Statistics
| Branch: | Revision:

root / hw / ne2000.c @ 814cd3ac

History | View | Annotate | Download (22.8 kB)

1
/*
2
 * QEMU NE2000 emulation
3
 *
4
 * Copyright (c) 2003-2004 Fabrice Bellard
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "hw.h"
25
#include "pci.h"
26
#include "net.h"
27
#include "ne2000.h"
28
#include "loader.h"
29
#include "sysemu.h"
30

    
31
/* debug NE2000 card */
32
//#define DEBUG_NE2000
33

    
34
#define MAX_ETH_FRAME_SIZE 1514
35

    
36
#define E8390_CMD        0x00  /* The command register (for all pages) */
37
/* Page 0 register offsets. */
38
#define EN0_CLDALO        0x01        /* Low byte of current local dma addr  RD */
39
#define EN0_STARTPG        0x01        /* Starting page of ring bfr WR */
40
#define EN0_CLDAHI        0x02        /* High byte of current local dma addr  RD */
41
#define EN0_STOPPG        0x02        /* Ending page +1 of ring bfr WR */
42
#define EN0_BOUNDARY        0x03        /* Boundary page of ring bfr RD WR */
43
#define EN0_TSR                0x04        /* Transmit status reg RD */
44
#define EN0_TPSR        0x04        /* Transmit starting page WR */
45
#define EN0_NCR                0x05        /* Number of collision reg RD */
46
#define EN0_TCNTLO        0x05        /* Low  byte of tx byte count WR */
47
#define EN0_FIFO        0x06        /* FIFO RD */
48
#define EN0_TCNTHI        0x06        /* High byte of tx byte count WR */
49
#define EN0_ISR                0x07        /* Interrupt status reg RD WR */
50
#define EN0_CRDALO        0x08        /* low byte of current remote dma address RD */
51
#define EN0_RSARLO        0x08        /* Remote start address reg 0 */
52
#define EN0_CRDAHI        0x09        /* high byte, current remote dma address RD */
53
#define EN0_RSARHI        0x09        /* Remote start address reg 1 */
54
#define EN0_RCNTLO        0x0a        /* Remote byte count reg WR */
55
#define EN0_RTL8029ID0        0x0a        /* Realtek ID byte #1 RD */
56
#define EN0_RCNTHI        0x0b        /* Remote byte count reg WR */
57
#define EN0_RTL8029ID1        0x0b        /* Realtek ID byte #2 RD */
58
#define EN0_RSR                0x0c        /* rx status reg RD */
59
#define EN0_RXCR        0x0c        /* RX configuration reg WR */
60
#define EN0_TXCR        0x0d        /* TX configuration reg WR */
61
#define EN0_COUNTER0        0x0d        /* Rcv alignment error counter RD */
62
#define EN0_DCFG        0x0e        /* Data configuration reg WR */
63
#define EN0_COUNTER1        0x0e        /* Rcv CRC error counter RD */
64
#define EN0_IMR                0x0f        /* Interrupt mask reg WR */
65
#define EN0_COUNTER2        0x0f        /* Rcv missed frame error counter RD */
66

    
67
#define EN1_PHYS        0x11
68
#define EN1_CURPAG      0x17
69
#define EN1_MULT        0x18
70

    
71
#define EN2_STARTPG        0x21        /* Starting page of ring bfr RD */
72
#define EN2_STOPPG        0x22        /* Ending page +1 of ring bfr RD */
73

    
74
#define EN3_CONFIG0        0x33
75
#define EN3_CONFIG1        0x34
76
#define EN3_CONFIG2        0x35
77
#define EN3_CONFIG3        0x36
78

    
79
/*  Register accessed at EN_CMD, the 8390 base addr.  */
80
#define E8390_STOP        0x01        /* Stop and reset the chip */
81
#define E8390_START        0x02        /* Start the chip, clear reset */
82
#define E8390_TRANS        0x04        /* Transmit a frame */
83
#define E8390_RREAD        0x08        /* Remote read */
84
#define E8390_RWRITE        0x10        /* Remote write  */
85
#define E8390_NODMA        0x20        /* Remote DMA */
86
#define E8390_PAGE0        0x00        /* Select page chip registers */
87
#define E8390_PAGE1        0x40        /* using the two high-order bits */
88
#define E8390_PAGE2        0x80        /* Page 3 is invalid. */
89

    
90
/* Bits in EN0_ISR - Interrupt status register */
91
#define ENISR_RX        0x01        /* Receiver, no error */
92
#define ENISR_TX        0x02        /* Transmitter, no error */
93
#define ENISR_RX_ERR        0x04        /* Receiver, with error */
94
#define ENISR_TX_ERR        0x08        /* Transmitter, with error */
95
#define ENISR_OVER        0x10        /* Receiver overwrote the ring */
96
#define ENISR_COUNTERS        0x20        /* Counters need emptying */
97
#define ENISR_RDC        0x40        /* remote dma complete */
98
#define ENISR_RESET        0x80        /* Reset completed */
99
#define ENISR_ALL        0x3f        /* Interrupts we will enable */
100

    
101
/* Bits in received packet status byte and EN0_RSR*/
102
#define ENRSR_RXOK        0x01        /* Received a good packet */
103
#define ENRSR_CRC        0x02        /* CRC error */
104
#define ENRSR_FAE        0x04        /* frame alignment error */
105
#define ENRSR_FO        0x08        /* FIFO overrun */
106
#define ENRSR_MPA        0x10        /* missed pkt */
107
#define ENRSR_PHY        0x20        /* physical/multicast address */
108
#define ENRSR_DIS        0x40        /* receiver disable. set in monitor mode */
109
#define ENRSR_DEF        0x80        /* deferring */
110

    
111
/* Transmitted packet status, EN0_TSR. */
112
#define ENTSR_PTX 0x01        /* Packet transmitted without error */
113
#define ENTSR_ND  0x02        /* The transmit wasn't deferred. */
114
#define ENTSR_COL 0x04        /* The transmit collided at least once. */
115
#define ENTSR_ABT 0x08  /* The transmit collided 16 times, and was deferred. */
116
#define ENTSR_CRS 0x10        /* The carrier sense was lost. */
117
#define ENTSR_FU  0x20  /* A "FIFO underrun" occurred during transmit. */
118
#define ENTSR_CDH 0x40        /* The collision detect "heartbeat" signal was lost. */
119
#define ENTSR_OWC 0x80  /* There was an out-of-window collision. */
120

    
121
typedef struct PCINE2000State {
122
    PCIDevice dev;
123
    NE2000State ne2000;
124
} PCINE2000State;
125

    
126
void ne2000_reset(NE2000State *s)
127
{
128
    int i;
129

    
130
    s->isr = ENISR_RESET;
131
    memcpy(s->mem, &s->c.macaddr, 6);
132
    s->mem[14] = 0x57;
133
    s->mem[15] = 0x57;
134

    
135
    /* duplicate prom data */
136
    for(i = 15;i >= 0; i--) {
137
        s->mem[2 * i] = s->mem[i];
138
        s->mem[2 * i + 1] = s->mem[i];
139
    }
140
}
141

    
142
static void ne2000_update_irq(NE2000State *s)
143
{
144
    int isr;
145
    isr = (s->isr & s->imr) & 0x7f;
146
#if defined(DEBUG_NE2000)
147
    printf("NE2000: Set IRQ to %d (%02x %02x)\n",
148
           isr ? 1 : 0, s->isr, s->imr);
149
#endif
150
    qemu_set_irq(s->irq, (isr != 0));
151
}
152

    
153
static int ne2000_buffer_full(NE2000State *s)
154
{
155
    int avail, index, boundary;
156

    
157
    index = s->curpag << 8;
158
    boundary = s->boundary << 8;
159
    if (index < boundary)
160
        avail = boundary - index;
161
    else
162
        avail = (s->stop - s->start) - (index - boundary);
163
    if (avail < (MAX_ETH_FRAME_SIZE + 4))
164
        return 1;
165
    return 0;
166
}
167

    
168
int ne2000_can_receive(VLANClientState *nc)
169
{
170
    NE2000State *s = DO_UPCAST(NICState, nc, nc)->opaque;
171

    
172
    if (s->cmd & E8390_STOP)
173
        return 1;
174
    return !ne2000_buffer_full(s);
175
}
176

    
177
#define MIN_BUF_SIZE 60
178

    
179
ssize_t ne2000_receive(VLANClientState *nc, const uint8_t *buf, size_t size_)
180
{
181
    NE2000State *s = DO_UPCAST(NICState, nc, nc)->opaque;
182
    int size = size_;
183
    uint8_t *p;
184
    unsigned int total_len, next, avail, len, index, mcast_idx;
185
    uint8_t buf1[60];
186
    static const uint8_t broadcast_macaddr[6] =
187
        { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
188

    
189
#if defined(DEBUG_NE2000)
190
    printf("NE2000: received len=%d\n", size);
191
#endif
192

    
193
    if (s->cmd & E8390_STOP || ne2000_buffer_full(s))
194
        return -1;
195

    
196
    /* XXX: check this */
197
    if (s->rxcr & 0x10) {
198
        /* promiscuous: receive all */
199
    } else {
200
        if (!memcmp(buf,  broadcast_macaddr, 6)) {
201
            /* broadcast address */
202
            if (!(s->rxcr & 0x04))
203
                return size;
204
        } else if (buf[0] & 0x01) {
205
            /* multicast */
206
            if (!(s->rxcr & 0x08))
207
                return size;
208
            mcast_idx = compute_mcast_idx(buf);
209
            if (!(s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))))
210
                return size;
211
        } else if (s->mem[0] == buf[0] &&
212
                   s->mem[2] == buf[1] &&
213
                   s->mem[4] == buf[2] &&
214
                   s->mem[6] == buf[3] &&
215
                   s->mem[8] == buf[4] &&
216
                   s->mem[10] == buf[5]) {
217
            /* match */
218
        } else {
219
            return size;
220
        }
221
    }
222

    
223

    
224
    /* if too small buffer, then expand it */
225
    if (size < MIN_BUF_SIZE) {
226
        memcpy(buf1, buf, size);
227
        memset(buf1 + size, 0, MIN_BUF_SIZE - size);
228
        buf = buf1;
229
        size = MIN_BUF_SIZE;
230
    }
231

    
232
    index = s->curpag << 8;
233
    /* 4 bytes for header */
234
    total_len = size + 4;
235
    /* address for next packet (4 bytes for CRC) */
236
    next = index + ((total_len + 4 + 255) & ~0xff);
237
    if (next >= s->stop)
238
        next -= (s->stop - s->start);
239
    /* prepare packet header */
240
    p = s->mem + index;
241
    s->rsr = ENRSR_RXOK; /* receive status */
242
    /* XXX: check this */
243
    if (buf[0] & 0x01)
244
        s->rsr |= ENRSR_PHY;
245
    p[0] = s->rsr;
246
    p[1] = next >> 8;
247
    p[2] = total_len;
248
    p[3] = total_len >> 8;
249
    index += 4;
250

    
251
    /* write packet data */
252
    while (size > 0) {
253
        if (index <= s->stop)
254
            avail = s->stop - index;
255
        else
256
            avail = 0;
257
        len = size;
258
        if (len > avail)
259
            len = avail;
260
        memcpy(s->mem + index, buf, len);
261
        buf += len;
262
        index += len;
263
        if (index == s->stop)
264
            index = s->start;
265
        size -= len;
266
    }
267
    s->curpag = next >> 8;
268

    
269
    /* now we can signal we have received something */
270
    s->isr |= ENISR_RX;
271
    ne2000_update_irq(s);
272

    
273
    return size_;
274
}
275

    
276
static void ne2000_ioport_write(void *opaque, uint32_t addr, uint32_t val)
277
{
278
    NE2000State *s = opaque;
279
    int offset, page, index;
280

    
281
    addr &= 0xf;
282
#ifdef DEBUG_NE2000
283
    printf("NE2000: write addr=0x%x val=0x%02x\n", addr, val);
284
#endif
285
    if (addr == E8390_CMD) {
286
        /* control register */
287
        s->cmd = val;
288
        if (!(val & E8390_STOP)) { /* START bit makes no sense on RTL8029... */
289
            s->isr &= ~ENISR_RESET;
290
            /* test specific case: zero length transfer */
291
            if ((val & (E8390_RREAD | E8390_RWRITE)) &&
292
                s->rcnt == 0) {
293
                s->isr |= ENISR_RDC;
294
                ne2000_update_irq(s);
295
            }
296
            if (val & E8390_TRANS) {
297
                index = (s->tpsr << 8);
298
                /* XXX: next 2 lines are a hack to make netware 3.11 work */
299
                if (index >= NE2000_PMEM_END)
300
                    index -= NE2000_PMEM_SIZE;
301
                /* fail safe: check range on the transmitted length  */
302
                if (index + s->tcnt <= NE2000_PMEM_END) {
303
                    qemu_send_packet(&s->nic->nc, s->mem + index, s->tcnt);
304
                }
305
                /* signal end of transfer */
306
                s->tsr = ENTSR_PTX;
307
                s->isr |= ENISR_TX;
308
                s->cmd &= ~E8390_TRANS;
309
                ne2000_update_irq(s);
310
            }
311
        }
312
    } else {
313
        page = s->cmd >> 6;
314
        offset = addr | (page << 4);
315
        switch(offset) {
316
        case EN0_STARTPG:
317
            s->start = val << 8;
318
            break;
319
        case EN0_STOPPG:
320
            s->stop = val << 8;
321
            break;
322
        case EN0_BOUNDARY:
323
            s->boundary = val;
324
            break;
325
        case EN0_IMR:
326
            s->imr = val;
327
            ne2000_update_irq(s);
328
            break;
329
        case EN0_TPSR:
330
            s->tpsr = val;
331
            break;
332
        case EN0_TCNTLO:
333
            s->tcnt = (s->tcnt & 0xff00) | val;
334
            break;
335
        case EN0_TCNTHI:
336
            s->tcnt = (s->tcnt & 0x00ff) | (val << 8);
337
            break;
338
        case EN0_RSARLO:
339
            s->rsar = (s->rsar & 0xff00) | val;
340
            break;
341
        case EN0_RSARHI:
342
            s->rsar = (s->rsar & 0x00ff) | (val << 8);
343
            break;
344
        case EN0_RCNTLO:
345
            s->rcnt = (s->rcnt & 0xff00) | val;
346
            break;
347
        case EN0_RCNTHI:
348
            s->rcnt = (s->rcnt & 0x00ff) | (val << 8);
349
            break;
350
        case EN0_RXCR:
351
            s->rxcr = val;
352
            break;
353
        case EN0_DCFG:
354
            s->dcfg = val;
355
            break;
356
        case EN0_ISR:
357
            s->isr &= ~(val & 0x7f);
358
            ne2000_update_irq(s);
359
            break;
360
        case EN1_PHYS ... EN1_PHYS + 5:
361
            s->phys[offset - EN1_PHYS] = val;
362
            break;
363
        case EN1_CURPAG:
364
            s->curpag = val;
365
            break;
366
        case EN1_MULT ... EN1_MULT + 7:
367
            s->mult[offset - EN1_MULT] = val;
368
            break;
369
        }
370
    }
371
}
372

    
373
static uint32_t ne2000_ioport_read(void *opaque, uint32_t addr)
374
{
375
    NE2000State *s = opaque;
376
    int offset, page, ret;
377

    
378
    addr &= 0xf;
379
    if (addr == E8390_CMD) {
380
        ret = s->cmd;
381
    } else {
382
        page = s->cmd >> 6;
383
        offset = addr | (page << 4);
384
        switch(offset) {
385
        case EN0_TSR:
386
            ret = s->tsr;
387
            break;
388
        case EN0_BOUNDARY:
389
            ret = s->boundary;
390
            break;
391
        case EN0_ISR:
392
            ret = s->isr;
393
            break;
394
        case EN0_RSARLO:
395
            ret = s->rsar & 0x00ff;
396
            break;
397
        case EN0_RSARHI:
398
            ret = s->rsar >> 8;
399
            break;
400
        case EN1_PHYS ... EN1_PHYS + 5:
401
            ret = s->phys[offset - EN1_PHYS];
402
            break;
403
        case EN1_CURPAG:
404
            ret = s->curpag;
405
            break;
406
        case EN1_MULT ... EN1_MULT + 7:
407
            ret = s->mult[offset - EN1_MULT];
408
            break;
409
        case EN0_RSR:
410
            ret = s->rsr;
411
            break;
412
        case EN2_STARTPG:
413
            ret = s->start >> 8;
414
            break;
415
        case EN2_STOPPG:
416
            ret = s->stop >> 8;
417
            break;
418
        case EN0_RTL8029ID0:
419
            ret = 0x50;
420
            break;
421
        case EN0_RTL8029ID1:
422
            ret = 0x43;
423
            break;
424
        case EN3_CONFIG0:
425
            ret = 0;                /* 10baseT media */
426
            break;
427
        case EN3_CONFIG2:
428
            ret = 0x40;                /* 10baseT active */
429
            break;
430
        case EN3_CONFIG3:
431
            ret = 0x40;                /* Full duplex */
432
            break;
433
        default:
434
            ret = 0x00;
435
            break;
436
        }
437
    }
438
#ifdef DEBUG_NE2000
439
    printf("NE2000: read addr=0x%x val=%02x\n", addr, ret);
440
#endif
441
    return ret;
442
}
443

    
444
static inline void ne2000_mem_writeb(NE2000State *s, uint32_t addr,
445
                                     uint32_t val)
446
{
447
    if (addr < 32 ||
448
        (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
449
        s->mem[addr] = val;
450
    }
451
}
452

    
453
static inline void ne2000_mem_writew(NE2000State *s, uint32_t addr,
454
                                     uint32_t val)
455
{
456
    addr &= ~1; /* XXX: check exact behaviour if not even */
457
    if (addr < 32 ||
458
        (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
459
        *(uint16_t *)(s->mem + addr) = cpu_to_le16(val);
460
    }
461
}
462

    
463
static inline void ne2000_mem_writel(NE2000State *s, uint32_t addr,
464
                                     uint32_t val)
465
{
466
    addr &= ~1; /* XXX: check exact behaviour if not even */
467
    if (addr < 32 ||
468
        (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
469
        cpu_to_le32wu((uint32_t *)(s->mem + addr), val);
470
    }
471
}
472

    
473
static inline uint32_t ne2000_mem_readb(NE2000State *s, uint32_t addr)
474
{
475
    if (addr < 32 ||
476
        (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
477
        return s->mem[addr];
478
    } else {
479
        return 0xff;
480
    }
481
}
482

    
483
static inline uint32_t ne2000_mem_readw(NE2000State *s, uint32_t addr)
484
{
485
    addr &= ~1; /* XXX: check exact behaviour if not even */
486
    if (addr < 32 ||
487
        (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
488
        return le16_to_cpu(*(uint16_t *)(s->mem + addr));
489
    } else {
490
        return 0xffff;
491
    }
492
}
493

    
494
static inline uint32_t ne2000_mem_readl(NE2000State *s, uint32_t addr)
495
{
496
    addr &= ~1; /* XXX: check exact behaviour if not even */
497
    if (addr < 32 ||
498
        (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
499
        return le32_to_cpupu((uint32_t *)(s->mem + addr));
500
    } else {
501
        return 0xffffffff;
502
    }
503
}
504

    
505
static inline void ne2000_dma_update(NE2000State *s, int len)
506
{
507
    s->rsar += len;
508
    /* wrap */
509
    /* XXX: check what to do if rsar > stop */
510
    if (s->rsar == s->stop)
511
        s->rsar = s->start;
512

    
513
    if (s->rcnt <= len) {
514
        s->rcnt = 0;
515
        /* signal end of transfer */
516
        s->isr |= ENISR_RDC;
517
        ne2000_update_irq(s);
518
    } else {
519
        s->rcnt -= len;
520
    }
521
}
522

    
523
static void ne2000_asic_ioport_write(void *opaque, uint32_t addr, uint32_t val)
524
{
525
    NE2000State *s = opaque;
526

    
527
#ifdef DEBUG_NE2000
528
    printf("NE2000: asic write val=0x%04x\n", val);
529
#endif
530
    if (s->rcnt == 0)
531
        return;
532
    if (s->dcfg & 0x01) {
533
        /* 16 bit access */
534
        ne2000_mem_writew(s, s->rsar, val);
535
        ne2000_dma_update(s, 2);
536
    } else {
537
        /* 8 bit access */
538
        ne2000_mem_writeb(s, s->rsar, val);
539
        ne2000_dma_update(s, 1);
540
    }
541
}
542

    
543
static uint32_t ne2000_asic_ioport_read(void *opaque, uint32_t addr)
544
{
545
    NE2000State *s = opaque;
546
    int ret;
547

    
548
    if (s->dcfg & 0x01) {
549
        /* 16 bit access */
550
        ret = ne2000_mem_readw(s, s->rsar);
551
        ne2000_dma_update(s, 2);
552
    } else {
553
        /* 8 bit access */
554
        ret = ne2000_mem_readb(s, s->rsar);
555
        ne2000_dma_update(s, 1);
556
    }
557
#ifdef DEBUG_NE2000
558
    printf("NE2000: asic read val=0x%04x\n", ret);
559
#endif
560
    return ret;
561
}
562

    
563
static void ne2000_asic_ioport_writel(void *opaque, uint32_t addr, uint32_t val)
564
{
565
    NE2000State *s = opaque;
566

    
567
#ifdef DEBUG_NE2000
568
    printf("NE2000: asic writel val=0x%04x\n", val);
569
#endif
570
    if (s->rcnt == 0)
571
        return;
572
    /* 32 bit access */
573
    ne2000_mem_writel(s, s->rsar, val);
574
    ne2000_dma_update(s, 4);
575
}
576

    
577
static uint32_t ne2000_asic_ioport_readl(void *opaque, uint32_t addr)
578
{
579
    NE2000State *s = opaque;
580
    int ret;
581

    
582
    /* 32 bit access */
583
    ret = ne2000_mem_readl(s, s->rsar);
584
    ne2000_dma_update(s, 4);
585
#ifdef DEBUG_NE2000
586
    printf("NE2000: asic readl val=0x%04x\n", ret);
587
#endif
588
    return ret;
589
}
590

    
591
static void ne2000_reset_ioport_write(void *opaque, uint32_t addr, uint32_t val)
592
{
593
    /* nothing to do (end of reset pulse) */
594
}
595

    
596
static uint32_t ne2000_reset_ioport_read(void *opaque, uint32_t addr)
597
{
598
    NE2000State *s = opaque;
599
    ne2000_reset(s);
600
    return 0;
601
}
602

    
603
static int ne2000_post_load(void* opaque, int version_id)
604
{
605
    NE2000State* s = opaque;
606

    
607
    if (version_id < 2) {
608
        s->rxcr = 0x0c;
609
    }
610
    return 0;
611
}
612

    
613
const VMStateDescription vmstate_ne2000 = {
614
    .name = "ne2000",
615
    .version_id = 2,
616
    .minimum_version_id = 0,
617
    .minimum_version_id_old = 0,
618
    .post_load = ne2000_post_load,
619
    .fields      = (VMStateField []) {
620
        VMSTATE_UINT8_V(rxcr, NE2000State, 2),
621
        VMSTATE_UINT8(cmd, NE2000State),
622
        VMSTATE_UINT32(start, NE2000State),
623
        VMSTATE_UINT32(stop, NE2000State),
624
        VMSTATE_UINT8(boundary, NE2000State),
625
        VMSTATE_UINT8(tsr, NE2000State),
626
        VMSTATE_UINT8(tpsr, NE2000State),
627
        VMSTATE_UINT16(tcnt, NE2000State),
628
        VMSTATE_UINT16(rcnt, NE2000State),
629
        VMSTATE_UINT32(rsar, NE2000State),
630
        VMSTATE_UINT8(rsr, NE2000State),
631
        VMSTATE_UINT8(isr, NE2000State),
632
        VMSTATE_UINT8(dcfg, NE2000State),
633
        VMSTATE_UINT8(imr, NE2000State),
634
        VMSTATE_BUFFER(phys, NE2000State),
635
        VMSTATE_UINT8(curpag, NE2000State),
636
        VMSTATE_BUFFER(mult, NE2000State),
637
        VMSTATE_UNUSED(4), /* was irq */
638
        VMSTATE_BUFFER(mem, NE2000State),
639
        VMSTATE_END_OF_LIST()
640
    }
641
};
642

    
643
static const VMStateDescription vmstate_pci_ne2000 = {
644
    .name = "ne2000",
645
    .version_id = 3,
646
    .minimum_version_id = 3,
647
    .minimum_version_id_old = 3,
648
    .fields      = (VMStateField []) {
649
        VMSTATE_PCI_DEVICE(dev, PCINE2000State),
650
        VMSTATE_STRUCT(ne2000, PCINE2000State, 0, vmstate_ne2000, NE2000State),
651
        VMSTATE_END_OF_LIST()
652
    }
653
};
654

    
655
static uint64_t ne2000_read(void *opaque, target_phys_addr_t addr,
656
                            unsigned size)
657
{
658
    NE2000State *s = opaque;
659

    
660
    if (addr < 0x10 && size == 1) {
661
        return ne2000_ioport_read(s, addr);
662
    } else if (addr == 0x10) {
663
        if (size <= 2) {
664
            return ne2000_asic_ioport_read(s, addr);
665
        } else {
666
            return ne2000_asic_ioport_readl(s, addr);
667
        }
668
    } else if (addr == 0x1f && size == 1) {
669
        return ne2000_reset_ioport_read(s, addr);
670
    }
671
    return ((uint64_t)1 << (size * 8)) - 1;
672
}
673

    
674
static void ne2000_write(void *opaque, target_phys_addr_t addr,
675
                         uint64_t data, unsigned size)
676
{
677
    NE2000State *s = opaque;
678

    
679
    if (addr < 0x10 && size == 1) {
680
        return ne2000_ioport_write(s, addr, data);
681
    } else if (addr == 0x10) {
682
        if (size <= 2) {
683
            return ne2000_asic_ioport_write(s, addr, data);
684
        } else {
685
            return ne2000_asic_ioport_writel(s, addr, data);
686
        }
687
    } else if (addr == 0x1f && size == 1) {
688
        return ne2000_reset_ioport_write(s, addr, data);
689
    }
690
}
691

    
692
static const MemoryRegionOps ne2000_ops = {
693
    .read = ne2000_read,
694
    .write = ne2000_write,
695
    .endianness = DEVICE_NATIVE_ENDIAN,
696
};
697

    
698
/***********************************************************/
699
/* PCI NE2000 definitions */
700

    
701
void ne2000_setup_io(NE2000State *s, unsigned size)
702
{
703
    memory_region_init_io(&s->io, &ne2000_ops, s, "ne2000", size);
704
}
705

    
706
static void ne2000_cleanup(VLANClientState *nc)
707
{
708
    NE2000State *s = DO_UPCAST(NICState, nc, nc)->opaque;
709

    
710
    s->nic = NULL;
711
}
712

    
713
static NetClientInfo net_ne2000_info = {
714
    .type = NET_CLIENT_TYPE_NIC,
715
    .size = sizeof(NICState),
716
    .can_receive = ne2000_can_receive,
717
    .receive = ne2000_receive,
718
    .cleanup = ne2000_cleanup,
719
};
720

    
721
static int pci_ne2000_init(PCIDevice *pci_dev)
722
{
723
    PCINE2000State *d = DO_UPCAST(PCINE2000State, dev, pci_dev);
724
    NE2000State *s;
725
    uint8_t *pci_conf;
726

    
727
    pci_conf = d->dev.config;
728
    pci_conf[PCI_INTERRUPT_PIN] = 1; /* interrupt pin A */
729

    
730
    s = &d->ne2000;
731
    ne2000_setup_io(s, 0x100);
732
    pci_register_bar(&d->dev, 0, PCI_BASE_ADDRESS_SPACE_IO, &s->io);
733
    s->irq = d->dev.irq[0];
734

    
735
    qemu_macaddr_default_if_unset(&s->c.macaddr);
736
    ne2000_reset(s);
737

    
738
    s->nic = qemu_new_nic(&net_ne2000_info, &s->c,
739
                          object_get_typename(OBJECT(pci_dev)), pci_dev->qdev.id, s);
740
    qemu_format_nic_info_str(&s->nic->nc, s->c.macaddr.a);
741

    
742
    add_boot_device_path(s->c.bootindex, &pci_dev->qdev, "/ethernet-phy@0");
743

    
744
    return 0;
745
}
746

    
747
static int pci_ne2000_exit(PCIDevice *pci_dev)
748
{
749
    PCINE2000State *d = DO_UPCAST(PCINE2000State, dev, pci_dev);
750
    NE2000State *s = &d->ne2000;
751

    
752
    memory_region_destroy(&s->io);
753
    qemu_del_vlan_client(&s->nic->nc);
754
    return 0;
755
}
756

    
757
static Property ne2000_properties[] = {
758
    DEFINE_NIC_PROPERTIES(PCINE2000State, ne2000.c),
759
    DEFINE_PROP_END_OF_LIST(),
760
};
761

    
762
static void ne2000_class_init(ObjectClass *klass, void *data)
763
{
764
    DeviceClass *dc = DEVICE_CLASS(klass);
765
    PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
766

    
767
    k->init = pci_ne2000_init;
768
    k->exit = pci_ne2000_exit;
769
    k->romfile = "pxe-ne2k_pci.rom",
770
    k->vendor_id = PCI_VENDOR_ID_REALTEK;
771
    k->device_id = PCI_DEVICE_ID_REALTEK_8029;
772
    k->class_id = PCI_CLASS_NETWORK_ETHERNET;
773
    dc->vmsd = &vmstate_pci_ne2000;
774
    dc->props = ne2000_properties;
775
}
776

    
777
static TypeInfo ne2000_info = {
778
    .name          = "ne2k_pci",
779
    .parent        = TYPE_PCI_DEVICE,
780
    .instance_size = sizeof(PCINE2000State),
781
    .class_init    = ne2000_class_init,
782
};
783

    
784
static void ne2000_register_types(void)
785
{
786
    type_register_static(&ne2000_info);
787
}
788

    
789
type_init(ne2000_register_types)