Statistics
| Branch: | Revision:

root / cputlb.c @ 81258640

History | View | Annotate | Download (10.9 kB)

1
/*
2
 *  Common CPU TLB handling
3
 *
4
 *  Copyright (c) 2003 Fabrice Bellard
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18
 */
19

    
20
#include "config.h"
21
#include "cpu.h"
22
#include "exec/exec-all.h"
23
#include "exec/memory.h"
24
#include "exec/address-spaces.h"
25

    
26
#include "exec/cputlb.h"
27

    
28
#include "exec/memory-internal.h"
29

    
30
//#define DEBUG_TLB
31
//#define DEBUG_TLB_CHECK
32

    
33
/* statistics */
34
int tlb_flush_count;
35

    
36
static const CPUTLBEntry s_cputlb_empty_entry = {
37
    .addr_read  = -1,
38
    .addr_write = -1,
39
    .addr_code  = -1,
40
    .addend     = -1,
41
};
42

    
43
/* NOTE:
44
 * If flush_global is true (the usual case), flush all tlb entries.
45
 * If flush_global is false, flush (at least) all tlb entries not
46
 * marked global.
47
 *
48
 * Since QEMU doesn't currently implement a global/not-global flag
49
 * for tlb entries, at the moment tlb_flush() will also flush all
50
 * tlb entries in the flush_global == false case. This is OK because
51
 * CPU architectures generally permit an implementation to drop
52
 * entries from the TLB at any time, so flushing more entries than
53
 * required is only an efficiency issue, not a correctness issue.
54
 */
55
void tlb_flush(CPUArchState *env, int flush_global)
56
{
57
    CPUState *cpu = ENV_GET_CPU(env);
58
    int i;
59

    
60
#if defined(DEBUG_TLB)
61
    printf("tlb_flush:\n");
62
#endif
63
    /* must reset current TB so that interrupts cannot modify the
64
       links while we are modifying them */
65
    cpu->current_tb = NULL;
66

    
67
    for (i = 0; i < CPU_TLB_SIZE; i++) {
68
        int mmu_idx;
69

    
70
        for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
71
            env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
72
        }
73
    }
74

    
75
    memset(env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
76

    
77
    env->tlb_flush_addr = -1;
78
    env->tlb_flush_mask = 0;
79
    tlb_flush_count++;
80
}
81

    
82
static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
83
{
84
    if (addr == (tlb_entry->addr_read &
85
                 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
86
        addr == (tlb_entry->addr_write &
87
                 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
88
        addr == (tlb_entry->addr_code &
89
                 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
90
        *tlb_entry = s_cputlb_empty_entry;
91
    }
92
}
93

    
94
void tlb_flush_page(CPUArchState *env, target_ulong addr)
95
{
96
    CPUState *cpu = ENV_GET_CPU(env);
97
    int i;
98
    int mmu_idx;
99

    
100
#if defined(DEBUG_TLB)
101
    printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
102
#endif
103
    /* Check if we need to flush due to large pages.  */
104
    if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
105
#if defined(DEBUG_TLB)
106
        printf("tlb_flush_page: forced full flush ("
107
               TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
108
               env->tlb_flush_addr, env->tlb_flush_mask);
109
#endif
110
        tlb_flush(env, 1);
111
        return;
112
    }
113
    /* must reset current TB so that interrupts cannot modify the
114
       links while we are modifying them */
115
    cpu->current_tb = NULL;
116

    
117
    addr &= TARGET_PAGE_MASK;
118
    i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
119
    for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
120
        tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
121
    }
122

    
123
    tb_flush_jmp_cache(env, addr);
124
}
125

    
126
/* update the TLBs so that writes to code in the virtual page 'addr'
127
   can be detected */
128
void tlb_protect_code(ram_addr_t ram_addr)
129
{
130
    cpu_physical_memory_reset_dirty(ram_addr,
131
                                    ram_addr + TARGET_PAGE_SIZE,
132
                                    CODE_DIRTY_FLAG);
133
}
134

    
135
/* update the TLB so that writes in physical page 'phys_addr' are no longer
136
   tested for self modifying code */
137
void tlb_unprotect_code_phys(CPUArchState *env, ram_addr_t ram_addr,
138
                             target_ulong vaddr)
139
{
140
    cpu_physical_memory_set_dirty_flags(ram_addr, CODE_DIRTY_FLAG);
141
}
142

    
143
static bool tlb_is_dirty_ram(CPUTLBEntry *tlbe)
144
{
145
    return (tlbe->addr_write & (TLB_INVALID_MASK|TLB_MMIO|TLB_NOTDIRTY)) == 0;
146
}
147

    
148
void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry, uintptr_t start,
149
                           uintptr_t length)
150
{
151
    uintptr_t addr;
152

    
153
    if (tlb_is_dirty_ram(tlb_entry)) {
154
        addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
155
        if ((addr - start) < length) {
156
            tlb_entry->addr_write |= TLB_NOTDIRTY;
157
        }
158
    }
159
}
160

    
161
static inline ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
162
{
163
    ram_addr_t ram_addr;
164

    
165
    if (qemu_ram_addr_from_host(ptr, &ram_addr) == NULL) {
166
        fprintf(stderr, "Bad ram pointer %p\n", ptr);
167
        abort();
168
    }
169
    return ram_addr;
170
}
171

    
172
void cpu_tlb_reset_dirty_all(ram_addr_t start1, ram_addr_t length)
173
{
174
    CPUState *cpu;
175
    CPUArchState *env;
176

    
177
    CPU_FOREACH(cpu) {
178
        int mmu_idx;
179

    
180
        env = cpu->env_ptr;
181
        for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
182
            unsigned int i;
183

    
184
            for (i = 0; i < CPU_TLB_SIZE; i++) {
185
                tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
186
                                      start1, length);
187
            }
188
        }
189
    }
190
}
191

    
192
static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
193
{
194
    if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) {
195
        tlb_entry->addr_write = vaddr;
196
    }
197
}
198

    
199
/* update the TLB corresponding to virtual page vaddr
200
   so that it is no longer dirty */
201
void tlb_set_dirty(CPUArchState *env, target_ulong vaddr)
202
{
203
    int i;
204
    int mmu_idx;
205

    
206
    vaddr &= TARGET_PAGE_MASK;
207
    i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
208
    for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
209
        tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
210
    }
211
}
212

    
213
/* Our TLB does not support large pages, so remember the area covered by
214
   large pages and trigger a full TLB flush if these are invalidated.  */
215
static void tlb_add_large_page(CPUArchState *env, target_ulong vaddr,
216
                               target_ulong size)
217
{
218
    target_ulong mask = ~(size - 1);
219

    
220
    if (env->tlb_flush_addr == (target_ulong)-1) {
221
        env->tlb_flush_addr = vaddr & mask;
222
        env->tlb_flush_mask = mask;
223
        return;
224
    }
225
    /* Extend the existing region to include the new page.
226
       This is a compromise between unnecessary flushes and the cost
227
       of maintaining a full variable size TLB.  */
228
    mask &= env->tlb_flush_mask;
229
    while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) {
230
        mask <<= 1;
231
    }
232
    env->tlb_flush_addr &= mask;
233
    env->tlb_flush_mask = mask;
234
}
235

    
236
/* Add a new TLB entry. At most one entry for a given virtual address
237
   is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
238
   supplied size is only used by tlb_flush_page.  */
239
void tlb_set_page(CPUArchState *env, target_ulong vaddr,
240
                  hwaddr paddr, int prot,
241
                  int mmu_idx, target_ulong size)
242
{
243
    MemoryRegionSection *section;
244
    unsigned int index;
245
    target_ulong address;
246
    target_ulong code_address;
247
    uintptr_t addend;
248
    CPUTLBEntry *te;
249
    hwaddr iotlb, xlat, sz;
250

    
251
    assert(size >= TARGET_PAGE_SIZE);
252
    if (size != TARGET_PAGE_SIZE) {
253
        tlb_add_large_page(env, vaddr, size);
254
    }
255

    
256
    sz = size;
257
    section = address_space_translate_for_iotlb(&address_space_memory, paddr,
258
                                                &xlat, &sz);
259
    assert(sz >= TARGET_PAGE_SIZE);
260

    
261
#if defined(DEBUG_TLB)
262
    printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx
263
           " prot=%x idx=%d\n",
264
           vaddr, paddr, prot, mmu_idx);
265
#endif
266

    
267
    address = vaddr;
268
    if (!memory_region_is_ram(section->mr) && !memory_region_is_romd(section->mr)) {
269
        /* IO memory case */
270
        address |= TLB_MMIO;
271
        addend = 0;
272
    } else {
273
        /* TLB_MMIO for rom/romd handled below */
274
        addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat;
275
    }
276

    
277
    code_address = address;
278
    iotlb = memory_region_section_get_iotlb(env, section, vaddr, paddr, xlat,
279
                                            prot, &address);
280

    
281
    index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
282
    env->iotlb[mmu_idx][index] = iotlb - vaddr;
283
    te = &env->tlb_table[mmu_idx][index];
284
    te->addend = addend - vaddr;
285
    if (prot & PAGE_READ) {
286
        te->addr_read = address;
287
    } else {
288
        te->addr_read = -1;
289
    }
290

    
291
    if (prot & PAGE_EXEC) {
292
        te->addr_code = code_address;
293
    } else {
294
        te->addr_code = -1;
295
    }
296
    if (prot & PAGE_WRITE) {
297
        if ((memory_region_is_ram(section->mr) && section->readonly)
298
            || memory_region_is_romd(section->mr)) {
299
            /* Write access calls the I/O callback.  */
300
            te->addr_write = address | TLB_MMIO;
301
        } else if (memory_region_is_ram(section->mr)
302
                   && !cpu_physical_memory_is_dirty(section->mr->ram_addr + xlat)) {
303
            te->addr_write = address | TLB_NOTDIRTY;
304
        } else {
305
            te->addr_write = address;
306
        }
307
    } else {
308
        te->addr_write = -1;
309
    }
310
}
311

    
312
/* NOTE: this function can trigger an exception */
313
/* NOTE2: the returned address is not exactly the physical address: it
314
 * is actually a ram_addr_t (in system mode; the user mode emulation
315
 * version of this function returns a guest virtual address).
316
 */
317
tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr)
318
{
319
    int mmu_idx, page_index, pd;
320
    void *p;
321
    MemoryRegion *mr;
322

    
323
    page_index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
324
    mmu_idx = cpu_mmu_index(env1);
325
    if (unlikely(env1->tlb_table[mmu_idx][page_index].addr_code !=
326
                 (addr & TARGET_PAGE_MASK))) {
327
        cpu_ldub_code(env1, addr);
328
    }
329
    pd = env1->iotlb[mmu_idx][page_index] & ~TARGET_PAGE_MASK;
330
    mr = iotlb_to_region(pd);
331
    if (memory_region_is_unassigned(mr)) {
332
        CPUState *cpu = ENV_GET_CPU(env1);
333
        CPUClass *cc = CPU_GET_CLASS(cpu);
334

    
335
        if (cc->do_unassigned_access) {
336
            cc->do_unassigned_access(cpu, addr, false, true, 0, 4);
337
        } else {
338
            cpu_abort(env1, "Trying to execute code outside RAM or ROM at 0x"
339
                      TARGET_FMT_lx "\n", addr);
340
        }
341
    }
342
    p = (void *)((uintptr_t)addr + env1->tlb_table[mmu_idx][page_index].addend);
343
    return qemu_ram_addr_from_host_nofail(p);
344
}
345

    
346
#define MMUSUFFIX _cmmu
347
#undef GETPC
348
#define GETPC() ((uintptr_t)0)
349
#define SOFTMMU_CODE_ACCESS
350

    
351
#define SHIFT 0
352
#include "exec/softmmu_template.h"
353

    
354
#define SHIFT 1
355
#include "exec/softmmu_template.h"
356

    
357
#define SHIFT 2
358
#include "exec/softmmu_template.h"
359

    
360
#define SHIFT 3
361
#include "exec/softmmu_template.h"
362

    
363
#undef env