Statistics
| Branch: | Revision:

root / util / hbitmap.c @ 834574ea

History | View | Annotate | Download (12.5 kB)

1
/*
2
 * Hierarchical Bitmap Data Type
3
 *
4
 * Copyright Red Hat, Inc., 2012
5
 *
6
 * Author: Paolo Bonzini <pbonzini@redhat.com>
7
 *
8
 * This work is licensed under the terms of the GNU GPL, version 2 or
9
 * later.  See the COPYING file in the top-level directory.
10
 */
11

    
12
#include <string.h>
13
#include <glib.h>
14
#include <assert.h>
15
#include "qemu/osdep.h"
16
#include "qemu/hbitmap.h"
17
#include "qemu/host-utils.h"
18
#include "trace.h"
19

    
20
/* HBitmaps provides an array of bits.  The bits are stored as usual in an
21
 * array of unsigned longs, but HBitmap is also optimized to provide fast
22
 * iteration over set bits; going from one bit to the next is O(logB n)
23
 * worst case, with B = sizeof(long) * CHAR_BIT: the result is low enough
24
 * that the number of levels is in fact fixed.
25
 *
26
 * In order to do this, it stacks multiple bitmaps with progressively coarser
27
 * granularity; in all levels except the last, bit N is set iff the N-th
28
 * unsigned long is nonzero in the immediately next level.  When iteration
29
 * completes on the last level it can examine the 2nd-last level to quickly
30
 * skip entire words, and even do so recursively to skip blocks of 64 words or
31
 * powers thereof (32 on 32-bit machines).
32
 *
33
 * Given an index in the bitmap, it can be split in group of bits like
34
 * this (for the 64-bit case):
35
 *
36
 *   bits 0-57 => word in the last bitmap     | bits 58-63 => bit in the word
37
 *   bits 0-51 => word in the 2nd-last bitmap | bits 52-57 => bit in the word
38
 *   bits 0-45 => word in the 3rd-last bitmap | bits 46-51 => bit in the word
39
 *
40
 * So it is easy to move up simply by shifting the index right by
41
 * log2(BITS_PER_LONG) bits.  To move down, you shift the index left
42
 * similarly, and add the word index within the group.  Iteration uses
43
 * ffs (find first set bit) to find the next word to examine; this
44
 * operation can be done in constant time in most current architectures.
45
 *
46
 * Setting or clearing a range of m bits on all levels, the work to perform
47
 * is O(m + m/W + m/W^2 + ...), which is O(m) like on a regular bitmap.
48
 *
49
 * When iterating on a bitmap, each bit (on any level) is only visited
50
 * once.  Hence, The total cost of visiting a bitmap with m bits in it is
51
 * the number of bits that are set in all bitmaps.  Unless the bitmap is
52
 * extremely sparse, this is also O(m + m/W + m/W^2 + ...), so the amortized
53
 * cost of advancing from one bit to the next is usually constant (worst case
54
 * O(logB n) as in the non-amortized complexity).
55
 */
56

    
57
struct HBitmap {
58
    /* Number of total bits in the bottom level.  */
59
    uint64_t size;
60

    
61
    /* Number of set bits in the bottom level.  */
62
    uint64_t count;
63

    
64
    /* A scaling factor.  Given a granularity of G, each bit in the bitmap will
65
     * will actually represent a group of 2^G elements.  Each operation on a
66
     * range of bits first rounds the bits to determine which group they land
67
     * in, and then affect the entire page; iteration will only visit the first
68
     * bit of each group.  Here is an example of operations in a size-16,
69
     * granularity-1 HBitmap:
70
     *
71
     *    initial state            00000000
72
     *    set(start=0, count=9)    11111000 (iter: 0, 2, 4, 6, 8)
73
     *    reset(start=1, count=3)  00111000 (iter: 4, 6, 8)
74
     *    set(start=9, count=2)    00111100 (iter: 4, 6, 8, 10)
75
     *    reset(start=5, count=5)  00000000
76
     *
77
     * From an implementation point of view, when setting or resetting bits,
78
     * the bitmap will scale bit numbers right by this amount of bits.  When
79
     * iterating, the bitmap will scale bit numbers left by this amount of
80
     * bits.
81
     */
82
    int granularity;
83

    
84
    /* A number of progressively less coarse bitmaps (i.e. level 0 is the
85
     * coarsest).  Each bit in level N represents a word in level N+1 that
86
     * has a set bit, except the last level where each bit represents the
87
     * actual bitmap.
88
     *
89
     * Note that all bitmaps have the same number of levels.  Even a 1-bit
90
     * bitmap will still allocate HBITMAP_LEVELS arrays.
91
     */
92
    unsigned long *levels[HBITMAP_LEVELS];
93
};
94

    
95
static inline int popcountl(unsigned long l)
96
{
97
    return BITS_PER_LONG == 32 ? ctpop32(l) : ctpop64(l);
98
}
99

    
100
/* Advance hbi to the next nonzero word and return it.  hbi->pos
101
 * is updated.  Returns zero if we reach the end of the bitmap.
102
 */
103
unsigned long hbitmap_iter_skip_words(HBitmapIter *hbi)
104
{
105
    size_t pos = hbi->pos;
106
    const HBitmap *hb = hbi->hb;
107
    unsigned i = HBITMAP_LEVELS - 1;
108

    
109
    unsigned long cur;
110
    do {
111
        cur = hbi->cur[--i];
112
        pos >>= BITS_PER_LEVEL;
113
    } while (cur == 0);
114

    
115
    /* Check for end of iteration.  We always use fewer than BITS_PER_LONG
116
     * bits in the level 0 bitmap; thus we can repurpose the most significant
117
     * bit as a sentinel.  The sentinel is set in hbitmap_alloc and ensures
118
     * that the above loop ends even without an explicit check on i.
119
     */
120

    
121
    if (i == 0 && cur == (1UL << (BITS_PER_LONG - 1))) {
122
        return 0;
123
    }
124
    for (; i < HBITMAP_LEVELS - 1; i++) {
125
        /* Shift back pos to the left, matching the right shifts above.
126
         * The index of this word's least significant set bit provides
127
         * the low-order bits.
128
         */
129
        assert(cur);
130
        pos = (pos << BITS_PER_LEVEL) + ctzl(cur);
131
        hbi->cur[i] = cur & (cur - 1);
132

    
133
        /* Set up next level for iteration.  */
134
        cur = hb->levels[i + 1][pos];
135
    }
136

    
137
    hbi->pos = pos;
138
    trace_hbitmap_iter_skip_words(hbi->hb, hbi, pos, cur);
139

    
140
    assert(cur);
141
    return cur;
142
}
143

    
144
void hbitmap_iter_init(HBitmapIter *hbi, const HBitmap *hb, uint64_t first)
145
{
146
    unsigned i, bit;
147
    uint64_t pos;
148

    
149
    hbi->hb = hb;
150
    pos = first >> hb->granularity;
151
    assert(pos < hb->size);
152
    hbi->pos = pos >> BITS_PER_LEVEL;
153
    hbi->granularity = hb->granularity;
154

    
155
    for (i = HBITMAP_LEVELS; i-- > 0; ) {
156
        bit = pos & (BITS_PER_LONG - 1);
157
        pos >>= BITS_PER_LEVEL;
158

    
159
        /* Drop bits representing items before first.  */
160
        hbi->cur[i] = hb->levels[i][pos] & ~((1UL << bit) - 1);
161

    
162
        /* We have already added level i+1, so the lowest set bit has
163
         * been processed.  Clear it.
164
         */
165
        if (i != HBITMAP_LEVELS - 1) {
166
            hbi->cur[i] &= ~(1UL << bit);
167
        }
168
    }
169
}
170

    
171
bool hbitmap_empty(const HBitmap *hb)
172
{
173
    return hb->count == 0;
174
}
175

    
176
int hbitmap_granularity(const HBitmap *hb)
177
{
178
    return hb->granularity;
179
}
180

    
181
uint64_t hbitmap_count(const HBitmap *hb)
182
{
183
    return hb->count << hb->granularity;
184
}
185

    
186
/* Count the number of set bits between start and end, not accounting for
187
 * the granularity.  Also an example of how to use hbitmap_iter_next_word.
188
 */
189
static uint64_t hb_count_between(HBitmap *hb, uint64_t start, uint64_t last)
190
{
191
    HBitmapIter hbi;
192
    uint64_t count = 0;
193
    uint64_t end = last + 1;
194
    unsigned long cur;
195
    size_t pos;
196

    
197
    hbitmap_iter_init(&hbi, hb, start << hb->granularity);
198
    for (;;) {
199
        pos = hbitmap_iter_next_word(&hbi, &cur);
200
        if (pos >= (end >> BITS_PER_LEVEL)) {
201
            break;
202
        }
203
        count += popcountl(cur);
204
    }
205

    
206
    if (pos == (end >> BITS_PER_LEVEL)) {
207
        /* Drop bits representing the END-th and subsequent items.  */
208
        int bit = end & (BITS_PER_LONG - 1);
209
        cur &= (1UL << bit) - 1;
210
        count += popcountl(cur);
211
    }
212

    
213
    return count;
214
}
215

    
216
/* Setting starts at the last layer and propagates up if an element
217
 * changes from zero to non-zero.
218
 */
219
static inline bool hb_set_elem(unsigned long *elem, uint64_t start, uint64_t last)
220
{
221
    unsigned long mask;
222
    bool changed;
223

    
224
    assert((last >> BITS_PER_LEVEL) == (start >> BITS_PER_LEVEL));
225
    assert(start <= last);
226

    
227
    mask = 2UL << (last & (BITS_PER_LONG - 1));
228
    mask -= 1UL << (start & (BITS_PER_LONG - 1));
229
    changed = (*elem == 0);
230
    *elem |= mask;
231
    return changed;
232
}
233

    
234
/* The recursive workhorse (the depth is limited to HBITMAP_LEVELS)... */
235
static void hb_set_between(HBitmap *hb, int level, uint64_t start, uint64_t last)
236
{
237
    size_t pos = start >> BITS_PER_LEVEL;
238
    size_t lastpos = last >> BITS_PER_LEVEL;
239
    bool changed = false;
240
    size_t i;
241

    
242
    i = pos;
243
    if (i < lastpos) {
244
        uint64_t next = (start | (BITS_PER_LONG - 1)) + 1;
245
        changed |= hb_set_elem(&hb->levels[level][i], start, next - 1);
246
        for (;;) {
247
            start = next;
248
            next += BITS_PER_LONG;
249
            if (++i == lastpos) {
250
                break;
251
            }
252
            changed |= (hb->levels[level][i] == 0);
253
            hb->levels[level][i] = ~0UL;
254
        }
255
    }
256
    changed |= hb_set_elem(&hb->levels[level][i], start, last);
257

    
258
    /* If there was any change in this layer, we may have to update
259
     * the one above.
260
     */
261
    if (level > 0 && changed) {
262
        hb_set_between(hb, level - 1, pos, lastpos);
263
    }
264
}
265

    
266
void hbitmap_set(HBitmap *hb, uint64_t start, uint64_t count)
267
{
268
    /* Compute range in the last layer.  */
269
    uint64_t last = start + count - 1;
270

    
271
    trace_hbitmap_set(hb, start, count,
272
                      start >> hb->granularity, last >> hb->granularity);
273

    
274
    start >>= hb->granularity;
275
    last >>= hb->granularity;
276
    count = last - start + 1;
277

    
278
    hb->count += count - hb_count_between(hb, start, last);
279
    hb_set_between(hb, HBITMAP_LEVELS - 1, start, last);
280
}
281

    
282
/* Resetting works the other way round: propagate up if the new
283
 * value is zero.
284
 */
285
static inline bool hb_reset_elem(unsigned long *elem, uint64_t start, uint64_t last)
286
{
287
    unsigned long mask;
288
    bool blanked;
289

    
290
    assert((last >> BITS_PER_LEVEL) == (start >> BITS_PER_LEVEL));
291
    assert(start <= last);
292

    
293
    mask = 2UL << (last & (BITS_PER_LONG - 1));
294
    mask -= 1UL << (start & (BITS_PER_LONG - 1));
295
    blanked = *elem != 0 && ((*elem & ~mask) == 0);
296
    *elem &= ~mask;
297
    return blanked;
298
}
299

    
300
/* The recursive workhorse (the depth is limited to HBITMAP_LEVELS)... */
301
static void hb_reset_between(HBitmap *hb, int level, uint64_t start, uint64_t last)
302
{
303
    size_t pos = start >> BITS_PER_LEVEL;
304
    size_t lastpos = last >> BITS_PER_LEVEL;
305
    bool changed = false;
306
    size_t i;
307

    
308
    i = pos;
309
    if (i < lastpos) {
310
        uint64_t next = (start | (BITS_PER_LONG - 1)) + 1;
311

    
312
        /* Here we need a more complex test than when setting bits.  Even if
313
         * something was changed, we must not blank bits in the upper level
314
         * unless the lower-level word became entirely zero.  So, remove pos
315
         * from the upper-level range if bits remain set.
316
         */
317
        if (hb_reset_elem(&hb->levels[level][i], start, next - 1)) {
318
            changed = true;
319
        } else {
320
            pos++;
321
        }
322

    
323
        for (;;) {
324
            start = next;
325
            next += BITS_PER_LONG;
326
            if (++i == lastpos) {
327
                break;
328
            }
329
            changed |= (hb->levels[level][i] != 0);
330
            hb->levels[level][i] = 0UL;
331
        }
332
    }
333

    
334
    /* Same as above, this time for lastpos.  */
335
    if (hb_reset_elem(&hb->levels[level][i], start, last)) {
336
        changed = true;
337
    } else {
338
        lastpos--;
339
    }
340

    
341
    if (level > 0 && changed) {
342
        hb_reset_between(hb, level - 1, pos, lastpos);
343
    }
344
}
345

    
346
void hbitmap_reset(HBitmap *hb, uint64_t start, uint64_t count)
347
{
348
    /* Compute range in the last layer.  */
349
    uint64_t last = start + count - 1;
350

    
351
    trace_hbitmap_reset(hb, start, count,
352
                        start >> hb->granularity, last >> hb->granularity);
353

    
354
    start >>= hb->granularity;
355
    last >>= hb->granularity;
356

    
357
    hb->count -= hb_count_between(hb, start, last);
358
    hb_reset_between(hb, HBITMAP_LEVELS - 1, start, last);
359
}
360

    
361
bool hbitmap_get(const HBitmap *hb, uint64_t item)
362
{
363
    /* Compute position and bit in the last layer.  */
364
    uint64_t pos = item >> hb->granularity;
365
    unsigned long bit = 1UL << (pos & (BITS_PER_LONG - 1));
366

    
367
    return (hb->levels[HBITMAP_LEVELS - 1][pos >> BITS_PER_LEVEL] & bit) != 0;
368
}
369

    
370
void hbitmap_free(HBitmap *hb)
371
{
372
    unsigned i;
373
    for (i = HBITMAP_LEVELS; i-- > 0; ) {
374
        g_free(hb->levels[i]);
375
    }
376
    g_free(hb);
377
}
378

    
379
HBitmap *hbitmap_alloc(uint64_t size, int granularity)
380
{
381
    HBitmap *hb = g_malloc0(sizeof (struct HBitmap));
382
    unsigned i;
383

    
384
    assert(granularity >= 0 && granularity < 64);
385
    size = (size + (1ULL << granularity) - 1) >> granularity;
386
    assert(size <= ((uint64_t)1 << HBITMAP_LOG_MAX_SIZE));
387

    
388
    hb->size = size;
389
    hb->granularity = granularity;
390
    for (i = HBITMAP_LEVELS; i-- > 0; ) {
391
        size = MAX((size + BITS_PER_LONG - 1) >> BITS_PER_LEVEL, 1);
392
        hb->levels[i] = g_malloc0(size * sizeof(unsigned long));
393
    }
394

    
395
    /* We necessarily have free bits in level 0 due to the definition
396
     * of HBITMAP_LEVELS, so use one for a sentinel.  This speeds up
397
     * hbitmap_iter_skip_words.
398
     */
399
    assert(size == 1);
400
    hb->levels[0][0] |= 1UL << (BITS_PER_LONG - 1);
401
    return hb;
402
}