Statistics
| Branch: | Revision:

root / block / qed.c @ 820100fd

History | View | Annotate | Download (45.5 kB)

1
/*
2
 * QEMU Enhanced Disk Format
3
 *
4
 * Copyright IBM, Corp. 2010
5
 *
6
 * Authors:
7
 *  Stefan Hajnoczi   <stefanha@linux.vnet.ibm.com>
8
 *  Anthony Liguori   <aliguori@us.ibm.com>
9
 *
10
 * This work is licensed under the terms of the GNU LGPL, version 2 or later.
11
 * See the COPYING.LIB file in the top-level directory.
12
 *
13
 */
14

    
15
#include "qemu-timer.h"
16
#include "trace.h"
17
#include "qed.h"
18
#include "qerror.h"
19
#include "migration.h"
20

    
21
static void qed_aio_cancel(BlockDriverAIOCB *blockacb)
22
{
23
    QEDAIOCB *acb = (QEDAIOCB *)blockacb;
24
    bool finished = false;
25

    
26
    /* Wait for the request to finish */
27
    acb->finished = &finished;
28
    while (!finished) {
29
        qemu_aio_wait();
30
    }
31
}
32

    
33
static AIOPool qed_aio_pool = {
34
    .aiocb_size         = sizeof(QEDAIOCB),
35
    .cancel             = qed_aio_cancel,
36
};
37

    
38
static int bdrv_qed_probe(const uint8_t *buf, int buf_size,
39
                          const char *filename)
40
{
41
    const QEDHeader *header = (const QEDHeader *)buf;
42

    
43
    if (buf_size < sizeof(*header)) {
44
        return 0;
45
    }
46
    if (le32_to_cpu(header->magic) != QED_MAGIC) {
47
        return 0;
48
    }
49
    return 100;
50
}
51

    
52
/**
53
 * Check whether an image format is raw
54
 *
55
 * @fmt:    Backing file format, may be NULL
56
 */
57
static bool qed_fmt_is_raw(const char *fmt)
58
{
59
    return fmt && strcmp(fmt, "raw") == 0;
60
}
61

    
62
static void qed_header_le_to_cpu(const QEDHeader *le, QEDHeader *cpu)
63
{
64
    cpu->magic = le32_to_cpu(le->magic);
65
    cpu->cluster_size = le32_to_cpu(le->cluster_size);
66
    cpu->table_size = le32_to_cpu(le->table_size);
67
    cpu->header_size = le32_to_cpu(le->header_size);
68
    cpu->features = le64_to_cpu(le->features);
69
    cpu->compat_features = le64_to_cpu(le->compat_features);
70
    cpu->autoclear_features = le64_to_cpu(le->autoclear_features);
71
    cpu->l1_table_offset = le64_to_cpu(le->l1_table_offset);
72
    cpu->image_size = le64_to_cpu(le->image_size);
73
    cpu->backing_filename_offset = le32_to_cpu(le->backing_filename_offset);
74
    cpu->backing_filename_size = le32_to_cpu(le->backing_filename_size);
75
}
76

    
77
static void qed_header_cpu_to_le(const QEDHeader *cpu, QEDHeader *le)
78
{
79
    le->magic = cpu_to_le32(cpu->magic);
80
    le->cluster_size = cpu_to_le32(cpu->cluster_size);
81
    le->table_size = cpu_to_le32(cpu->table_size);
82
    le->header_size = cpu_to_le32(cpu->header_size);
83
    le->features = cpu_to_le64(cpu->features);
84
    le->compat_features = cpu_to_le64(cpu->compat_features);
85
    le->autoclear_features = cpu_to_le64(cpu->autoclear_features);
86
    le->l1_table_offset = cpu_to_le64(cpu->l1_table_offset);
87
    le->image_size = cpu_to_le64(cpu->image_size);
88
    le->backing_filename_offset = cpu_to_le32(cpu->backing_filename_offset);
89
    le->backing_filename_size = cpu_to_le32(cpu->backing_filename_size);
90
}
91

    
92
static int qed_write_header_sync(BDRVQEDState *s)
93
{
94
    QEDHeader le;
95
    int ret;
96

    
97
    qed_header_cpu_to_le(&s->header, &le);
98
    ret = bdrv_pwrite(s->bs->file, 0, &le, sizeof(le));
99
    if (ret != sizeof(le)) {
100
        return ret;
101
    }
102
    return 0;
103
}
104

    
105
typedef struct {
106
    GenericCB gencb;
107
    BDRVQEDState *s;
108
    struct iovec iov;
109
    QEMUIOVector qiov;
110
    int nsectors;
111
    uint8_t *buf;
112
} QEDWriteHeaderCB;
113

    
114
static void qed_write_header_cb(void *opaque, int ret)
115
{
116
    QEDWriteHeaderCB *write_header_cb = opaque;
117

    
118
    qemu_vfree(write_header_cb->buf);
119
    gencb_complete(write_header_cb, ret);
120
}
121

    
122
static void qed_write_header_read_cb(void *opaque, int ret)
123
{
124
    QEDWriteHeaderCB *write_header_cb = opaque;
125
    BDRVQEDState *s = write_header_cb->s;
126

    
127
    if (ret) {
128
        qed_write_header_cb(write_header_cb, ret);
129
        return;
130
    }
131

    
132
    /* Update header */
133
    qed_header_cpu_to_le(&s->header, (QEDHeader *)write_header_cb->buf);
134

    
135
    bdrv_aio_writev(s->bs->file, 0, &write_header_cb->qiov,
136
                    write_header_cb->nsectors, qed_write_header_cb,
137
                    write_header_cb);
138
}
139

    
140
/**
141
 * Update header in-place (does not rewrite backing filename or other strings)
142
 *
143
 * This function only updates known header fields in-place and does not affect
144
 * extra data after the QED header.
145
 */
146
static void qed_write_header(BDRVQEDState *s, BlockDriverCompletionFunc cb,
147
                             void *opaque)
148
{
149
    /* We must write full sectors for O_DIRECT but cannot necessarily generate
150
     * the data following the header if an unrecognized compat feature is
151
     * active.  Therefore, first read the sectors containing the header, update
152
     * them, and write back.
153
     */
154

    
155
    int nsectors = (sizeof(QEDHeader) + BDRV_SECTOR_SIZE - 1) /
156
                   BDRV_SECTOR_SIZE;
157
    size_t len = nsectors * BDRV_SECTOR_SIZE;
158
    QEDWriteHeaderCB *write_header_cb = gencb_alloc(sizeof(*write_header_cb),
159
                                                    cb, opaque);
160

    
161
    write_header_cb->s = s;
162
    write_header_cb->nsectors = nsectors;
163
    write_header_cb->buf = qemu_blockalign(s->bs, len);
164
    write_header_cb->iov.iov_base = write_header_cb->buf;
165
    write_header_cb->iov.iov_len = len;
166
    qemu_iovec_init_external(&write_header_cb->qiov, &write_header_cb->iov, 1);
167

    
168
    bdrv_aio_readv(s->bs->file, 0, &write_header_cb->qiov, nsectors,
169
                   qed_write_header_read_cb, write_header_cb);
170
}
171

    
172
static uint64_t qed_max_image_size(uint32_t cluster_size, uint32_t table_size)
173
{
174
    uint64_t table_entries;
175
    uint64_t l2_size;
176

    
177
    table_entries = (table_size * cluster_size) / sizeof(uint64_t);
178
    l2_size = table_entries * cluster_size;
179

    
180
    return l2_size * table_entries;
181
}
182

    
183
static bool qed_is_cluster_size_valid(uint32_t cluster_size)
184
{
185
    if (cluster_size < QED_MIN_CLUSTER_SIZE ||
186
        cluster_size > QED_MAX_CLUSTER_SIZE) {
187
        return false;
188
    }
189
    if (cluster_size & (cluster_size - 1)) {
190
        return false; /* not power of 2 */
191
    }
192
    return true;
193
}
194

    
195
static bool qed_is_table_size_valid(uint32_t table_size)
196
{
197
    if (table_size < QED_MIN_TABLE_SIZE ||
198
        table_size > QED_MAX_TABLE_SIZE) {
199
        return false;
200
    }
201
    if (table_size & (table_size - 1)) {
202
        return false; /* not power of 2 */
203
    }
204
    return true;
205
}
206

    
207
static bool qed_is_image_size_valid(uint64_t image_size, uint32_t cluster_size,
208
                                    uint32_t table_size)
209
{
210
    if (image_size % BDRV_SECTOR_SIZE != 0) {
211
        return false; /* not multiple of sector size */
212
    }
213
    if (image_size > qed_max_image_size(cluster_size, table_size)) {
214
        return false; /* image is too large */
215
    }
216
    return true;
217
}
218

    
219
/**
220
 * Read a string of known length from the image file
221
 *
222
 * @file:       Image file
223
 * @offset:     File offset to start of string, in bytes
224
 * @n:          String length in bytes
225
 * @buf:        Destination buffer
226
 * @buflen:     Destination buffer length in bytes
227
 * @ret:        0 on success, -errno on failure
228
 *
229
 * The string is NUL-terminated.
230
 */
231
static int qed_read_string(BlockDriverState *file, uint64_t offset, size_t n,
232
                           char *buf, size_t buflen)
233
{
234
    int ret;
235
    if (n >= buflen) {
236
        return -EINVAL;
237
    }
238
    ret = bdrv_pread(file, offset, buf, n);
239
    if (ret < 0) {
240
        return ret;
241
    }
242
    buf[n] = '\0';
243
    return 0;
244
}
245

    
246
/**
247
 * Allocate new clusters
248
 *
249
 * @s:          QED state
250
 * @n:          Number of contiguous clusters to allocate
251
 * @ret:        Offset of first allocated cluster
252
 *
253
 * This function only produces the offset where the new clusters should be
254
 * written.  It updates BDRVQEDState but does not make any changes to the image
255
 * file.
256
 */
257
static uint64_t qed_alloc_clusters(BDRVQEDState *s, unsigned int n)
258
{
259
    uint64_t offset = s->file_size;
260
    s->file_size += n * s->header.cluster_size;
261
    return offset;
262
}
263

    
264
QEDTable *qed_alloc_table(BDRVQEDState *s)
265
{
266
    /* Honor O_DIRECT memory alignment requirements */
267
    return qemu_blockalign(s->bs,
268
                           s->header.cluster_size * s->header.table_size);
269
}
270

    
271
/**
272
 * Allocate a new zeroed L2 table
273
 */
274
static CachedL2Table *qed_new_l2_table(BDRVQEDState *s)
275
{
276
    CachedL2Table *l2_table = qed_alloc_l2_cache_entry(&s->l2_cache);
277

    
278
    l2_table->table = qed_alloc_table(s);
279
    l2_table->offset = qed_alloc_clusters(s, s->header.table_size);
280

    
281
    memset(l2_table->table->offsets, 0,
282
           s->header.cluster_size * s->header.table_size);
283
    return l2_table;
284
}
285

    
286
static void qed_aio_next_io(void *opaque, int ret);
287

    
288
static void qed_plug_allocating_write_reqs(BDRVQEDState *s)
289
{
290
    assert(!s->allocating_write_reqs_plugged);
291

    
292
    s->allocating_write_reqs_plugged = true;
293
}
294

    
295
static void qed_unplug_allocating_write_reqs(BDRVQEDState *s)
296
{
297
    QEDAIOCB *acb;
298

    
299
    assert(s->allocating_write_reqs_plugged);
300

    
301
    s->allocating_write_reqs_plugged = false;
302

    
303
    acb = QSIMPLEQ_FIRST(&s->allocating_write_reqs);
304
    if (acb) {
305
        qed_aio_next_io(acb, 0);
306
    }
307
}
308

    
309
static void qed_finish_clear_need_check(void *opaque, int ret)
310
{
311
    /* Do nothing */
312
}
313

    
314
static void qed_flush_after_clear_need_check(void *opaque, int ret)
315
{
316
    BDRVQEDState *s = opaque;
317

    
318
    bdrv_aio_flush(s->bs, qed_finish_clear_need_check, s);
319

    
320
    /* No need to wait until flush completes */
321
    qed_unplug_allocating_write_reqs(s);
322
}
323

    
324
static void qed_clear_need_check(void *opaque, int ret)
325
{
326
    BDRVQEDState *s = opaque;
327

    
328
    if (ret) {
329
        qed_unplug_allocating_write_reqs(s);
330
        return;
331
    }
332

    
333
    s->header.features &= ~QED_F_NEED_CHECK;
334
    qed_write_header(s, qed_flush_after_clear_need_check, s);
335
}
336

    
337
static void qed_need_check_timer_cb(void *opaque)
338
{
339
    BDRVQEDState *s = opaque;
340

    
341
    /* The timer should only fire when allocating writes have drained */
342
    assert(!QSIMPLEQ_FIRST(&s->allocating_write_reqs));
343

    
344
    trace_qed_need_check_timer_cb(s);
345

    
346
    qed_plug_allocating_write_reqs(s);
347

    
348
    /* Ensure writes are on disk before clearing flag */
349
    bdrv_aio_flush(s->bs, qed_clear_need_check, s);
350
}
351

    
352
static void qed_start_need_check_timer(BDRVQEDState *s)
353
{
354
    trace_qed_start_need_check_timer(s);
355

    
356
    /* Use vm_clock so we don't alter the image file while suspended for
357
     * migration.
358
     */
359
    qemu_mod_timer(s->need_check_timer, qemu_get_clock_ns(vm_clock) +
360
                   get_ticks_per_sec() * QED_NEED_CHECK_TIMEOUT);
361
}
362

    
363
/* It's okay to call this multiple times or when no timer is started */
364
static void qed_cancel_need_check_timer(BDRVQEDState *s)
365
{
366
    trace_qed_cancel_need_check_timer(s);
367
    qemu_del_timer(s->need_check_timer);
368
}
369

    
370
static void bdrv_qed_rebind(BlockDriverState *bs)
371
{
372
    BDRVQEDState *s = bs->opaque;
373
    s->bs = bs;
374
}
375

    
376
static int bdrv_qed_open(BlockDriverState *bs, int flags)
377
{
378
    BDRVQEDState *s = bs->opaque;
379
    QEDHeader le_header;
380
    int64_t file_size;
381
    int ret;
382

    
383
    s->bs = bs;
384
    QSIMPLEQ_INIT(&s->allocating_write_reqs);
385

    
386
    ret = bdrv_pread(bs->file, 0, &le_header, sizeof(le_header));
387
    if (ret < 0) {
388
        return ret;
389
    }
390
    qed_header_le_to_cpu(&le_header, &s->header);
391

    
392
    if (s->header.magic != QED_MAGIC) {
393
        return -EINVAL;
394
    }
395
    if (s->header.features & ~QED_FEATURE_MASK) {
396
        /* image uses unsupported feature bits */
397
        char buf[64];
398
        snprintf(buf, sizeof(buf), "%" PRIx64,
399
            s->header.features & ~QED_FEATURE_MASK);
400
        qerror_report(QERR_UNKNOWN_BLOCK_FORMAT_FEATURE,
401
            bs->device_name, "QED", buf);
402
        return -ENOTSUP;
403
    }
404
    if (!qed_is_cluster_size_valid(s->header.cluster_size)) {
405
        return -EINVAL;
406
    }
407

    
408
    /* Round down file size to the last cluster */
409
    file_size = bdrv_getlength(bs->file);
410
    if (file_size < 0) {
411
        return file_size;
412
    }
413
    s->file_size = qed_start_of_cluster(s, file_size);
414

    
415
    if (!qed_is_table_size_valid(s->header.table_size)) {
416
        return -EINVAL;
417
    }
418
    if (!qed_is_image_size_valid(s->header.image_size,
419
                                 s->header.cluster_size,
420
                                 s->header.table_size)) {
421
        return -EINVAL;
422
    }
423
    if (!qed_check_table_offset(s, s->header.l1_table_offset)) {
424
        return -EINVAL;
425
    }
426

    
427
    s->table_nelems = (s->header.cluster_size * s->header.table_size) /
428
                      sizeof(uint64_t);
429
    s->l2_shift = ffs(s->header.cluster_size) - 1;
430
    s->l2_mask = s->table_nelems - 1;
431
    s->l1_shift = s->l2_shift + ffs(s->table_nelems) - 1;
432

    
433
    if ((s->header.features & QED_F_BACKING_FILE)) {
434
        if ((uint64_t)s->header.backing_filename_offset +
435
            s->header.backing_filename_size >
436
            s->header.cluster_size * s->header.header_size) {
437
            return -EINVAL;
438
        }
439

    
440
        ret = qed_read_string(bs->file, s->header.backing_filename_offset,
441
                              s->header.backing_filename_size, bs->backing_file,
442
                              sizeof(bs->backing_file));
443
        if (ret < 0) {
444
            return ret;
445
        }
446

    
447
        if (s->header.features & QED_F_BACKING_FORMAT_NO_PROBE) {
448
            pstrcpy(bs->backing_format, sizeof(bs->backing_format), "raw");
449
        }
450
    }
451

    
452
    /* Reset unknown autoclear feature bits.  This is a backwards
453
     * compatibility mechanism that allows images to be opened by older
454
     * programs, which "knock out" unknown feature bits.  When an image is
455
     * opened by a newer program again it can detect that the autoclear
456
     * feature is no longer valid.
457
     */
458
    if ((s->header.autoclear_features & ~QED_AUTOCLEAR_FEATURE_MASK) != 0 &&
459
        !bdrv_is_read_only(bs->file) && !(flags & BDRV_O_INCOMING)) {
460
        s->header.autoclear_features &= QED_AUTOCLEAR_FEATURE_MASK;
461

    
462
        ret = qed_write_header_sync(s);
463
        if (ret) {
464
            return ret;
465
        }
466

    
467
        /* From here on only known autoclear feature bits are valid */
468
        bdrv_flush(bs->file);
469
    }
470

    
471
    s->l1_table = qed_alloc_table(s);
472
    qed_init_l2_cache(&s->l2_cache);
473

    
474
    ret = qed_read_l1_table_sync(s);
475
    if (ret) {
476
        goto out;
477
    }
478

    
479
    /* If image was not closed cleanly, check consistency */
480
    if (s->header.features & QED_F_NEED_CHECK) {
481
        /* Read-only images cannot be fixed.  There is no risk of corruption
482
         * since write operations are not possible.  Therefore, allow
483
         * potentially inconsistent images to be opened read-only.  This can
484
         * aid data recovery from an otherwise inconsistent image.
485
         */
486
        if (!bdrv_is_read_only(bs->file) &&
487
            !(flags & BDRV_O_INCOMING)) {
488
            BdrvCheckResult result = {0};
489

    
490
            ret = qed_check(s, &result, true);
491
            if (ret) {
492
                goto out;
493
            }
494
            if (!result.corruptions && !result.check_errors) {
495
                /* Ensure fixes reach storage before clearing check bit */
496
                bdrv_flush(s->bs);
497

    
498
                s->header.features &= ~QED_F_NEED_CHECK;
499
                qed_write_header_sync(s);
500
            }
501
        }
502
    }
503

    
504
    s->need_check_timer = qemu_new_timer_ns(vm_clock,
505
                                            qed_need_check_timer_cb, s);
506

    
507
out:
508
    if (ret) {
509
        qed_free_l2_cache(&s->l2_cache);
510
        qemu_vfree(s->l1_table);
511
    }
512
    return ret;
513
}
514

    
515
static void bdrv_qed_close(BlockDriverState *bs)
516
{
517
    BDRVQEDState *s = bs->opaque;
518

    
519
    qed_cancel_need_check_timer(s);
520
    qemu_free_timer(s->need_check_timer);
521

    
522
    /* Ensure writes reach stable storage */
523
    bdrv_flush(bs->file);
524

    
525
    /* Clean shutdown, no check required on next open */
526
    if (s->header.features & QED_F_NEED_CHECK) {
527
        s->header.features &= ~QED_F_NEED_CHECK;
528
        qed_write_header_sync(s);
529
    }
530

    
531
    qed_free_l2_cache(&s->l2_cache);
532
    qemu_vfree(s->l1_table);
533
}
534

    
535
static int qed_create(const char *filename, uint32_t cluster_size,
536
                      uint64_t image_size, uint32_t table_size,
537
                      const char *backing_file, const char *backing_fmt)
538
{
539
    QEDHeader header = {
540
        .magic = QED_MAGIC,
541
        .cluster_size = cluster_size,
542
        .table_size = table_size,
543
        .header_size = 1,
544
        .features = 0,
545
        .compat_features = 0,
546
        .l1_table_offset = cluster_size,
547
        .image_size = image_size,
548
    };
549
    QEDHeader le_header;
550
    uint8_t *l1_table = NULL;
551
    size_t l1_size = header.cluster_size * header.table_size;
552
    int ret = 0;
553
    BlockDriverState *bs = NULL;
554

    
555
    ret = bdrv_create_file(filename, NULL);
556
    if (ret < 0) {
557
        return ret;
558
    }
559

    
560
    ret = bdrv_file_open(&bs, filename, BDRV_O_RDWR | BDRV_O_CACHE_WB);
561
    if (ret < 0) {
562
        return ret;
563
    }
564

    
565
    /* File must start empty and grow, check truncate is supported */
566
    ret = bdrv_truncate(bs, 0);
567
    if (ret < 0) {
568
        goto out;
569
    }
570

    
571
    if (backing_file) {
572
        header.features |= QED_F_BACKING_FILE;
573
        header.backing_filename_offset = sizeof(le_header);
574
        header.backing_filename_size = strlen(backing_file);
575

    
576
        if (qed_fmt_is_raw(backing_fmt)) {
577
            header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
578
        }
579
    }
580

    
581
    qed_header_cpu_to_le(&header, &le_header);
582
    ret = bdrv_pwrite(bs, 0, &le_header, sizeof(le_header));
583
    if (ret < 0) {
584
        goto out;
585
    }
586
    ret = bdrv_pwrite(bs, sizeof(le_header), backing_file,
587
                      header.backing_filename_size);
588
    if (ret < 0) {
589
        goto out;
590
    }
591

    
592
    l1_table = g_malloc0(l1_size);
593
    ret = bdrv_pwrite(bs, header.l1_table_offset, l1_table, l1_size);
594
    if (ret < 0) {
595
        goto out;
596
    }
597

    
598
    ret = 0; /* success */
599
out:
600
    g_free(l1_table);
601
    bdrv_delete(bs);
602
    return ret;
603
}
604

    
605
static int bdrv_qed_create(const char *filename, QEMUOptionParameter *options)
606
{
607
    uint64_t image_size = 0;
608
    uint32_t cluster_size = QED_DEFAULT_CLUSTER_SIZE;
609
    uint32_t table_size = QED_DEFAULT_TABLE_SIZE;
610
    const char *backing_file = NULL;
611
    const char *backing_fmt = NULL;
612

    
613
    while (options && options->name) {
614
        if (!strcmp(options->name, BLOCK_OPT_SIZE)) {
615
            image_size = options->value.n;
616
        } else if (!strcmp(options->name, BLOCK_OPT_BACKING_FILE)) {
617
            backing_file = options->value.s;
618
        } else if (!strcmp(options->name, BLOCK_OPT_BACKING_FMT)) {
619
            backing_fmt = options->value.s;
620
        } else if (!strcmp(options->name, BLOCK_OPT_CLUSTER_SIZE)) {
621
            if (options->value.n) {
622
                cluster_size = options->value.n;
623
            }
624
        } else if (!strcmp(options->name, BLOCK_OPT_TABLE_SIZE)) {
625
            if (options->value.n) {
626
                table_size = options->value.n;
627
            }
628
        }
629
        options++;
630
    }
631

    
632
    if (!qed_is_cluster_size_valid(cluster_size)) {
633
        fprintf(stderr, "QED cluster size must be within range [%u, %u] and power of 2\n",
634
                QED_MIN_CLUSTER_SIZE, QED_MAX_CLUSTER_SIZE);
635
        return -EINVAL;
636
    }
637
    if (!qed_is_table_size_valid(table_size)) {
638
        fprintf(stderr, "QED table size must be within range [%u, %u] and power of 2\n",
639
                QED_MIN_TABLE_SIZE, QED_MAX_TABLE_SIZE);
640
        return -EINVAL;
641
    }
642
    if (!qed_is_image_size_valid(image_size, cluster_size, table_size)) {
643
        fprintf(stderr, "QED image size must be a non-zero multiple of "
644
                        "cluster size and less than %" PRIu64 " bytes\n",
645
                qed_max_image_size(cluster_size, table_size));
646
        return -EINVAL;
647
    }
648

    
649
    return qed_create(filename, cluster_size, image_size, table_size,
650
                      backing_file, backing_fmt);
651
}
652

    
653
typedef struct {
654
    Coroutine *co;
655
    int is_allocated;
656
    int *pnum;
657
} QEDIsAllocatedCB;
658

    
659
static void qed_is_allocated_cb(void *opaque, int ret, uint64_t offset, size_t len)
660
{
661
    QEDIsAllocatedCB *cb = opaque;
662
    *cb->pnum = len / BDRV_SECTOR_SIZE;
663
    cb->is_allocated = (ret == QED_CLUSTER_FOUND || ret == QED_CLUSTER_ZERO);
664
    if (cb->co) {
665
        qemu_coroutine_enter(cb->co, NULL);
666
    }
667
}
668

    
669
static int coroutine_fn bdrv_qed_co_is_allocated(BlockDriverState *bs,
670
                                                 int64_t sector_num,
671
                                                 int nb_sectors, int *pnum)
672
{
673
    BDRVQEDState *s = bs->opaque;
674
    uint64_t pos = (uint64_t)sector_num * BDRV_SECTOR_SIZE;
675
    size_t len = (size_t)nb_sectors * BDRV_SECTOR_SIZE;
676
    QEDIsAllocatedCB cb = {
677
        .is_allocated = -1,
678
        .pnum = pnum,
679
    };
680
    QEDRequest request = { .l2_table = NULL };
681

    
682
    qed_find_cluster(s, &request, pos, len, qed_is_allocated_cb, &cb);
683

    
684
    /* Now sleep if the callback wasn't invoked immediately */
685
    while (cb.is_allocated == -1) {
686
        cb.co = qemu_coroutine_self();
687
        qemu_coroutine_yield();
688
    }
689

    
690
    qed_unref_l2_cache_entry(request.l2_table);
691

    
692
    return cb.is_allocated;
693
}
694

    
695
static int bdrv_qed_make_empty(BlockDriverState *bs)
696
{
697
    return -ENOTSUP;
698
}
699

    
700
static BDRVQEDState *acb_to_s(QEDAIOCB *acb)
701
{
702
    return acb->common.bs->opaque;
703
}
704

    
705
/**
706
 * Read from the backing file or zero-fill if no backing file
707
 *
708
 * @s:          QED state
709
 * @pos:        Byte position in device
710
 * @qiov:       Destination I/O vector
711
 * @cb:         Completion function
712
 * @opaque:     User data for completion function
713
 *
714
 * This function reads qiov->size bytes starting at pos from the backing file.
715
 * If there is no backing file then zeroes are read.
716
 */
717
static void qed_read_backing_file(BDRVQEDState *s, uint64_t pos,
718
                                  QEMUIOVector *qiov,
719
                                  BlockDriverCompletionFunc *cb, void *opaque)
720
{
721
    uint64_t backing_length = 0;
722
    size_t size;
723

    
724
    /* If there is a backing file, get its length.  Treat the absence of a
725
     * backing file like a zero length backing file.
726
     */
727
    if (s->bs->backing_hd) {
728
        int64_t l = bdrv_getlength(s->bs->backing_hd);
729
        if (l < 0) {
730
            cb(opaque, l);
731
            return;
732
        }
733
        backing_length = l;
734
    }
735

    
736
    /* Zero all sectors if reading beyond the end of the backing file */
737
    if (pos >= backing_length ||
738
        pos + qiov->size > backing_length) {
739
        qemu_iovec_memset(qiov, 0, qiov->size);
740
    }
741

    
742
    /* Complete now if there are no backing file sectors to read */
743
    if (pos >= backing_length) {
744
        cb(opaque, 0);
745
        return;
746
    }
747

    
748
    /* If the read straddles the end of the backing file, shorten it */
749
    size = MIN((uint64_t)backing_length - pos, qiov->size);
750

    
751
    BLKDBG_EVENT(s->bs->file, BLKDBG_READ_BACKING_AIO);
752
    bdrv_aio_readv(s->bs->backing_hd, pos / BDRV_SECTOR_SIZE,
753
                   qiov, size / BDRV_SECTOR_SIZE, cb, opaque);
754
}
755

    
756
typedef struct {
757
    GenericCB gencb;
758
    BDRVQEDState *s;
759
    QEMUIOVector qiov;
760
    struct iovec iov;
761
    uint64_t offset;
762
} CopyFromBackingFileCB;
763

    
764
static void qed_copy_from_backing_file_cb(void *opaque, int ret)
765
{
766
    CopyFromBackingFileCB *copy_cb = opaque;
767
    qemu_vfree(copy_cb->iov.iov_base);
768
    gencb_complete(&copy_cb->gencb, ret);
769
}
770

    
771
static void qed_copy_from_backing_file_write(void *opaque, int ret)
772
{
773
    CopyFromBackingFileCB *copy_cb = opaque;
774
    BDRVQEDState *s = copy_cb->s;
775

    
776
    if (ret) {
777
        qed_copy_from_backing_file_cb(copy_cb, ret);
778
        return;
779
    }
780

    
781
    BLKDBG_EVENT(s->bs->file, BLKDBG_COW_WRITE);
782
    bdrv_aio_writev(s->bs->file, copy_cb->offset / BDRV_SECTOR_SIZE,
783
                    &copy_cb->qiov, copy_cb->qiov.size / BDRV_SECTOR_SIZE,
784
                    qed_copy_from_backing_file_cb, copy_cb);
785
}
786

    
787
/**
788
 * Copy data from backing file into the image
789
 *
790
 * @s:          QED state
791
 * @pos:        Byte position in device
792
 * @len:        Number of bytes
793
 * @offset:     Byte offset in image file
794
 * @cb:         Completion function
795
 * @opaque:     User data for completion function
796
 */
797
static void qed_copy_from_backing_file(BDRVQEDState *s, uint64_t pos,
798
                                       uint64_t len, uint64_t offset,
799
                                       BlockDriverCompletionFunc *cb,
800
                                       void *opaque)
801
{
802
    CopyFromBackingFileCB *copy_cb;
803

    
804
    /* Skip copy entirely if there is no work to do */
805
    if (len == 0) {
806
        cb(opaque, 0);
807
        return;
808
    }
809

    
810
    copy_cb = gencb_alloc(sizeof(*copy_cb), cb, opaque);
811
    copy_cb->s = s;
812
    copy_cb->offset = offset;
813
    copy_cb->iov.iov_base = qemu_blockalign(s->bs, len);
814
    copy_cb->iov.iov_len = len;
815
    qemu_iovec_init_external(&copy_cb->qiov, &copy_cb->iov, 1);
816

    
817
    qed_read_backing_file(s, pos, &copy_cb->qiov,
818
                          qed_copy_from_backing_file_write, copy_cb);
819
}
820

    
821
/**
822
 * Link one or more contiguous clusters into a table
823
 *
824
 * @s:              QED state
825
 * @table:          L2 table
826
 * @index:          First cluster index
827
 * @n:              Number of contiguous clusters
828
 * @cluster:        First cluster offset
829
 *
830
 * The cluster offset may be an allocated byte offset in the image file, the
831
 * zero cluster marker, or the unallocated cluster marker.
832
 */
833
static void qed_update_l2_table(BDRVQEDState *s, QEDTable *table, int index,
834
                                unsigned int n, uint64_t cluster)
835
{
836
    int i;
837
    for (i = index; i < index + n; i++) {
838
        table->offsets[i] = cluster;
839
        if (!qed_offset_is_unalloc_cluster(cluster) &&
840
            !qed_offset_is_zero_cluster(cluster)) {
841
            cluster += s->header.cluster_size;
842
        }
843
    }
844
}
845

    
846
static void qed_aio_complete_bh(void *opaque)
847
{
848
    QEDAIOCB *acb = opaque;
849
    BlockDriverCompletionFunc *cb = acb->common.cb;
850
    void *user_opaque = acb->common.opaque;
851
    int ret = acb->bh_ret;
852
    bool *finished = acb->finished;
853

    
854
    qemu_bh_delete(acb->bh);
855
    qemu_aio_release(acb);
856

    
857
    /* Invoke callback */
858
    cb(user_opaque, ret);
859

    
860
    /* Signal cancel completion */
861
    if (finished) {
862
        *finished = true;
863
    }
864
}
865

    
866
static void qed_aio_complete(QEDAIOCB *acb, int ret)
867
{
868
    BDRVQEDState *s = acb_to_s(acb);
869

    
870
    trace_qed_aio_complete(s, acb, ret);
871

    
872
    /* Free resources */
873
    qemu_iovec_destroy(&acb->cur_qiov);
874
    qed_unref_l2_cache_entry(acb->request.l2_table);
875

    
876
    /* Free the buffer we may have allocated for zero writes */
877
    if (acb->flags & QED_AIOCB_ZERO) {
878
        qemu_vfree(acb->qiov->iov[0].iov_base);
879
        acb->qiov->iov[0].iov_base = NULL;
880
    }
881

    
882
    /* Arrange for a bh to invoke the completion function */
883
    acb->bh_ret = ret;
884
    acb->bh = qemu_bh_new(qed_aio_complete_bh, acb);
885
    qemu_bh_schedule(acb->bh);
886

    
887
    /* Start next allocating write request waiting behind this one.  Note that
888
     * requests enqueue themselves when they first hit an unallocated cluster
889
     * but they wait until the entire request is finished before waking up the
890
     * next request in the queue.  This ensures that we don't cycle through
891
     * requests multiple times but rather finish one at a time completely.
892
     */
893
    if (acb == QSIMPLEQ_FIRST(&s->allocating_write_reqs)) {
894
        QSIMPLEQ_REMOVE_HEAD(&s->allocating_write_reqs, next);
895
        acb = QSIMPLEQ_FIRST(&s->allocating_write_reqs);
896
        if (acb) {
897
            qed_aio_next_io(acb, 0);
898
        } else if (s->header.features & QED_F_NEED_CHECK) {
899
            qed_start_need_check_timer(s);
900
        }
901
    }
902
}
903

    
904
/**
905
 * Commit the current L2 table to the cache
906
 */
907
static void qed_commit_l2_update(void *opaque, int ret)
908
{
909
    QEDAIOCB *acb = opaque;
910
    BDRVQEDState *s = acb_to_s(acb);
911
    CachedL2Table *l2_table = acb->request.l2_table;
912
    uint64_t l2_offset = l2_table->offset;
913

    
914
    qed_commit_l2_cache_entry(&s->l2_cache, l2_table);
915

    
916
    /* This is guaranteed to succeed because we just committed the entry to the
917
     * cache.
918
     */
919
    acb->request.l2_table = qed_find_l2_cache_entry(&s->l2_cache, l2_offset);
920
    assert(acb->request.l2_table != NULL);
921

    
922
    qed_aio_next_io(opaque, ret);
923
}
924

    
925
/**
926
 * Update L1 table with new L2 table offset and write it out
927
 */
928
static void qed_aio_write_l1_update(void *opaque, int ret)
929
{
930
    QEDAIOCB *acb = opaque;
931
    BDRVQEDState *s = acb_to_s(acb);
932
    int index;
933

    
934
    if (ret) {
935
        qed_aio_complete(acb, ret);
936
        return;
937
    }
938

    
939
    index = qed_l1_index(s, acb->cur_pos);
940
    s->l1_table->offsets[index] = acb->request.l2_table->offset;
941

    
942
    qed_write_l1_table(s, index, 1, qed_commit_l2_update, acb);
943
}
944

    
945
/**
946
 * Update L2 table with new cluster offsets and write them out
947
 */
948
static void qed_aio_write_l2_update(QEDAIOCB *acb, int ret, uint64_t offset)
949
{
950
    BDRVQEDState *s = acb_to_s(acb);
951
    bool need_alloc = acb->find_cluster_ret == QED_CLUSTER_L1;
952
    int index;
953

    
954
    if (ret) {
955
        goto err;
956
    }
957

    
958
    if (need_alloc) {
959
        qed_unref_l2_cache_entry(acb->request.l2_table);
960
        acb->request.l2_table = qed_new_l2_table(s);
961
    }
962

    
963
    index = qed_l2_index(s, acb->cur_pos);
964
    qed_update_l2_table(s, acb->request.l2_table->table, index, acb->cur_nclusters,
965
                         offset);
966

    
967
    if (need_alloc) {
968
        /* Write out the whole new L2 table */
969
        qed_write_l2_table(s, &acb->request, 0, s->table_nelems, true,
970
                            qed_aio_write_l1_update, acb);
971
    } else {
972
        /* Write out only the updated part of the L2 table */
973
        qed_write_l2_table(s, &acb->request, index, acb->cur_nclusters, false,
974
                            qed_aio_next_io, acb);
975
    }
976
    return;
977

    
978
err:
979
    qed_aio_complete(acb, ret);
980
}
981

    
982
static void qed_aio_write_l2_update_cb(void *opaque, int ret)
983
{
984
    QEDAIOCB *acb = opaque;
985
    qed_aio_write_l2_update(acb, ret, acb->cur_cluster);
986
}
987

    
988
/**
989
 * Flush new data clusters before updating the L2 table
990
 *
991
 * This flush is necessary when a backing file is in use.  A crash during an
992
 * allocating write could result in empty clusters in the image.  If the write
993
 * only touched a subregion of the cluster, then backing image sectors have
994
 * been lost in the untouched region.  The solution is to flush after writing a
995
 * new data cluster and before updating the L2 table.
996
 */
997
static void qed_aio_write_flush_before_l2_update(void *opaque, int ret)
998
{
999
    QEDAIOCB *acb = opaque;
1000
    BDRVQEDState *s = acb_to_s(acb);
1001

    
1002
    if (!bdrv_aio_flush(s->bs->file, qed_aio_write_l2_update_cb, opaque)) {
1003
        qed_aio_complete(acb, -EIO);
1004
    }
1005
}
1006

    
1007
/**
1008
 * Write data to the image file
1009
 */
1010
static void qed_aio_write_main(void *opaque, int ret)
1011
{
1012
    QEDAIOCB *acb = opaque;
1013
    BDRVQEDState *s = acb_to_s(acb);
1014
    uint64_t offset = acb->cur_cluster +
1015
                      qed_offset_into_cluster(s, acb->cur_pos);
1016
    BlockDriverCompletionFunc *next_fn;
1017

    
1018
    trace_qed_aio_write_main(s, acb, ret, offset, acb->cur_qiov.size);
1019

    
1020
    if (ret) {
1021
        qed_aio_complete(acb, ret);
1022
        return;
1023
    }
1024

    
1025
    if (acb->find_cluster_ret == QED_CLUSTER_FOUND) {
1026
        next_fn = qed_aio_next_io;
1027
    } else {
1028
        if (s->bs->backing_hd) {
1029
            next_fn = qed_aio_write_flush_before_l2_update;
1030
        } else {
1031
            next_fn = qed_aio_write_l2_update_cb;
1032
        }
1033
    }
1034

    
1035
    BLKDBG_EVENT(s->bs->file, BLKDBG_WRITE_AIO);
1036
    bdrv_aio_writev(s->bs->file, offset / BDRV_SECTOR_SIZE,
1037
                    &acb->cur_qiov, acb->cur_qiov.size / BDRV_SECTOR_SIZE,
1038
                    next_fn, acb);
1039
}
1040

    
1041
/**
1042
 * Populate back untouched region of new data cluster
1043
 */
1044
static void qed_aio_write_postfill(void *opaque, int ret)
1045
{
1046
    QEDAIOCB *acb = opaque;
1047
    BDRVQEDState *s = acb_to_s(acb);
1048
    uint64_t start = acb->cur_pos + acb->cur_qiov.size;
1049
    uint64_t len =
1050
        qed_start_of_cluster(s, start + s->header.cluster_size - 1) - start;
1051
    uint64_t offset = acb->cur_cluster +
1052
                      qed_offset_into_cluster(s, acb->cur_pos) +
1053
                      acb->cur_qiov.size;
1054

    
1055
    if (ret) {
1056
        qed_aio_complete(acb, ret);
1057
        return;
1058
    }
1059

    
1060
    trace_qed_aio_write_postfill(s, acb, start, len, offset);
1061
    qed_copy_from_backing_file(s, start, len, offset,
1062
                                qed_aio_write_main, acb);
1063
}
1064

    
1065
/**
1066
 * Populate front untouched region of new data cluster
1067
 */
1068
static void qed_aio_write_prefill(void *opaque, int ret)
1069
{
1070
    QEDAIOCB *acb = opaque;
1071
    BDRVQEDState *s = acb_to_s(acb);
1072
    uint64_t start = qed_start_of_cluster(s, acb->cur_pos);
1073
    uint64_t len = qed_offset_into_cluster(s, acb->cur_pos);
1074

    
1075
    trace_qed_aio_write_prefill(s, acb, start, len, acb->cur_cluster);
1076
    qed_copy_from_backing_file(s, start, len, acb->cur_cluster,
1077
                                qed_aio_write_postfill, acb);
1078
}
1079

    
1080
/**
1081
 * Check if the QED_F_NEED_CHECK bit should be set during allocating write
1082
 */
1083
static bool qed_should_set_need_check(BDRVQEDState *s)
1084
{
1085
    /* The flush before L2 update path ensures consistency */
1086
    if (s->bs->backing_hd) {
1087
        return false;
1088
    }
1089

    
1090
    return !(s->header.features & QED_F_NEED_CHECK);
1091
}
1092

    
1093
static void qed_aio_write_zero_cluster(void *opaque, int ret)
1094
{
1095
    QEDAIOCB *acb = opaque;
1096

    
1097
    if (ret) {
1098
        qed_aio_complete(acb, ret);
1099
        return;
1100
    }
1101

    
1102
    qed_aio_write_l2_update(acb, 0, 1);
1103
}
1104

    
1105
/**
1106
 * Write new data cluster
1107
 *
1108
 * @acb:        Write request
1109
 * @len:        Length in bytes
1110
 *
1111
 * This path is taken when writing to previously unallocated clusters.
1112
 */
1113
static void qed_aio_write_alloc(QEDAIOCB *acb, size_t len)
1114
{
1115
    BDRVQEDState *s = acb_to_s(acb);
1116
    BlockDriverCompletionFunc *cb;
1117

    
1118
    /* Cancel timer when the first allocating request comes in */
1119
    if (QSIMPLEQ_EMPTY(&s->allocating_write_reqs)) {
1120
        qed_cancel_need_check_timer(s);
1121
    }
1122

    
1123
    /* Freeze this request if another allocating write is in progress */
1124
    if (acb != QSIMPLEQ_FIRST(&s->allocating_write_reqs)) {
1125
        QSIMPLEQ_INSERT_TAIL(&s->allocating_write_reqs, acb, next);
1126
    }
1127
    if (acb != QSIMPLEQ_FIRST(&s->allocating_write_reqs) ||
1128
        s->allocating_write_reqs_plugged) {
1129
        return; /* wait for existing request to finish */
1130
    }
1131

    
1132
    acb->cur_nclusters = qed_bytes_to_clusters(s,
1133
            qed_offset_into_cluster(s, acb->cur_pos) + len);
1134
    qemu_iovec_copy(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1135

    
1136
    if (acb->flags & QED_AIOCB_ZERO) {
1137
        /* Skip ahead if the clusters are already zero */
1138
        if (acb->find_cluster_ret == QED_CLUSTER_ZERO) {
1139
            qed_aio_next_io(acb, 0);
1140
            return;
1141
        }
1142

    
1143
        cb = qed_aio_write_zero_cluster;
1144
    } else {
1145
        cb = qed_aio_write_prefill;
1146
        acb->cur_cluster = qed_alloc_clusters(s, acb->cur_nclusters);
1147
    }
1148

    
1149
    if (qed_should_set_need_check(s)) {
1150
        s->header.features |= QED_F_NEED_CHECK;
1151
        qed_write_header(s, cb, acb);
1152
    } else {
1153
        cb(acb, 0);
1154
    }
1155
}
1156

    
1157
/**
1158
 * Write data cluster in place
1159
 *
1160
 * @acb:        Write request
1161
 * @offset:     Cluster offset in bytes
1162
 * @len:        Length in bytes
1163
 *
1164
 * This path is taken when writing to already allocated clusters.
1165
 */
1166
static void qed_aio_write_inplace(QEDAIOCB *acb, uint64_t offset, size_t len)
1167
{
1168
    /* Allocate buffer for zero writes */
1169
    if (acb->flags & QED_AIOCB_ZERO) {
1170
        struct iovec *iov = acb->qiov->iov;
1171

    
1172
        if (!iov->iov_base) {
1173
            iov->iov_base = qemu_blockalign(acb->common.bs, iov->iov_len);
1174
            memset(iov->iov_base, 0, iov->iov_len);
1175
        }
1176
    }
1177

    
1178
    /* Calculate the I/O vector */
1179
    acb->cur_cluster = offset;
1180
    qemu_iovec_copy(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1181

    
1182
    /* Do the actual write */
1183
    qed_aio_write_main(acb, 0);
1184
}
1185

    
1186
/**
1187
 * Write data cluster
1188
 *
1189
 * @opaque:     Write request
1190
 * @ret:        QED_CLUSTER_FOUND, QED_CLUSTER_L2, QED_CLUSTER_L1,
1191
 *              or -errno
1192
 * @offset:     Cluster offset in bytes
1193
 * @len:        Length in bytes
1194
 *
1195
 * Callback from qed_find_cluster().
1196
 */
1197
static void qed_aio_write_data(void *opaque, int ret,
1198
                               uint64_t offset, size_t len)
1199
{
1200
    QEDAIOCB *acb = opaque;
1201

    
1202
    trace_qed_aio_write_data(acb_to_s(acb), acb, ret, offset, len);
1203

    
1204
    acb->find_cluster_ret = ret;
1205

    
1206
    switch (ret) {
1207
    case QED_CLUSTER_FOUND:
1208
        qed_aio_write_inplace(acb, offset, len);
1209
        break;
1210

    
1211
    case QED_CLUSTER_L2:
1212
    case QED_CLUSTER_L1:
1213
    case QED_CLUSTER_ZERO:
1214
        qed_aio_write_alloc(acb, len);
1215
        break;
1216

    
1217
    default:
1218
        qed_aio_complete(acb, ret);
1219
        break;
1220
    }
1221
}
1222

    
1223
/**
1224
 * Read data cluster
1225
 *
1226
 * @opaque:     Read request
1227
 * @ret:        QED_CLUSTER_FOUND, QED_CLUSTER_L2, QED_CLUSTER_L1,
1228
 *              or -errno
1229
 * @offset:     Cluster offset in bytes
1230
 * @len:        Length in bytes
1231
 *
1232
 * Callback from qed_find_cluster().
1233
 */
1234
static void qed_aio_read_data(void *opaque, int ret,
1235
                              uint64_t offset, size_t len)
1236
{
1237
    QEDAIOCB *acb = opaque;
1238
    BDRVQEDState *s = acb_to_s(acb);
1239
    BlockDriverState *bs = acb->common.bs;
1240

    
1241
    /* Adjust offset into cluster */
1242
    offset += qed_offset_into_cluster(s, acb->cur_pos);
1243

    
1244
    trace_qed_aio_read_data(s, acb, ret, offset, len);
1245

    
1246
    if (ret < 0) {
1247
        goto err;
1248
    }
1249

    
1250
    qemu_iovec_copy(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1251

    
1252
    /* Handle zero cluster and backing file reads */
1253
    if (ret == QED_CLUSTER_ZERO) {
1254
        qemu_iovec_memset(&acb->cur_qiov, 0, acb->cur_qiov.size);
1255
        qed_aio_next_io(acb, 0);
1256
        return;
1257
    } else if (ret != QED_CLUSTER_FOUND) {
1258
        qed_read_backing_file(s, acb->cur_pos, &acb->cur_qiov,
1259
                              qed_aio_next_io, acb);
1260
        return;
1261
    }
1262

    
1263
    BLKDBG_EVENT(bs->file, BLKDBG_READ_AIO);
1264
    bdrv_aio_readv(bs->file, offset / BDRV_SECTOR_SIZE,
1265
                   &acb->cur_qiov, acb->cur_qiov.size / BDRV_SECTOR_SIZE,
1266
                   qed_aio_next_io, acb);
1267
    return;
1268

    
1269
err:
1270
    qed_aio_complete(acb, ret);
1271
}
1272

    
1273
/**
1274
 * Begin next I/O or complete the request
1275
 */
1276
static void qed_aio_next_io(void *opaque, int ret)
1277
{
1278
    QEDAIOCB *acb = opaque;
1279
    BDRVQEDState *s = acb_to_s(acb);
1280
    QEDFindClusterFunc *io_fn = (acb->flags & QED_AIOCB_WRITE) ?
1281
                                qed_aio_write_data : qed_aio_read_data;
1282

    
1283
    trace_qed_aio_next_io(s, acb, ret, acb->cur_pos + acb->cur_qiov.size);
1284

    
1285
    /* Handle I/O error */
1286
    if (ret) {
1287
        qed_aio_complete(acb, ret);
1288
        return;
1289
    }
1290

    
1291
    acb->qiov_offset += acb->cur_qiov.size;
1292
    acb->cur_pos += acb->cur_qiov.size;
1293
    qemu_iovec_reset(&acb->cur_qiov);
1294

    
1295
    /* Complete request */
1296
    if (acb->cur_pos >= acb->end_pos) {
1297
        qed_aio_complete(acb, 0);
1298
        return;
1299
    }
1300

    
1301
    /* Find next cluster and start I/O */
1302
    qed_find_cluster(s, &acb->request,
1303
                      acb->cur_pos, acb->end_pos - acb->cur_pos,
1304
                      io_fn, acb);
1305
}
1306

    
1307
static BlockDriverAIOCB *qed_aio_setup(BlockDriverState *bs,
1308
                                       int64_t sector_num,
1309
                                       QEMUIOVector *qiov, int nb_sectors,
1310
                                       BlockDriverCompletionFunc *cb,
1311
                                       void *opaque, int flags)
1312
{
1313
    QEDAIOCB *acb = qemu_aio_get(&qed_aio_pool, bs, cb, opaque);
1314

    
1315
    trace_qed_aio_setup(bs->opaque, acb, sector_num, nb_sectors,
1316
                        opaque, flags);
1317

    
1318
    acb->flags = flags;
1319
    acb->finished = NULL;
1320
    acb->qiov = qiov;
1321
    acb->qiov_offset = 0;
1322
    acb->cur_pos = (uint64_t)sector_num * BDRV_SECTOR_SIZE;
1323
    acb->end_pos = acb->cur_pos + nb_sectors * BDRV_SECTOR_SIZE;
1324
    acb->request.l2_table = NULL;
1325
    qemu_iovec_init(&acb->cur_qiov, qiov->niov);
1326

    
1327
    /* Start request */
1328
    qed_aio_next_io(acb, 0);
1329
    return &acb->common;
1330
}
1331

    
1332
static BlockDriverAIOCB *bdrv_qed_aio_readv(BlockDriverState *bs,
1333
                                            int64_t sector_num,
1334
                                            QEMUIOVector *qiov, int nb_sectors,
1335
                                            BlockDriverCompletionFunc *cb,
1336
                                            void *opaque)
1337
{
1338
    return qed_aio_setup(bs, sector_num, qiov, nb_sectors, cb, opaque, 0);
1339
}
1340

    
1341
static BlockDriverAIOCB *bdrv_qed_aio_writev(BlockDriverState *bs,
1342
                                             int64_t sector_num,
1343
                                             QEMUIOVector *qiov, int nb_sectors,
1344
                                             BlockDriverCompletionFunc *cb,
1345
                                             void *opaque)
1346
{
1347
    return qed_aio_setup(bs, sector_num, qiov, nb_sectors, cb,
1348
                         opaque, QED_AIOCB_WRITE);
1349
}
1350

    
1351
typedef struct {
1352
    Coroutine *co;
1353
    int ret;
1354
    bool done;
1355
} QEDWriteZeroesCB;
1356

    
1357
static void coroutine_fn qed_co_write_zeroes_cb(void *opaque, int ret)
1358
{
1359
    QEDWriteZeroesCB *cb = opaque;
1360

    
1361
    cb->done = true;
1362
    cb->ret = ret;
1363
    if (cb->co) {
1364
        qemu_coroutine_enter(cb->co, NULL);
1365
    }
1366
}
1367

    
1368
static int coroutine_fn bdrv_qed_co_write_zeroes(BlockDriverState *bs,
1369
                                                 int64_t sector_num,
1370
                                                 int nb_sectors)
1371
{
1372
    BlockDriverAIOCB *blockacb;
1373
    QEDWriteZeroesCB cb = { .done = false };
1374
    QEMUIOVector qiov;
1375
    struct iovec iov;
1376

    
1377
    /* Zero writes start without an I/O buffer.  If a buffer becomes necessary
1378
     * then it will be allocated during request processing.
1379
     */
1380
    iov.iov_base = NULL,
1381
    iov.iov_len  = nb_sectors * BDRV_SECTOR_SIZE,
1382

    
1383
    qemu_iovec_init_external(&qiov, &iov, 1);
1384
    blockacb = qed_aio_setup(bs, sector_num, &qiov, nb_sectors,
1385
                             qed_co_write_zeroes_cb, &cb,
1386
                             QED_AIOCB_WRITE | QED_AIOCB_ZERO);
1387
    if (!blockacb) {
1388
        return -EIO;
1389
    }
1390
    if (!cb.done) {
1391
        cb.co = qemu_coroutine_self();
1392
        qemu_coroutine_yield();
1393
    }
1394
    assert(cb.done);
1395
    return cb.ret;
1396
}
1397

    
1398
static int bdrv_qed_truncate(BlockDriverState *bs, int64_t offset)
1399
{
1400
    BDRVQEDState *s = bs->opaque;
1401
    uint64_t old_image_size;
1402
    int ret;
1403

    
1404
    if (!qed_is_image_size_valid(offset, s->header.cluster_size,
1405
                                 s->header.table_size)) {
1406
        return -EINVAL;
1407
    }
1408

    
1409
    /* Shrinking is currently not supported */
1410
    if ((uint64_t)offset < s->header.image_size) {
1411
        return -ENOTSUP;
1412
    }
1413

    
1414
    old_image_size = s->header.image_size;
1415
    s->header.image_size = offset;
1416
    ret = qed_write_header_sync(s);
1417
    if (ret < 0) {
1418
        s->header.image_size = old_image_size;
1419
    }
1420
    return ret;
1421
}
1422

    
1423
static int64_t bdrv_qed_getlength(BlockDriverState *bs)
1424
{
1425
    BDRVQEDState *s = bs->opaque;
1426
    return s->header.image_size;
1427
}
1428

    
1429
static int bdrv_qed_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
1430
{
1431
    BDRVQEDState *s = bs->opaque;
1432

    
1433
    memset(bdi, 0, sizeof(*bdi));
1434
    bdi->cluster_size = s->header.cluster_size;
1435
    bdi->is_dirty = s->header.features & QED_F_NEED_CHECK;
1436
    return 0;
1437
}
1438

    
1439
static int bdrv_qed_change_backing_file(BlockDriverState *bs,
1440
                                        const char *backing_file,
1441
                                        const char *backing_fmt)
1442
{
1443
    BDRVQEDState *s = bs->opaque;
1444
    QEDHeader new_header, le_header;
1445
    void *buffer;
1446
    size_t buffer_len, backing_file_len;
1447
    int ret;
1448

    
1449
    /* Refuse to set backing filename if unknown compat feature bits are
1450
     * active.  If the image uses an unknown compat feature then we may not
1451
     * know the layout of data following the header structure and cannot safely
1452
     * add a new string.
1453
     */
1454
    if (backing_file && (s->header.compat_features &
1455
                         ~QED_COMPAT_FEATURE_MASK)) {
1456
        return -ENOTSUP;
1457
    }
1458

    
1459
    memcpy(&new_header, &s->header, sizeof(new_header));
1460

    
1461
    new_header.features &= ~(QED_F_BACKING_FILE |
1462
                             QED_F_BACKING_FORMAT_NO_PROBE);
1463

    
1464
    /* Adjust feature flags */
1465
    if (backing_file) {
1466
        new_header.features |= QED_F_BACKING_FILE;
1467

    
1468
        if (qed_fmt_is_raw(backing_fmt)) {
1469
            new_header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
1470
        }
1471
    }
1472

    
1473
    /* Calculate new header size */
1474
    backing_file_len = 0;
1475

    
1476
    if (backing_file) {
1477
        backing_file_len = strlen(backing_file);
1478
    }
1479

    
1480
    buffer_len = sizeof(new_header);
1481
    new_header.backing_filename_offset = buffer_len;
1482
    new_header.backing_filename_size = backing_file_len;
1483
    buffer_len += backing_file_len;
1484

    
1485
    /* Make sure we can rewrite header without failing */
1486
    if (buffer_len > new_header.header_size * new_header.cluster_size) {
1487
        return -ENOSPC;
1488
    }
1489

    
1490
    /* Prepare new header */
1491
    buffer = g_malloc(buffer_len);
1492

    
1493
    qed_header_cpu_to_le(&new_header, &le_header);
1494
    memcpy(buffer, &le_header, sizeof(le_header));
1495
    buffer_len = sizeof(le_header);
1496

    
1497
    if (backing_file) {
1498
        memcpy(buffer + buffer_len, backing_file, backing_file_len);
1499
        buffer_len += backing_file_len;
1500
    }
1501

    
1502
    /* Write new header */
1503
    ret = bdrv_pwrite_sync(bs->file, 0, buffer, buffer_len);
1504
    g_free(buffer);
1505
    if (ret == 0) {
1506
        memcpy(&s->header, &new_header, sizeof(new_header));
1507
    }
1508
    return ret;
1509
}
1510

    
1511
static void bdrv_qed_invalidate_cache(BlockDriverState *bs)
1512
{
1513
    BDRVQEDState *s = bs->opaque;
1514

    
1515
    bdrv_qed_close(bs);
1516
    memset(s, 0, sizeof(BDRVQEDState));
1517
    bdrv_qed_open(bs, bs->open_flags);
1518
}
1519

    
1520
static int bdrv_qed_check(BlockDriverState *bs, BdrvCheckResult *result,
1521
                          BdrvCheckMode fix)
1522
{
1523
    BDRVQEDState *s = bs->opaque;
1524

    
1525
    return qed_check(s, result, !!fix);
1526
}
1527

    
1528
static QEMUOptionParameter qed_create_options[] = {
1529
    {
1530
        .name = BLOCK_OPT_SIZE,
1531
        .type = OPT_SIZE,
1532
        .help = "Virtual disk size (in bytes)"
1533
    }, {
1534
        .name = BLOCK_OPT_BACKING_FILE,
1535
        .type = OPT_STRING,
1536
        .help = "File name of a base image"
1537
    }, {
1538
        .name = BLOCK_OPT_BACKING_FMT,
1539
        .type = OPT_STRING,
1540
        .help = "Image format of the base image"
1541
    }, {
1542
        .name = BLOCK_OPT_CLUSTER_SIZE,
1543
        .type = OPT_SIZE,
1544
        .help = "Cluster size (in bytes)",
1545
        .value = { .n = QED_DEFAULT_CLUSTER_SIZE },
1546
    }, {
1547
        .name = BLOCK_OPT_TABLE_SIZE,
1548
        .type = OPT_SIZE,
1549
        .help = "L1/L2 table size (in clusters)"
1550
    },
1551
    { /* end of list */ }
1552
};
1553

    
1554
static BlockDriver bdrv_qed = {
1555
    .format_name              = "qed",
1556
    .instance_size            = sizeof(BDRVQEDState),
1557
    .create_options           = qed_create_options,
1558

    
1559
    .bdrv_probe               = bdrv_qed_probe,
1560
    .bdrv_rebind              = bdrv_qed_rebind,
1561
    .bdrv_open                = bdrv_qed_open,
1562
    .bdrv_close               = bdrv_qed_close,
1563
    .bdrv_create              = bdrv_qed_create,
1564
    .bdrv_co_is_allocated     = bdrv_qed_co_is_allocated,
1565
    .bdrv_make_empty          = bdrv_qed_make_empty,
1566
    .bdrv_aio_readv           = bdrv_qed_aio_readv,
1567
    .bdrv_aio_writev          = bdrv_qed_aio_writev,
1568
    .bdrv_co_write_zeroes     = bdrv_qed_co_write_zeroes,
1569
    .bdrv_truncate            = bdrv_qed_truncate,
1570
    .bdrv_getlength           = bdrv_qed_getlength,
1571
    .bdrv_get_info            = bdrv_qed_get_info,
1572
    .bdrv_change_backing_file = bdrv_qed_change_backing_file,
1573
    .bdrv_invalidate_cache    = bdrv_qed_invalidate_cache,
1574
    .bdrv_check               = bdrv_qed_check,
1575
};
1576

    
1577
static void bdrv_qed_init(void)
1578
{
1579
    bdrv_register(&bdrv_qed);
1580
}
1581

    
1582
block_init(bdrv_qed_init);