Statistics
| Branch: | Revision:

root / kvm-all.c @ 80465e80

History | View | Annotate | Download (42.5 kB)

1
/*
2
 * QEMU KVM support
3
 *
4
 * Copyright IBM, Corp. 2008
5
 *           Red Hat, Inc. 2008
6
 *
7
 * Authors:
8
 *  Anthony Liguori   <aliguori@us.ibm.com>
9
 *  Glauber Costa     <gcosta@redhat.com>
10
 *
11
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12
 * See the COPYING file in the top-level directory.
13
 *
14
 */
15

    
16
#include <sys/types.h>
17
#include <sys/ioctl.h>
18
#include <sys/mman.h>
19
#include <stdarg.h>
20

    
21
#include <linux/kvm.h>
22

    
23
#include "qemu-common.h"
24
#include "qemu-barrier.h"
25
#include "sysemu.h"
26
#include "hw/hw.h"
27
#include "gdbstub.h"
28
#include "kvm.h"
29
#include "bswap.h"
30
#include "memory.h"
31
#include "exec-memory.h"
32

    
33
/* This check must be after config-host.h is included */
34
#ifdef CONFIG_EVENTFD
35
#include <sys/eventfd.h>
36
#endif
37

    
38
/* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */
39
#define PAGE_SIZE TARGET_PAGE_SIZE
40

    
41
//#define DEBUG_KVM
42

    
43
#ifdef DEBUG_KVM
44
#define DPRINTF(fmt, ...) \
45
    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
46
#else
47
#define DPRINTF(fmt, ...) \
48
    do { } while (0)
49
#endif
50

    
51
typedef struct KVMSlot
52
{
53
    target_phys_addr_t start_addr;
54
    ram_addr_t memory_size;
55
    void *ram;
56
    int slot;
57
    int flags;
58
} KVMSlot;
59

    
60
typedef struct kvm_dirty_log KVMDirtyLog;
61

    
62
struct KVMState
63
{
64
    KVMSlot slots[32];
65
    int fd;
66
    int vmfd;
67
    int coalesced_mmio;
68
    struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
69
    bool coalesced_flush_in_progress;
70
    int broken_set_mem_region;
71
    int migration_log;
72
    int vcpu_events;
73
    int robust_singlestep;
74
    int debugregs;
75
#ifdef KVM_CAP_SET_GUEST_DEBUG
76
    struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
77
#endif
78
    int pit_state2;
79
    int xsave, xcrs;
80
    int many_ioeventfds;
81
    /* The man page (and posix) say ioctl numbers are signed int, but
82
     * they're not.  Linux, glibc and *BSD all treat ioctl numbers as
83
     * unsigned, and treating them as signed here can break things */
84
    unsigned irqchip_inject_ioctl;
85
#ifdef KVM_CAP_IRQ_ROUTING
86
    struct kvm_irq_routing *irq_routes;
87
    int nr_allocated_irq_routes;
88
    uint32_t *used_gsi_bitmap;
89
    unsigned int max_gsi;
90
#endif
91
};
92

    
93
KVMState *kvm_state;
94
bool kvm_kernel_irqchip;
95

    
96
static const KVMCapabilityInfo kvm_required_capabilites[] = {
97
    KVM_CAP_INFO(USER_MEMORY),
98
    KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
99
    KVM_CAP_LAST_INFO
100
};
101

    
102
static KVMSlot *kvm_alloc_slot(KVMState *s)
103
{
104
    int i;
105

    
106
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
107
        if (s->slots[i].memory_size == 0) {
108
            return &s->slots[i];
109
        }
110
    }
111

    
112
    fprintf(stderr, "%s: no free slot available\n", __func__);
113
    abort();
114
}
115

    
116
static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
117
                                         target_phys_addr_t start_addr,
118
                                         target_phys_addr_t end_addr)
119
{
120
    int i;
121

    
122
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
123
        KVMSlot *mem = &s->slots[i];
124

    
125
        if (start_addr == mem->start_addr &&
126
            end_addr == mem->start_addr + mem->memory_size) {
127
            return mem;
128
        }
129
    }
130

    
131
    return NULL;
132
}
133

    
134
/*
135
 * Find overlapping slot with lowest start address
136
 */
137
static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
138
                                            target_phys_addr_t start_addr,
139
                                            target_phys_addr_t end_addr)
140
{
141
    KVMSlot *found = NULL;
142
    int i;
143

    
144
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
145
        KVMSlot *mem = &s->slots[i];
146

    
147
        if (mem->memory_size == 0 ||
148
            (found && found->start_addr < mem->start_addr)) {
149
            continue;
150
        }
151

    
152
        if (end_addr > mem->start_addr &&
153
            start_addr < mem->start_addr + mem->memory_size) {
154
            found = mem;
155
        }
156
    }
157

    
158
    return found;
159
}
160

    
161
int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
162
                                       target_phys_addr_t *phys_addr)
163
{
164
    int i;
165

    
166
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
167
        KVMSlot *mem = &s->slots[i];
168

    
169
        if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
170
            *phys_addr = mem->start_addr + (ram - mem->ram);
171
            return 1;
172
        }
173
    }
174

    
175
    return 0;
176
}
177

    
178
static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
179
{
180
    struct kvm_userspace_memory_region mem;
181

    
182
    mem.slot = slot->slot;
183
    mem.guest_phys_addr = slot->start_addr;
184
    mem.memory_size = slot->memory_size;
185
    mem.userspace_addr = (unsigned long)slot->ram;
186
    mem.flags = slot->flags;
187
    if (s->migration_log) {
188
        mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
189
    }
190
    return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
191
}
192

    
193
static void kvm_reset_vcpu(void *opaque)
194
{
195
    CPUArchState *env = opaque;
196

    
197
    kvm_arch_reset_vcpu(env);
198
}
199

    
200
int kvm_init_vcpu(CPUArchState *env)
201
{
202
    KVMState *s = kvm_state;
203
    long mmap_size;
204
    int ret;
205

    
206
    DPRINTF("kvm_init_vcpu\n");
207

    
208
    ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
209
    if (ret < 0) {
210
        DPRINTF("kvm_create_vcpu failed\n");
211
        goto err;
212
    }
213

    
214
    env->kvm_fd = ret;
215
    env->kvm_state = s;
216
    env->kvm_vcpu_dirty = 1;
217

    
218
    mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
219
    if (mmap_size < 0) {
220
        ret = mmap_size;
221
        DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
222
        goto err;
223
    }
224

    
225
    env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
226
                        env->kvm_fd, 0);
227
    if (env->kvm_run == MAP_FAILED) {
228
        ret = -errno;
229
        DPRINTF("mmap'ing vcpu state failed\n");
230
        goto err;
231
    }
232

    
233
    if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
234
        s->coalesced_mmio_ring =
235
            (void *)env->kvm_run + s->coalesced_mmio * PAGE_SIZE;
236
    }
237

    
238
    ret = kvm_arch_init_vcpu(env);
239
    if (ret == 0) {
240
        qemu_register_reset(kvm_reset_vcpu, env);
241
        kvm_arch_reset_vcpu(env);
242
    }
243
err:
244
    return ret;
245
}
246

    
247
/*
248
 * dirty pages logging control
249
 */
250

    
251
static int kvm_mem_flags(KVMState *s, bool log_dirty)
252
{
253
    return log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0;
254
}
255

    
256
static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty)
257
{
258
    KVMState *s = kvm_state;
259
    int flags, mask = KVM_MEM_LOG_DIRTY_PAGES;
260
    int old_flags;
261

    
262
    old_flags = mem->flags;
263

    
264
    flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty);
265
    mem->flags = flags;
266

    
267
    /* If nothing changed effectively, no need to issue ioctl */
268
    if (s->migration_log) {
269
        flags |= KVM_MEM_LOG_DIRTY_PAGES;
270
    }
271

    
272
    if (flags == old_flags) {
273
        return 0;
274
    }
275

    
276
    return kvm_set_user_memory_region(s, mem);
277
}
278

    
279
static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
280
                                      ram_addr_t size, bool log_dirty)
281
{
282
    KVMState *s = kvm_state;
283
    KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
284

    
285
    if (mem == NULL)  {
286
        fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
287
                TARGET_FMT_plx "\n", __func__, phys_addr,
288
                (target_phys_addr_t)(phys_addr + size - 1));
289
        return -EINVAL;
290
    }
291
    return kvm_slot_dirty_pages_log_change(mem, log_dirty);
292
}
293

    
294
static void kvm_log_start(MemoryListener *listener,
295
                          MemoryRegionSection *section)
296
{
297
    int r;
298

    
299
    r = kvm_dirty_pages_log_change(section->offset_within_address_space,
300
                                   section->size, true);
301
    if (r < 0) {
302
        abort();
303
    }
304
}
305

    
306
static void kvm_log_stop(MemoryListener *listener,
307
                          MemoryRegionSection *section)
308
{
309
    int r;
310

    
311
    r = kvm_dirty_pages_log_change(section->offset_within_address_space,
312
                                   section->size, false);
313
    if (r < 0) {
314
        abort();
315
    }
316
}
317

    
318
static int kvm_set_migration_log(int enable)
319
{
320
    KVMState *s = kvm_state;
321
    KVMSlot *mem;
322
    int i, err;
323

    
324
    s->migration_log = enable;
325

    
326
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
327
        mem = &s->slots[i];
328

    
329
        if (!mem->memory_size) {
330
            continue;
331
        }
332
        if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
333
            continue;
334
        }
335
        err = kvm_set_user_memory_region(s, mem);
336
        if (err) {
337
            return err;
338
        }
339
    }
340
    return 0;
341
}
342

    
343
/* get kvm's dirty pages bitmap and update qemu's */
344
static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
345
                                         unsigned long *bitmap)
346
{
347
    unsigned int i, j;
348
    unsigned long page_number, c;
349
    target_phys_addr_t addr, addr1;
350
    unsigned int len = ((section->size / TARGET_PAGE_SIZE) + HOST_LONG_BITS - 1) / HOST_LONG_BITS;
351

    
352
    /*
353
     * bitmap-traveling is faster than memory-traveling (for addr...)
354
     * especially when most of the memory is not dirty.
355
     */
356
    for (i = 0; i < len; i++) {
357
        if (bitmap[i] != 0) {
358
            c = leul_to_cpu(bitmap[i]);
359
            do {
360
                j = ffsl(c) - 1;
361
                c &= ~(1ul << j);
362
                page_number = i * HOST_LONG_BITS + j;
363
                addr1 = page_number * TARGET_PAGE_SIZE;
364
                addr = section->offset_within_region + addr1;
365
                memory_region_set_dirty(section->mr, addr, TARGET_PAGE_SIZE);
366
            } while (c != 0);
367
        }
368
    }
369
    return 0;
370
}
371

    
372
#define ALIGN(x, y)  (((x)+(y)-1) & ~((y)-1))
373

    
374
/**
375
 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
376
 * This function updates qemu's dirty bitmap using
377
 * memory_region_set_dirty().  This means all bits are set
378
 * to dirty.
379
 *
380
 * @start_add: start of logged region.
381
 * @end_addr: end of logged region.
382
 */
383
static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection *section)
384
{
385
    KVMState *s = kvm_state;
386
    unsigned long size, allocated_size = 0;
387
    KVMDirtyLog d;
388
    KVMSlot *mem;
389
    int ret = 0;
390
    target_phys_addr_t start_addr = section->offset_within_address_space;
391
    target_phys_addr_t end_addr = start_addr + section->size;
392

    
393
    d.dirty_bitmap = NULL;
394
    while (start_addr < end_addr) {
395
        mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
396
        if (mem == NULL) {
397
            break;
398
        }
399

    
400
        /* XXX bad kernel interface alert
401
         * For dirty bitmap, kernel allocates array of size aligned to
402
         * bits-per-long.  But for case when the kernel is 64bits and
403
         * the userspace is 32bits, userspace can't align to the same
404
         * bits-per-long, since sizeof(long) is different between kernel
405
         * and user space.  This way, userspace will provide buffer which
406
         * may be 4 bytes less than the kernel will use, resulting in
407
         * userspace memory corruption (which is not detectable by valgrind
408
         * too, in most cases).
409
         * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
410
         * a hope that sizeof(long) wont become >8 any time soon.
411
         */
412
        size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
413
                     /*HOST_LONG_BITS*/ 64) / 8;
414
        if (!d.dirty_bitmap) {
415
            d.dirty_bitmap = g_malloc(size);
416
        } else if (size > allocated_size) {
417
            d.dirty_bitmap = g_realloc(d.dirty_bitmap, size);
418
        }
419
        allocated_size = size;
420
        memset(d.dirty_bitmap, 0, allocated_size);
421

    
422
        d.slot = mem->slot;
423

    
424
        if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
425
            DPRINTF("ioctl failed %d\n", errno);
426
            ret = -1;
427
            break;
428
        }
429

    
430
        kvm_get_dirty_pages_log_range(section, d.dirty_bitmap);
431
        start_addr = mem->start_addr + mem->memory_size;
432
    }
433
    g_free(d.dirty_bitmap);
434

    
435
    return ret;
436
}
437

    
438
int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
439
{
440
    int ret = -ENOSYS;
441
    KVMState *s = kvm_state;
442

    
443
    if (s->coalesced_mmio) {
444
        struct kvm_coalesced_mmio_zone zone;
445

    
446
        zone.addr = start;
447
        zone.size = size;
448
        zone.pad = 0;
449

    
450
        ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
451
    }
452

    
453
    return ret;
454
}
455

    
456
int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
457
{
458
    int ret = -ENOSYS;
459
    KVMState *s = kvm_state;
460

    
461
    if (s->coalesced_mmio) {
462
        struct kvm_coalesced_mmio_zone zone;
463

    
464
        zone.addr = start;
465
        zone.size = size;
466
        zone.pad = 0;
467

    
468
        ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
469
    }
470

    
471
    return ret;
472
}
473

    
474
int kvm_check_extension(KVMState *s, unsigned int extension)
475
{
476
    int ret;
477

    
478
    ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
479
    if (ret < 0) {
480
        ret = 0;
481
    }
482

    
483
    return ret;
484
}
485

    
486
static int kvm_check_many_ioeventfds(void)
487
{
488
    /* Userspace can use ioeventfd for io notification.  This requires a host
489
     * that supports eventfd(2) and an I/O thread; since eventfd does not
490
     * support SIGIO it cannot interrupt the vcpu.
491
     *
492
     * Older kernels have a 6 device limit on the KVM io bus.  Find out so we
493
     * can avoid creating too many ioeventfds.
494
     */
495
#if defined(CONFIG_EVENTFD)
496
    int ioeventfds[7];
497
    int i, ret = 0;
498
    for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
499
        ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
500
        if (ioeventfds[i] < 0) {
501
            break;
502
        }
503
        ret = kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, true);
504
        if (ret < 0) {
505
            close(ioeventfds[i]);
506
            break;
507
        }
508
    }
509

    
510
    /* Decide whether many devices are supported or not */
511
    ret = i == ARRAY_SIZE(ioeventfds);
512

    
513
    while (i-- > 0) {
514
        kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, false);
515
        close(ioeventfds[i]);
516
    }
517
    return ret;
518
#else
519
    return 0;
520
#endif
521
}
522

    
523
static const KVMCapabilityInfo *
524
kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
525
{
526
    while (list->name) {
527
        if (!kvm_check_extension(s, list->value)) {
528
            return list;
529
        }
530
        list++;
531
    }
532
    return NULL;
533
}
534

    
535
static void kvm_set_phys_mem(MemoryRegionSection *section, bool add)
536
{
537
    KVMState *s = kvm_state;
538
    KVMSlot *mem, old;
539
    int err;
540
    MemoryRegion *mr = section->mr;
541
    bool log_dirty = memory_region_is_logging(mr);
542
    target_phys_addr_t start_addr = section->offset_within_address_space;
543
    ram_addr_t size = section->size;
544
    void *ram = NULL;
545
    unsigned delta;
546

    
547
    /* kvm works in page size chunks, but the function may be called
548
       with sub-page size and unaligned start address. */
549
    delta = TARGET_PAGE_ALIGN(size) - size;
550
    if (delta > size) {
551
        return;
552
    }
553
    start_addr += delta;
554
    size -= delta;
555
    size &= TARGET_PAGE_MASK;
556
    if (!size || (start_addr & ~TARGET_PAGE_MASK)) {
557
        return;
558
    }
559

    
560
    if (!memory_region_is_ram(mr)) {
561
        return;
562
    }
563

    
564
    ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta;
565

    
566
    while (1) {
567
        mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
568
        if (!mem) {
569
            break;
570
        }
571

    
572
        if (add && start_addr >= mem->start_addr &&
573
            (start_addr + size <= mem->start_addr + mem->memory_size) &&
574
            (ram - start_addr == mem->ram - mem->start_addr)) {
575
            /* The new slot fits into the existing one and comes with
576
             * identical parameters - update flags and done. */
577
            kvm_slot_dirty_pages_log_change(mem, log_dirty);
578
            return;
579
        }
580

    
581
        old = *mem;
582

    
583
        if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
584
            kvm_physical_sync_dirty_bitmap(section);
585
        }
586

    
587
        /* unregister the overlapping slot */
588
        mem->memory_size = 0;
589
        err = kvm_set_user_memory_region(s, mem);
590
        if (err) {
591
            fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
592
                    __func__, strerror(-err));
593
            abort();
594
        }
595

    
596
        /* Workaround for older KVM versions: we can't join slots, even not by
597
         * unregistering the previous ones and then registering the larger
598
         * slot. We have to maintain the existing fragmentation. Sigh.
599
         *
600
         * This workaround assumes that the new slot starts at the same
601
         * address as the first existing one. If not or if some overlapping
602
         * slot comes around later, we will fail (not seen in practice so far)
603
         * - and actually require a recent KVM version. */
604
        if (s->broken_set_mem_region &&
605
            old.start_addr == start_addr && old.memory_size < size && add) {
606
            mem = kvm_alloc_slot(s);
607
            mem->memory_size = old.memory_size;
608
            mem->start_addr = old.start_addr;
609
            mem->ram = old.ram;
610
            mem->flags = kvm_mem_flags(s, log_dirty);
611

    
612
            err = kvm_set_user_memory_region(s, mem);
613
            if (err) {
614
                fprintf(stderr, "%s: error updating slot: %s\n", __func__,
615
                        strerror(-err));
616
                abort();
617
            }
618

    
619
            start_addr += old.memory_size;
620
            ram += old.memory_size;
621
            size -= old.memory_size;
622
            continue;
623
        }
624

    
625
        /* register prefix slot */
626
        if (old.start_addr < start_addr) {
627
            mem = kvm_alloc_slot(s);
628
            mem->memory_size = start_addr - old.start_addr;
629
            mem->start_addr = old.start_addr;
630
            mem->ram = old.ram;
631
            mem->flags =  kvm_mem_flags(s, log_dirty);
632

    
633
            err = kvm_set_user_memory_region(s, mem);
634
            if (err) {
635
                fprintf(stderr, "%s: error registering prefix slot: %s\n",
636
                        __func__, strerror(-err));
637
#ifdef TARGET_PPC
638
                fprintf(stderr, "%s: This is probably because your kernel's " \
639
                                "PAGE_SIZE is too big. Please try to use 4k " \
640
                                "PAGE_SIZE!\n", __func__);
641
#endif
642
                abort();
643
            }
644
        }
645

    
646
        /* register suffix slot */
647
        if (old.start_addr + old.memory_size > start_addr + size) {
648
            ram_addr_t size_delta;
649

    
650
            mem = kvm_alloc_slot(s);
651
            mem->start_addr = start_addr + size;
652
            size_delta = mem->start_addr - old.start_addr;
653
            mem->memory_size = old.memory_size - size_delta;
654
            mem->ram = old.ram + size_delta;
655
            mem->flags = kvm_mem_flags(s, log_dirty);
656

    
657
            err = kvm_set_user_memory_region(s, mem);
658
            if (err) {
659
                fprintf(stderr, "%s: error registering suffix slot: %s\n",
660
                        __func__, strerror(-err));
661
                abort();
662
            }
663
        }
664
    }
665

    
666
    /* in case the KVM bug workaround already "consumed" the new slot */
667
    if (!size) {
668
        return;
669
    }
670
    if (!add) {
671
        return;
672
    }
673
    mem = kvm_alloc_slot(s);
674
    mem->memory_size = size;
675
    mem->start_addr = start_addr;
676
    mem->ram = ram;
677
    mem->flags = kvm_mem_flags(s, log_dirty);
678

    
679
    err = kvm_set_user_memory_region(s, mem);
680
    if (err) {
681
        fprintf(stderr, "%s: error registering slot: %s\n", __func__,
682
                strerror(-err));
683
        abort();
684
    }
685
}
686

    
687
static void kvm_begin(MemoryListener *listener)
688
{
689
}
690

    
691
static void kvm_commit(MemoryListener *listener)
692
{
693
}
694

    
695
static void kvm_region_add(MemoryListener *listener,
696
                           MemoryRegionSection *section)
697
{
698
    kvm_set_phys_mem(section, true);
699
}
700

    
701
static void kvm_region_del(MemoryListener *listener,
702
                           MemoryRegionSection *section)
703
{
704
    kvm_set_phys_mem(section, false);
705
}
706

    
707
static void kvm_region_nop(MemoryListener *listener,
708
                           MemoryRegionSection *section)
709
{
710
}
711

    
712
static void kvm_log_sync(MemoryListener *listener,
713
                         MemoryRegionSection *section)
714
{
715
    int r;
716

    
717
    r = kvm_physical_sync_dirty_bitmap(section);
718
    if (r < 0) {
719
        abort();
720
    }
721
}
722

    
723
static void kvm_log_global_start(struct MemoryListener *listener)
724
{
725
    int r;
726

    
727
    r = kvm_set_migration_log(1);
728
    assert(r >= 0);
729
}
730

    
731
static void kvm_log_global_stop(struct MemoryListener *listener)
732
{
733
    int r;
734

    
735
    r = kvm_set_migration_log(0);
736
    assert(r >= 0);
737
}
738

    
739
static void kvm_mem_ioeventfd_add(MemoryRegionSection *section,
740
                                  bool match_data, uint64_t data, int fd)
741
{
742
    int r;
743

    
744
    assert(match_data && section->size <= 8);
745

    
746
    r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
747
                               data, true, section->size);
748
    if (r < 0) {
749
        abort();
750
    }
751
}
752

    
753
static void kvm_mem_ioeventfd_del(MemoryRegionSection *section,
754
                                  bool match_data, uint64_t data, int fd)
755
{
756
    int r;
757

    
758
    r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
759
                               data, false, section->size);
760
    if (r < 0) {
761
        abort();
762
    }
763
}
764

    
765
static void kvm_io_ioeventfd_add(MemoryRegionSection *section,
766
                                 bool match_data, uint64_t data, int fd)
767
{
768
    int r;
769

    
770
    assert(match_data && section->size == 2);
771

    
772
    r = kvm_set_ioeventfd_pio_word(fd, section->offset_within_address_space,
773
                                   data, true);
774
    if (r < 0) {
775
        abort();
776
    }
777
}
778

    
779
static void kvm_io_ioeventfd_del(MemoryRegionSection *section,
780
                                 bool match_data, uint64_t data, int fd)
781

    
782
{
783
    int r;
784

    
785
    r = kvm_set_ioeventfd_pio_word(fd, section->offset_within_address_space,
786
                                   data, false);
787
    if (r < 0) {
788
        abort();
789
    }
790
}
791

    
792
static void kvm_eventfd_add(MemoryListener *listener,
793
                            MemoryRegionSection *section,
794
                            bool match_data, uint64_t data, int fd)
795
{
796
    if (section->address_space == get_system_memory()) {
797
        kvm_mem_ioeventfd_add(section, match_data, data, fd);
798
    } else {
799
        kvm_io_ioeventfd_add(section, match_data, data, fd);
800
    }
801
}
802

    
803
static void kvm_eventfd_del(MemoryListener *listener,
804
                            MemoryRegionSection *section,
805
                            bool match_data, uint64_t data, int fd)
806
{
807
    if (section->address_space == get_system_memory()) {
808
        kvm_mem_ioeventfd_del(section, match_data, data, fd);
809
    } else {
810
        kvm_io_ioeventfd_del(section, match_data, data, fd);
811
    }
812
}
813

    
814
static MemoryListener kvm_memory_listener = {
815
    .begin = kvm_begin,
816
    .commit = kvm_commit,
817
    .region_add = kvm_region_add,
818
    .region_del = kvm_region_del,
819
    .region_nop = kvm_region_nop,
820
    .log_start = kvm_log_start,
821
    .log_stop = kvm_log_stop,
822
    .log_sync = kvm_log_sync,
823
    .log_global_start = kvm_log_global_start,
824
    .log_global_stop = kvm_log_global_stop,
825
    .eventfd_add = kvm_eventfd_add,
826
    .eventfd_del = kvm_eventfd_del,
827
    .priority = 10,
828
};
829

    
830
static void kvm_handle_interrupt(CPUArchState *env, int mask)
831
{
832
    env->interrupt_request |= mask;
833

    
834
    if (!qemu_cpu_is_self(env)) {
835
        qemu_cpu_kick(env);
836
    }
837
}
838

    
839
int kvm_irqchip_set_irq(KVMState *s, int irq, int level)
840
{
841
    struct kvm_irq_level event;
842
    int ret;
843

    
844
    assert(kvm_irqchip_in_kernel());
845

    
846
    event.level = level;
847
    event.irq = irq;
848
    ret = kvm_vm_ioctl(s, s->irqchip_inject_ioctl, &event);
849
    if (ret < 0) {
850
        perror("kvm_set_irqchip_line");
851
        abort();
852
    }
853

    
854
    return (s->irqchip_inject_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
855
}
856

    
857
#ifdef KVM_CAP_IRQ_ROUTING
858
static void set_gsi(KVMState *s, unsigned int gsi)
859
{
860
    assert(gsi < s->max_gsi);
861

    
862
    s->used_gsi_bitmap[gsi / 32] |= 1U << (gsi % 32);
863
}
864

    
865
static void kvm_init_irq_routing(KVMState *s)
866
{
867
    int gsi_count;
868

    
869
    gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING);
870
    if (gsi_count > 0) {
871
        unsigned int gsi_bits, i;
872

    
873
        /* Round up so we can search ints using ffs */
874
        gsi_bits = ALIGN(gsi_count, 32);
875
        s->used_gsi_bitmap = g_malloc0(gsi_bits / 8);
876
        s->max_gsi = gsi_bits;
877

    
878
        /* Mark any over-allocated bits as already in use */
879
        for (i = gsi_count; i < gsi_bits; i++) {
880
            set_gsi(s, i);
881
        }
882
    }
883

    
884
    s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
885
    s->nr_allocated_irq_routes = 0;
886

    
887
    kvm_arch_init_irq_routing(s);
888
}
889

    
890
static void kvm_add_routing_entry(KVMState *s,
891
                                  struct kvm_irq_routing_entry *entry)
892
{
893
    struct kvm_irq_routing_entry *new;
894
    int n, size;
895

    
896
    if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
897
        n = s->nr_allocated_irq_routes * 2;
898
        if (n < 64) {
899
            n = 64;
900
        }
901
        size = sizeof(struct kvm_irq_routing);
902
        size += n * sizeof(*new);
903
        s->irq_routes = g_realloc(s->irq_routes, size);
904
        s->nr_allocated_irq_routes = n;
905
    }
906
    n = s->irq_routes->nr++;
907
    new = &s->irq_routes->entries[n];
908
    memset(new, 0, sizeof(*new));
909
    new->gsi = entry->gsi;
910
    new->type = entry->type;
911
    new->flags = entry->flags;
912
    new->u = entry->u;
913

    
914
    set_gsi(s, entry->gsi);
915
}
916

    
917
void kvm_irqchip_add_route(KVMState *s, int irq, int irqchip, int pin)
918
{
919
    struct kvm_irq_routing_entry e;
920

    
921
    e.gsi = irq;
922
    e.type = KVM_IRQ_ROUTING_IRQCHIP;
923
    e.flags = 0;
924
    e.u.irqchip.irqchip = irqchip;
925
    e.u.irqchip.pin = pin;
926
    kvm_add_routing_entry(s, &e);
927
}
928

    
929
int kvm_irqchip_commit_routes(KVMState *s)
930
{
931
    s->irq_routes->flags = 0;
932
    return kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
933
}
934

    
935
#else /* !KVM_CAP_IRQ_ROUTING */
936

    
937
static void kvm_init_irq_routing(KVMState *s)
938
{
939
}
940
#endif /* !KVM_CAP_IRQ_ROUTING */
941

    
942
static int kvm_irqchip_create(KVMState *s)
943
{
944
    QemuOptsList *list = qemu_find_opts("machine");
945
    int ret;
946

    
947
    if (QTAILQ_EMPTY(&list->head) ||
948
        !qemu_opt_get_bool(QTAILQ_FIRST(&list->head),
949
                           "kernel_irqchip", false) ||
950
        !kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
951
        return 0;
952
    }
953

    
954
    ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
955
    if (ret < 0) {
956
        fprintf(stderr, "Create kernel irqchip failed\n");
957
        return ret;
958
    }
959

    
960
    s->irqchip_inject_ioctl = KVM_IRQ_LINE;
961
    if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
962
        s->irqchip_inject_ioctl = KVM_IRQ_LINE_STATUS;
963
    }
964
    kvm_kernel_irqchip = true;
965

    
966
    kvm_init_irq_routing(s);
967

    
968
    return 0;
969
}
970

    
971
int kvm_init(void)
972
{
973
    static const char upgrade_note[] =
974
        "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
975
        "(see http://sourceforge.net/projects/kvm).\n";
976
    KVMState *s;
977
    const KVMCapabilityInfo *missing_cap;
978
    int ret;
979
    int i;
980

    
981
    s = g_malloc0(sizeof(KVMState));
982

    
983
#ifdef KVM_CAP_SET_GUEST_DEBUG
984
    QTAILQ_INIT(&s->kvm_sw_breakpoints);
985
#endif
986
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
987
        s->slots[i].slot = i;
988
    }
989
    s->vmfd = -1;
990
    s->fd = qemu_open("/dev/kvm", O_RDWR);
991
    if (s->fd == -1) {
992
        fprintf(stderr, "Could not access KVM kernel module: %m\n");
993
        ret = -errno;
994
        goto err;
995
    }
996

    
997
    ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
998
    if (ret < KVM_API_VERSION) {
999
        if (ret > 0) {
1000
            ret = -EINVAL;
1001
        }
1002
        fprintf(stderr, "kvm version too old\n");
1003
        goto err;
1004
    }
1005

    
1006
    if (ret > KVM_API_VERSION) {
1007
        ret = -EINVAL;
1008
        fprintf(stderr, "kvm version not supported\n");
1009
        goto err;
1010
    }
1011

    
1012
    s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
1013
    if (s->vmfd < 0) {
1014
#ifdef TARGET_S390X
1015
        fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
1016
                        "your host kernel command line\n");
1017
#endif
1018
        ret = s->vmfd;
1019
        goto err;
1020
    }
1021

    
1022
    missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
1023
    if (!missing_cap) {
1024
        missing_cap =
1025
            kvm_check_extension_list(s, kvm_arch_required_capabilities);
1026
    }
1027
    if (missing_cap) {
1028
        ret = -EINVAL;
1029
        fprintf(stderr, "kvm does not support %s\n%s",
1030
                missing_cap->name, upgrade_note);
1031
        goto err;
1032
    }
1033

    
1034
    s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
1035

    
1036
    s->broken_set_mem_region = 1;
1037
    ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
1038
    if (ret > 0) {
1039
        s->broken_set_mem_region = 0;
1040
    }
1041

    
1042
#ifdef KVM_CAP_VCPU_EVENTS
1043
    s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
1044
#endif
1045

    
1046
    s->robust_singlestep =
1047
        kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
1048

    
1049
#ifdef KVM_CAP_DEBUGREGS
1050
    s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
1051
#endif
1052

    
1053
#ifdef KVM_CAP_XSAVE
1054
    s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
1055
#endif
1056

    
1057
#ifdef KVM_CAP_XCRS
1058
    s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
1059
#endif
1060

    
1061
#ifdef KVM_CAP_PIT_STATE2
1062
    s->pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
1063
#endif
1064

    
1065
    ret = kvm_arch_init(s);
1066
    if (ret < 0) {
1067
        goto err;
1068
    }
1069

    
1070
    ret = kvm_irqchip_create(s);
1071
    if (ret < 0) {
1072
        goto err;
1073
    }
1074

    
1075
    kvm_state = s;
1076
    memory_listener_register(&kvm_memory_listener, NULL);
1077

    
1078
    s->many_ioeventfds = kvm_check_many_ioeventfds();
1079

    
1080
    cpu_interrupt_handler = kvm_handle_interrupt;
1081

    
1082
    return 0;
1083

    
1084
err:
1085
    if (s) {
1086
        if (s->vmfd >= 0) {
1087
            close(s->vmfd);
1088
        }
1089
        if (s->fd != -1) {
1090
            close(s->fd);
1091
        }
1092
    }
1093
    g_free(s);
1094

    
1095
    return ret;
1096
}
1097

    
1098
static void kvm_handle_io(uint16_t port, void *data, int direction, int size,
1099
                          uint32_t count)
1100
{
1101
    int i;
1102
    uint8_t *ptr = data;
1103

    
1104
    for (i = 0; i < count; i++) {
1105
        if (direction == KVM_EXIT_IO_IN) {
1106
            switch (size) {
1107
            case 1:
1108
                stb_p(ptr, cpu_inb(port));
1109
                break;
1110
            case 2:
1111
                stw_p(ptr, cpu_inw(port));
1112
                break;
1113
            case 4:
1114
                stl_p(ptr, cpu_inl(port));
1115
                break;
1116
            }
1117
        } else {
1118
            switch (size) {
1119
            case 1:
1120
                cpu_outb(port, ldub_p(ptr));
1121
                break;
1122
            case 2:
1123
                cpu_outw(port, lduw_p(ptr));
1124
                break;
1125
            case 4:
1126
                cpu_outl(port, ldl_p(ptr));
1127
                break;
1128
            }
1129
        }
1130

    
1131
        ptr += size;
1132
    }
1133
}
1134

    
1135
static int kvm_handle_internal_error(CPUArchState *env, struct kvm_run *run)
1136
{
1137
    fprintf(stderr, "KVM internal error.");
1138
    if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
1139
        int i;
1140

    
1141
        fprintf(stderr, " Suberror: %d\n", run->internal.suberror);
1142
        for (i = 0; i < run->internal.ndata; ++i) {
1143
            fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
1144
                    i, (uint64_t)run->internal.data[i]);
1145
        }
1146
    } else {
1147
        fprintf(stderr, "\n");
1148
    }
1149
    if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
1150
        fprintf(stderr, "emulation failure\n");
1151
        if (!kvm_arch_stop_on_emulation_error(env)) {
1152
            cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
1153
            return EXCP_INTERRUPT;
1154
        }
1155
    }
1156
    /* FIXME: Should trigger a qmp message to let management know
1157
     * something went wrong.
1158
     */
1159
    return -1;
1160
}
1161

    
1162
void kvm_flush_coalesced_mmio_buffer(void)
1163
{
1164
    KVMState *s = kvm_state;
1165

    
1166
    if (s->coalesced_flush_in_progress) {
1167
        return;
1168
    }
1169

    
1170
    s->coalesced_flush_in_progress = true;
1171

    
1172
    if (s->coalesced_mmio_ring) {
1173
        struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
1174
        while (ring->first != ring->last) {
1175
            struct kvm_coalesced_mmio *ent;
1176

    
1177
            ent = &ring->coalesced_mmio[ring->first];
1178

    
1179
            cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
1180
            smp_wmb();
1181
            ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
1182
        }
1183
    }
1184

    
1185
    s->coalesced_flush_in_progress = false;
1186
}
1187

    
1188
static void do_kvm_cpu_synchronize_state(void *_env)
1189
{
1190
    CPUArchState *env = _env;
1191

    
1192
    if (!env->kvm_vcpu_dirty) {
1193
        kvm_arch_get_registers(env);
1194
        env->kvm_vcpu_dirty = 1;
1195
    }
1196
}
1197

    
1198
void kvm_cpu_synchronize_state(CPUArchState *env)
1199
{
1200
    if (!env->kvm_vcpu_dirty) {
1201
        run_on_cpu(env, do_kvm_cpu_synchronize_state, env);
1202
    }
1203
}
1204

    
1205
void kvm_cpu_synchronize_post_reset(CPUArchState *env)
1206
{
1207
    kvm_arch_put_registers(env, KVM_PUT_RESET_STATE);
1208
    env->kvm_vcpu_dirty = 0;
1209
}
1210

    
1211
void kvm_cpu_synchronize_post_init(CPUArchState *env)
1212
{
1213
    kvm_arch_put_registers(env, KVM_PUT_FULL_STATE);
1214
    env->kvm_vcpu_dirty = 0;
1215
}
1216

    
1217
int kvm_cpu_exec(CPUArchState *env)
1218
{
1219
    struct kvm_run *run = env->kvm_run;
1220
    int ret, run_ret;
1221

    
1222
    DPRINTF("kvm_cpu_exec()\n");
1223

    
1224
    if (kvm_arch_process_async_events(env)) {
1225
        env->exit_request = 0;
1226
        return EXCP_HLT;
1227
    }
1228

    
1229
    do {
1230
        if (env->kvm_vcpu_dirty) {
1231
            kvm_arch_put_registers(env, KVM_PUT_RUNTIME_STATE);
1232
            env->kvm_vcpu_dirty = 0;
1233
        }
1234

    
1235
        kvm_arch_pre_run(env, run);
1236
        if (env->exit_request) {
1237
            DPRINTF("interrupt exit requested\n");
1238
            /*
1239
             * KVM requires us to reenter the kernel after IO exits to complete
1240
             * instruction emulation. This self-signal will ensure that we
1241
             * leave ASAP again.
1242
             */
1243
            qemu_cpu_kick_self();
1244
        }
1245
        qemu_mutex_unlock_iothread();
1246

    
1247
        run_ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
1248

    
1249
        qemu_mutex_lock_iothread();
1250
        kvm_arch_post_run(env, run);
1251

    
1252
        kvm_flush_coalesced_mmio_buffer();
1253

    
1254
        if (run_ret < 0) {
1255
            if (run_ret == -EINTR || run_ret == -EAGAIN) {
1256
                DPRINTF("io window exit\n");
1257
                ret = EXCP_INTERRUPT;
1258
                break;
1259
            }
1260
            fprintf(stderr, "error: kvm run failed %s\n",
1261
                    strerror(-run_ret));
1262
            abort();
1263
        }
1264

    
1265
        switch (run->exit_reason) {
1266
        case KVM_EXIT_IO:
1267
            DPRINTF("handle_io\n");
1268
            kvm_handle_io(run->io.port,
1269
                          (uint8_t *)run + run->io.data_offset,
1270
                          run->io.direction,
1271
                          run->io.size,
1272
                          run->io.count);
1273
            ret = 0;
1274
            break;
1275
        case KVM_EXIT_MMIO:
1276
            DPRINTF("handle_mmio\n");
1277
            cpu_physical_memory_rw(run->mmio.phys_addr,
1278
                                   run->mmio.data,
1279
                                   run->mmio.len,
1280
                                   run->mmio.is_write);
1281
            ret = 0;
1282
            break;
1283
        case KVM_EXIT_IRQ_WINDOW_OPEN:
1284
            DPRINTF("irq_window_open\n");
1285
            ret = EXCP_INTERRUPT;
1286
            break;
1287
        case KVM_EXIT_SHUTDOWN:
1288
            DPRINTF("shutdown\n");
1289
            qemu_system_reset_request();
1290
            ret = EXCP_INTERRUPT;
1291
            break;
1292
        case KVM_EXIT_UNKNOWN:
1293
            fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
1294
                    (uint64_t)run->hw.hardware_exit_reason);
1295
            ret = -1;
1296
            break;
1297
        case KVM_EXIT_INTERNAL_ERROR:
1298
            ret = kvm_handle_internal_error(env, run);
1299
            break;
1300
        default:
1301
            DPRINTF("kvm_arch_handle_exit\n");
1302
            ret = kvm_arch_handle_exit(env, run);
1303
            break;
1304
        }
1305
    } while (ret == 0);
1306

    
1307
    if (ret < 0) {
1308
        cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
1309
        vm_stop(RUN_STATE_INTERNAL_ERROR);
1310
    }
1311

    
1312
    env->exit_request = 0;
1313
    return ret;
1314
}
1315

    
1316
int kvm_ioctl(KVMState *s, int type, ...)
1317
{
1318
    int ret;
1319
    void *arg;
1320
    va_list ap;
1321

    
1322
    va_start(ap, type);
1323
    arg = va_arg(ap, void *);
1324
    va_end(ap);
1325

    
1326
    ret = ioctl(s->fd, type, arg);
1327
    if (ret == -1) {
1328
        ret = -errno;
1329
    }
1330
    return ret;
1331
}
1332

    
1333
int kvm_vm_ioctl(KVMState *s, int type, ...)
1334
{
1335
    int ret;
1336
    void *arg;
1337
    va_list ap;
1338

    
1339
    va_start(ap, type);
1340
    arg = va_arg(ap, void *);
1341
    va_end(ap);
1342

    
1343
    ret = ioctl(s->vmfd, type, arg);
1344
    if (ret == -1) {
1345
        ret = -errno;
1346
    }
1347
    return ret;
1348
}
1349

    
1350
int kvm_vcpu_ioctl(CPUArchState *env, int type, ...)
1351
{
1352
    int ret;
1353
    void *arg;
1354
    va_list ap;
1355

    
1356
    va_start(ap, type);
1357
    arg = va_arg(ap, void *);
1358
    va_end(ap);
1359

    
1360
    ret = ioctl(env->kvm_fd, type, arg);
1361
    if (ret == -1) {
1362
        ret = -errno;
1363
    }
1364
    return ret;
1365
}
1366

    
1367
int kvm_has_sync_mmu(void)
1368
{
1369
    return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
1370
}
1371

    
1372
int kvm_has_vcpu_events(void)
1373
{
1374
    return kvm_state->vcpu_events;
1375
}
1376

    
1377
int kvm_has_robust_singlestep(void)
1378
{
1379
    return kvm_state->robust_singlestep;
1380
}
1381

    
1382
int kvm_has_debugregs(void)
1383
{
1384
    return kvm_state->debugregs;
1385
}
1386

    
1387
int kvm_has_xsave(void)
1388
{
1389
    return kvm_state->xsave;
1390
}
1391

    
1392
int kvm_has_xcrs(void)
1393
{
1394
    return kvm_state->xcrs;
1395
}
1396

    
1397
int kvm_has_pit_state2(void)
1398
{
1399
    return kvm_state->pit_state2;
1400
}
1401

    
1402
int kvm_has_many_ioeventfds(void)
1403
{
1404
    if (!kvm_enabled()) {
1405
        return 0;
1406
    }
1407
    return kvm_state->many_ioeventfds;
1408
}
1409

    
1410
int kvm_has_gsi_routing(void)
1411
{
1412
#ifdef KVM_CAP_IRQ_ROUTING
1413
    return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
1414
#else
1415
    return false;
1416
#endif
1417
}
1418

    
1419
int kvm_allows_irq0_override(void)
1420
{
1421
    return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
1422
}
1423

    
1424
void kvm_setup_guest_memory(void *start, size_t size)
1425
{
1426
    if (!kvm_has_sync_mmu()) {
1427
        int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
1428

    
1429
        if (ret) {
1430
            perror("qemu_madvise");
1431
            fprintf(stderr,
1432
                    "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1433
            exit(1);
1434
        }
1435
    }
1436
}
1437

    
1438
#ifdef KVM_CAP_SET_GUEST_DEBUG
1439
struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUArchState *env,
1440
                                                 target_ulong pc)
1441
{
1442
    struct kvm_sw_breakpoint *bp;
1443

    
1444
    QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
1445
        if (bp->pc == pc) {
1446
            return bp;
1447
        }
1448
    }
1449
    return NULL;
1450
}
1451

    
1452
int kvm_sw_breakpoints_active(CPUArchState *env)
1453
{
1454
    return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
1455
}
1456

    
1457
struct kvm_set_guest_debug_data {
1458
    struct kvm_guest_debug dbg;
1459
    CPUArchState *env;
1460
    int err;
1461
};
1462

    
1463
static void kvm_invoke_set_guest_debug(void *data)
1464
{
1465
    struct kvm_set_guest_debug_data *dbg_data = data;
1466
    CPUArchState *env = dbg_data->env;
1467

    
1468
    dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
1469
}
1470

    
1471
int kvm_update_guest_debug(CPUArchState *env, unsigned long reinject_trap)
1472
{
1473
    struct kvm_set_guest_debug_data data;
1474

    
1475
    data.dbg.control = reinject_trap;
1476

    
1477
    if (env->singlestep_enabled) {
1478
        data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1479
    }
1480
    kvm_arch_update_guest_debug(env, &data.dbg);
1481
    data.env = env;
1482

    
1483
    run_on_cpu(env, kvm_invoke_set_guest_debug, &data);
1484
    return data.err;
1485
}
1486

    
1487
int kvm_insert_breakpoint(CPUArchState *current_env, target_ulong addr,
1488
                          target_ulong len, int type)
1489
{
1490
    struct kvm_sw_breakpoint *bp;
1491
    CPUArchState *env;
1492
    int err;
1493

    
1494
    if (type == GDB_BREAKPOINT_SW) {
1495
        bp = kvm_find_sw_breakpoint(current_env, addr);
1496
        if (bp) {
1497
            bp->use_count++;
1498
            return 0;
1499
        }
1500

    
1501
        bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
1502
        if (!bp) {
1503
            return -ENOMEM;
1504
        }
1505

    
1506
        bp->pc = addr;
1507
        bp->use_count = 1;
1508
        err = kvm_arch_insert_sw_breakpoint(current_env, bp);
1509
        if (err) {
1510
            g_free(bp);
1511
            return err;
1512
        }
1513

    
1514
        QTAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
1515
                          bp, entry);
1516
    } else {
1517
        err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1518
        if (err) {
1519
            return err;
1520
        }
1521
    }
1522

    
1523
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
1524
        err = kvm_update_guest_debug(env, 0);
1525
        if (err) {
1526
            return err;
1527
        }
1528
    }
1529
    return 0;
1530
}
1531

    
1532
int kvm_remove_breakpoint(CPUArchState *current_env, target_ulong addr,
1533
                          target_ulong len, int type)
1534
{
1535
    struct kvm_sw_breakpoint *bp;
1536
    CPUArchState *env;
1537
    int err;
1538

    
1539
    if (type == GDB_BREAKPOINT_SW) {
1540
        bp = kvm_find_sw_breakpoint(current_env, addr);
1541
        if (!bp) {
1542
            return -ENOENT;
1543
        }
1544

    
1545
        if (bp->use_count > 1) {
1546
            bp->use_count--;
1547
            return 0;
1548
        }
1549

    
1550
        err = kvm_arch_remove_sw_breakpoint(current_env, bp);
1551
        if (err) {
1552
            return err;
1553
        }
1554

    
1555
        QTAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
1556
        g_free(bp);
1557
    } else {
1558
        err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1559
        if (err) {
1560
            return err;
1561
        }
1562
    }
1563

    
1564
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
1565
        err = kvm_update_guest_debug(env, 0);
1566
        if (err) {
1567
            return err;
1568
        }
1569
    }
1570
    return 0;
1571
}
1572

    
1573
void kvm_remove_all_breakpoints(CPUArchState *current_env)
1574
{
1575
    struct kvm_sw_breakpoint *bp, *next;
1576
    KVMState *s = current_env->kvm_state;
1577
    CPUArchState *env;
1578

    
1579
    QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1580
        if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1581
            /* Try harder to find a CPU that currently sees the breakpoint. */
1582
            for (env = first_cpu; env != NULL; env = env->next_cpu) {
1583
                if (kvm_arch_remove_sw_breakpoint(env, bp) == 0) {
1584
                    break;
1585
                }
1586
            }
1587
        }
1588
    }
1589
    kvm_arch_remove_all_hw_breakpoints();
1590

    
1591
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
1592
        kvm_update_guest_debug(env, 0);
1593
    }
1594
}
1595

    
1596
#else /* !KVM_CAP_SET_GUEST_DEBUG */
1597

    
1598
int kvm_update_guest_debug(CPUArchState *env, unsigned long reinject_trap)
1599
{
1600
    return -EINVAL;
1601
}
1602

    
1603
int kvm_insert_breakpoint(CPUArchState *current_env, target_ulong addr,
1604
                          target_ulong len, int type)
1605
{
1606
    return -EINVAL;
1607
}
1608

    
1609
int kvm_remove_breakpoint(CPUArchState *current_env, target_ulong addr,
1610
                          target_ulong len, int type)
1611
{
1612
    return -EINVAL;
1613
}
1614

    
1615
void kvm_remove_all_breakpoints(CPUArchState *current_env)
1616
{
1617
}
1618
#endif /* !KVM_CAP_SET_GUEST_DEBUG */
1619

    
1620
int kvm_set_signal_mask(CPUArchState *env, const sigset_t *sigset)
1621
{
1622
    struct kvm_signal_mask *sigmask;
1623
    int r;
1624

    
1625
    if (!sigset) {
1626
        return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL);
1627
    }
1628

    
1629
    sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
1630

    
1631
    sigmask->len = 8;
1632
    memcpy(sigmask->sigset, sigset, sizeof(*sigset));
1633
    r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask);
1634
    g_free(sigmask);
1635

    
1636
    return r;
1637
}
1638

    
1639
int kvm_set_ioeventfd_mmio(int fd, uint32_t addr, uint32_t val, bool assign,
1640
                           uint32_t size)
1641
{
1642
    int ret;
1643
    struct kvm_ioeventfd iofd;
1644

    
1645
    iofd.datamatch = val;
1646
    iofd.addr = addr;
1647
    iofd.len = size;
1648
    iofd.flags = KVM_IOEVENTFD_FLAG_DATAMATCH;
1649
    iofd.fd = fd;
1650

    
1651
    if (!kvm_enabled()) {
1652
        return -ENOSYS;
1653
    }
1654

    
1655
    if (!assign) {
1656
        iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1657
    }
1658

    
1659
    ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1660

    
1661
    if (ret < 0) {
1662
        return -errno;
1663
    }
1664

    
1665
    return 0;
1666
}
1667

    
1668
int kvm_set_ioeventfd_pio_word(int fd, uint16_t addr, uint16_t val, bool assign)
1669
{
1670
    struct kvm_ioeventfd kick = {
1671
        .datamatch = val,
1672
        .addr = addr,
1673
        .len = 2,
1674
        .flags = KVM_IOEVENTFD_FLAG_DATAMATCH | KVM_IOEVENTFD_FLAG_PIO,
1675
        .fd = fd,
1676
    };
1677
    int r;
1678
    if (!kvm_enabled()) {
1679
        return -ENOSYS;
1680
    }
1681
    if (!assign) {
1682
        kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1683
    }
1684
    r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1685
    if (r < 0) {
1686
        return r;
1687
    }
1688
    return 0;
1689
}
1690

    
1691
int kvm_on_sigbus_vcpu(CPUArchState *env, int code, void *addr)
1692
{
1693
    return kvm_arch_on_sigbus_vcpu(env, code, addr);
1694
}
1695

    
1696
int kvm_on_sigbus(int code, void *addr)
1697
{
1698
    return kvm_arch_on_sigbus(code, addr);
1699
}