Statistics
| Branch: | Revision:

root / qemu-doc.texi @ 83195237

History | View | Annotate | Download (59.9 kB)

1
\input texinfo @c -*- texinfo -*-
2
@c %**start of header
3
@setfilename qemu-doc.info
4
@settitle QEMU Emulator User Documentation
5
@exampleindent 0
6
@paragraphindent 0
7
@c %**end of header
8

    
9
@iftex
10
@titlepage
11
@sp 7
12
@center @titlefont{QEMU Emulator}
13
@sp 1
14
@center @titlefont{User Documentation}
15
@sp 3
16
@end titlepage
17
@end iftex
18

    
19
@ifnottex
20
@node Top
21
@top
22

    
23
@menu
24
* Introduction::
25
* Installation::
26
* QEMU PC System emulator::
27
* QEMU System emulator for non PC targets::
28
* QEMU User space emulator::
29
* compilation:: Compilation from the sources
30
* Index::
31
@end menu
32
@end ifnottex
33

    
34
@contents
35

    
36
@node Introduction
37
@chapter Introduction
38

    
39
@menu
40
* intro_features:: Features
41
@end menu
42

    
43
@node intro_features
44
@section Features
45

    
46
QEMU is a FAST! processor emulator using dynamic translation to
47
achieve good emulation speed.
48

    
49
QEMU has two operating modes:
50

    
51
@itemize @minus
52

    
53
@item 
54
Full system emulation. In this mode, QEMU emulates a full system (for
55
example a PC), including one or several processors and various
56
peripherals. It can be used to launch different Operating Systems
57
without rebooting the PC or to debug system code.
58

    
59
@item 
60
User mode emulation. In this mode, QEMU can launch
61
processes compiled for one CPU on another CPU. It can be used to
62
launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
63
to ease cross-compilation and cross-debugging.
64

    
65
@end itemize
66

    
67
QEMU can run without an host kernel driver and yet gives acceptable
68
performance. 
69

    
70
For system emulation, the following hardware targets are supported:
71
@itemize
72
@item PC (x86 or x86_64 processor)
73
@item ISA PC (old style PC without PCI bus)
74
@item PREP (PowerPC processor)
75
@item G3 BW PowerMac (PowerPC processor)
76
@item Mac99 PowerMac (PowerPC processor, in progress)
77
@item Sun4m (32-bit Sparc processor)
78
@item Sun4u (64-bit Sparc processor, in progress)
79
@item Malta board (32-bit MIPS processor)
80
@item ARM Integrator/CP (ARM926E or 1026E processor)
81
@item ARM Versatile baseboard (ARM926E)
82
@end itemize
83

    
84
For user emulation, x86, PowerPC, ARM, MIPS, Sparc32/64 and ColdFire(m68k) CPUs are supported.
85

    
86
@node Installation
87
@chapter Installation
88

    
89
If you want to compile QEMU yourself, see @ref{compilation}.
90

    
91
@menu
92
* install_linux::   Linux
93
* install_windows:: Windows
94
* install_mac::     Macintosh
95
@end menu
96

    
97
@node install_linux
98
@section Linux
99

    
100
If a precompiled package is available for your distribution - you just
101
have to install it. Otherwise, see @ref{compilation}.
102

    
103
@node install_windows
104
@section Windows
105

    
106
Download the experimental binary installer at
107
@url{http://www.free.oszoo.org/@/download.html}.
108

    
109
@node install_mac
110
@section Mac OS X
111

    
112
Download the experimental binary installer at
113
@url{http://www.free.oszoo.org/@/download.html}.
114

    
115
@node QEMU PC System emulator
116
@chapter QEMU PC System emulator
117

    
118
@menu
119
* pcsys_introduction:: Introduction
120
* pcsys_quickstart::   Quick Start
121
* sec_invocation::     Invocation
122
* pcsys_keys::         Keys
123
* pcsys_monitor::      QEMU Monitor
124
* disk_images::        Disk Images
125
* pcsys_network::      Network emulation
126
* direct_linux_boot::  Direct Linux Boot
127
* pcsys_usb::          USB emulation
128
* gdb_usage::          GDB usage
129
* pcsys_os_specific::  Target OS specific information
130
@end menu
131

    
132
@node pcsys_introduction
133
@section Introduction
134

    
135
@c man begin DESCRIPTION
136

    
137
The QEMU PC System emulator simulates the
138
following peripherals:
139

    
140
@itemize @minus
141
@item 
142
i440FX host PCI bridge and PIIX3 PCI to ISA bridge
143
@item
144
Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
145
extensions (hardware level, including all non standard modes).
146
@item
147
PS/2 mouse and keyboard
148
@item 
149
2 PCI IDE interfaces with hard disk and CD-ROM support
150
@item
151
Floppy disk
152
@item 
153
NE2000 PCI network adapters
154
@item
155
Serial ports
156
@item
157
Creative SoundBlaster 16 sound card
158
@item
159
ENSONIQ AudioPCI ES1370 sound card
160
@item
161
Adlib(OPL2) - Yamaha YM3812 compatible chip
162
@item
163
PCI UHCI USB controller and a virtual USB hub.
164
@end itemize
165

    
166
SMP is supported with up to 255 CPUs.
167

    
168
Note that adlib is only available when QEMU was configured with
169
-enable-adlib
170

    
171
QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
172
VGA BIOS.
173

    
174
QEMU uses YM3812 emulation by Tatsuyuki Satoh.
175

    
176
@c man end
177

    
178
@node pcsys_quickstart
179
@section Quick Start
180

    
181
Download and uncompress the linux image (@file{linux.img}) and type:
182

    
183
@example
184
qemu linux.img
185
@end example
186

    
187
Linux should boot and give you a prompt.
188

    
189
@node sec_invocation
190
@section Invocation
191

    
192
@example
193
@c man begin SYNOPSIS
194
usage: qemu [options] [disk_image]
195
@c man end
196
@end example
197

    
198
@c man begin OPTIONS
199
@var{disk_image} is a raw hard disk image for IDE hard disk 0.
200

    
201
General options:
202
@table @option
203
@item -M machine
204
Select the emulated machine (@code{-M ?} for list)
205

    
206
@item -fda file
207
@item -fdb file
208
Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}). You can
209
use the host floppy by using @file{/dev/fd0} as filename (@pxref{host_drives}).
210

    
211
@item -hda file
212
@item -hdb file
213
@item -hdc file
214
@item -hdd file
215
Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
216

    
217
@item -cdrom file
218
Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and and
219
@option{-cdrom} at the same time). You can use the host CD-ROM by
220
using @file{/dev/cdrom} as filename (@pxref{host_drives}).
221

    
222
@item -boot [a|c|d|n]
223
Boot on floppy (a), hard disk (c), CD-ROM (d), or Etherboot (n). Hard disk boot
224
is the default.
225

    
226
@item -snapshot
227
Write to temporary files instead of disk image files. In this case,
228
the raw disk image you use is not written back. You can however force
229
the write back by pressing @key{C-a s} (@pxref{disk_images}).
230

    
231
@item -no-fd-bootchk
232
Disable boot signature checking for floppy disks in Bochs BIOS. It may
233
be needed to boot from old floppy disks.
234

    
235
@item -m megs
236
Set virtual RAM size to @var{megs} megabytes. Default is 128 MB.
237

    
238
@item -smp n
239
Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
240
CPUs are supported.
241

    
242
@item -nographic
243

    
244
Normally, QEMU uses SDL to display the VGA output. With this option,
245
you can totally disable graphical output so that QEMU is a simple
246
command line application. The emulated serial port is redirected on
247
the console. Therefore, you can still use QEMU to debug a Linux kernel
248
with a serial console.
249

    
250
@item -vnc display
251

    
252
Normally, QEMU uses SDL to display the VGA output.  With this option,
253
you can have QEMU listen on VNC display @var{display} and redirect the VGA
254
display over the VNC session.  It is very useful to enable the usb
255
tablet device when using this option (option @option{-usbdevice
256
tablet}). When using the VNC display, you must use the @option{-k}
257
option to set the keyboard layout if you are not using en-us.
258

    
259
@var{display} may be in the form @var{interface:d}, in which case connections
260
will only be allowed from @var{interface} on display @var{d}. Optionally,
261
@var{interface} can be omitted.  @var{display} can also be in the form
262
@var{unix:path} where @var{path} is the location of a unix socket to listen for
263
connections on.
264

    
265

    
266
@item -k language
267

    
268
Use keyboard layout @var{language} (for example @code{fr} for
269
French). This option is only needed where it is not easy to get raw PC
270
keycodes (e.g. on Macs, with some X11 servers or with a VNC
271
display). You don't normally need to use it on PC/Linux or PC/Windows
272
hosts.
273

    
274
The available layouts are:
275
@example
276
ar  de-ch  es  fo     fr-ca  hu  ja  mk     no  pt-br  sv
277
da  en-gb  et  fr     fr-ch  is  lt  nl     pl  ru     th
278
de  en-us  fi  fr-be  hr     it  lv  nl-be  pt  sl     tr
279
@end example
280

    
281
The default is @code{en-us}.
282

    
283
@item -audio-help
284

    
285
Will show the audio subsystem help: list of drivers, tunable
286
parameters.
287

    
288
@item -soundhw card1,card2,... or -soundhw all
289

    
290
Enable audio and selected sound hardware. Use ? to print all
291
available sound hardware.
292

    
293
@example
294
qemu -soundhw sb16,adlib hda
295
qemu -soundhw es1370 hda
296
qemu -soundhw all hda
297
qemu -soundhw ?
298
@end example
299

    
300
@item -localtime
301
Set the real time clock to local time (the default is to UTC
302
time). This option is needed to have correct date in MS-DOS or
303
Windows.
304

    
305
@item -full-screen
306
Start in full screen.
307

    
308
@item -pidfile file
309
Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
310
from a script.
311

    
312
@item -daemonize
313
Daemonize the QEMU process after initialization.  QEMU will not detach from
314
standard IO until it is ready to receive connections on any of its devices.
315
This option is a useful way for external programs to launch QEMU without having
316
to cope with initialization race conditions.
317

    
318
@item -win2k-hack
319
Use it when installing Windows 2000 to avoid a disk full bug. After
320
Windows 2000 is installed, you no longer need this option (this option
321
slows down the IDE transfers).
322

    
323
@item -option-rom file
324
Load the contents of file as an option ROM.  This option is useful to load
325
things like EtherBoot.
326

    
327
@end table
328

    
329
USB options:
330
@table @option
331

    
332
@item -usb
333
Enable the USB driver (will be the default soon)
334

    
335
@item -usbdevice devname
336
Add the USB device @var{devname}. @xref{usb_devices}.
337
@end table
338

    
339
Network options:
340

    
341
@table @option
342

    
343
@item -net nic[,vlan=n][,macaddr=addr][,model=type]
344
Create a new Network Interface Card and connect it to VLAN @var{n} (@var{n}
345
= 0 is the default). The NIC is currently an NE2000 on the PC
346
target. Optionally, the MAC address can be changed. If no
347
@option{-net} option is specified, a single NIC is created.
348
Qemu can emulate several different models of network card.  Valid values for
349
@var{type} are @code{ne2k_pci}, @code{ne2k_isa}, @code{rtl8139},
350
@code{smc91c111} and @code{lance}.  Not all devices are supported on all
351
targets.
352

    
353
@item -net user[,vlan=n][,hostname=name]
354
Use the user mode network stack which requires no administrator
355
priviledge to run.  @option{hostname=name} can be used to specify the client
356
hostname reported by the builtin DHCP server.
357

    
358
@item -net tap[,vlan=n][,fd=h][,ifname=name][,script=file]
359
Connect the host TAP network interface @var{name} to VLAN @var{n} and
360
use the network script @var{file} to configure it. The default
361
network script is @file{/etc/qemu-ifup}. Use @option{script=no} to
362
disable script execution. If @var{name} is not
363
provided, the OS automatically provides one.  @option{fd=h} can be
364
used to specify the handle of an already opened host TAP interface. Example:
365

    
366
@example
367
qemu linux.img -net nic -net tap
368
@end example
369

    
370
More complicated example (two NICs, each one connected to a TAP device)
371
@example
372
qemu linux.img -net nic,vlan=0 -net tap,vlan=0,ifname=tap0 \
373
               -net nic,vlan=1 -net tap,vlan=1,ifname=tap1
374
@end example
375

    
376

    
377
@item -net socket[,vlan=n][,fd=h][,listen=[host]:port][,connect=host:port]
378

    
379
Connect the VLAN @var{n} to a remote VLAN in another QEMU virtual
380
machine using a TCP socket connection. If @option{listen} is
381
specified, QEMU waits for incoming connections on @var{port}
382
(@var{host} is optional). @option{connect} is used to connect to
383
another QEMU instance using the @option{listen} option. @option{fd=h}
384
specifies an already opened TCP socket.
385

    
386
Example:
387
@example
388
# launch a first QEMU instance
389
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
390
               -net socket,listen=:1234
391
# connect the VLAN 0 of this instance to the VLAN 0
392
# of the first instance
393
qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
394
               -net socket,connect=127.0.0.1:1234
395
@end example
396

    
397
@item -net socket[,vlan=n][,fd=h][,mcast=maddr:port]
398

    
399
Create a VLAN @var{n} shared with another QEMU virtual
400
machines using a UDP multicast socket, effectively making a bus for 
401
every QEMU with same multicast address @var{maddr} and @var{port}.
402
NOTES:
403
@enumerate
404
@item 
405
Several QEMU can be running on different hosts and share same bus (assuming 
406
correct multicast setup for these hosts).
407
@item
408
mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
409
@url{http://user-mode-linux.sf.net}.
410
@item Use @option{fd=h} to specify an already opened UDP multicast socket.
411
@end enumerate
412

    
413
Example:
414
@example
415
# launch one QEMU instance
416
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
417
               -net socket,mcast=230.0.0.1:1234
418
# launch another QEMU instance on same "bus"
419
qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
420
               -net socket,mcast=230.0.0.1:1234
421
# launch yet another QEMU instance on same "bus"
422
qemu linux.img -net nic,macaddr=52:54:00:12:34:58 \
423
               -net socket,mcast=230.0.0.1:1234
424
@end example
425

    
426
Example (User Mode Linux compat.):
427
@example
428
# launch QEMU instance (note mcast address selected
429
# is UML's default)
430
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
431
               -net socket,mcast=239.192.168.1:1102
432
# launch UML
433
/path/to/linux ubd0=/path/to/root_fs eth0=mcast
434
@end example
435

    
436
@item -net none
437
Indicate that no network devices should be configured. It is used to
438
override the default configuration (@option{-net nic -net user}) which
439
is activated if no @option{-net} options are provided.
440

    
441
@item -tftp prefix
442
When using the user mode network stack, activate a built-in TFTP
443
server. All filenames beginning with @var{prefix} can be downloaded
444
from the host to the guest using a TFTP client. The TFTP client on the
445
guest must be configured in binary mode (use the command @code{bin} of
446
the Unix TFTP client). The host IP address on the guest is as usual
447
10.0.2.2.
448

    
449
@item -smb dir
450
When using the user mode network stack, activate a built-in SMB
451
server so that Windows OSes can access to the host files in @file{dir}
452
transparently.
453

    
454
In the guest Windows OS, the line:
455
@example
456
10.0.2.4 smbserver
457
@end example
458
must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
459
or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
460

    
461
Then @file{dir} can be accessed in @file{\\smbserver\qemu}.
462

    
463
Note that a SAMBA server must be installed on the host OS in
464
@file{/usr/sbin/smbd}. QEMU was tested successfully with smbd version
465
2.2.7a from the Red Hat 9 and version 3.0.10-1.fc3 from Fedora Core 3.
466

    
467
@item -redir [tcp|udp]:host-port:[guest-host]:guest-port
468

    
469
When using the user mode network stack, redirect incoming TCP or UDP
470
connections to the host port @var{host-port} to the guest
471
@var{guest-host} on guest port @var{guest-port}. If @var{guest-host}
472
is not specified, its value is 10.0.2.15 (default address given by the
473
built-in DHCP server).
474

    
475
For example, to redirect host X11 connection from screen 1 to guest
476
screen 0, use the following:
477

    
478
@example
479
# on the host
480
qemu -redir tcp:6001::6000 [...]
481
# this host xterm should open in the guest X11 server
482
xterm -display :1
483
@end example
484

    
485
To redirect telnet connections from host port 5555 to telnet port on
486
the guest, use the following:
487

    
488
@example
489
# on the host
490
qemu -redir tcp:5555::23 [...]
491
telnet localhost 5555
492
@end example
493

    
494
Then when you use on the host @code{telnet localhost 5555}, you
495
connect to the guest telnet server.
496

    
497
@end table
498

    
499
Linux boot specific: When using these options, you can use a given
500
Linux kernel without installing it in the disk image. It can be useful
501
for easier testing of various kernels.
502

    
503
@table @option
504

    
505
@item -kernel bzImage 
506
Use @var{bzImage} as kernel image.
507

    
508
@item -append cmdline 
509
Use @var{cmdline} as kernel command line
510

    
511
@item -initrd file
512
Use @var{file} as initial ram disk.
513

    
514
@end table
515

    
516
Debug/Expert options:
517
@table @option
518

    
519
@item -serial dev
520
Redirect the virtual serial port to host character device
521
@var{dev}. The default device is @code{vc} in graphical mode and
522
@code{stdio} in non graphical mode.
523

    
524
This option can be used several times to simulate up to 4 serials
525
ports.
526

    
527
Use @code{-serial none} to disable all serial ports.
528

    
529
Available character devices are:
530
@table @code
531
@item vc
532
Virtual console
533
@item pty
534
[Linux only] Pseudo TTY (a new PTY is automatically allocated)
535
@item none
536
No device is allocated.
537
@item null
538
void device
539
@item /dev/XXX
540
[Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
541
parameters are set according to the emulated ones.
542
@item /dev/parportN
543
[Linux only, parallel port only] Use host parallel port
544
@var{N}. Currently only SPP parallel port features can be used.
545
@item file:filename
546
Write output to filename. No character can be read.
547
@item stdio
548
[Unix only] standard input/output
549
@item pipe:filename
550
name pipe @var{filename}
551
@item COMn
552
[Windows only] Use host serial port @var{n}
553
@item udp:[remote_host]:remote_port[@@[src_ip]:src_port]
554
This implements UDP Net Console.  When @var{remote_host} or @var{src_ip} are not specified they default to @code{0.0.0.0}.  When not using a specifed @var{src_port} a random port is automatically chosen.
555

    
556
If you just want a simple readonly console you can use @code{netcat} or
557
@code{nc}, by starting qemu with: @code{-serial udp::4555} and nc as:
558
@code{nc -u -l -p 4555}. Any time qemu writes something to that port it
559
will appear in the netconsole session.
560

    
561
If you plan to send characters back via netconsole or you want to stop
562
and start qemu a lot of times, you should have qemu use the same
563
source port each time by using something like @code{-serial
564
udp::4555@@:4556} to qemu. Another approach is to use a patched
565
version of netcat which can listen to a TCP port and send and receive
566
characters via udp.  If you have a patched version of netcat which
567
activates telnet remote echo and single char transfer, then you can
568
use the following options to step up a netcat redirector to allow
569
telnet on port 5555 to access the qemu port.
570
@table @code
571
@item Qemu Options:
572
-serial udp::4555@@:4556
573
@item netcat options:
574
-u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
575
@item telnet options:
576
localhost 5555
577
@end table
578

    
579

    
580
@item tcp:[host]:port[,server][,nowait][,nodelay]
581
The TCP Net Console has two modes of operation.  It can send the serial
582
I/O to a location or wait for a connection from a location.  By default
583
the TCP Net Console is sent to @var{host} at the @var{port}.  If you use
584
the @var{server} option QEMU will wait for a client socket application
585
to connect to the port before continuing, unless the @code{nowait}
586
option was specified.  The @code{nodelay} option disables the Nagle buffering
587
algoritm.  If @var{host} is omitted, 0.0.0.0 is assumed. Only
588
one TCP connection at a time is accepted. You can use @code{telnet} to
589
connect to the corresponding character device.
590
@table @code
591
@item Example to send tcp console to 192.168.0.2 port 4444
592
-serial tcp:192.168.0.2:4444
593
@item Example to listen and wait on port 4444 for connection
594
-serial tcp::4444,server
595
@item Example to not wait and listen on ip 192.168.0.100 port 4444
596
-serial tcp:192.168.0.100:4444,server,nowait
597
@end table
598

    
599
@item telnet:host:port[,server][,nowait][,nodelay]
600
The telnet protocol is used instead of raw tcp sockets.  The options
601
work the same as if you had specified @code{-serial tcp}.  The
602
difference is that the port acts like a telnet server or client using
603
telnet option negotiation.  This will also allow you to send the
604
MAGIC_SYSRQ sequence if you use a telnet that supports sending the break
605
sequence.  Typically in unix telnet you do it with Control-] and then
606
type "send break" followed by pressing the enter key.
607

    
608
@item unix:path[,server][,nowait]
609
A unix domain socket is used instead of a tcp socket.  The option works the
610
same as if you had specified @code{-serial tcp} except the unix domain socket
611
@var{path} is used for connections.
612

    
613
@end table
614

    
615
@item -parallel dev
616
Redirect the virtual parallel port to host device @var{dev} (same
617
devices as the serial port). On Linux hosts, @file{/dev/parportN} can
618
be used to use hardware devices connected on the corresponding host
619
parallel port.
620

    
621
This option can be used several times to simulate up to 3 parallel
622
ports.
623

    
624
Use @code{-parallel none} to disable all parallel ports.
625

    
626
@item -monitor dev
627
Redirect the monitor to host device @var{dev} (same devices as the
628
serial port).
629
The default device is @code{vc} in graphical mode and @code{stdio} in
630
non graphical mode.
631

    
632
@item -s
633
Wait gdb connection to port 1234 (@pxref{gdb_usage}). 
634
@item -p port
635
Change gdb connection port.  @var{port} can be either a decimal number
636
to specify a TCP port, or a host device (same devices as the serial port).
637
@item -S
638
Do not start CPU at startup (you must type 'c' in the monitor).
639
@item -d             
640
Output log in /tmp/qemu.log
641
@item -hdachs c,h,s,[,t]
642
Force hard disk 0 physical geometry (1 <= @var{c} <= 16383, 1 <=
643
@var{h} <= 16, 1 <= @var{s} <= 63) and optionally force the BIOS
644
translation mode (@var{t}=none, lba or auto). Usually QEMU can guess
645
all thoses parameters. This option is useful for old MS-DOS disk
646
images.
647

    
648
@item -L path
649
Set the directory for the BIOS, VGA BIOS and keymaps.
650

    
651
@item -std-vga
652
Simulate a standard VGA card with Bochs VBE extensions (default is
653
Cirrus Logic GD5446 PCI VGA). If your guest OS supports the VESA 2.0
654
VBE extensions (e.g. Windows XP) and if you want to use high
655
resolution modes (>= 1280x1024x16) then you should use this option.
656

    
657
@item -no-acpi
658
Disable ACPI (Advanced Configuration and Power Interface) support. Use
659
it if your guest OS complains about ACPI problems (PC target machine
660
only).
661

    
662
@item -no-reboot
663
Exit instead of rebooting.
664

    
665
@item -loadvm file
666
Start right away with a saved state (@code{loadvm} in monitor)
667

    
668
@item -semihosting
669
Enable "Angel" semihosting interface (ARM target machines only).
670
Note that this allows guest direct access to the host filesystem,
671
so should only be used with trusted guest OS.
672
@end table
673

    
674
@c man end
675

    
676
@node pcsys_keys
677
@section Keys
678

    
679
@c man begin OPTIONS
680

    
681
During the graphical emulation, you can use the following keys:
682
@table @key
683
@item Ctrl-Alt-f
684
Toggle full screen
685

    
686
@item Ctrl-Alt-n
687
Switch to virtual console 'n'. Standard console mappings are:
688
@table @emph
689
@item 1
690
Target system display
691
@item 2
692
Monitor
693
@item 3
694
Serial port
695
@end table
696

    
697
@item Ctrl-Alt
698
Toggle mouse and keyboard grab.
699
@end table
700

    
701
In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
702
@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
703

    
704
During emulation, if you are using the @option{-nographic} option, use
705
@key{Ctrl-a h} to get terminal commands:
706

    
707
@table @key
708
@item Ctrl-a h
709
Print this help
710
@item Ctrl-a x    
711
Exit emulator
712
@item Ctrl-a s    
713
Save disk data back to file (if -snapshot)
714
@item Ctrl-a b
715
Send break (magic sysrq in Linux)
716
@item Ctrl-a c
717
Switch between console and monitor
718
@item Ctrl-a Ctrl-a
719
Send Ctrl-a
720
@end table
721
@c man end
722

    
723
@ignore
724

    
725
@c man begin SEEALSO
726
The HTML documentation of QEMU for more precise information and Linux
727
user mode emulator invocation.
728
@c man end
729

    
730
@c man begin AUTHOR
731
Fabrice Bellard
732
@c man end
733

    
734
@end ignore
735

    
736
@node pcsys_monitor
737
@section QEMU Monitor
738

    
739
The QEMU monitor is used to give complex commands to the QEMU
740
emulator. You can use it to:
741

    
742
@itemize @minus
743

    
744
@item
745
Remove or insert removable medias images
746
(such as CD-ROM or floppies)
747

    
748
@item 
749
Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
750
from a disk file.
751

    
752
@item Inspect the VM state without an external debugger.
753

    
754
@end itemize
755

    
756
@subsection Commands
757

    
758
The following commands are available:
759

    
760
@table @option
761

    
762
@item help or ? [cmd]
763
Show the help for all commands or just for command @var{cmd}.
764

    
765
@item commit  
766
Commit changes to the disk images (if -snapshot is used)
767

    
768
@item info subcommand 
769
show various information about the system state
770

    
771
@table @option
772
@item info network
773
show the various VLANs and the associated devices
774
@item info block
775
show the block devices
776
@item info registers
777
show the cpu registers
778
@item info history
779
show the command line history
780
@item info pci
781
show emulated PCI device
782
@item info usb
783
show USB devices plugged on the virtual USB hub
784
@item info usbhost
785
show all USB host devices
786
@item info capture
787
show information about active capturing
788
@item info snapshots
789
show list of VM snapshots
790
@item info mice
791
show which guest mouse is receiving events
792
@end table
793

    
794
@item q or quit
795
Quit the emulator.
796

    
797
@item eject [-f] device
798
Eject a removable media (use -f to force it).
799

    
800
@item change device filename
801
Change a removable media.
802

    
803
@item screendump filename
804
Save screen into PPM image @var{filename}.
805

    
806
@item mouse_move dx dy [dz]
807
Move the active mouse to the specified coordinates @var{dx} @var{dy}
808
with optional scroll axis @var{dz}.
809

    
810
@item mouse_button val
811
Change the active mouse button state @var{val} (1=L, 2=M, 4=R).
812

    
813
@item mouse_set index
814
Set which mouse device receives events at given @var{index}, index
815
can be obtained with
816
@example
817
info mice
818
@end example
819

    
820
@item wavcapture filename [frequency [bits [channels]]]
821
Capture audio into @var{filename}. Using sample rate @var{frequency}
822
bits per sample @var{bits} and number of channels @var{channels}.
823

    
824
Defaults:
825
@itemize @minus
826
@item Sample rate = 44100 Hz - CD quality
827
@item Bits = 16
828
@item Number of channels = 2 - Stereo
829
@end itemize
830

    
831
@item stopcapture index
832
Stop capture with a given @var{index}, index can be obtained with
833
@example
834
info capture
835
@end example
836

    
837
@item log item1[,...]
838
Activate logging of the specified items to @file{/tmp/qemu.log}.
839

    
840
@item savevm [tag|id]
841
Create a snapshot of the whole virtual machine. If @var{tag} is
842
provided, it is used as human readable identifier. If there is already
843
a snapshot with the same tag or ID, it is replaced. More info at
844
@ref{vm_snapshots}.
845

    
846
@item loadvm tag|id
847
Set the whole virtual machine to the snapshot identified by the tag
848
@var{tag} or the unique snapshot ID @var{id}.
849

    
850
@item delvm tag|id
851
Delete the snapshot identified by @var{tag} or @var{id}.
852

    
853
@item stop
854
Stop emulation.
855

    
856
@item c or cont
857
Resume emulation.
858

    
859
@item gdbserver [port]
860
Start gdbserver session (default port=1234)
861

    
862
@item x/fmt addr
863
Virtual memory dump starting at @var{addr}.
864

    
865
@item xp /fmt addr
866
Physical memory dump starting at @var{addr}.
867

    
868
@var{fmt} is a format which tells the command how to format the
869
data. Its syntax is: @option{/@{count@}@{format@}@{size@}}
870

    
871
@table @var
872
@item count 
873
is the number of items to be dumped.
874

    
875
@item format
876
can be x (hexa), d (signed decimal), u (unsigned decimal), o (octal),
877
c (char) or i (asm instruction).
878

    
879
@item size
880
can be b (8 bits), h (16 bits), w (32 bits) or g (64 bits). On x86,
881
@code{h} or @code{w} can be specified with the @code{i} format to
882
respectively select 16 or 32 bit code instruction size.
883

    
884
@end table
885

    
886
Examples: 
887
@itemize
888
@item
889
Dump 10 instructions at the current instruction pointer:
890
@example 
891
(qemu) x/10i $eip
892
0x90107063:  ret
893
0x90107064:  sti
894
0x90107065:  lea    0x0(%esi,1),%esi
895
0x90107069:  lea    0x0(%edi,1),%edi
896
0x90107070:  ret
897
0x90107071:  jmp    0x90107080
898
0x90107073:  nop
899
0x90107074:  nop
900
0x90107075:  nop
901
0x90107076:  nop
902
@end example
903

    
904
@item
905
Dump 80 16 bit values at the start of the video memory.
906
@smallexample 
907
(qemu) xp/80hx 0xb8000
908
0x000b8000: 0x0b50 0x0b6c 0x0b65 0x0b78 0x0b38 0x0b36 0x0b2f 0x0b42
909
0x000b8010: 0x0b6f 0x0b63 0x0b68 0x0b73 0x0b20 0x0b56 0x0b47 0x0b41
910
0x000b8020: 0x0b42 0x0b69 0x0b6f 0x0b73 0x0b20 0x0b63 0x0b75 0x0b72
911
0x000b8030: 0x0b72 0x0b65 0x0b6e 0x0b74 0x0b2d 0x0b63 0x0b76 0x0b73
912
0x000b8040: 0x0b20 0x0b30 0x0b35 0x0b20 0x0b4e 0x0b6f 0x0b76 0x0b20
913
0x000b8050: 0x0b32 0x0b30 0x0b30 0x0b33 0x0720 0x0720 0x0720 0x0720
914
0x000b8060: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
915
0x000b8070: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
916
0x000b8080: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
917
0x000b8090: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
918
@end smallexample
919
@end itemize
920

    
921
@item p or print/fmt expr
922

    
923
Print expression value. Only the @var{format} part of @var{fmt} is
924
used.
925

    
926
@item sendkey keys
927

    
928
Send @var{keys} to the emulator. Use @code{-} to press several keys
929
simultaneously. Example:
930
@example
931
sendkey ctrl-alt-f1
932
@end example
933

    
934
This command is useful to send keys that your graphical user interface
935
intercepts at low level, such as @code{ctrl-alt-f1} in X Window.
936

    
937
@item system_reset
938

    
939
Reset the system.
940

    
941
@item usb_add devname
942

    
943
Add the USB device @var{devname}.  For details of available devices see
944
@ref{usb_devices}
945

    
946
@item usb_del devname
947

    
948
Remove the USB device @var{devname} from the QEMU virtual USB
949
hub. @var{devname} has the syntax @code{bus.addr}. Use the monitor
950
command @code{info usb} to see the devices you can remove.
951

    
952
@end table
953

    
954
@subsection Integer expressions
955

    
956
The monitor understands integers expressions for every integer
957
argument. You can use register names to get the value of specifics
958
CPU registers by prefixing them with @emph{$}.
959

    
960
@node disk_images
961
@section Disk Images
962

    
963
Since version 0.6.1, QEMU supports many disk image formats, including
964
growable disk images (their size increase as non empty sectors are
965
written), compressed and encrypted disk images. Version 0.8.3 added
966
the new qcow2 disk image format which is essential to support VM
967
snapshots.
968

    
969
@menu
970
* disk_images_quickstart::    Quick start for disk image creation
971
* disk_images_snapshot_mode:: Snapshot mode
972
* vm_snapshots::              VM snapshots
973
* qemu_img_invocation::       qemu-img Invocation
974
* host_drives::               Using host drives
975
* disk_images_fat_images::    Virtual FAT disk images
976
@end menu
977

    
978
@node disk_images_quickstart
979
@subsection Quick start for disk image creation
980

    
981
You can create a disk image with the command:
982
@example
983
qemu-img create myimage.img mysize
984
@end example
985
where @var{myimage.img} is the disk image filename and @var{mysize} is its
986
size in kilobytes. You can add an @code{M} suffix to give the size in
987
megabytes and a @code{G} suffix for gigabytes.
988

    
989
See @ref{qemu_img_invocation} for more information.
990

    
991
@node disk_images_snapshot_mode
992
@subsection Snapshot mode
993

    
994
If you use the option @option{-snapshot}, all disk images are
995
considered as read only. When sectors in written, they are written in
996
a temporary file created in @file{/tmp}. You can however force the
997
write back to the raw disk images by using the @code{commit} monitor
998
command (or @key{C-a s} in the serial console).
999

    
1000
@node vm_snapshots
1001
@subsection VM snapshots
1002

    
1003
VM snapshots are snapshots of the complete virtual machine including
1004
CPU state, RAM, device state and the content of all the writable
1005
disks. In order to use VM snapshots, you must have at least one non
1006
removable and writable block device using the @code{qcow2} disk image
1007
format. Normally this device is the first virtual hard drive.
1008

    
1009
Use the monitor command @code{savevm} to create a new VM snapshot or
1010
replace an existing one. A human readable name can be assigned to each
1011
snapshot in addition to its numerical ID.
1012

    
1013
Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
1014
a VM snapshot. @code{info snapshots} lists the available snapshots
1015
with their associated information:
1016

    
1017
@example
1018
(qemu) info snapshots
1019
Snapshot devices: hda
1020
Snapshot list (from hda):
1021
ID        TAG                 VM SIZE                DATE       VM CLOCK
1022
1         start                   41M 2006-08-06 12:38:02   00:00:14.954
1023
2                                 40M 2006-08-06 12:43:29   00:00:18.633
1024
3         msys                    40M 2006-08-06 12:44:04   00:00:23.514
1025
@end example
1026

    
1027
A VM snapshot is made of a VM state info (its size is shown in
1028
@code{info snapshots}) and a snapshot of every writable disk image.
1029
The VM state info is stored in the first @code{qcow2} non removable
1030
and writable block device. The disk image snapshots are stored in
1031
every disk image. The size of a snapshot in a disk image is difficult
1032
to evaluate and is not shown by @code{info snapshots} because the
1033
associated disk sectors are shared among all the snapshots to save
1034
disk space (otherwise each snapshot would need a full copy of all the
1035
disk images).
1036

    
1037
When using the (unrelated) @code{-snapshot} option
1038
(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
1039
but they are deleted as soon as you exit QEMU.
1040

    
1041
VM snapshots currently have the following known limitations:
1042
@itemize
1043
@item 
1044
They cannot cope with removable devices if they are removed or
1045
inserted after a snapshot is done.
1046
@item 
1047
A few device drivers still have incomplete snapshot support so their
1048
state is not saved or restored properly (in particular USB).
1049
@end itemize
1050

    
1051
@node qemu_img_invocation
1052
@subsection @code{qemu-img} Invocation
1053

    
1054
@include qemu-img.texi
1055

    
1056
@node host_drives
1057
@subsection Using host drives
1058

    
1059
In addition to disk image files, QEMU can directly access host
1060
devices. We describe here the usage for QEMU version >= 0.8.3.
1061

    
1062
@subsubsection Linux
1063

    
1064
On Linux, you can directly use the host device filename instead of a
1065
disk image filename provided you have enough proviledge to access
1066
it. For example, use @file{/dev/cdrom} to access to the CDROM or
1067
@file{/dev/fd0} for the floppy.
1068

    
1069
@table @code
1070
@item CD
1071
You can specify a CDROM device even if no CDROM is loaded. QEMU has
1072
specific code to detect CDROM insertion or removal. CDROM ejection by
1073
the guest OS is supported. Currently only data CDs are supported.
1074
@item Floppy
1075
You can specify a floppy device even if no floppy is loaded. Floppy
1076
removal is currently not detected accurately (if you change floppy
1077
without doing floppy access while the floppy is not loaded, the guest
1078
OS will think that the same floppy is loaded).
1079
@item Hard disks
1080
Hard disks can be used. Normally you must specify the whole disk
1081
(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
1082
see it as a partitioned disk. WARNING: unless you know what you do, it
1083
is better to only make READ-ONLY accesses to the hard disk otherwise
1084
you may corrupt your host data (use the @option{-snapshot} command
1085
line option or modify the device permissions accordingly).
1086
@end table
1087

    
1088
@subsubsection Windows
1089

    
1090
@table @code
1091
@item CD
1092
The prefered syntax is the drive letter (e.g. @file{d:}). The
1093
alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
1094
supported as an alias to the first CDROM drive.
1095

    
1096
Currently there is no specific code to handle removable medias, so it
1097
is better to use the @code{change} or @code{eject} monitor commands to
1098
change or eject media.
1099
@item Hard disks
1100
Hard disks can be used with the syntax: @file{\\.\PhysicalDriveN}
1101
where @var{N} is the drive number (0 is the first hard disk).
1102

    
1103
WARNING: unless you know what you do, it is better to only make
1104
READ-ONLY accesses to the hard disk otherwise you may corrupt your
1105
host data (use the @option{-snapshot} command line so that the
1106
modifications are written in a temporary file).
1107
@end table
1108

    
1109

    
1110
@subsubsection Mac OS X
1111

    
1112
@file{/dev/cdrom} is an alias to the first CDROM. 
1113

    
1114
Currently there is no specific code to handle removable medias, so it
1115
is better to use the @code{change} or @code{eject} monitor commands to
1116
change or eject media.
1117

    
1118
@node disk_images_fat_images
1119
@subsection Virtual FAT disk images
1120

    
1121
QEMU can automatically create a virtual FAT disk image from a
1122
directory tree. In order to use it, just type:
1123

    
1124
@example 
1125
qemu linux.img -hdb fat:/my_directory
1126
@end example
1127

    
1128
Then you access access to all the files in the @file{/my_directory}
1129
directory without having to copy them in a disk image or to export
1130
them via SAMBA or NFS. The default access is @emph{read-only}.
1131

    
1132
Floppies can be emulated with the @code{:floppy:} option:
1133

    
1134
@example 
1135
qemu linux.img -fda fat:floppy:/my_directory
1136
@end example
1137

    
1138
A read/write support is available for testing (beta stage) with the
1139
@code{:rw:} option:
1140

    
1141
@example 
1142
qemu linux.img -fda fat:floppy:rw:/my_directory
1143
@end example
1144

    
1145
What you should @emph{never} do:
1146
@itemize
1147
@item use non-ASCII filenames ;
1148
@item use "-snapshot" together with ":rw:" ;
1149
@item expect it to work when loadvm'ing ;
1150
@item write to the FAT directory on the host system while accessing it with the guest system.
1151
@end itemize
1152

    
1153
@node pcsys_network
1154
@section Network emulation
1155

    
1156
QEMU can simulate several networks cards (NE2000 boards on the PC
1157
target) and can connect them to an arbitrary number of Virtual Local
1158
Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1159
VLAN. VLAN can be connected between separate instances of QEMU to
1160
simulate large networks. For simpler usage, a non priviledged user mode
1161
network stack can replace the TAP device to have a basic network
1162
connection.
1163

    
1164
@subsection VLANs
1165

    
1166
QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1167
connection between several network devices. These devices can be for
1168
example QEMU virtual Ethernet cards or virtual Host ethernet devices
1169
(TAP devices).
1170

    
1171
@subsection Using TAP network interfaces
1172

    
1173
This is the standard way to connect QEMU to a real network. QEMU adds
1174
a virtual network device on your host (called @code{tapN}), and you
1175
can then configure it as if it was a real ethernet card.
1176

    
1177
@subsubsection Linux host
1178

    
1179
As an example, you can download the @file{linux-test-xxx.tar.gz}
1180
archive and copy the script @file{qemu-ifup} in @file{/etc} and
1181
configure properly @code{sudo} so that the command @code{ifconfig}
1182
contained in @file{qemu-ifup} can be executed as root. You must verify
1183
that your host kernel supports the TAP network interfaces: the
1184
device @file{/dev/net/tun} must be present.
1185

    
1186
See @ref{sec_invocation} to have examples of command lines using the
1187
TAP network interfaces.
1188

    
1189
@subsubsection Windows host
1190

    
1191
There is a virtual ethernet driver for Windows 2000/XP systems, called
1192
TAP-Win32. But it is not included in standard QEMU for Windows,
1193
so you will need to get it separately. It is part of OpenVPN package,
1194
so download OpenVPN from : @url{http://openvpn.net/}.
1195

    
1196
@subsection Using the user mode network stack
1197

    
1198
By using the option @option{-net user} (default configuration if no
1199
@option{-net} option is specified), QEMU uses a completely user mode
1200
network stack (you don't need root priviledge to use the virtual
1201
network). The virtual network configuration is the following:
1202

    
1203
@example
1204

    
1205
         QEMU VLAN      <------>  Firewall/DHCP server <-----> Internet
1206
                           |          (10.0.2.2)
1207
                           |
1208
                           ---->  DNS server (10.0.2.3)
1209
                           |     
1210
                           ---->  SMB server (10.0.2.4)
1211
@end example
1212

    
1213
The QEMU VM behaves as if it was behind a firewall which blocks all
1214
incoming connections. You can use a DHCP client to automatically
1215
configure the network in the QEMU VM. The DHCP server assign addresses
1216
to the hosts starting from 10.0.2.15.
1217

    
1218
In order to check that the user mode network is working, you can ping
1219
the address 10.0.2.2 and verify that you got an address in the range
1220
10.0.2.x from the QEMU virtual DHCP server.
1221

    
1222
Note that @code{ping} is not supported reliably to the internet as it
1223
would require root priviledges. It means you can only ping the local
1224
router (10.0.2.2).
1225

    
1226
When using the built-in TFTP server, the router is also the TFTP
1227
server.
1228

    
1229
When using the @option{-redir} option, TCP or UDP connections can be
1230
redirected from the host to the guest. It allows for example to
1231
redirect X11, telnet or SSH connections.
1232

    
1233
@subsection Connecting VLANs between QEMU instances
1234

    
1235
Using the @option{-net socket} option, it is possible to make VLANs
1236
that span several QEMU instances. See @ref{sec_invocation} to have a
1237
basic example.
1238

    
1239
@node direct_linux_boot
1240
@section Direct Linux Boot
1241

    
1242
This section explains how to launch a Linux kernel inside QEMU without
1243
having to make a full bootable image. It is very useful for fast Linux
1244
kernel testing.
1245

    
1246
The syntax is:
1247
@example
1248
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1249
@end example
1250

    
1251
Use @option{-kernel} to provide the Linux kernel image and
1252
@option{-append} to give the kernel command line arguments. The
1253
@option{-initrd} option can be used to provide an INITRD image.
1254

    
1255
When using the direct Linux boot, a disk image for the first hard disk
1256
@file{hda} is required because its boot sector is used to launch the
1257
Linux kernel.
1258

    
1259
If you do not need graphical output, you can disable it and redirect
1260
the virtual serial port and the QEMU monitor to the console with the
1261
@option{-nographic} option. The typical command line is:
1262
@example
1263
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1264
     -append "root=/dev/hda console=ttyS0" -nographic
1265
@end example
1266

    
1267
Use @key{Ctrl-a c} to switch between the serial console and the
1268
monitor (@pxref{pcsys_keys}).
1269

    
1270
@node pcsys_usb
1271
@section USB emulation
1272

    
1273
QEMU emulates a PCI UHCI USB controller. You can virtually plug
1274
virtual USB devices or real host USB devices (experimental, works only
1275
on Linux hosts).  Qemu will automatically create and connect virtual USB hubs
1276
as necessary to connect multiple USB devices.
1277

    
1278
@menu
1279
* usb_devices::
1280
* host_usb_devices::
1281
@end menu
1282
@node usb_devices
1283
@subsection Connecting USB devices
1284

    
1285
USB devices can be connected with the @option{-usbdevice} commandline option
1286
or the @code{usb_add} monitor command.  Available devices are:
1287

    
1288
@table @var
1289
@item @code{mouse}
1290
Virtual Mouse.  This will override the PS/2 mouse emulation when activated.
1291
@item @code{tablet}
1292
Pointer device that uses absolute coordinates (like a touchscreen).
1293
This means qemu is able to report the mouse position without having
1294
to grab the mouse.  Also overrides the PS/2 mouse emulation when activated.
1295
@item @code{disk:file}
1296
Mass storage device based on @var{file} (@pxref{disk_images})
1297
@item @code{host:bus.addr}
1298
Pass through the host device identified by @var{bus.addr}
1299
(Linux only)
1300
@item @code{host:vendor_id:product_id}
1301
Pass through the host device identified by @var{vendor_id:product_id}
1302
(Linux only)
1303
@end table
1304

    
1305
@node host_usb_devices
1306
@subsection Using host USB devices on a Linux host
1307

    
1308
WARNING: this is an experimental feature. QEMU will slow down when
1309
using it. USB devices requiring real time streaming (i.e. USB Video
1310
Cameras) are not supported yet.
1311

    
1312
@enumerate
1313
@item If you use an early Linux 2.4 kernel, verify that no Linux driver 
1314
is actually using the USB device. A simple way to do that is simply to
1315
disable the corresponding kernel module by renaming it from @file{mydriver.o}
1316
to @file{mydriver.o.disabled}.
1317

    
1318
@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1319
@example
1320
ls /proc/bus/usb
1321
001  devices  drivers
1322
@end example
1323

    
1324
@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1325
@example
1326
chown -R myuid /proc/bus/usb
1327
@end example
1328

    
1329
@item Launch QEMU and do in the monitor:
1330
@example 
1331
info usbhost
1332
  Device 1.2, speed 480 Mb/s
1333
    Class 00: USB device 1234:5678, USB DISK
1334
@end example
1335
You should see the list of the devices you can use (Never try to use
1336
hubs, it won't work).
1337

    
1338
@item Add the device in QEMU by using:
1339
@example 
1340
usb_add host:1234:5678
1341
@end example
1342

    
1343
Normally the guest OS should report that a new USB device is
1344
plugged. You can use the option @option{-usbdevice} to do the same.
1345

    
1346
@item Now you can try to use the host USB device in QEMU.
1347

    
1348
@end enumerate
1349

    
1350
When relaunching QEMU, you may have to unplug and plug again the USB
1351
device to make it work again (this is a bug).
1352

    
1353
@node gdb_usage
1354
@section GDB usage
1355

    
1356
QEMU has a primitive support to work with gdb, so that you can do
1357
'Ctrl-C' while the virtual machine is running and inspect its state.
1358

    
1359
In order to use gdb, launch qemu with the '-s' option. It will wait for a
1360
gdb connection:
1361
@example
1362
> qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1363
       -append "root=/dev/hda"
1364
Connected to host network interface: tun0
1365
Waiting gdb connection on port 1234
1366
@end example
1367

    
1368
Then launch gdb on the 'vmlinux' executable:
1369
@example
1370
> gdb vmlinux
1371
@end example
1372

    
1373
In gdb, connect to QEMU:
1374
@example
1375
(gdb) target remote localhost:1234
1376
@end example
1377

    
1378
Then you can use gdb normally. For example, type 'c' to launch the kernel:
1379
@example
1380
(gdb) c
1381
@end example
1382

    
1383
Here are some useful tips in order to use gdb on system code:
1384

    
1385
@enumerate
1386
@item
1387
Use @code{info reg} to display all the CPU registers.
1388
@item
1389
Use @code{x/10i $eip} to display the code at the PC position.
1390
@item
1391
Use @code{set architecture i8086} to dump 16 bit code. Then use
1392
@code{x/10i $cs*16+$eip} to dump the code at the PC position.
1393
@end enumerate
1394

    
1395
@node pcsys_os_specific
1396
@section Target OS specific information
1397

    
1398
@subsection Linux
1399

    
1400
To have access to SVGA graphic modes under X11, use the @code{vesa} or
1401
the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1402
color depth in the guest and the host OS.
1403

    
1404
When using a 2.6 guest Linux kernel, you should add the option
1405
@code{clock=pit} on the kernel command line because the 2.6 Linux
1406
kernels make very strict real time clock checks by default that QEMU
1407
cannot simulate exactly.
1408

    
1409
When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1410
not activated because QEMU is slower with this patch. The QEMU
1411
Accelerator Module is also much slower in this case. Earlier Fedora
1412
Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporte this
1413
patch by default. Newer kernels don't have it.
1414

    
1415
@subsection Windows
1416

    
1417
If you have a slow host, using Windows 95 is better as it gives the
1418
best speed. Windows 2000 is also a good choice.
1419

    
1420
@subsubsection SVGA graphic modes support
1421

    
1422
QEMU emulates a Cirrus Logic GD5446 Video
1423
card. All Windows versions starting from Windows 95 should recognize
1424
and use this graphic card. For optimal performances, use 16 bit color
1425
depth in the guest and the host OS.
1426

    
1427
If you are using Windows XP as guest OS and if you want to use high
1428
resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
1429
1280x1024x16), then you should use the VESA VBE virtual graphic card
1430
(option @option{-std-vga}).
1431

    
1432
@subsubsection CPU usage reduction
1433

    
1434
Windows 9x does not correctly use the CPU HLT
1435
instruction. The result is that it takes host CPU cycles even when
1436
idle. You can install the utility from
1437
@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1438
problem. Note that no such tool is needed for NT, 2000 or XP.
1439

    
1440
@subsubsection Windows 2000 disk full problem
1441

    
1442
Windows 2000 has a bug which gives a disk full problem during its
1443
installation. When installing it, use the @option{-win2k-hack} QEMU
1444
option to enable a specific workaround. After Windows 2000 is
1445
installed, you no longer need this option (this option slows down the
1446
IDE transfers).
1447

    
1448
@subsubsection Windows 2000 shutdown
1449

    
1450
Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1451
can. It comes from the fact that Windows 2000 does not automatically
1452
use the APM driver provided by the BIOS.
1453

    
1454
In order to correct that, do the following (thanks to Struan
1455
Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1456
Add/Troubleshoot a device => Add a new device & Next => No, select the
1457
hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1458
(again) a few times. Now the driver is installed and Windows 2000 now
1459
correctly instructs QEMU to shutdown at the appropriate moment. 
1460

    
1461
@subsubsection Share a directory between Unix and Windows
1462

    
1463
See @ref{sec_invocation} about the help of the option @option{-smb}.
1464

    
1465
@subsubsection Windows XP security problem
1466

    
1467
Some releases of Windows XP install correctly but give a security
1468
error when booting:
1469
@example
1470
A problem is preventing Windows from accurately checking the
1471
license for this computer. Error code: 0x800703e6.
1472
@end example
1473

    
1474
The workaround is to install a service pack for XP after a boot in safe
1475
mode. Then reboot, and the problem should go away. Since there is no
1476
network while in safe mode, its recommended to download the full
1477
installation of SP1 or SP2 and transfer that via an ISO or using the
1478
vvfat block device ("-hdb fat:directory_which_holds_the_SP").
1479

    
1480
@subsection MS-DOS and FreeDOS
1481

    
1482
@subsubsection CPU usage reduction
1483

    
1484
DOS does not correctly use the CPU HLT instruction. The result is that
1485
it takes host CPU cycles even when idle. You can install the utility
1486
from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1487
problem.
1488

    
1489
@node QEMU System emulator for non PC targets
1490
@chapter QEMU System emulator for non PC targets
1491

    
1492
QEMU is a generic emulator and it emulates many non PC
1493
machines. Most of the options are similar to the PC emulator. The
1494
differences are mentionned in the following sections.
1495

    
1496
@menu
1497
* QEMU PowerPC System emulator::
1498
* Sparc32 System emulator invocation::
1499
* Sparc64 System emulator invocation::
1500
* MIPS System emulator invocation::
1501
* ARM System emulator invocation::
1502
@end menu
1503

    
1504
@node QEMU PowerPC System emulator
1505
@section QEMU PowerPC System emulator
1506

    
1507
Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1508
or PowerMac PowerPC system.
1509

    
1510
QEMU emulates the following PowerMac peripherals:
1511

    
1512
@itemize @minus
1513
@item 
1514
UniNorth PCI Bridge 
1515
@item
1516
PCI VGA compatible card with VESA Bochs Extensions
1517
@item 
1518
2 PMAC IDE interfaces with hard disk and CD-ROM support
1519
@item 
1520
NE2000 PCI adapters
1521
@item
1522
Non Volatile RAM
1523
@item
1524
VIA-CUDA with ADB keyboard and mouse.
1525
@end itemize
1526

    
1527
QEMU emulates the following PREP peripherals:
1528

    
1529
@itemize @minus
1530
@item 
1531
PCI Bridge
1532
@item
1533
PCI VGA compatible card with VESA Bochs Extensions
1534
@item 
1535
2 IDE interfaces with hard disk and CD-ROM support
1536
@item
1537
Floppy disk
1538
@item 
1539
NE2000 network adapters
1540
@item
1541
Serial port
1542
@item
1543
PREP Non Volatile RAM
1544
@item
1545
PC compatible keyboard and mouse.
1546
@end itemize
1547

    
1548
QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
1549
@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
1550

    
1551
@c man begin OPTIONS
1552

    
1553
The following options are specific to the PowerPC emulation:
1554

    
1555
@table @option
1556

    
1557
@item -g WxH[xDEPTH]  
1558

    
1559
Set the initial VGA graphic mode. The default is 800x600x15.
1560

    
1561
@end table
1562

    
1563
@c man end 
1564

    
1565

    
1566
More information is available at
1567
@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
1568

    
1569
@node Sparc32 System emulator invocation
1570
@section Sparc32 System emulator invocation
1571

    
1572
Use the executable @file{qemu-system-sparc} to simulate a SparcStation 5
1573
(sun4m architecture). The emulation is somewhat complete.
1574

    
1575
QEMU emulates the following sun4m peripherals:
1576

    
1577
@itemize @minus
1578
@item
1579
IOMMU
1580
@item
1581
TCX Frame buffer
1582
@item 
1583
Lance (Am7990) Ethernet
1584
@item
1585
Non Volatile RAM M48T08
1586
@item
1587
Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
1588
and power/reset logic
1589
@item
1590
ESP SCSI controller with hard disk and CD-ROM support
1591
@item
1592
Floppy drive
1593
@end itemize
1594

    
1595
The number of peripherals is fixed in the architecture.
1596

    
1597
Since version 0.8.2, QEMU uses OpenBIOS
1598
@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
1599
firmware implementation. The goal is to implement a 100% IEEE
1600
1275-1994 (referred to as Open Firmware) compliant firmware.
1601

    
1602
A sample Linux 2.6 series kernel and ram disk image are available on
1603
the QEMU web site. Please note that currently NetBSD, OpenBSD or
1604
Solaris kernels don't work.
1605

    
1606
@c man begin OPTIONS
1607

    
1608
The following options are specific to the Sparc emulation:
1609

    
1610
@table @option
1611

    
1612
@item -g WxH
1613

    
1614
Set the initial TCX graphic mode. The default is 1024x768.
1615

    
1616
@end table
1617

    
1618
@c man end 
1619

    
1620
@node Sparc64 System emulator invocation
1621
@section Sparc64 System emulator invocation
1622

    
1623
Use the executable @file{qemu-system-sparc64} to simulate a Sun4u machine.
1624
The emulator is not usable for anything yet.
1625

    
1626
QEMU emulates the following sun4u peripherals:
1627

    
1628
@itemize @minus
1629
@item
1630
UltraSparc IIi APB PCI Bridge 
1631
@item
1632
PCI VGA compatible card with VESA Bochs Extensions
1633
@item
1634
Non Volatile RAM M48T59
1635
@item
1636
PC-compatible serial ports
1637
@end itemize
1638

    
1639
@node MIPS System emulator invocation
1640
@section MIPS System emulator invocation
1641

    
1642
Use the executable @file{qemu-system-mips} to simulate a MIPS machine.
1643
The emulator is able to boot a Linux kernel and to run a Linux Debian
1644
installation from NFS. The following devices are emulated:
1645

    
1646
@itemize @minus
1647
@item 
1648
MIPS R4K CPU
1649
@item
1650
PC style serial port
1651
@item
1652
NE2000 network card
1653
@end itemize
1654

    
1655
More information is available in the QEMU mailing-list archive.
1656

    
1657
@node ARM System emulator invocation
1658
@section ARM System emulator invocation
1659

    
1660
Use the executable @file{qemu-system-arm} to simulate a ARM
1661
machine. The ARM Integrator/CP board is emulated with the following
1662
devices:
1663

    
1664
@itemize @minus
1665
@item
1666
ARM926E or ARM1026E CPU
1667
@item
1668
Two PL011 UARTs
1669
@item 
1670
SMC 91c111 Ethernet adapter
1671
@item
1672
PL110 LCD controller
1673
@item
1674
PL050 KMI with PS/2 keyboard and mouse.
1675
@end itemize
1676

    
1677
The ARM Versatile baseboard is emulated with the following devices:
1678

    
1679
@itemize @minus
1680
@item
1681
ARM926E CPU
1682
@item
1683
PL190 Vectored Interrupt Controller
1684
@item
1685
Four PL011 UARTs
1686
@item 
1687
SMC 91c111 Ethernet adapter
1688
@item
1689
PL110 LCD controller
1690
@item
1691
PL050 KMI with PS/2 keyboard and mouse.
1692
@item
1693
PCI host bridge.  Note the emulated PCI bridge only provides access to
1694
PCI memory space.  It does not provide access to PCI IO space.
1695
This means some devices (eg. ne2k_pci NIC) are not useable, and others
1696
(eg. rtl8139 NIC) are only useable when the guest drivers use the memory
1697
mapped control registers.
1698
@item
1699
PCI OHCI USB controller.
1700
@item
1701
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
1702
@end itemize
1703

    
1704
A Linux 2.6 test image is available on the QEMU web site. More
1705
information is available in the QEMU mailing-list archive.
1706

    
1707
@node QEMU User space emulator 
1708
@chapter QEMU User space emulator 
1709

    
1710
@menu
1711
* Supported Operating Systems ::
1712
* Linux User space emulator::
1713
* Mac OS X/Darwin User space emulator ::
1714
@end menu
1715

    
1716
@node Supported Operating Systems
1717
@section Supported Operating Systems
1718

    
1719
The following OS are supported in user space emulation:
1720

    
1721
@itemize @minus
1722
@item
1723
Linux (refered as qemu-linux-user)
1724
@item
1725
Mac OS X/Darwin (refered as qemu-darwin-user)
1726
@end itemize
1727

    
1728
@node Linux User space emulator
1729
@section Linux User space emulator
1730

    
1731
@menu
1732
* Quick Start::
1733
* Wine launch::
1734
* Command line options::
1735
* Other binaries::
1736
@end menu
1737

    
1738
@node Quick Start
1739
@subsection Quick Start
1740

    
1741
In order to launch a Linux process, QEMU needs the process executable
1742
itself and all the target (x86) dynamic libraries used by it. 
1743

    
1744
@itemize
1745

    
1746
@item On x86, you can just try to launch any process by using the native
1747
libraries:
1748

    
1749
@example 
1750
qemu-i386 -L / /bin/ls
1751
@end example
1752

    
1753
@code{-L /} tells that the x86 dynamic linker must be searched with a
1754
@file{/} prefix.
1755

    
1756
@item Since QEMU is also a linux process, you can launch qemu with qemu (NOTE: you can only do that if you compiled QEMU from the sources):
1757

    
1758
@example 
1759
qemu-i386 -L / qemu-i386 -L / /bin/ls
1760
@end example
1761

    
1762
@item On non x86 CPUs, you need first to download at least an x86 glibc
1763
(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
1764
@code{LD_LIBRARY_PATH} is not set:
1765

    
1766
@example
1767
unset LD_LIBRARY_PATH 
1768
@end example
1769

    
1770
Then you can launch the precompiled @file{ls} x86 executable:
1771

    
1772
@example
1773
qemu-i386 tests/i386/ls
1774
@end example
1775
You can look at @file{qemu-binfmt-conf.sh} so that
1776
QEMU is automatically launched by the Linux kernel when you try to
1777
launch x86 executables. It requires the @code{binfmt_misc} module in the
1778
Linux kernel.
1779

    
1780
@item The x86 version of QEMU is also included. You can try weird things such as:
1781
@example
1782
qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
1783
          /usr/local/qemu-i386/bin/ls-i386
1784
@end example
1785

    
1786
@end itemize
1787

    
1788
@node Wine launch
1789
@subsection Wine launch
1790

    
1791
@itemize
1792

    
1793
@item Ensure that you have a working QEMU with the x86 glibc
1794
distribution (see previous section). In order to verify it, you must be
1795
able to do:
1796

    
1797
@example
1798
qemu-i386 /usr/local/qemu-i386/bin/ls-i386
1799
@end example
1800

    
1801
@item Download the binary x86 Wine install
1802
(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page). 
1803

    
1804
@item Configure Wine on your account. Look at the provided script
1805
@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
1806
@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
1807

    
1808
@item Then you can try the example @file{putty.exe}:
1809

    
1810
@example
1811
qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
1812
          /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
1813
@end example
1814

    
1815
@end itemize
1816

    
1817
@node Command line options
1818
@subsection Command line options
1819

    
1820
@example
1821
usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
1822
@end example
1823

    
1824
@table @option
1825
@item -h
1826
Print the help
1827
@item -L path   
1828
Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
1829
@item -s size
1830
Set the x86 stack size in bytes (default=524288)
1831
@end table
1832

    
1833
Debug options:
1834

    
1835
@table @option
1836
@item -d
1837
Activate log (logfile=/tmp/qemu.log)
1838
@item -p pagesize
1839
Act as if the host page size was 'pagesize' bytes
1840
@end table
1841

    
1842
@node Other binaries
1843
@subsection Other binaries
1844

    
1845
@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
1846
binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
1847
configurations), and arm-uclinux bFLT format binaries.
1848

    
1849
@command{qemu-m68k} is capable of running semihosted binaries using the BDM
1850
(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
1851
coldfire uClinux bFLT format binaries.
1852

    
1853
The binary format is detected automatically.
1854

    
1855
@node Mac OS X/Darwin User space emulator
1856
@section Mac OS X/Darwin User space emulator
1857

    
1858
@menu
1859
* Mac OS X/Darwin Status::
1860
* Mac OS X/Darwin Quick Start::
1861
* Mac OS X/Darwin Command line options::
1862
@end menu
1863

    
1864
@node Mac OS X/Darwin Status
1865
@subsection Mac OS X/Darwin Status
1866

    
1867
@itemize @minus
1868
@item
1869
target x86 on x86: Most apps (Cocoa and Carbon too) works. [1]
1870
@item
1871
target PowerPC on x86: Not working as the ppc commpage can't be mapped (yet!)
1872
@item
1873
target x86 on x86: Most apps (Cocoa and Carbon too) works. [1]
1874
@item
1875
target x86 on PowerPC: most utilities work. Cocoa and Carbon apps are not yet supported.
1876
@end itemize
1877

    
1878
[1] If you're host commpage can be executed by qemu.
1879

    
1880
@node Mac OS X/Darwin Quick Start
1881
@subsection Quick Start
1882

    
1883
In order to launch a Mac OS X/Darwin process, QEMU needs the process executable
1884
itself and all the target dynamic libraries used by it. If you don't have the FAT
1885
libraries (you're running Mac OS X/ppc) you'll need to obtain it from a Mac OS X
1886
CD or compile them by hand.
1887

    
1888
@itemize
1889

    
1890
@item On x86, you can just try to launch any process by using the native
1891
libraries:
1892

    
1893
@example 
1894
qemu-darwin-i386 /bin/ls
1895
@end example
1896

    
1897
or to run the ppc version of the executable:
1898

    
1899
@example 
1900
qemu-darwin-ppc /bin/ls
1901
@end example
1902

    
1903
@item On ppc, you'll have to tell qemu where your x86 libraries (and dynamic linker)
1904
are installed:
1905

    
1906
@example 
1907
qemu-darwin-i386 -L /opt/x86_root/ /bin/ls
1908
@end example
1909

    
1910
@code{-L /opt/x86_root/} tells that the dynamic linker (dyld) path is in
1911
@file{/opt/x86_root/usr/bin/dyld}.
1912

    
1913
@end itemize
1914

    
1915
@node Mac OS X/Darwin Command line options
1916
@subsection Command line options
1917

    
1918
@example
1919
usage: qemu-darwin-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
1920
@end example
1921

    
1922
@table @option
1923
@item -h
1924
Print the help
1925
@item -L path   
1926
Set the library root path (default=/)
1927
@item -s size
1928
Set the stack size in bytes (default=524288)
1929
@end table
1930

    
1931
Debug options:
1932

    
1933
@table @option
1934
@item -d
1935
Activate log (logfile=/tmp/qemu.log)
1936
@item -p pagesize
1937
Act as if the host page size was 'pagesize' bytes
1938
@end table
1939

    
1940
@node compilation
1941
@chapter Compilation from the sources
1942

    
1943
@menu
1944
* Linux/Unix::
1945
* Windows::
1946
* Cross compilation for Windows with Linux::
1947
* Mac OS X::
1948
@end menu
1949

    
1950
@node Linux/Unix
1951
@section Linux/Unix
1952

    
1953
@subsection Compilation
1954

    
1955
First you must decompress the sources:
1956
@example
1957
cd /tmp
1958
tar zxvf qemu-x.y.z.tar.gz
1959
cd qemu-x.y.z
1960
@end example
1961

    
1962
Then you configure QEMU and build it (usually no options are needed):
1963
@example
1964
./configure
1965
make
1966
@end example
1967

    
1968
Then type as root user:
1969
@example
1970
make install
1971
@end example
1972
to install QEMU in @file{/usr/local}.
1973

    
1974
@subsection GCC version
1975

    
1976
In order to compile QEMU successfully, it is very important that you
1977
have the right tools. The most important one is gcc. On most hosts and
1978
in particular on x86 ones, @emph{gcc 4.x is not supported}. If your
1979
Linux distribution includes a gcc 4.x compiler, you can usually
1980
install an older version (it is invoked by @code{gcc32} or
1981
@code{gcc34}). The QEMU configure script automatically probes for
1982
these older versions so that usally you don't have to do anything.
1983

    
1984
@node Windows
1985
@section Windows
1986

    
1987
@itemize
1988
@item Install the current versions of MSYS and MinGW from
1989
@url{http://www.mingw.org/}. You can find detailed installation
1990
instructions in the download section and the FAQ.
1991

    
1992
@item Download 
1993
the MinGW development library of SDL 1.2.x
1994
(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
1995
@url{http://www.libsdl.org}. Unpack it in a temporary place, and
1996
unpack the archive @file{i386-mingw32msvc.tar.gz} in the MinGW tool
1997
directory. Edit the @file{sdl-config} script so that it gives the
1998
correct SDL directory when invoked.
1999

    
2000
@item Extract the current version of QEMU.
2001
 
2002
@item Start the MSYS shell (file @file{msys.bat}).
2003

    
2004
@item Change to the QEMU directory. Launch @file{./configure} and 
2005
@file{make}.  If you have problems using SDL, verify that
2006
@file{sdl-config} can be launched from the MSYS command line.
2007

    
2008
@item You can install QEMU in @file{Program Files/Qemu} by typing 
2009
@file{make install}. Don't forget to copy @file{SDL.dll} in
2010
@file{Program Files/Qemu}.
2011

    
2012
@end itemize
2013

    
2014
@node Cross compilation for Windows with Linux
2015
@section Cross compilation for Windows with Linux
2016

    
2017
@itemize
2018
@item
2019
Install the MinGW cross compilation tools available at
2020
@url{http://www.mingw.org/}.
2021

    
2022
@item 
2023
Install the Win32 version of SDL (@url{http://www.libsdl.org}) by
2024
unpacking @file{i386-mingw32msvc.tar.gz}. Set up the PATH environment
2025
variable so that @file{i386-mingw32msvc-sdl-config} can be launched by
2026
the QEMU configuration script.
2027

    
2028
@item 
2029
Configure QEMU for Windows cross compilation:
2030
@example
2031
./configure --enable-mingw32
2032
@end example
2033
If necessary, you can change the cross-prefix according to the prefix
2034
choosen for the MinGW tools with --cross-prefix. You can also use
2035
--prefix to set the Win32 install path.
2036

    
2037
@item You can install QEMU in the installation directory by typing 
2038
@file{make install}. Don't forget to copy @file{SDL.dll} in the
2039
installation directory. 
2040

    
2041
@end itemize
2042

    
2043
Note: Currently, Wine does not seem able to launch
2044
QEMU for Win32.
2045

    
2046
@node Mac OS X
2047
@section Mac OS X
2048

    
2049
The Mac OS X patches are not fully merged in QEMU, so you should look
2050
at the QEMU mailing list archive to have all the necessary
2051
information.
2052

    
2053
@node Index
2054
@chapter Index
2055
@printindex cp
2056

    
2057
@bye