396
    /* RTAS */
397
    _FDT((fdt_begin_node(fdt, "rtas")));
398

    
399
    _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas_prop,
400
                       sizeof(hypertas_prop))));
401
    _FDT((fdt_property(fdt, "qemu,hypertas-functions", qemu_hypertas_prop,
402
                       sizeof(qemu_hypertas_prop))));
403

    
404
    _FDT((fdt_property(fdt, "ibm,associativity-reference-points",
405
        refpoints, sizeof(refpoints))));
406

    
407
    _FDT((fdt_end_node(fdt)));
408

    
409
    /* interrupt controller */
410
    _FDT((fdt_begin_node(fdt, "interrupt-controller")));
411

    
412
    _FDT((fdt_property_string(fdt, "device_type",
413
                              "PowerPC-External-Interrupt-Presentation")));
414
    _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp")));
415
    _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
416
    _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges",
417
                       interrupt_server_ranges_prop,
418
                       sizeof(interrupt_server_ranges_prop))));
419
    _FDT((fdt_property_cell(fdt, "#interrupt-cells", 2)));
420
    _FDT((fdt_property_cell(fdt, "linux,phandle", PHANDLE_XICP)));
421
    _FDT((fdt_property_cell(fdt, "phandle", PHANDLE_XICP)));
422

    
423
    _FDT((fdt_end_node(fdt)));
424

    
425
    /* vdevice */
426
    _FDT((fdt_begin_node(fdt, "vdevice")));
427

    
428
    _FDT((fdt_property_string(fdt, "device_type", "vdevice")));
429
    _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice")));
430
    _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
431
    _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
432
    _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2)));
433
    _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
434

    
435
    _FDT((fdt_end_node(fdt)));
436

    
437
    _FDT((fdt_end_node(fdt))); /* close root node */
438
    _FDT((fdt_finish(fdt)));
439

    
440
    return fdt;
441
}
442

    
443
static int spapr_populate_memory(sPAPREnvironment *spapr, void *fdt)
444
{
445
    uint32_t associativity[] = {cpu_to_be32(0x4), cpu_to_be32(0x0),
446
                                cpu_to_be32(0x0), cpu_to_be32(0x0),
447
                                cpu_to_be32(0x0)};
448
    char mem_name[32];
449
    target_phys_addr_t node0_size, mem_start;
450
    uint64_t mem_reg_property[2];
451
    int i, off;
452

    
453
    /* memory node(s) */
454
    node0_size = (nb_numa_nodes > 1) ? node_mem[0] : ram_size;
455
    if (spapr->rma_size > node0_size) {
456
        spapr->rma_size = node0_size;
457
    }
458

    
459
    /* RMA */
460
    mem_reg_property[0] = 0;
461
    mem_reg_property[1] = cpu_to_be64(spapr->rma_size);
462
    off = fdt_add_subnode(fdt, 0, "memory@0");
463
    _FDT(off);
464
    _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
465
    _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
466
                      sizeof(mem_reg_property))));
467
    _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
468
                      sizeof(associativity))));
469

    
470
    /* RAM: Node 0 */
471
    if (node0_size > spapr->rma_size) {
472
        mem_reg_property[0] = cpu_to_be64(spapr->rma_size);
473
        mem_reg_property[1] = cpu_to_be64(node0_size - spapr->rma_size);
474

    
475
        sprintf(mem_name, "memory@" TARGET_FMT_lx, spapr->rma_size);
476
        off = fdt_add_subnode(fdt, 0, mem_name);
477
        _FDT(off);
478
        _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
479
        _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
480
                          sizeof(mem_reg_property))));
481
        _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
482
                          sizeof(associativity))));
483
    }
484

    
485
    /* RAM: Node 1 and beyond */
486
    mem_start = node0_size;
487
    for (i = 1; i < nb_numa_nodes; i++) {
488
        mem_reg_property[0] = cpu_to_be64(mem_start);
489
        mem_reg_property[1] = cpu_to_be64(node_mem[i]);
490
        associativity[3] = associativity[4] = cpu_to_be32(i);
491
        sprintf(mem_name, "memory@" TARGET_FMT_lx, mem_start);
492
        off = fdt_add_subnode(fdt, 0, mem_name);
493
        _FDT(off);
494
        _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
495
        _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
496
                          sizeof(mem_reg_property))));
497
        _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
498
                          sizeof(associativity))));
499
        mem_start += node_mem[i];
500
    }
501

    
502
    return 0;
503
}
504

    
505
static void spapr_finalize_fdt(sPAPREnvironment *spapr,
506
                               target_phys_addr_t fdt_addr,
507
                               target_phys_addr_t rtas_addr,
508
                               target_phys_addr_t rtas_size)
509
{
510
    int ret;
511
    void *fdt;
512
    sPAPRPHBState *phb;
513

    
514
    fdt = g_malloc(FDT_MAX_SIZE);
515

    
516
    /* open out the base tree into a temp buffer for the final tweaks */
517
    _FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE)));
518

    
519
    ret = spapr_populate_memory(spapr, fdt);
520
    if (ret < 0) {
521
        fprintf(stderr, "couldn't setup memory nodes in fdt\n");
522
        exit(1);
523
    }
524

    
525
    ret = spapr_populate_vdevice(spapr->vio_bus, fdt);
526
    if (ret < 0) {
527
        fprintf(stderr, "couldn't setup vio devices in fdt\n");
528
        exit(1);
529
    }
530

    
531
    QLIST_FOREACH(phb, &spapr->phbs, list) {
532
        ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
533
    }
534

    
535
    if (ret < 0) {
536
        fprintf(stderr, "couldn't setup PCI devices in fdt\n");
537
        exit(1);
538
    }
539

    
540
    /* RTAS */
541
    ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size);
542
    if (ret < 0) {
543
        fprintf(stderr, "Couldn't set up RTAS device tree properties\n");
544
    }
545

    
546
    /* Advertise NUMA via ibm,associativity */
547
    ret = spapr_fixup_cpu_dt(fdt, spapr);
548
    if (ret < 0) {
549
        fprintf(stderr, "Couldn't finalize CPU device tree properties\n");
550
    }
551

    
552
    if (!spapr->has_graphics) {
553
        spapr_populate_chosen_stdout(fdt, spapr->vio_bus);
554
    }
555

    
556
    _FDT((fdt_pack(fdt)));
557

    
558
    if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
559
        hw_error("FDT too big ! 0x%x bytes (max is 0x%x)\n",
560
                 fdt_totalsize(fdt), FDT_MAX_SIZE);
561
        exit(1);
562
    }
563

    
564
    cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
565

    
566
    g_free(fdt);
567
}
568

    
569
static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
570
{
571
    return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
572
}
573

    
574
static void emulate_spapr_hypercall(CPUPPCState *env)
575
{
576
    env->gpr[3] = spapr_hypercall(env, env->gpr[3], &env->gpr[4]);
577
}
578

    
579
static void spapr_reset_htab(sPAPREnvironment *spapr)
580
{
581
    long shift;
582

    
583
    /* allocate hash page table.  For now we always make this 16mb,
584
     * later we should probably make it scale to the size of guest
585
     * RAM */
586

    
587
    shift = kvmppc_reset_htab(spapr->htab_shift);
588

    
589
    if (shift > 0) {
590
        /* Kernel handles htab, we don't need to allocate one */
591
        spapr->htab_shift = shift;
592
    } else {
593
        if (!spapr->htab) {
594
            /* Allocate an htab if we don't yet have one */
595
            spapr->htab = qemu_memalign(HTAB_SIZE(spapr), HTAB_SIZE(spapr));
596
        }
597

    
598
        /* And clear it */
599
        memset(spapr->htab, 0, HTAB_SIZE(spapr));
600
    }
601

    
602
    /* Update the RMA size if necessary */
603
    if (spapr->vrma_adjust) {
604
        spapr->rma_size = kvmppc_rma_size(ram_size, spapr->htab_shift);
605
    }
606
}
607

    
608
static void ppc_spapr_reset(void)
609
{
610
    /* Reset the hash table & recalc the RMA */
611
    spapr_reset_htab(spapr);
612

    
613
    qemu_devices_reset();
614

    
615
    /* Load the fdt */
616
    spapr_finalize_fdt(spapr, spapr->fdt_addr, spapr->rtas_addr,
617
                       spapr->rtas_size);
618

    
619
    /* Set up the entry state */
620
    first_cpu->gpr[3] = spapr->fdt_addr;
621
    first_cpu->gpr[5] = 0;
622
    first_cpu->halted = 0;
623
    first_cpu->nip = spapr->entry_point;
624

    
625
}
626

    
627
static void spapr_cpu_reset(void *opaque)
628
{
629
    PowerPCCPU *cpu = opaque;
630
    CPUPPCState *env = &cpu->env;
631

    
632
    cpu_reset(CPU(cpu));
633

    
634
    /* All CPUs start halted.  CPU0 is unhalted from the machine level
635
     * reset code and the rest are explicitly started up by the guest
636
     * using an RTAS call */
637
    env->halted = 1;
638

    
639
    env->spr[SPR_HIOR] = 0;
640

    
641
    env->external_htab = spapr->htab;
642
    env->htab_base = -1;
643
    env->htab_mask = HTAB_SIZE(spapr) - 1;
644
    env->spr[SPR_SDR1] = (unsigned long)spapr->htab |
645
        (spapr->htab_shift - 18);
646
}
647

    
648
/* Returns whether we want to use VGA or not */
649
static int spapr_vga_init(PCIBus *pci_bus)
650
{
651
    switch (vga_interface_type) {
652
    case VGA_STD:
653
        pci_vga_init(pci_bus);
654
        return 1;
655
    case VGA_NONE:
656
        return 0;
657
    default:
658
        fprintf(stderr, "This vga model is not supported,"
659
                "currently it only supports -vga std\n");
660
        exit(0);
661
        break;
662
    }
663
}
664

    
665
/* pSeries LPAR / sPAPR hardware init */
666
static void ppc_spapr_init(ram_addr_t ram_size,
667
                           const char *boot_device,
668
                           const char *kernel_filename,
669
                           const char *kernel_cmdline,
670
                           const char *initrd_filename,
671
                           const char *cpu_model)
672
{
673
    PowerPCCPU *cpu;
674
    CPUPPCState *env;
675
    PCIHostState *phb;
676
    int i;
677
    MemoryRegion *sysmem = get_system_memory();
678
    MemoryRegion *ram = g_new(MemoryRegion, 1);
679
    target_phys_addr_t rma_alloc_size;
680
    uint32_t initrd_base = 0;
681
    long kernel_size = 0, initrd_size = 0;
682
    long load_limit, rtas_limit, fw_size;
683
    char *filename;
684

    
685
    msi_supported = true;
686

    
687
    spapr = g_malloc0(sizeof(*spapr));
688
    QLIST_INIT(&spapr->phbs);
689

    
690
    cpu_ppc_hypercall = emulate_spapr_hypercall;
691

    
692
    /* Allocate RMA if necessary */
693
    rma_alloc_size = kvmppc_alloc_rma("ppc_spapr.rma", sysmem);
694

    
695
    if (rma_alloc_size == -1) {
696
        hw_error("qemu: Unable to create RMA\n");
697
        exit(1);
698
    }
699

    
700
    if (rma_alloc_size && (rma_alloc_size < ram_size)) {
701
        spapr->rma_size = rma_alloc_size;
702
    } else {
703
        spapr->rma_size = ram_size;
704

    
705
        /* With KVM, we don't actually know whether KVM supports an
706
         * unbounded RMA (PR KVM) or is limited by the hash table size
707
         * (HV KVM using VRMA), so we always assume the latter
708
         *
709
         * In that case, we also limit the initial allocations for RTAS
710
         * etc... to 256M since we have no way to know what the VRMA size
711
         * is going to be as it depends on the size of the hash table
712
         * isn't determined yet.
713
         */
714
        if (kvm_enabled()) {
715
            spapr->vrma_adjust = 1;
716
            spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
717
        }
718
    }
719

    
720
    /* We place the device tree and RTAS just below either the top of the RMA,
721
     * or just below 2GB, whichever is lowere, so that it can be
722
     * processed with 32-bit real mode code if necessary */
723
    rtas_limit = MIN(spapr->rma_size, 0x80000000);
724
    spapr->rtas_addr = rtas_limit - RTAS_MAX_SIZE;
725
    spapr->fdt_addr = spapr->rtas_addr - FDT_MAX_SIZE;
726
    load_limit = spapr->fdt_addr - FW_OVERHEAD;
727

    
728
    /* For now, always aim for a 16MB hash table */
729
    /* FIXME: we should change this default based on RAM size */
730
    spapr->htab_shift = 24;
731

    
732
    /* init CPUs */
733
    if (cpu_model == NULL) {
734
        cpu_model = kvm_enabled() ? "host" : "POWER7";
735
    }
736
    for (i = 0; i < smp_cpus; i++) {
737
        cpu = cpu_ppc_init(cpu_model);
738
        if (cpu == NULL) {
739
            fprintf(stderr, "Unable to find PowerPC CPU definition\n");
740
            exit(1);
741
        }
742
        env = &cpu->env;
743

    
744
        /* Set time-base frequency to 512 MHz */
745
        cpu_ppc_tb_init(env, TIMEBASE_FREQ);
746

    
747
        /* PAPR always has exception vectors in RAM not ROM */
748
        env->hreset_excp_prefix = 0;
749

    
750
        /* Tell KVM that we're in PAPR mode */
751
        if (kvm_enabled()) {
752
            kvmppc_set_papr(env);
753
        }
754

    
755
        qemu_register_reset(spapr_cpu_reset, cpu);
756
    }
757

    
758
    /* allocate RAM */
759
    spapr->ram_limit = ram_size;
760
    if (spapr->ram_limit > rma_alloc_size) {
761
        ram_addr_t nonrma_base = rma_alloc_size;
762
        ram_addr_t nonrma_size = spapr->ram_limit - rma_alloc_size;
763

    
764
        memory_region_init_ram(ram, "ppc_spapr.ram", nonrma_size);
765
        vmstate_register_ram_global(ram);
766
        memory_region_add_subregion(sysmem, nonrma_base, ram);
767
    }
768

    
769
    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
770
    spapr->rtas_size = load_image_targphys(filename, spapr->rtas_addr,
771
                                           rtas_limit - spapr->rtas_addr);
772
    if (spapr->rtas_size < 0) {
773
        hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
774
        exit(1);
775
    }
776
    if (spapr->rtas_size > RTAS_MAX_SIZE) {
777
        hw_error("RTAS too big ! 0x%lx bytes (max is 0x%x)\n",
778
                 spapr->rtas_size, RTAS_MAX_SIZE);
779
        exit(1);
780
    }
781
    g_free(filename);
782

    
783

    
784
    /* Set up Interrupt Controller */
785
    spapr->icp = xics_system_init(XICS_IRQS);
786
    spapr->next_irq = 16;
787

    
788
    /* Set up IOMMU */
789
    spapr_iommu_init();
790

    
791
    /* Set up VIO bus */
792
    spapr->vio_bus = spapr_vio_bus_init();
793

    
794
    for (i = 0; i < MAX_SERIAL_PORTS; i++) {
795
        if (serial_hds[i]) {
796
            spapr_vty_create(spapr->vio_bus, serial_hds[i]);
797
        }
798
    }
799

    
800
    /* Set up PCI */
801
    spapr_pci_rtas_init();
802

    
803
    spapr_create_phb(spapr, "pci", SPAPR_PCI_BUID,
804
                     SPAPR_PCI_MEM_WIN_ADDR,
805
                     SPAPR_PCI_MEM_WIN_SIZE,
806
                     SPAPR_PCI_IO_WIN_ADDR,
807
                     SPAPR_PCI_MSI_WIN_ADDR);
808
    phb = PCI_HOST_BRIDGE(QLIST_FIRST(&spapr->phbs));
809

    
810
    for (i = 0; i < nb_nics; i++) {
811
        NICInfo *nd = &nd_table[i];
812

    
813
        if (!nd->model) {
814
            nd->model = g_strdup("ibmveth");
815
        }
816

    
817
        if (strcmp(nd->model, "ibmveth") == 0) {
818
            spapr_vlan_create(spapr->vio_bus, nd);
819
        } else {
820
            pci_nic_init_nofail(&nd_table[i], nd->model, NULL);
821
        }
822
    }
823

    
824
    for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
825
        spapr_vscsi_create(spapr->vio_bus);
826
    }
827

    
828
    /* Graphics */
829
    if (spapr_vga_init(phb->bus)) {
830
        spapr->has_graphics = true;
831
    }
832

    
833
    if (usb_enabled) {
834
        pci_create_simple(phb->bus, -1, "pci-ohci");
835
        if (spapr->has_graphics) {
836
            usbdevice_create("keyboard");
837
            usbdevice_create("mouse");
838
        }
839
    }
840

    
841
    if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
842
        fprintf(stderr, "qemu: pSeries SLOF firmware requires >= "
843
                "%ldM guest RMA (Real Mode Area memory)\n", MIN_RMA_SLOF);
844
        exit(1);
845
    }
846

    
847
    if (kernel_filename) {
848
        uint64_t lowaddr = 0;
849

    
850
        kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
851
                               NULL, &lowaddr, NULL, 1, ELF_MACHINE, 0);
852
        if (kernel_size < 0) {
853
            kernel_size = load_image_targphys(kernel_filename,
854
                                              KERNEL_LOAD_ADDR,
855
                                              load_limit - KERNEL_LOAD_ADDR);
856
        }
857
        if (kernel_size < 0) {
858
            fprintf(stderr, "qemu: could not load kernel '%s'\n",
859
                    kernel_filename);
860
            exit(1);
861
        }
862

    
863
        /* load initrd */
864
        if (initrd_filename) {
865
            /* Try to locate the initrd in the gap between the kernel
866
             * and the firmware. Add a bit of space just in case
867
             */
868
            initrd_base = (KERNEL_LOAD_ADDR + kernel_size + 0x1ffff) & ~0xffff;
869
            initrd_size = load_image_targphys(initrd_filename, initrd_base,
870
                                              load_limit - initrd_base);
871
            if (initrd_size < 0) {
872
                fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
873
                        initrd_filename);
874
                exit(1);
875
            }
876
        } else {
877
            initrd_base = 0;
878
            initrd_size = 0;
879
        }
880
    }
881

    
882
    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, FW_FILE_NAME);
883
    fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
884
    if (fw_size < 0) {
885
        hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
886
        exit(1);
887
    }
888
    g_free(filename);
889

    
890
    spapr->entry_point = 0x100;
891

    
892
    /* Prepare the device tree */
893
    spapr->fdt_skel = spapr_create_fdt_skel(cpu_model,
894
                                            initrd_base, initrd_size,
895
                                            kernel_size,
896
                                            boot_device, kernel_cmdline);
897
    assert(spapr->fdt_skel != NULL);
898
}
899

    
900
static QEMUMachine spapr_machine = {
901
    .name = "pseries",
902
    .desc = "pSeries Logical Partition (PAPR compliant)",
903
    .init = ppc_spapr_init,
904
    .reset = ppc_spapr_reset,
905
    .max_cpus = MAX_CPUS,
906
    .no_parallel = 1,
907
    .use_scsi = 1,
908
};
909

    
910
static void spapr_machine_init(void)
911
{
912
    qemu_register_machine(&spapr_machine);
913
}
914

    
915
machine_init(spapr_machine_init);