Statistics
| Branch: | Revision:

root / cpus.c @ 814e612e

History | View | Annotate | Download (33 kB)

1
/*
2
 * QEMU System Emulator
3
 *
4
 * Copyright (c) 2003-2008 Fabrice Bellard
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24

    
25
/* Needed early for CONFIG_BSD etc. */
26
#include "config-host.h"
27

    
28
#include "monitor.h"
29
#include "sysemu.h"
30
#include "gdbstub.h"
31
#include "dma.h"
32
#include "kvm.h"
33
#include "qmp-commands.h"
34

    
35
#include "qemu-thread.h"
36
#include "cpus.h"
37
#include "qtest.h"
38
#include "main-loop.h"
39

    
40
#ifndef _WIN32
41
#include "compatfd.h"
42
#endif
43

    
44
#ifdef CONFIG_LINUX
45

    
46
#include <sys/prctl.h>
47

    
48
#ifndef PR_MCE_KILL
49
#define PR_MCE_KILL 33
50
#endif
51

    
52
#ifndef PR_MCE_KILL_SET
53
#define PR_MCE_KILL_SET 1
54
#endif
55

    
56
#ifndef PR_MCE_KILL_EARLY
57
#define PR_MCE_KILL_EARLY 1
58
#endif
59

    
60
#endif /* CONFIG_LINUX */
61

    
62
static CPUArchState *next_cpu;
63

    
64
static bool cpu_thread_is_idle(CPUArchState *env)
65
{
66
    if (env->stop || env->queued_work_first) {
67
        return false;
68
    }
69
    if (env->stopped || !runstate_is_running()) {
70
        return true;
71
    }
72
    if (!env->halted || qemu_cpu_has_work(env) || kvm_irqchip_in_kernel()) {
73
        return false;
74
    }
75
    return true;
76
}
77

    
78
static bool all_cpu_threads_idle(void)
79
{
80
    CPUArchState *env;
81

    
82
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
83
        if (!cpu_thread_is_idle(env)) {
84
            return false;
85
        }
86
    }
87
    return true;
88
}
89

    
90
/***********************************************************/
91
/* guest cycle counter */
92

    
93
/* Conversion factor from emulated instructions to virtual clock ticks.  */
94
static int icount_time_shift;
95
/* Arbitrarily pick 1MIPS as the minimum allowable speed.  */
96
#define MAX_ICOUNT_SHIFT 10
97
/* Compensate for varying guest execution speed.  */
98
static int64_t qemu_icount_bias;
99
static QEMUTimer *icount_rt_timer;
100
static QEMUTimer *icount_vm_timer;
101
static QEMUTimer *icount_warp_timer;
102
static int64_t vm_clock_warp_start;
103
static int64_t qemu_icount;
104

    
105
typedef struct TimersState {
106
    int64_t cpu_ticks_prev;
107
    int64_t cpu_ticks_offset;
108
    int64_t cpu_clock_offset;
109
    int32_t cpu_ticks_enabled;
110
    int64_t dummy;
111
} TimersState;
112

    
113
TimersState timers_state;
114

    
115
/* Return the virtual CPU time, based on the instruction counter.  */
116
int64_t cpu_get_icount(void)
117
{
118
    int64_t icount;
119
    CPUArchState *env = cpu_single_env;
120

    
121
    icount = qemu_icount;
122
    if (env) {
123
        if (!can_do_io(env)) {
124
            fprintf(stderr, "Bad clock read\n");
125
        }
126
        icount -= (env->icount_decr.u16.low + env->icount_extra);
127
    }
128
    return qemu_icount_bias + (icount << icount_time_shift);
129
}
130

    
131
/* return the host CPU cycle counter and handle stop/restart */
132
int64_t cpu_get_ticks(void)
133
{
134
    if (use_icount) {
135
        return cpu_get_icount();
136
    }
137
    if (!timers_state.cpu_ticks_enabled) {
138
        return timers_state.cpu_ticks_offset;
139
    } else {
140
        int64_t ticks;
141
        ticks = cpu_get_real_ticks();
142
        if (timers_state.cpu_ticks_prev > ticks) {
143
            /* Note: non increasing ticks may happen if the host uses
144
               software suspend */
145
            timers_state.cpu_ticks_offset += timers_state.cpu_ticks_prev - ticks;
146
        }
147
        timers_state.cpu_ticks_prev = ticks;
148
        return ticks + timers_state.cpu_ticks_offset;
149
    }
150
}
151

    
152
/* return the host CPU monotonic timer and handle stop/restart */
153
int64_t cpu_get_clock(void)
154
{
155
    int64_t ti;
156
    if (!timers_state.cpu_ticks_enabled) {
157
        return timers_state.cpu_clock_offset;
158
    } else {
159
        ti = get_clock();
160
        return ti + timers_state.cpu_clock_offset;
161
    }
162
}
163

    
164
/* enable cpu_get_ticks() */
165
void cpu_enable_ticks(void)
166
{
167
    if (!timers_state.cpu_ticks_enabled) {
168
        timers_state.cpu_ticks_offset -= cpu_get_real_ticks();
169
        timers_state.cpu_clock_offset -= get_clock();
170
        timers_state.cpu_ticks_enabled = 1;
171
    }
172
}
173

    
174
/* disable cpu_get_ticks() : the clock is stopped. You must not call
175
   cpu_get_ticks() after that.  */
176
void cpu_disable_ticks(void)
177
{
178
    if (timers_state.cpu_ticks_enabled) {
179
        timers_state.cpu_ticks_offset = cpu_get_ticks();
180
        timers_state.cpu_clock_offset = cpu_get_clock();
181
        timers_state.cpu_ticks_enabled = 0;
182
    }
183
}
184

    
185
/* Correlation between real and virtual time is always going to be
186
   fairly approximate, so ignore small variation.
187
   When the guest is idle real and virtual time will be aligned in
188
   the IO wait loop.  */
189
#define ICOUNT_WOBBLE (get_ticks_per_sec() / 10)
190

    
191
static void icount_adjust(void)
192
{
193
    int64_t cur_time;
194
    int64_t cur_icount;
195
    int64_t delta;
196
    static int64_t last_delta;
197
    /* If the VM is not running, then do nothing.  */
198
    if (!runstate_is_running()) {
199
        return;
200
    }
201
    cur_time = cpu_get_clock();
202
    cur_icount = qemu_get_clock_ns(vm_clock);
203
    delta = cur_icount - cur_time;
204
    /* FIXME: This is a very crude algorithm, somewhat prone to oscillation.  */
205
    if (delta > 0
206
        && last_delta + ICOUNT_WOBBLE < delta * 2
207
        && icount_time_shift > 0) {
208
        /* The guest is getting too far ahead.  Slow time down.  */
209
        icount_time_shift--;
210
    }
211
    if (delta < 0
212
        && last_delta - ICOUNT_WOBBLE > delta * 2
213
        && icount_time_shift < MAX_ICOUNT_SHIFT) {
214
        /* The guest is getting too far behind.  Speed time up.  */
215
        icount_time_shift++;
216
    }
217
    last_delta = delta;
218
    qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
219
}
220

    
221
static void icount_adjust_rt(void *opaque)
222
{
223
    qemu_mod_timer(icount_rt_timer,
224
                   qemu_get_clock_ms(rt_clock) + 1000);
225
    icount_adjust();
226
}
227

    
228
static void icount_adjust_vm(void *opaque)
229
{
230
    qemu_mod_timer(icount_vm_timer,
231
                   qemu_get_clock_ns(vm_clock) + get_ticks_per_sec() / 10);
232
    icount_adjust();
233
}
234

    
235
static int64_t qemu_icount_round(int64_t count)
236
{
237
    return (count + (1 << icount_time_shift) - 1) >> icount_time_shift;
238
}
239

    
240
static void icount_warp_rt(void *opaque)
241
{
242
    if (vm_clock_warp_start == -1) {
243
        return;
244
    }
245

    
246
    if (runstate_is_running()) {
247
        int64_t clock = qemu_get_clock_ns(rt_clock);
248
        int64_t warp_delta = clock - vm_clock_warp_start;
249
        if (use_icount == 1) {
250
            qemu_icount_bias += warp_delta;
251
        } else {
252
            /*
253
             * In adaptive mode, do not let the vm_clock run too
254
             * far ahead of real time.
255
             */
256
            int64_t cur_time = cpu_get_clock();
257
            int64_t cur_icount = qemu_get_clock_ns(vm_clock);
258
            int64_t delta = cur_time - cur_icount;
259
            qemu_icount_bias += MIN(warp_delta, delta);
260
        }
261
        if (qemu_clock_expired(vm_clock)) {
262
            qemu_notify_event();
263
        }
264
    }
265
    vm_clock_warp_start = -1;
266
}
267

    
268
void qtest_clock_warp(int64_t dest)
269
{
270
    int64_t clock = qemu_get_clock_ns(vm_clock);
271
    assert(qtest_enabled());
272
    while (clock < dest) {
273
        int64_t deadline = qemu_clock_deadline(vm_clock);
274
        int64_t warp = MIN(dest - clock, deadline);
275
        qemu_icount_bias += warp;
276
        qemu_run_timers(vm_clock);
277
        clock = qemu_get_clock_ns(vm_clock);
278
    }
279
    qemu_notify_event();
280
}
281

    
282
void qemu_clock_warp(QEMUClock *clock)
283
{
284
    int64_t deadline;
285

    
286
    /*
287
     * There are too many global variables to make the "warp" behavior
288
     * applicable to other clocks.  But a clock argument removes the
289
     * need for if statements all over the place.
290
     */
291
    if (clock != vm_clock || !use_icount) {
292
        return;
293
    }
294

    
295
    /*
296
     * If the CPUs have been sleeping, advance the vm_clock timer now.  This
297
     * ensures that the deadline for the timer is computed correctly below.
298
     * This also makes sure that the insn counter is synchronized before the
299
     * CPU starts running, in case the CPU is woken by an event other than
300
     * the earliest vm_clock timer.
301
     */
302
    icount_warp_rt(NULL);
303
    if (!all_cpu_threads_idle() || !qemu_clock_has_timers(vm_clock)) {
304
        qemu_del_timer(icount_warp_timer);
305
        return;
306
    }
307

    
308
    if (qtest_enabled()) {
309
        /* When testing, qtest commands advance icount.  */
310
        return;
311
    }
312

    
313
    vm_clock_warp_start = qemu_get_clock_ns(rt_clock);
314
    deadline = qemu_clock_deadline(vm_clock);
315
    if (deadline > 0) {
316
        /*
317
         * Ensure the vm_clock proceeds even when the virtual CPU goes to
318
         * sleep.  Otherwise, the CPU might be waiting for a future timer
319
         * interrupt to wake it up, but the interrupt never comes because
320
         * the vCPU isn't running any insns and thus doesn't advance the
321
         * vm_clock.
322
         *
323
         * An extreme solution for this problem would be to never let VCPUs
324
         * sleep in icount mode if there is a pending vm_clock timer; rather
325
         * time could just advance to the next vm_clock event.  Instead, we
326
         * do stop VCPUs and only advance vm_clock after some "real" time,
327
         * (related to the time left until the next event) has passed.  This
328
         * rt_clock timer will do this.  This avoids that the warps are too
329
         * visible externally---for example, you will not be sending network
330
         * packets continuously instead of every 100ms.
331
         */
332
        qemu_mod_timer(icount_warp_timer, vm_clock_warp_start + deadline);
333
    } else {
334
        qemu_notify_event();
335
    }
336
}
337

    
338
static const VMStateDescription vmstate_timers = {
339
    .name = "timer",
340
    .version_id = 2,
341
    .minimum_version_id = 1,
342
    .minimum_version_id_old = 1,
343
    .fields      = (VMStateField[]) {
344
        VMSTATE_INT64(cpu_ticks_offset, TimersState),
345
        VMSTATE_INT64(dummy, TimersState),
346
        VMSTATE_INT64_V(cpu_clock_offset, TimersState, 2),
347
        VMSTATE_END_OF_LIST()
348
    }
349
};
350

    
351
void configure_icount(const char *option)
352
{
353
    vmstate_register(NULL, 0, &vmstate_timers, &timers_state);
354
    if (!option) {
355
        return;
356
    }
357

    
358
    icount_warp_timer = qemu_new_timer_ns(rt_clock, icount_warp_rt, NULL);
359
    if (strcmp(option, "auto") != 0) {
360
        icount_time_shift = strtol(option, NULL, 0);
361
        use_icount = 1;
362
        return;
363
    }
364

    
365
    use_icount = 2;
366

    
367
    /* 125MIPS seems a reasonable initial guess at the guest speed.
368
       It will be corrected fairly quickly anyway.  */
369
    icount_time_shift = 3;
370

    
371
    /* Have both realtime and virtual time triggers for speed adjustment.
372
       The realtime trigger catches emulated time passing too slowly,
373
       the virtual time trigger catches emulated time passing too fast.
374
       Realtime triggers occur even when idle, so use them less frequently
375
       than VM triggers.  */
376
    icount_rt_timer = qemu_new_timer_ms(rt_clock, icount_adjust_rt, NULL);
377
    qemu_mod_timer(icount_rt_timer,
378
                   qemu_get_clock_ms(rt_clock) + 1000);
379
    icount_vm_timer = qemu_new_timer_ns(vm_clock, icount_adjust_vm, NULL);
380
    qemu_mod_timer(icount_vm_timer,
381
                   qemu_get_clock_ns(vm_clock) + get_ticks_per_sec() / 10);
382
}
383

    
384
/***********************************************************/
385
void hw_error(const char *fmt, ...)
386
{
387
    va_list ap;
388
    CPUArchState *env;
389

    
390
    va_start(ap, fmt);
391
    fprintf(stderr, "qemu: hardware error: ");
392
    vfprintf(stderr, fmt, ap);
393
    fprintf(stderr, "\n");
394
    for(env = first_cpu; env != NULL; env = env->next_cpu) {
395
        fprintf(stderr, "CPU #%d:\n", env->cpu_index);
396
#ifdef TARGET_I386
397
        cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
398
#else
399
        cpu_dump_state(env, stderr, fprintf, 0);
400
#endif
401
    }
402
    va_end(ap);
403
    abort();
404
}
405

    
406
void cpu_synchronize_all_states(void)
407
{
408
    CPUArchState *cpu;
409

    
410
    for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
411
        cpu_synchronize_state(cpu);
412
    }
413
}
414

    
415
void cpu_synchronize_all_post_reset(void)
416
{
417
    CPUArchState *cpu;
418

    
419
    for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
420
        cpu_synchronize_post_reset(cpu);
421
    }
422
}
423

    
424
void cpu_synchronize_all_post_init(void)
425
{
426
    CPUArchState *cpu;
427

    
428
    for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
429
        cpu_synchronize_post_init(cpu);
430
    }
431
}
432

    
433
int cpu_is_stopped(CPUArchState *env)
434
{
435
    return !runstate_is_running() || env->stopped;
436
}
437

    
438
static void do_vm_stop(RunState state)
439
{
440
    if (runstate_is_running()) {
441
        cpu_disable_ticks();
442
        pause_all_vcpus();
443
        runstate_set(state);
444
        vm_state_notify(0, state);
445
        bdrv_drain_all();
446
        bdrv_flush_all();
447
        monitor_protocol_event(QEVENT_STOP, NULL);
448
    }
449
}
450

    
451
static int cpu_can_run(CPUArchState *env)
452
{
453
    if (env->stop) {
454
        return 0;
455
    }
456
    if (env->stopped || !runstate_is_running()) {
457
        return 0;
458
    }
459
    return 1;
460
}
461

    
462
static void cpu_handle_guest_debug(CPUArchState *env)
463
{
464
    gdb_set_stop_cpu(env);
465
    qemu_system_debug_request();
466
    env->stopped = 1;
467
}
468

    
469
static void cpu_signal(int sig)
470
{
471
    if (cpu_single_env) {
472
        cpu_exit(cpu_single_env);
473
    }
474
    exit_request = 1;
475
}
476

    
477
#ifdef CONFIG_LINUX
478
static void sigbus_reraise(void)
479
{
480
    sigset_t set;
481
    struct sigaction action;
482

    
483
    memset(&action, 0, sizeof(action));
484
    action.sa_handler = SIG_DFL;
485
    if (!sigaction(SIGBUS, &action, NULL)) {
486
        raise(SIGBUS);
487
        sigemptyset(&set);
488
        sigaddset(&set, SIGBUS);
489
        sigprocmask(SIG_UNBLOCK, &set, NULL);
490
    }
491
    perror("Failed to re-raise SIGBUS!\n");
492
    abort();
493
}
494

    
495
static void sigbus_handler(int n, struct qemu_signalfd_siginfo *siginfo,
496
                           void *ctx)
497
{
498
    if (kvm_on_sigbus(siginfo->ssi_code,
499
                      (void *)(intptr_t)siginfo->ssi_addr)) {
500
        sigbus_reraise();
501
    }
502
}
503

    
504
static void qemu_init_sigbus(void)
505
{
506
    struct sigaction action;
507

    
508
    memset(&action, 0, sizeof(action));
509
    action.sa_flags = SA_SIGINFO;
510
    action.sa_sigaction = (void (*)(int, siginfo_t*, void*))sigbus_handler;
511
    sigaction(SIGBUS, &action, NULL);
512

    
513
    prctl(PR_MCE_KILL, PR_MCE_KILL_SET, PR_MCE_KILL_EARLY, 0, 0);
514
}
515

    
516
static void qemu_kvm_eat_signals(CPUArchState *env)
517
{
518
    struct timespec ts = { 0, 0 };
519
    siginfo_t siginfo;
520
    sigset_t waitset;
521
    sigset_t chkset;
522
    int r;
523

    
524
    sigemptyset(&waitset);
525
    sigaddset(&waitset, SIG_IPI);
526
    sigaddset(&waitset, SIGBUS);
527

    
528
    do {
529
        r = sigtimedwait(&waitset, &siginfo, &ts);
530
        if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
531
            perror("sigtimedwait");
532
            exit(1);
533
        }
534

    
535
        switch (r) {
536
        case SIGBUS:
537
            if (kvm_on_sigbus_vcpu(env, siginfo.si_code, siginfo.si_addr)) {
538
                sigbus_reraise();
539
            }
540
            break;
541
        default:
542
            break;
543
        }
544

    
545
        r = sigpending(&chkset);
546
        if (r == -1) {
547
            perror("sigpending");
548
            exit(1);
549
        }
550
    } while (sigismember(&chkset, SIG_IPI) || sigismember(&chkset, SIGBUS));
551
}
552

    
553
#else /* !CONFIG_LINUX */
554

    
555
static void qemu_init_sigbus(void)
556
{
557
}
558

    
559
static void qemu_kvm_eat_signals(CPUArchState *env)
560
{
561
}
562
#endif /* !CONFIG_LINUX */
563

    
564
#ifndef _WIN32
565
static void dummy_signal(int sig)
566
{
567
}
568

    
569
static void qemu_kvm_init_cpu_signals(CPUArchState *env)
570
{
571
    int r;
572
    sigset_t set;
573
    struct sigaction sigact;
574

    
575
    memset(&sigact, 0, sizeof(sigact));
576
    sigact.sa_handler = dummy_signal;
577
    sigaction(SIG_IPI, &sigact, NULL);
578

    
579
    pthread_sigmask(SIG_BLOCK, NULL, &set);
580
    sigdelset(&set, SIG_IPI);
581
    sigdelset(&set, SIGBUS);
582
    r = kvm_set_signal_mask(env, &set);
583
    if (r) {
584
        fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
585
        exit(1);
586
    }
587
}
588

    
589
static void qemu_tcg_init_cpu_signals(void)
590
{
591
    sigset_t set;
592
    struct sigaction sigact;
593

    
594
    memset(&sigact, 0, sizeof(sigact));
595
    sigact.sa_handler = cpu_signal;
596
    sigaction(SIG_IPI, &sigact, NULL);
597

    
598
    sigemptyset(&set);
599
    sigaddset(&set, SIG_IPI);
600
    pthread_sigmask(SIG_UNBLOCK, &set, NULL);
601
}
602

    
603
#else /* _WIN32 */
604
static void qemu_kvm_init_cpu_signals(CPUArchState *env)
605
{
606
    abort();
607
}
608

    
609
static void qemu_tcg_init_cpu_signals(void)
610
{
611
}
612
#endif /* _WIN32 */
613

    
614
QemuMutex qemu_global_mutex;
615
static QemuCond qemu_io_proceeded_cond;
616
static bool iothread_requesting_mutex;
617

    
618
static QemuThread io_thread;
619

    
620
static QemuThread *tcg_cpu_thread;
621
static QemuCond *tcg_halt_cond;
622

    
623
/* cpu creation */
624
static QemuCond qemu_cpu_cond;
625
/* system init */
626
static QemuCond qemu_pause_cond;
627
static QemuCond qemu_work_cond;
628

    
629
void qemu_init_cpu_loop(void)
630
{
631
    qemu_init_sigbus();
632
    qemu_cond_init(&qemu_cpu_cond);
633
    qemu_cond_init(&qemu_pause_cond);
634
    qemu_cond_init(&qemu_work_cond);
635
    qemu_cond_init(&qemu_io_proceeded_cond);
636
    qemu_mutex_init(&qemu_global_mutex);
637

    
638
    qemu_thread_get_self(&io_thread);
639
}
640

    
641
void run_on_cpu(CPUArchState *env, void (*func)(void *data), void *data)
642
{
643
    struct qemu_work_item wi;
644

    
645
    if (qemu_cpu_is_self(env)) {
646
        func(data);
647
        return;
648
    }
649

    
650
    wi.func = func;
651
    wi.data = data;
652
    if (!env->queued_work_first) {
653
        env->queued_work_first = &wi;
654
    } else {
655
        env->queued_work_last->next = &wi;
656
    }
657
    env->queued_work_last = &wi;
658
    wi.next = NULL;
659
    wi.done = false;
660

    
661
    qemu_cpu_kick(env);
662
    while (!wi.done) {
663
        CPUArchState *self_env = cpu_single_env;
664

    
665
        qemu_cond_wait(&qemu_work_cond, &qemu_global_mutex);
666
        cpu_single_env = self_env;
667
    }
668
}
669

    
670
static void flush_queued_work(CPUArchState *env)
671
{
672
    struct qemu_work_item *wi;
673

    
674
    if (!env->queued_work_first) {
675
        return;
676
    }
677

    
678
    while ((wi = env->queued_work_first)) {
679
        env->queued_work_first = wi->next;
680
        wi->func(wi->data);
681
        wi->done = true;
682
    }
683
    env->queued_work_last = NULL;
684
    qemu_cond_broadcast(&qemu_work_cond);
685
}
686

    
687
static void qemu_wait_io_event_common(CPUArchState *env)
688
{
689
    if (env->stop) {
690
        env->stop = 0;
691
        env->stopped = 1;
692
        qemu_cond_signal(&qemu_pause_cond);
693
    }
694
    flush_queued_work(env);
695
    env->thread_kicked = false;
696
}
697

    
698
static void qemu_tcg_wait_io_event(void)
699
{
700
    CPUArchState *env;
701

    
702
    while (all_cpu_threads_idle()) {
703
       /* Start accounting real time to the virtual clock if the CPUs
704
          are idle.  */
705
        qemu_clock_warp(vm_clock);
706
        qemu_cond_wait(tcg_halt_cond, &qemu_global_mutex);
707
    }
708

    
709
    while (iothread_requesting_mutex) {
710
        qemu_cond_wait(&qemu_io_proceeded_cond, &qemu_global_mutex);
711
    }
712

    
713
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
714
        qemu_wait_io_event_common(env);
715
    }
716
}
717

    
718
static void qemu_kvm_wait_io_event(CPUArchState *env)
719
{
720
    while (cpu_thread_is_idle(env)) {
721
        qemu_cond_wait(env->halt_cond, &qemu_global_mutex);
722
    }
723

    
724
    qemu_kvm_eat_signals(env);
725
    qemu_wait_io_event_common(env);
726
}
727

    
728
static void *qemu_kvm_cpu_thread_fn(void *arg)
729
{
730
    CPUArchState *env = arg;
731
    CPUState *cpu = ENV_GET_CPU(env);
732
    int r;
733

    
734
    qemu_mutex_lock(&qemu_global_mutex);
735
    qemu_thread_get_self(cpu->thread);
736
    env->thread_id = qemu_get_thread_id();
737
    cpu_single_env = env;
738

    
739
    r = kvm_init_vcpu(env);
740
    if (r < 0) {
741
        fprintf(stderr, "kvm_init_vcpu failed: %s\n", strerror(-r));
742
        exit(1);
743
    }
744

    
745
    qemu_kvm_init_cpu_signals(env);
746

    
747
    /* signal CPU creation */
748
    env->created = 1;
749
    qemu_cond_signal(&qemu_cpu_cond);
750

    
751
    while (1) {
752
        if (cpu_can_run(env)) {
753
            r = kvm_cpu_exec(env);
754
            if (r == EXCP_DEBUG) {
755
                cpu_handle_guest_debug(env);
756
            }
757
        }
758
        qemu_kvm_wait_io_event(env);
759
    }
760

    
761
    return NULL;
762
}
763

    
764
static void *qemu_dummy_cpu_thread_fn(void *arg)
765
{
766
#ifdef _WIN32
767
    fprintf(stderr, "qtest is not supported under Windows\n");
768
    exit(1);
769
#else
770
    CPUArchState *env = arg;
771
    CPUState *cpu = ENV_GET_CPU(env);
772
    sigset_t waitset;
773
    int r;
774

    
775
    qemu_mutex_lock_iothread();
776
    qemu_thread_get_self(cpu->thread);
777
    env->thread_id = qemu_get_thread_id();
778

    
779
    sigemptyset(&waitset);
780
    sigaddset(&waitset, SIG_IPI);
781

    
782
    /* signal CPU creation */
783
    env->created = 1;
784
    qemu_cond_signal(&qemu_cpu_cond);
785

    
786
    cpu_single_env = env;
787
    while (1) {
788
        cpu_single_env = NULL;
789
        qemu_mutex_unlock_iothread();
790
        do {
791
            int sig;
792
            r = sigwait(&waitset, &sig);
793
        } while (r == -1 && (errno == EAGAIN || errno == EINTR));
794
        if (r == -1) {
795
            perror("sigwait");
796
            exit(1);
797
        }
798
        qemu_mutex_lock_iothread();
799
        cpu_single_env = env;
800
        qemu_wait_io_event_common(env);
801
    }
802

    
803
    return NULL;
804
#endif
805
}
806

    
807
static void tcg_exec_all(void);
808

    
809
static void *qemu_tcg_cpu_thread_fn(void *arg)
810
{
811
    CPUArchState *env = arg;
812
    CPUState *cpu = ENV_GET_CPU(env);
813

    
814
    qemu_tcg_init_cpu_signals();
815
    qemu_thread_get_self(cpu->thread);
816

    
817
    /* signal CPU creation */
818
    qemu_mutex_lock(&qemu_global_mutex);
819
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
820
        env->thread_id = qemu_get_thread_id();
821
        env->created = 1;
822
    }
823
    qemu_cond_signal(&qemu_cpu_cond);
824

    
825
    /* wait for initial kick-off after machine start */
826
    while (first_cpu->stopped) {
827
        qemu_cond_wait(tcg_halt_cond, &qemu_global_mutex);
828

    
829
        /* process any pending work */
830
        for (env = first_cpu; env != NULL; env = env->next_cpu) {
831
            qemu_wait_io_event_common(env);
832
        }
833
    }
834

    
835
    while (1) {
836
        tcg_exec_all();
837
        if (use_icount && qemu_clock_deadline(vm_clock) <= 0) {
838
            qemu_notify_event();
839
        }
840
        qemu_tcg_wait_io_event();
841
    }
842

    
843
    return NULL;
844
}
845

    
846
static void qemu_cpu_kick_thread(CPUArchState *env)
847
{
848
    CPUState *cpu = ENV_GET_CPU(env);
849
#ifndef _WIN32
850
    int err;
851

    
852
    err = pthread_kill(cpu->thread->thread, SIG_IPI);
853
    if (err) {
854
        fprintf(stderr, "qemu:%s: %s", __func__, strerror(err));
855
        exit(1);
856
    }
857
#else /* _WIN32 */
858
    if (!qemu_cpu_is_self(env)) {
859
        SuspendThread(cpu->hThread);
860
        cpu_signal(0);
861
        ResumeThread(cpu->hThread);
862
    }
863
#endif
864
}
865

    
866
void qemu_cpu_kick(void *_env)
867
{
868
    CPUArchState *env = _env;
869

    
870
    qemu_cond_broadcast(env->halt_cond);
871
    if (!tcg_enabled() && !env->thread_kicked) {
872
        qemu_cpu_kick_thread(env);
873
        env->thread_kicked = true;
874
    }
875
}
876

    
877
void qemu_cpu_kick_self(void)
878
{
879
#ifndef _WIN32
880
    assert(cpu_single_env);
881

    
882
    if (!cpu_single_env->thread_kicked) {
883
        qemu_cpu_kick_thread(cpu_single_env);
884
        cpu_single_env->thread_kicked = true;
885
    }
886
#else
887
    abort();
888
#endif
889
}
890

    
891
int qemu_cpu_is_self(void *_env)
892
{
893
    CPUArchState *env = _env;
894
    CPUState *cpu = ENV_GET_CPU(env);
895

    
896
    return qemu_thread_is_self(cpu->thread);
897
}
898

    
899
void qemu_mutex_lock_iothread(void)
900
{
901
    if (!tcg_enabled()) {
902
        qemu_mutex_lock(&qemu_global_mutex);
903
    } else {
904
        iothread_requesting_mutex = true;
905
        if (qemu_mutex_trylock(&qemu_global_mutex)) {
906
            qemu_cpu_kick_thread(first_cpu);
907
            qemu_mutex_lock(&qemu_global_mutex);
908
        }
909
        iothread_requesting_mutex = false;
910
        qemu_cond_broadcast(&qemu_io_proceeded_cond);
911
    }
912
}
913

    
914
void qemu_mutex_unlock_iothread(void)
915
{
916
    qemu_mutex_unlock(&qemu_global_mutex);
917
}
918

    
919
static int all_vcpus_paused(void)
920
{
921
    CPUArchState *penv = first_cpu;
922

    
923
    while (penv) {
924
        if (!penv->stopped) {
925
            return 0;
926
        }
927
        penv = penv->next_cpu;
928
    }
929

    
930
    return 1;
931
}
932

    
933
void pause_all_vcpus(void)
934
{
935
    CPUArchState *penv = first_cpu;
936

    
937
    qemu_clock_enable(vm_clock, false);
938
    while (penv) {
939
        penv->stop = 1;
940
        qemu_cpu_kick(penv);
941
        penv = penv->next_cpu;
942
    }
943

    
944
    if (!qemu_thread_is_self(&io_thread)) {
945
        cpu_stop_current();
946
        if (!kvm_enabled()) {
947
            while (penv) {
948
                penv->stop = 0;
949
                penv->stopped = 1;
950
                penv = penv->next_cpu;
951
            }
952
            return;
953
        }
954
    }
955

    
956
    while (!all_vcpus_paused()) {
957
        qemu_cond_wait(&qemu_pause_cond, &qemu_global_mutex);
958
        penv = first_cpu;
959
        while (penv) {
960
            qemu_cpu_kick(penv);
961
            penv = penv->next_cpu;
962
        }
963
    }
964
}
965

    
966
void resume_all_vcpus(void)
967
{
968
    CPUArchState *penv = first_cpu;
969

    
970
    qemu_clock_enable(vm_clock, true);
971
    while (penv) {
972
        penv->stop = 0;
973
        penv->stopped = 0;
974
        qemu_cpu_kick(penv);
975
        penv = penv->next_cpu;
976
    }
977
}
978

    
979
static void qemu_tcg_init_vcpu(void *_env)
980
{
981
    CPUArchState *env = _env;
982
    CPUState *cpu = ENV_GET_CPU(env);
983

    
984
    /* share a single thread for all cpus with TCG */
985
    if (!tcg_cpu_thread) {
986
        cpu->thread = g_malloc0(sizeof(QemuThread));
987
        env->halt_cond = g_malloc0(sizeof(QemuCond));
988
        qemu_cond_init(env->halt_cond);
989
        tcg_halt_cond = env->halt_cond;
990
        qemu_thread_create(cpu->thread, qemu_tcg_cpu_thread_fn, env,
991
                           QEMU_THREAD_JOINABLE);
992
#ifdef _WIN32
993
        cpu->hThread = qemu_thread_get_handle(cpu->thread);
994
#endif
995
        while (env->created == 0) {
996
            qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
997
        }
998
        tcg_cpu_thread = cpu->thread;
999
    } else {
1000
        cpu->thread = tcg_cpu_thread;
1001
        env->halt_cond = tcg_halt_cond;
1002
    }
1003
}
1004

    
1005
static void qemu_kvm_start_vcpu(CPUArchState *env)
1006
{
1007
    CPUState *cpu = ENV_GET_CPU(env);
1008

    
1009
    cpu->thread = g_malloc0(sizeof(QemuThread));
1010
    env->halt_cond = g_malloc0(sizeof(QemuCond));
1011
    qemu_cond_init(env->halt_cond);
1012
    qemu_thread_create(cpu->thread, qemu_kvm_cpu_thread_fn, env,
1013
                       QEMU_THREAD_JOINABLE);
1014
    while (env->created == 0) {
1015
        qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
1016
    }
1017
}
1018

    
1019
static void qemu_dummy_start_vcpu(CPUArchState *env)
1020
{
1021
    CPUState *cpu = ENV_GET_CPU(env);
1022

    
1023
    cpu->thread = g_malloc0(sizeof(QemuThread));
1024
    env->halt_cond = g_malloc0(sizeof(QemuCond));
1025
    qemu_cond_init(env->halt_cond);
1026
    qemu_thread_create(cpu->thread, qemu_dummy_cpu_thread_fn, env,
1027
                       QEMU_THREAD_JOINABLE);
1028
    while (env->created == 0) {
1029
        qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
1030
    }
1031
}
1032

    
1033
void qemu_init_vcpu(void *_env)
1034
{
1035
    CPUArchState *env = _env;
1036

    
1037
    env->nr_cores = smp_cores;
1038
    env->nr_threads = smp_threads;
1039
    env->stopped = 1;
1040
    if (kvm_enabled()) {
1041
        qemu_kvm_start_vcpu(env);
1042
    } else if (tcg_enabled()) {
1043
        qemu_tcg_init_vcpu(env);
1044
    } else {
1045
        qemu_dummy_start_vcpu(env);
1046
    }
1047
}
1048

    
1049
void cpu_stop_current(void)
1050
{
1051
    if (cpu_single_env) {
1052
        cpu_single_env->stop = 0;
1053
        cpu_single_env->stopped = 1;
1054
        cpu_exit(cpu_single_env);
1055
        qemu_cond_signal(&qemu_pause_cond);
1056
    }
1057
}
1058

    
1059
void vm_stop(RunState state)
1060
{
1061
    if (!qemu_thread_is_self(&io_thread)) {
1062
        qemu_system_vmstop_request(state);
1063
        /*
1064
         * FIXME: should not return to device code in case
1065
         * vm_stop() has been requested.
1066
         */
1067
        cpu_stop_current();
1068
        return;
1069
    }
1070
    do_vm_stop(state);
1071
}
1072

    
1073
/* does a state transition even if the VM is already stopped,
1074
   current state is forgotten forever */
1075
void vm_stop_force_state(RunState state)
1076
{
1077
    if (runstate_is_running()) {
1078
        vm_stop(state);
1079
    } else {
1080
        runstate_set(state);
1081
    }
1082
}
1083

    
1084
static int tcg_cpu_exec(CPUArchState *env)
1085
{
1086
    int ret;
1087
#ifdef CONFIG_PROFILER
1088
    int64_t ti;
1089
#endif
1090

    
1091
#ifdef CONFIG_PROFILER
1092
    ti = profile_getclock();
1093
#endif
1094
    if (use_icount) {
1095
        int64_t count;
1096
        int decr;
1097
        qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
1098
        env->icount_decr.u16.low = 0;
1099
        env->icount_extra = 0;
1100
        count = qemu_icount_round(qemu_clock_deadline(vm_clock));
1101
        qemu_icount += count;
1102
        decr = (count > 0xffff) ? 0xffff : count;
1103
        count -= decr;
1104
        env->icount_decr.u16.low = decr;
1105
        env->icount_extra = count;
1106
    }
1107
    ret = cpu_exec(env);
1108
#ifdef CONFIG_PROFILER
1109
    qemu_time += profile_getclock() - ti;
1110
#endif
1111
    if (use_icount) {
1112
        /* Fold pending instructions back into the
1113
           instruction counter, and clear the interrupt flag.  */
1114
        qemu_icount -= (env->icount_decr.u16.low
1115
                        + env->icount_extra);
1116
        env->icount_decr.u32 = 0;
1117
        env->icount_extra = 0;
1118
    }
1119
    return ret;
1120
}
1121

    
1122
static void tcg_exec_all(void)
1123
{
1124
    int r;
1125

    
1126
    /* Account partial waits to the vm_clock.  */
1127
    qemu_clock_warp(vm_clock);
1128

    
1129
    if (next_cpu == NULL) {
1130
        next_cpu = first_cpu;
1131
    }
1132
    for (; next_cpu != NULL && !exit_request; next_cpu = next_cpu->next_cpu) {
1133
        CPUArchState *env = next_cpu;
1134

    
1135
        qemu_clock_enable(vm_clock,
1136
                          (env->singlestep_enabled & SSTEP_NOTIMER) == 0);
1137

    
1138
        if (cpu_can_run(env)) {
1139
            r = tcg_cpu_exec(env);
1140
            if (r == EXCP_DEBUG) {
1141
                cpu_handle_guest_debug(env);
1142
                break;
1143
            }
1144
        } else if (env->stop || env->stopped) {
1145
            break;
1146
        }
1147
    }
1148
    exit_request = 0;
1149
}
1150

    
1151
void set_numa_modes(void)
1152
{
1153
    CPUArchState *env;
1154
    int i;
1155

    
1156
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
1157
        for (i = 0; i < nb_numa_nodes; i++) {
1158
            if (node_cpumask[i] & (1 << env->cpu_index)) {
1159
                env->numa_node = i;
1160
            }
1161
        }
1162
    }
1163
}
1164

    
1165
void set_cpu_log(const char *optarg)
1166
{
1167
    int mask;
1168
    const CPULogItem *item;
1169

    
1170
    mask = cpu_str_to_log_mask(optarg);
1171
    if (!mask) {
1172
        printf("Log items (comma separated):\n");
1173
        for (item = cpu_log_items; item->mask != 0; item++) {
1174
            printf("%-10s %s\n", item->name, item->help);
1175
        }
1176
        exit(1);
1177
    }
1178
    cpu_set_log(mask);
1179
}
1180

    
1181
void set_cpu_log_filename(const char *optarg)
1182
{
1183
    cpu_set_log_filename(optarg);
1184
}
1185

    
1186
void list_cpus(FILE *f, fprintf_function cpu_fprintf, const char *optarg)
1187
{
1188
    /* XXX: implement xxx_cpu_list for targets that still miss it */
1189
#if defined(cpu_list_id)
1190
    cpu_list_id(f, cpu_fprintf, optarg);
1191
#elif defined(cpu_list)
1192
    cpu_list(f, cpu_fprintf); /* deprecated */
1193
#endif
1194
}
1195

    
1196
CpuInfoList *qmp_query_cpus(Error **errp)
1197
{
1198
    CpuInfoList *head = NULL, *cur_item = NULL;
1199
    CPUArchState *env;
1200

    
1201
    for(env = first_cpu; env != NULL; env = env->next_cpu) {
1202
        CpuInfoList *info;
1203

    
1204
        cpu_synchronize_state(env);
1205

    
1206
        info = g_malloc0(sizeof(*info));
1207
        info->value = g_malloc0(sizeof(*info->value));
1208
        info->value->CPU = env->cpu_index;
1209
        info->value->current = (env == first_cpu);
1210
        info->value->halted = env->halted;
1211
        info->value->thread_id = env->thread_id;
1212
#if defined(TARGET_I386)
1213
        info->value->has_pc = true;
1214
        info->value->pc = env->eip + env->segs[R_CS].base;
1215
#elif defined(TARGET_PPC)
1216
        info->value->has_nip = true;
1217
        info->value->nip = env->nip;
1218
#elif defined(TARGET_SPARC)
1219
        info->value->has_pc = true;
1220
        info->value->pc = env->pc;
1221
        info->value->has_npc = true;
1222
        info->value->npc = env->npc;
1223
#elif defined(TARGET_MIPS)
1224
        info->value->has_PC = true;
1225
        info->value->PC = env->active_tc.PC;
1226
#endif
1227

    
1228
        /* XXX: waiting for the qapi to support GSList */
1229
        if (!cur_item) {
1230
            head = cur_item = info;
1231
        } else {
1232
            cur_item->next = info;
1233
            cur_item = info;
1234
        }
1235
    }
1236

    
1237
    return head;
1238
}
1239

    
1240
void qmp_memsave(int64_t addr, int64_t size, const char *filename,
1241
                 bool has_cpu, int64_t cpu_index, Error **errp)
1242
{
1243
    FILE *f;
1244
    uint32_t l;
1245
    CPUArchState *env;
1246
    uint8_t buf[1024];
1247

    
1248
    if (!has_cpu) {
1249
        cpu_index = 0;
1250
    }
1251

    
1252
    for (env = first_cpu; env; env = env->next_cpu) {
1253
        if (cpu_index == env->cpu_index) {
1254
            break;
1255
        }
1256
    }
1257

    
1258
    if (env == NULL) {
1259
        error_set(errp, QERR_INVALID_PARAMETER_VALUE, "cpu-index",
1260
                  "a CPU number");
1261
        return;
1262
    }
1263

    
1264
    f = fopen(filename, "wb");
1265
    if (!f) {
1266
        error_set(errp, QERR_OPEN_FILE_FAILED, filename);
1267
        return;
1268
    }
1269

    
1270
    while (size != 0) {
1271
        l = sizeof(buf);
1272
        if (l > size)
1273
            l = size;
1274
        cpu_memory_rw_debug(env, addr, buf, l, 0);
1275
        if (fwrite(buf, 1, l, f) != l) {
1276
            error_set(errp, QERR_IO_ERROR);
1277
            goto exit;
1278
        }
1279
        addr += l;
1280
        size -= l;
1281
    }
1282

    
1283
exit:
1284
    fclose(f);
1285
}
1286

    
1287
void qmp_pmemsave(int64_t addr, int64_t size, const char *filename,
1288
                  Error **errp)
1289
{
1290
    FILE *f;
1291
    uint32_t l;
1292
    uint8_t buf[1024];
1293

    
1294
    f = fopen(filename, "wb");
1295
    if (!f) {
1296
        error_set(errp, QERR_OPEN_FILE_FAILED, filename);
1297
        return;
1298
    }
1299

    
1300
    while (size != 0) {
1301
        l = sizeof(buf);
1302
        if (l > size)
1303
            l = size;
1304
        cpu_physical_memory_rw(addr, buf, l, 0);
1305
        if (fwrite(buf, 1, l, f) != l) {
1306
            error_set(errp, QERR_IO_ERROR);
1307
            goto exit;
1308
        }
1309
        addr += l;
1310
        size -= l;
1311
    }
1312

    
1313
exit:
1314
    fclose(f);
1315
}
1316

    
1317
void qmp_inject_nmi(Error **errp)
1318
{
1319
#if defined(TARGET_I386)
1320
    CPUArchState *env;
1321

    
1322
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
1323
        if (!env->apic_state) {
1324
            cpu_interrupt(env, CPU_INTERRUPT_NMI);
1325
        } else {
1326
            apic_deliver_nmi(env->apic_state);
1327
        }
1328
    }
1329
#else
1330
    error_set(errp, QERR_UNSUPPORTED);
1331
#endif
1332
}